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Abstract In this paper, we propose a zoom-out-and-in net-
work for generating object proposals. A key observation is
that it is difficult to classify anchors of different sizes with
the same set of features. Anchors of different sizes should
be placed accordingly based on different depth within a net-
work: smaller boxes on high-resolution layers with a smaller
stride while larger boxes on low-resolution counterparts with
a larger stride. Inspired by the conv/deconv structure, we
fully leverage the low-level local details and high-level re-
gional semantics from two feature map streams, which are
complimentary to each other, to identify the objectness in an
image. A map attention decision (MAD) unit is further pro-
posed to aggressively search for neuron activations among
two streams and attend the most contributive ones on the fea-
ture learning of the final loss. The unit serves as a decision-
maker to adaptively activate maps along certain channels
with the solely purpose of optimizing the overall training
loss. One advantage of MAD is that the learned weights en-
forced on each feature channel is predicted on-the-fly based
on the input context, which is more suitable than the fixed
enforcement of a convolutional kernel. Experimental results
on three datasets, including PASCAL VOC 2007, ImageNet
DET, MS COCO, demonstrate the effectiveness of our pro-
posed algorithm over other state-of-the-arts, in terms of av-
erage recall (AR) for region proposal and average precision
(AP) for object detection.
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1 Introduction

Object proposal is the task of proposing a set of candidate
regions or bounding boxes in an image that may potentially
contain an object. In recent years, the emergence of object
proposal algorithms (Uijlings et al., 2013; Manén et al., 2013;
Arbeláez et al., 2014; Hayder et al., 2016; Kong et al., 2016;
Ghodrati et al., 2016; Chavali et al., 2016; Sun et al., 2016;
Li et al., 2017a) have significantly boosted the development
of many vision tasks, (Liu et al., 2017a,b; Li et al., 2016; Chi
et al., 2016; Li et al., 2017b), especially for object detection
(Girshick et al., 2014; Dai et al., 2016; Girshick, 2015; Bell
et al., 2016; Liu et al., 2016). It is verified by Hosang et.al
(Hosang et al., 2015) that region proposals with high average
recall correlates well with good performance of a detector.
Thus generating object proposals has quickly become the
de-facto pre-processing step.

Currently, CNN models are known to be effective in gen-
erating candidate boxes (Ren et al., 2015; Kuo et al., 2015;
Kong et al., 2016). Existing works use deep CNN features at
the last layer for classifying whether a candidate box should
be an object proposal. The candidate box can come from
random seed (Gidaris and Komodakis, 2016), external boxes
(selective search (Uijlings et al., 2013), edge box (Zitnick
and Dollar, 2014), etc.), or sliding windows (Sermanet et al.,
2014). Deep CNN-based proposal methods employ a zoom-
out network, where down-sampling is used for reducing the
resolution of features. This zoom-out design is good for im-
age classification since down-sampling is effective for achiev-
ing translation invariance, increasing the receptive field of
features, and saving computation.

However, we argue that the zoom out structure faces
great challenge by using the same set of features and the
same classifier to handle object proposals in different sizes.
The learned features have to sacrifice on large objects in or-
der to compromise small ones. It also has two problems for
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Fig. 1: (a) Input image where blue and green objects are
being examined. (b) A larger stride in higher layers miss the
green box between two adjacent anchors. (c) This motivates
us to place small-scale anchors in the preceding layers with
a smaller stride.

Fig. 2: Different network design for region proposals. (a)
RPN (Ren et al., 2015); (b) RPN with split anchors; (c)
Deeper RPN with split anchors; (d) Zoom out-and-in net-
work adopted in this paper.

detecting small objects. First, candidate anchors are placed
at the final feature map in existing works (Ren et al., 2015).
As shown in Figure 1(b), when the down-sampling rate (or
total stride) of the feature map is 32, moving the anchor by
one step on the feature map corresponds to stepping by 32
pixels in the image. Anchors might skip small objects due
to a larger stride. Second, for the case of small objects, the
down-sampling operation makes the network difficult to de-
termine whether neurons or features will be activated or not
for the subsequent layer. The lack of resolution in feature
map is a factor that influences the ability of object proposal
methods in finding small objects. As depicted in Figure 1(c),
if the resolution of feature map is sufficient, the anchor box
with smaller stride can locate small objects. To fit for the
zoom-out network design, one could leverage features at
shallow layers which has higher resolution. Features from
shallow layers are yet weak in extracting high-level infor-
mation that is essential for object proposal. It would be de-
sirable if high-level semantics can pass information to guide
feature learning in the lower counterparts for small objects.

Inspired by the conv/deconv structure (Newell et al., 2016;
Long et al., 2015), we propose a Zoom-out-and-In network

for object Proposals (ZIP) to both utilize feature maps from
high and low streams. Figure 2 shows the network structure
of different designs at a glance. Under such a scheme not
only the detection of small objects enhances, but also the
detection of larger anchors increases. By splitting anchors
of different size, we make each level have its own classifier
and own set of features to handle a specific range of scales.

In this paper, we devise a Map Attention Decision unit
(MAD), to actively search for neuron activations among fea-
ture maps from low-level and high-level streams. Figure 3
illustrates the pipeline of our algorithm. MAD unit is a side
branch taking the feature maps in the highest level as input
and generates a column vector, whose length corresponds
to two times as the number of channels in maps that MAD
enforces on. The weight vector evaluates the contribution
of each map on the feature learning in the final RPN loss
layer. Such an intuition is derived from the gradient of loss
with respect to MAD unit (see Section 3.2). The proposed
unit involves parameter update during training and yet is
relatively isolated from the weights of the network. In this
sense, it resembles an external memory in neural networks
(Graves et al., 2016; Wen et al., 2016). One advantage of
MAD in selecting neuron activations among feature maps is
that it considers the context of input - the weight vector is
computed on the fly for each training or test sample, which
shares a big distinction in previous work where weights in
the learned combination kernel are fixed (see Section 2).

Our algorithm is implemented in Caffe (Jia et al., 2014)
with Matlab wrapper and trained on multiple GPUs. The
codebase and object proposal results of our method are avail-
able online1. To sum up, our contributions in this work are
as follows:

1. A map attention decision unit to actively search for neu-
ron activations among feature maps and attend the most
contributive ones on the feature learning of the loss. It
adapts the weights among feature maps on the fly based
on the context of input.

2. A zoom-out-and-in network that utilizes feature maps at
different depth of a network to leverage both low-level
details and high-level semantics. Anchors are placed sep-
arately based on different resolutions of maps to detect
objects of various sizes.

3. Several practical techniques for generating effective pro-
posals and enhancing the object detection performance,
including recursive test and training, boosting the classi-
fiers, etc., are investigated. The proposed ZIP algorithm
achieves average recall (AR) to 68.8% and 61.2% at top
500 proposals on ILSVRC DET and MS COCO, respec-
tively. Furthermore, the proposed boxes will improve av-
erage precision (AP) by around 2% for object detection
compared to previous state-of-the-art.

1 https://github.com/hli2020/zoom network

https://github.com/hli2020/zoom_network
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Fig. 3: (a) Zoom network with map attention decision (MAD) unit. Prior to down-sampling in each block, we utilize the
feature maps at that depth to place different size of anchors and identify the objectness in the image. Feature maps are
actively determined by the MAD unit, using a selective vector µ to decide the attention of neurons from both low-level and
high-level layers. (b) The region proposal generation pipeline after the zoom network. It only shows the case on levelm = 1,
where maps F 1,H1 from two streams, are leveraged by a MAD vector to generate the attention maps Y 1. Level m = 2

shares similar workflow as m = 1 whilst level m = 3 neither has merging from different sources nor applies MAD. The
complete network diagram for region proposal and object detection is depicted in Figure 6.

The rest of the paper is organized as follows: Section 2
states the related work from four aspects: the spirit of utiliz-
ing various information from different levels (depth or res-
olution) in the network, conv/deconv structure walkthrough,
region proposal and object detection. Section 3 and 4 depict
the detailed description on each component of the proposed
framework for region proposal and object detection, respec-
tively. Section 5 verifies the effectiveness of ZIP algorithm
by experiments. Section 6 concludes the paper.

2 Related Work

Using features from multi-depth in the network. The idea
of utilizing different feature maps at different locations in
the network has been investigated and proved to be effec-
tive (Liu et al., 2016; Pinheiro et al., 2016; Lin et al., 2017).
Pinheiro et al. (Pinheiro et al., 2016) proposed a network to
fully leverage all feature maps. Instead of simply combing
all feature maps, they devised a upsampling path to gradu-
ally refined maps that contained high-level semantics. SSD
(Liu et al., 2016) considers the idea of putting different scales
of anchors on various depth within the network. However,
SSD inherently does not consider the zoom-in (deconvolu-
tion) structure to help guide the learning in lower layers. Lin
et al. (Lin et al., 2017) introduced a feature pyramid network
which up-samples high-level features and generates multi-
ple predictions. However, the top-down path is achieved by
convolution kernels: once the training is finished, weights
are fixed for test; in ours, the decision of neuron activations
are determined by the input’s context, i.e., based on the pre-
dictions in the MAD vector.

Conv/deconv structure. The spirit of upsampling fea-
ture maps through learnable parameters is known as decon-
volution, which is widely applied in other vision domains

(Long et al., 2015; Noh et al., 2015; Hariharan et al., 2014;
Newell et al., 2016). Shelhamer et. al (Long et al., 2015) first
devise a novel structure to do pixel-wise semantic segmen-
tation via learnable deconvolution. In (Ronneberger et al.,
2015), a U-shaped network for segmentation is designed
with a contracting path to capture context and a symmet-
ric expanding path to localize objects. Newell et. al (Newell
et al., 2016) proposed an hourglass structure where feature
maps are passed with skip connections through stacks for
pose estimation. DSSD (Fu et al., 2017) embedded the orig-
inal SSD framework into a similar U-net structure with more
discriminative features due to the up-sampling subnetwork;
and more sophisticated prediction modules are designed for
each detection branch. Our work is inspired by these works
and yet have clear distinctions besides different application
domain. Existing approaches concatenate all features (Hari-
haran et al., 2014) or use the final feature map for prediction
(Newell et al., 2016), while we utilize specific features at
different locations of a network to detect objects of various
size. With such a philosophy in mind, we have each object
equipped with suitable features at a proper resolution.

Region proposals. In early stages people resort to find-
ing the objectness via multiple cues and larger pixels (called
superpixel) in a semantic manner (Uijlings et al., 2013; Alexe
et al., 2012; Krahenbuhl and Koltun, 2014). In (Krahen-
buhl and Koltun, 2015), a learning method is proposed by
training an ensemble of figure-ground segmentation mod-
els jointly, where individual models can specialize and com-
plement each other. In recent years, CNN-based approaches
(Hayder et al., 2016; Ghodrati et al., 2016; Pont-Tuset and
Gool, 2015; He and Lau, 2015) are more popular with a non-
trivial margin of performance boost. Jie et al. (Jie et al.,
2016) proposed a scale-aware pixel-wise proposal frame-
work where two separate networks are learned to handle
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large and small objects, respectively. Pinheiro et al. (Pin-
heiro et al., 2015) devised a discriminative CNN model to
generate a mask and predict its likelihood of containing an
object. In (Gidaris and Komodakis, 2016), a refine-and-repeat
model is formulated to recursively refine the box locations
based the revised score from a trained model.

Object detection. Our main pipeline follows the pop-
ular object detection prototype (Girshick et al., 2014; Gir-
shick, 2015; Ren et al., 2015; Liu et al., 2016; Redmon et al.,
2016; Redmon and Farhadi, 2016) of using region propos-
als as initial point to localize objects and classify them. It
is found out that the best practice for detection is to have a
set of object boxes passing a RoI-pooling layer, where after-
wards we feed the fix-sized feature maps into several addi-
tional convolutional layers (He et al., 2016; Kaiming et al.,
2014). The final loss is similar to that in region proposal: a
classification score and a box location adjustment via regres-
sion. Recently, the community has witnessed more advanced
versions of the Faster-RCNN detector and its variants. (Dai
et al., 2016) took a further step to move the functionality
of RoI-pooling to the very last feature layer before the clas-
sification: the scheme of position-sensitive score maps ad-
dresses the dilemma between invariance in classification and
variance in detection under a region-based, fully convolu-
tional network. Dai et al. (Dai et al., 2017) motivated that
the receptive field of convolutional kernels should also be
conditioned on the input RoI boxes and thus formulated the
offset reception in an end-to-end learning manner; the de-
formable unit could be plugged into most popular network
structures. Wang et al. (Wang et al., 2017) proposed to learn
an adversarial network that generates examples with occlu-
sions and deformations, which are hard for the detector to
classify. These examples are rare in long-tail distribution and
the adversarial part could model such an occurrence.

3 ZIP with Map Attention for Region Proposal

3.1 Backbone Architecture

Figure 3 describes the overview of the proposed zoom out-
and-in network with MAD. Most existing network structures
(Krizhevsky et al., 2012; He et al., 2016; Simonyan and Zis-
serman, 2015; Ren et al., 2015; Li et al., 2016) can be viewed
and used as a zoom-out network. We adopt the Inception-
BN model (Ioffe and Szegedy, 2015) and use the inception
module as basic block throughout the paper. Specifically,
an image is first fed into three convolutional layers, after
which the feature maps are downsampled by a total stride of
8. There are nine inception modules afterwards, denoted as
icp3a-3c, icp4a-4e and icp5a-5b. Max-pooling is
placed after icp3c and icp4e. Therefore, we divide the
network into three parts based on the stride at 8, 16 and

32. Denote F (m) at depth (or level) m as the output fea-
ture maps, where m = 1, 2, 3 is the depth index. Note that
the spatial size in F (m) is two times the size of that in its
subsequent level, which is determined by our network de-
sign. The number of feature channels in each block (from
icp3 to icp5) are 320, 608 and 1024, respectively.

Inspired by the conv-deconv network in other vision do-
mains (Newell et al., 2016; Noh et al., 2015), we adopt a
zoom-in architecture to better leverage the summarized high-
level feature maps for refining its low-level counterparts.
Such a zoom-in architecture is exactly the mirrored version
of the zoom-out part with max-pooling being replaced by
deconvolution. We denote the mirrored inception block as
icpX’. It is found in preliminary experiments that a bilin-
ear upsampling plus a convolution operation achieves bet-
ter performance than that of an existing deconvolution layer
in practice. Denote the output feature maps after the up-
sampling inceptional layer icp4e’ as H(2) and the out-
put maps at layer icp3’ as H(1). The neuron activations
in these feature maps contain the high-level regional seman-
tics, summarized via the zoom-out network and propagated
back to guide the feature learning in low-level layer via de-
convolution layer by layer. Note that we do not deliberately
formulate a H(3) since F (3) alone are suitable enough for
identifying large objects.

3.2 Zoom Network Training with MAD Unit

At the core of the zoom out-and-in network is a feature map
attention unit to deterministically choose neuron activations
among channels from both high and low level streams, and
to help supervise the feature learning in the final RPN layer
to identify objectness in the image. To this end, we propose
a feature map selection unit, called MAD, to actively help
find useful neuron activations among feature channels (see
red area in Figure 3).

The unit MAD(·) is fed with the feature mapsF 3 as input,
goes through three convolutions with kernel size of 3, stride
of 1 and the number of channels being exactly two times as
that on level m at each layer, where m = 1, 2. Since the
zoom network is a fully convolution design and the size of
input image varies, the spatial size of output after the unit
also changes. Therefore, we take a global max-pooling op-
eration to dynamically alters the spatial size to 1 × 1. We
denote the output of the unit on level m as MAD vector:

µ(m) = MAD(F 3,m) ∈ R1×1×2C(m)

, (1)

where C(m) is the channel number of the input maps.
Given the inputs from two streams, we first concatenate

and denote them as X(m) = [F (m),H(m)]. Then we have
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Fig. 4: Effect of MAD unit in learning crucial attention information of features. (a)-(c): Anchor templates (green boxes) with
different scales and aspect ratios are placed at different levels in the network, where ground truth annotations are marked
in red. (d): Our proposal results (in blue). (e)-(h): Lower neuron activation in F 2; Higher neuron activation in H2; naive
convolution output from F 2 andH2; attention map using MAD unit.

the attention maps Y (m), which is an outcome of the con-
catenated maps multiplied by the MAD vector:

y
(m)
j = µ

(m)
j x

(m)
j , (2)

wherexj ,yj are the vector representation ofX(m),Y (m) in
channel j, respectively. Note that µ(m)

j is a learning variable
and also involves the parameter update rule. There are many
possible alternative designs of MAD unit besides the one
stated above and we have included an ablative investigation
in the experiments (see Section 5.2).

Now the key question is how to derive the gradient of
MAD vector and how to interpret its functionality. For sim-
plicity, we drop notation m and use the vector form of X
and Y in the following discussion. Suppose we have the up-
per gradient∇yj

L flowing back from the loss layer, the gra-
dients with respect to the MAD vector and input are achieved
by chain rule2:

∂L
∂µj

=∇yj
L · ∂yj

∂µj
= ∇yj

L · xj , (3)

∂L
∂xj

=∇yj
L · ∂yj

∂xj
= ∇yj

L · µj . (4)

The update rule of µj and xj are defined as follows:

µj = µj − α
∂L
∂µj

, xj = xj − α
∂L
∂xj

, (5)

where α > 0 is the learning rate in the unit.
Analysis. The gradient ∇yj

L is the propagated error
from the final loss. If the data and parameters of the net-
work follow the update rule, the loss decreases and we say
the features are well learned. Keep in mind that weights or

2 The first row is the inner product of two vectors, resulting in a
scalar gradient; while the second is the common vector multiplication
by a scalar, resulting in a vector also.

data in the network can increase or decrease as long as such
an alternation optimizes the loss, or equivalently, benefits
the feature learning. If the direction of map xj matches the
upper gradient3, ∇µjL is positive with µj decreased, and
based on the update rule of xj , it remains a relatively high
value, meaning the features does not alter much during up-
date; similarly if the direction of xj departs from the up-
per gradient, ∇µj

L is negative with µj increased, and xj
changes to a relatively low value since∇xj

L is large. There-
fore, MAD vector µj serves as an adapter to alter the mag-
nitude within the network: feature maps whose direction are
in accordance with the gradient (thus the optimization goal)
should remain unchanged; feature maps whose direction are
different from the gradient should alter quickly and remain
at a low state (inactive neuron). One advantage of the MAD
unit is that it merges feature maps from two streams based
on the context of input image, i.e., the vector µj are on-the-
fly predictions of the network, whereas in previous work,
e.g., (Lin et al., 2017), they opt to fixed kernel parameters in
the convolutional layer to combine features from different
channels during test (see Section 2).

The squeeze-excitation network (SENet) (Hu et al., 2017)
demises a block module that first squeezes the spatial size of
feature maps along the channel dimension, then extracts the
summarized information (adaptive recalibration) and at last
imposes the output vector of excitation on the feature maps.
The recalibration output resembles the MAD unit. However,
the biggest difference lies in the source where MAD, called
“excitation recalibration vector” in (Hu et al., 2017), comes
from. In their scheme, the map attention decision vector is
generated from the very feature map itself; whereas in our
design, the MAD decision comes from the higher feature

3 Direction ‘matches’ means the included angle between two vectors
in multi-dimensional space is within 90 degrees; and ‘departs’ means
the angle falls at [90, 180].
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maps (level m = 3) to guide or supervise the feature impor-
tance learning in the lower layers (on level m = 1 or 2). We
deem SENet and our proposed one as concurrent works.

Training loss. After obtaining the attention maps from
MAD, we further feed them into a subsequent convolution
layer and conduct the anchor detection in the final RPN layer.
Let L(m)

(
B{yj(i)}|w

)
be the RPN loss on depth m, where

B is the mini-batch;w denotes the weights in the final RPN
layer. yj(i) = {yq(i) ∈ Rjd} denotes the i-th sample from
preceding layer. We extend the vector form of yj to the
element-wise notation yq for gradient derivation later, i.e.,
q = jd, where d indexes the spatial location in yj ; q is the
index considering the width, height and channel in the map.
The zoom network on level m is trained using the cross-
entropy loss plus a regression loss:

L(m)
(
B|w

)
=
∑
i

− log pik∗ + δ(lik∗)
∥∥ti − t∗i ∥∥2, (6)

where δ(·) is the indicator function. pi = {pik} ∈ RK is
the estimated probability with K being the total number of
classes. In our task, k = 0, 1. li = {lik} denotes the la-
bel vector with its correct label index k∗ being 1 and oth-
ers being 0. ti, t∗i ∈ R4 indicates the estimated and ground
truth regression offset (Girshick, 2015), respectively. The to-
tal loss of the zoom network is optimized as the summed loss
across all levels:Lzoom net =

∑
m L(m)

(
B{yj(i)}|w

)
.Note

that the number of samples B in a mini-batch varies in each
level, since there are way more anchors in lower depth than
those in higher one.

The upper gradient assumed to be existent in Eqn.(3) and
(4) is therefore derived as:

∇yjL =
∂L
∂yjd

,
∂L
∂yq

=

=
∑
k

∂L
∂pk

∂pk
∂yq

+ δ(lk∗)
∑
r

∂L
∂tr

∂tr
∂yq

,

=
∑
k

(pk − lk)wqk + δ(lk∗)
∑
r

(tr − t∗r)wqr, (7)

where we drop notations of levelm and sample i for brevity.
wqk and wqr are the ‘abstract’ weights from input yq to the
loss layer L. Note that there could be several different layers
between the attention maps and the final RPN loss.

Figure 4 visualizes the effect of using MAD unit on ac-
quiring more accurate neuron activations among feature maps.
Take the feature maps at level m = 2 (for medium objects)
as an illustration, we can see the low-level features contain
many local details and might be noisy for detection; while
raw high-level features inH2 highlight some region around
the helmets, there are still many disturbing areas. A naive
combination of high-level and low-level maps by convolu-
tion can effectively remove unnecessary background details
and magnify objects on medium size. However, we can ob-
serve from (h) that by enforcing a MAD unit to actively look
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Fig. 5: Anchor distribution in logarithmic width and height.
Left: PASCAL VOC 0712 trainval data; right: MS
COCO 2014 test data. Region proposals share simi-
lar properties across datasets; on COCO the anchors vary
slightly more in terms of size and aspect ratio.

for neuron attention among feature channels, the outcome
could have clear and strong signal as to where to find po-
tential objects, which could benefit the classification and re-
gression in the RPN layer in a great deal.

3.3 Training Strategies and Anchor Design

There are several remarks regarding the training of the zoom
network. First, adjust input scale dynamically, known as
dyTrainScale in Table 2. Each sample is resized to the
extent where at least one of the ground truth boxes is covered
by the medium anchors. This ensures there are always posi-
tive samples in each batch and the model can relatively see
a fixed range of anchor sizes - achieving multi-scale train-
ing at low computational cost. Second, control the number
of negative samples, denoted as equilibrium. In prelim-
inary experiments, we find that the training loss converges
slowly if we fill in the rest of a batch with negative samples.
This will cause the unbalance of training data when the num-
ber of positive samples is small. Thus, we strict the number
of negative samples to be at most twice the number of the
positive. Third, add an additional gray class, indicated as
grayCls. Adding an additional gray label into the training
stage better separates the positive from the negative. For the
positive class, IoU threshold is above 0.6; for the gray class,
IoU ranges from 0.35 to 0.55; and for the negative, the crite-
rion is below 0.25. The number of gray samples is set to be
half of the total number of positive and negative ones. Note
that these strategies are not mentioned in the original region
proposal networks (Ren et al., 2015).

As stated in Section 1, we place anchors of various sizes
at different depth in the network. Figure 5 depicts the an-
chor distribution in PASCAL VOC and COCO. The training
and test sets share similar data properties within and across
dataset. There are 30 anchors in total and each depth holds
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10 box templates. Since the scale problem is handled by the
various resolutions in the feature map, we set the number of
different aspect ratios (which is 5) more than the number of
scales (which is 2 in our setting) in each level. We manually
group the anchors into three clusters based on the scale dis-
tribution across datasets. Specifically, the scale of anchors
in each level are {16, 32}, {64, 128}, {256, 512}, respec-
tively; and the aspect ratio set is 0.25, 0.5, 0.75, 1, 2, 4. Note
that these anchor templates are unanimously set across all
datasets to be evaluated.

In SSD (Liu et al., 2016), the design of anchors is heuris-
tic and exhaustive: it places too many templates in (relative)
size from 0.2 to 0.9 of the fixed input image on six locations.
In our work, we bear in mind the computational cost and de-
sign the anchor size carefully: we divide the anchor space
into three domains and vary the input image size such that
there will always be objects of size around 128 (the medium
size); the anchors are placed only at three locations (depth)
in the network, compared to the six prediction modules in
SSD. The size of feature maps in each branch of our method
is exactly halved to the previous branch, thus covering a vast
majority of anchor space at a lower computation budget.

3.4 Zoom Network Prediction

During inference, we merge proposal results from all the
three levels. Prior to merging, an initial NMS (Alexe et al.,
2012) process (with top boxes 2000 and IoU threshold 0.5)
is launched to first filter out low confidence and redundant
boxes. Since the raw scores at each level is not comparable,
we tune a bias term for each level to add on the raw scores
for better combination among results. Note that these thresh-
olds are cross validated on a smaller set different from the
one used for evaluation. The second NMS (with top boxes
300) is conducted in a multi-threshold manner as does in
(Gidaris and Komodakis, 2016) to automatically set the opti-
mal IoU threshold under different number of proposals to be
evaluated. Since the scale varies dynamically during train-
ing, we also forward the network in several image scales,
ranging from 1000 to 250 with interval 250.

4 Zoom Network for Object Detection

We now verify our proposed method in the context of object
detection and embed the MAD unit, which is for selecting
feature maps from various branches in the network, with re-
gion proposal generation in an end-to-end learning system.
Figure 6 depicts the detection follow-up pipeline. Since the
channel number of attended maps on different level varies
(640, 1216 and 1024 from level 1 to 3, respectively), we have
an additional convolution layer for each level, which trans-
fers the RoI-pooled feature maps to have the same number

of channels after the RoI-pooling (1024 in our setting, not
shown in the figure). The network architecture for the detec-
tion follow-up layers consists of 9 blocks, corresponding to
the higher modules in ResNet-101 model (He et al., 2016),
i.e., res4b15 to res4b20, res5a to res5c. The detec-
tion loss, denoted asD

(
B|w

)
, resembles Eqn. (6), where the

summation traverses over the number of RoIs and the class
label k ranges from 0 (background) to the number of total
object classes in one dataset. Note that we have the parame-
ter sharing strategy among RoI-pooled features from various
levels, which allows us to have more follow-up layers after-
wards (crucial to the classification confidence score) in the
detection pipeline.

MAD extension and feature boosting. To further gen-
eralize the MAD unit and boost the detection performance,
we have the following two extensions. In the original formu-
lation (1), the length of the MAD unit is exactly twice as the
number of the incoming feature maps, since we merge the
two sources from high-level and low-level, respectively. The
number of incoming feature maps can be various. Therefore,
we extend the formulation of MAD to:

µ(m) = MAD(F 3,m) ∈ R1×1×λC(m)

, (8)

where λ could be 2, 4, . . . . The combination of map sources
could be various and manually designed. Second, we mod-
ify the detection confidence score from the neural network
output p to the classifier decision of the boosting algorithm.
Specifically, for each RoI, we extract features from the follow-
up detection blocks (marked in red in Figure 6 ), concatenate
them and feed into the Adaboost classifier, in favor of lever-
aging different aspects of features in the network and forging
into a stronger classifier for detection. Details for the config-
uration of these two extensions are provided in Section 5.

5 Experiments

We evaluate the effectiveness of our algorithm on generat-
ing region proposals and performing generic object detec-
tion. To this end, we conduct ablative evaluation of individ-
ual components in our approach on PASCAL VOC (Ever-
ingham et al., 2015) and compare results with state-of-the-
arts on two challenging datasets, ILSVRC DET 2014 (Deng
et al., 2009) and Microsoft COCO (Lin et al., 2014).

5.1 Datasets and Setup

The PASCAL VOC dataset (Everingham et al., 2015) is de-
signed for object detection and contains 20 object classes. To
fast verify our algorithm’s design, we conduct experiments
on this dataset, where we use the training and validation set
in 2007 and 2012 (16551 images) during training and eval-
uate on the 2007 test set (4952 images). The ILSVRC DET
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Fig. 6: The complete pipeline of ZIP and MAD algorithm for region proposal and object detection. The system can be
trained end-to-end. Based on the proposals generated from the zoom network, we conduct a RoI-pooling on each level after
the MAD unit. N is the number of RoIs in one mini-batch. Note that the detection follow-up layers (marked in orange after
RoI-pooling) share the same parameter across different levels, which is different from Fig. 3 (b).

2014 dataset (Deng et al., 2009) is a subset of the whole Im-
ageNet database and consists of more than 170,000 training
and 20,000 validation images. Since some training images
has only one object with simple background, which has a
distribution discretion with the validation set, we follow the
practice of (Girshick, 2015) and split the validation set into
two parts. The training set is the train 14 with 44878 im-
ages and val1 with 9205 images. We use val2 as the vali-
dation set for evaluation. The Microsoft COCO 2014 dataset
(Lin et al., 2014) contains 82,783 training and 40,504 vali-
dation images, where most images have various shapes sur-
rounded by complex scenes. We use all the training images,
without any data augmentation, to learn our model, and fol-
low (Pinheiro et al., 2015) to evaluate on the first 5000 vali-
dation images (denoted as val 5k).

Implementation details. We reimplement an Inception
BN (Ioffe and Szegedy, 2015) model on the ImageNet clas-
sification dataset, which could achieve around 94% top-5
classification accuracy. The zoom network is finetuned using
the pretrained model and the zoom-in part is also initialized
by coping the weights from its mirror layers. The convolu-
tion layers in MAD unit is trained from scratch. The base
learning rate is set to 0.0001 with a 50% drop every 7,000
iterations. The momentum and weight decay is set to be 0.9
and 0.0005, respectively. The maximum training iteration
are roughly 8 epochs for each dataset. We utilize stochas-
tic gradient descent for optimization. The mini-batch size B
during each iteration is set to be 300 with each class having
at most 100 samples. Note that during training, there are al-
ways some cases where the actual batch size is lower than
the pre-setting due to the sample equilibrium scheme stated
in Section 3.3. The network architecture in the following ex-
periments are derived (zoom-out part) and mirrored (zoom-
in part) from the Inception-BN model, which is explicitly
stated in Section 3.1.

Evaluation metric. We use recall (correctly retrieved
ground truth boxes over all annotations) under different IoU

Table 1: Ablation on the network structure. AR on PASCAL
VOC is reported. We use 30 anchors and treat training as a
two-class problem. ‘sp’ means splitting the anchors. Four
out of five cases below (a, b, d, e) are illustrated in Figure 2.

Structure AR@100 AR@S AR@M AR@L

(a) Zoom-out, F-RCNN 62.31 40.77 57.97 71.05
(b) Zoom-out sp 65.98 43.81 60.35 73.87
(c) Zoom-out sp, all 66.02 44.52 61.77 74.13
(d) ZIP 68.51 49.07 62.93 75.64
(e) Deeper Zoom-out sp 67.21 47.92 61.53 74.02

thresholds and number of proposals as metric to evaluate
region proposals; and precision (correctly identified boxes
over all predictions) to evaluate object detection. The mean
value of recall and precision from IoU 0.5 to 0.95 is known
as average recall (AR) and precision (AP). AR summarizes
the general proposal performance and is shown to correlate
with the average precision (AP) performance of a detec-
tor better than other metrics (Hosang et al., 2015). More-
over, we compute AR and AP of different sizes of objects to
further investigate on a specific scale of targets. Following
COCO-style evaluation, we denote three types of instance
size, @small (α < 322), @medium (322 ≤ α < 962) and
@large (962 ≤ α), where α is the area of an object.

5.2 Ablative Evaluation for Region Proposals

All the experiments in this subsection are conducted on the
PASCAL VOC dataset for the region proposal task.

Network structure design. Table 1 reports AR for dif-
ferent network design. All images are fed into the network
with a fixed size on shorter dimension of 600. The anchor
design is mentioned in Section 3.3. Other settings are by
default as that in (Ren et al., 2015). There are some obser-
vations: (a) if we employ a zoom out structure and place



Zoom Out-and-In Network with Map Attention Decision for Region Proposal and Object Detection 9

Table 2: Ablation study on MAD unit and training strate-
gies. AR on PASCAL VOC is reported. We use the zoom-
out-and-in network structure. Baseline model corresponds
to the (d) setting in Table 1. all means adopting all three
training strategies. ER vector denotes the Excitation Recal-
ibration idea implemented in SENet (Hu et al., 2017). See
context in the paper for setting details.

Strategy AR@100 AR@S AR@M AR@L

Baseline 68.51 49.07 62.93 75.64

dyTrainScale 72.58 53.41 66.34 78.83
equilibrium 69.85 50.49 63.55 76.88
grayCls 69.77 50.21 63.19 77.04

ZIP + all 74.22 54.39 68.47 81.53
ZIP + all + MAD 76.51 57.28 70.05 84.21

spatial MAD 76.50 57.11 70.13 84.09
ER vector 71.87 51.84 65.49 76.21

all anchors at the last feature map, the recall is 62.31%,
which is adopted by most popular detectors, e.g., Faster-
RCNN (Ren et al., 2015); (b) then we split the anchors into
three groups and insert them at layer icp 3b, icp 4d and
icp 5b. Such a modification will increase recall to 65.98%.
It indicates that extracting object proposals at different depth
helps; (c) if we consider another comparison where all an-
chors are placed at each desired location in the network, i.e.,
icp 3b, icp 4d and icp 5b, the average recall is 66.12.
The result is better than (b) because it places all anchors, no
matter big or small, densely into the network - boosting the
search space of object boxes. However, the computational
cost of (c) is around 3.5 times than (b) due to the heavy
burden on dense anchors in lower layers; (d) the zoom-out-
and-in design (ZIP) further increases performance of recall
to 68.51%. ZIP increases the network depth and has about
40 layers; (e) by simply stacking layers of the network to
40 layers via a zoom-out design, we do not witness an obvi-
ous increase compared with ZIP, which verifies that the gain
in our method does not come from depth or parameter in-
crease of the model. Compared with the baseline zoom-out
structure, ZIP achieves a larger improvement of AR on small
objects (8.3%) than medium-sized objects (4.96%) and large
objects (4.59%). Such a zoom-out-and-in structure could en-
hance the quality of proposals in all ranges of scales.

Training strategies. Table 2 shows the effect of MAD
unit and different training strategies stated in Section 3. Start-
ing from the baseline, we add each training component in-
dividually and investigate their contribution to AR. It is ob-
served that the dynamic alternation of input scale weighs
more among these strategies. The overall AR improvement
of merging all strategies could obtain a recall of 74.22%.
This result is the outcome of imposing a simple convolution
kernel to combine features from two streams (qualitatively

visualized in Figure 4(g)). Furthermore, the MAD unit can
actively attend important neuron activations and we verify
its effectiveness via the last experiment: enhancing AR to
76.51%.

Other alternatives to MAD. A natural thought could be
to skip the global pooling after the convolution operation at
the output of icp5. The MAD vector µ(m) could be spa-
tially sized and proportional to each input image and level
depth. In help of deconvolution, we can align spatially the
MAD vector with feature maps to be weighted. In this man-
ner, each pixel, instead of all pixels on a channel, could be
evaluated in terms of importance towards the final loss. Such
a design is denoted as ‘spatial MAD’ in Table 2. We can
see the performance is similar compared to the global pool-
ing version. Since it could increase the computational cost
by adding more parameters in the model, we do not resort to
this alternative. Such a result indicates that for weighing the
importance of feature maps, the learned information along
the channel dimension is more important, or at least enough,
than the information learned along both the channel and spa-
tial dimensions. We also try the excitation recalibration idea
to replace MAD. Specifically, Y (m) is generated from the
squeeze-and-excitation unit alone. For m = 1, 2, the input
is the concatenation ofF (m) andH(m); for levelm = 3, the
input is F (3). As is shown in the last case of Table 2, the re-
placement is inferior to ours (71.87 vs 76.51). This is proba-
bly because that the excitation vector derives from informa-
tion directly in the preceding layer - an inherent design in
(Hu et al., 2017); whilst our MAD comes from higher-level
summation, leveraging the guidance of high-level, region-
based semantics to merge local details in lower layers.

Runtime analysis. During training the image is resized
to a much smaller size based on the medium anchor size
(64 − 128) and thus the total training time is one third less
than that without such a constraint. For inference, the run-
time per image is 1.13s (Titan X, code partially optimized),
compared with AttractioNet (Gidaris and Komodakis, 2016)
1.63s and DeepMask (Pinheiro et al., 2015) 1.59s.

In the following experiments, we denote our method as
‘ZIP’ and by default it includes MAD if not specified.

5.3 Average Recall for Region Proposals

Figure 7 illustrates recall under different IoU thresholds and
number of proposals. Our algorithm is superior than or on
par with previous state-of-the-arts, including: BING (Cheng
et al., 2014), EdgeBox (Zitnick and Dollar, 2014), GOP (Kra-
henbuhl and Koltun, 2014), Selective Search (Uijlings et al.,
2013), MCG (Arbeláez et al., 2014), Endres (Endres and
Hoiem, 2014), Prims (Manén et al., 2013), Rigor (Humayun
et al., 2014), Faster RCNN (Ren et al., 2015), AttractioNet
(Gidaris and Komodakis, 2016), DeepBox (Kuo et al., 2015),
CoGen (Hayder et al., 2016), DeepMask (Pinheiro et al.,
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Fig. 7: Recall at different IoU thresholds (0.5, 0.8) and number of proposals (300, 1500). Left: ILSVRC DET 2014 val2.
Right: MS COCO 2014 val 5k. For method abbreviations, please refer to the context.

2015), SharpMask (Pinheiro et al., 2016), and FPN (Lin
et al., 2017). Table 3 reports the average recall vs. the num-
ber of proposals (from 10 to 1000) and the size of objects
on ILSVRC. Our method performs better on identifying dif-
ferent size of objects. This proves that the zoom-out-and-in
structure with a MAD unit is effective. For MS COCO, sim-
ilar phenomenon of AR is also observed via Table 4. We
include results from the latest work (Lin et al., 2017) which
shares similar spirit of a conv-deconv structure and combing
feature maps from different sources. The main distinction
from ours to (Lin et al., 2017) is the introduction of MAD
unit to dynamically decide the attention weights of feature
channels based on the context of the input image.

Compared with Faster RCNN (Ren et al., 2015) (which
also employs CNN, has a zoom-out structure with all an-
chors placed at the final layer and thus serves as as our
baseline), ZIP has achieved a very large improvement over
the baseline on small objects (21.8%) and medium objects
(22.4%). The performance improvement for large objects is
also satisfying (8.4%). AttractioNet (Gidaris and Komodakis,
2016) also has large improvements on small and medium ob-
ject proposals, since it employs the recursive regression and
active box generation. These techniques are also beneficial
for detecting small objects.

Generalization for unseen categories. In order to eval-
uate the generalization capability, we show the average re-
call @10 boxes in Table 5, where our ZIP model is trained
on COCO and tested on ILSVRC val2 set. Although COCO
has fewer classes, which is 80, the scales and aspect ratios of
objects varies in great extent and thus the trained ZIP model

can handle most categories on ILSVRC DET dataset, which
has 200 classes.

5.4 Ablative Evaluation for Object Detection

All the experiments in this subsection are conducted on the
PASCAL VOC dataset for object detection. The backbone
structure (inception-BN) for detection is the same as that
in region proposal. We have conducted experiments based
on the VGG-16 model and the performance is slightly infe-
rior (76.4%, c.f. 76.8% denoted as ‘ZIP MAD’ in Table 6).
Hence we employ the inception model thereafter.

Table 6 reports the detailed ablation investigation on the
object detection task. For reference, we also list the results
from popular methods, RFCN (Dai et al., 2016), SSD (Liu
et al., 2016), Faster-RCNN (Ren et al., 2015), in the first
three rows. We can see the zoom-in architecture alone could
enhance the performance in a great deal (c.f., zoom-out and
ZIP baseline, around 2%). The MAD unit could further im-
prove the result by leveraging feature weights among differ-
ent channels in the network. Invoking the boosting method
alone into the pipeline (denoted as ‘ZIP MAD B’, using all
features in the nine blocks) could enhance the detection per-
formance to some extent. Empirically we find the value of
λ in Eqn. 8 to be 4 best fits the task, which is noted as ‘ZIP
MAD E’ in the table. At last, after incorporating both the
boosting and extension schemes, we have the final result
on PASCAL to be 79.8% mAP; such an improvement bears
from the zoom-in structure, the auto-selected MAD unit and
the stronger classifier from boosting.
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Table 3: Average recall (AR) analysis on ILSVRC val2. The AR for small, medium and large objects are computed for 100
proposals. The top two results in each metric are in bold and italic, respectively.

ILSVRC DET 2014 AR@10 AR@100 AR@500 AR@1000 AR@Small AR@Medium AR@Large

BING 0.114 0.226 0.287 0.307 0.000 0.064 0.340
EdgeBox 0.188 0.387 0.512 0.555 0.021 0.156 0.559
GOP 0.208 0.349 0.486 0.545 0.022 0.185 0.482
Selective Search 0.118 0.350 0.522 0.588 0.006 0.103 0.526
MCG 0.229 0.435 0.553 0.609 0.050 0.215 0.604
Endres 0.221 0.393 0.508 0.531 0.029 0.209 0.543
Prims 0.101 0.296 0.456 0.523 0.006 0.077 0.449
Rigor 0.139 0.325 0.463 0.551 0.027 0.092 0.485
Faster RCNN 0.356 0.475 0.532 0.560 0.217 0.407 0.571
AttractioNet 0.412 0.618 0.672 0.748 0.428 0.615 0.623

Zoom Network (ZIP) 0.420 0.635 0.688 0.761 0.435 0.631 0.655

Table 4: Average recall (AR) analysis on COCO val 5k. The AR for small, medium and large objects are computed for
100 proposals. The top two results in each metric are in bold and italic, respectively.

MS COCO 2014 AR@10 AR@100 AR@500 AR@1000 AR@Small AR@Medium AR@Large

BING 0.042 0.100 0.164 0.189 0.000 0.026 0.269
EdgeBox 0.074 0.178 0.285 0.338 0.009 0.086 0.423
GOP 0.058 0.187 0.297 0.339 0.007 0.141 0.401
Selective Search 0.052 0.163 0.287 0.351 0.003 0.063 0.407
MCG 0.098 0.240 0.342 0.387 0.036 0.173 0.497
Endres 0.097 0.219 0.336 0.365 0.013 0.164 0.466
DeepBox 0.127 0.270 0.376 0.410 0.043 0.239 0.511
CoGen 0.189 0.366 - 0.492 0.107 0.449 0.686
DeepMask 0.183 0.367 0.470 0.504 0.065 0.454 0.555
SharpMask 0.196 0.385 0.489 0.524 0.068 0.472 0.587
FPN - 0.440 - 0.563 - - -
AttractioNet 0.328 0.533 0.601 0.662 0.315 0.622 0.777

Zoom Network (ZIP) 0.335 0.539 0.612 0.670 0.319 0.630 0.785

Table 5: Generalization ability of ZIP when the training and
test set are from different datasets. The test set is fixed as
ILSVRC. When the training set is changed from ILSVRC to
COCO, AR@10 only drops slightly. Definition of seen and
unseen categories are the same with AttractioNet (Gidaris
and Komodakis, 2016).

Train Data All Seen Unseen

ZIP on ImageNet 42.0 48.5 33.3
ZIP on COCO 41.9 48.23 31.7
AttractioNet on COCO 41.2 47.41 29.9
MCG on COCO 21.9 22.8 20.5

5.5 Average Precision for Object Detection

Comparion using the R-FCN detector. We follow the de-
tection pipeline as that in the R-FCN detector (Dai et al.,
2016), use the ResNet-50 (He et al., 2016) model and run
the public code. The batch size is 4 and the total iteration
is 220,000. Table 7 reports the detection performance of
different proposal methods using the same detector at top

300 proposals - only the region proposals are different. It
can be seen that our object proposal provides a better mAP
(AP@0.5) on the ILSVRC and are suitable for detecting ob-
jects of different sizes. We reimplement the results of RFCN
in the table using RPN proposals, which is to ensure that the
AP performance difference descends from region proposals
only. It is worth noticing that although there a big gain in re-
gion proposals from ours compared with previous methods
(ours vs. SS, around 30% recall boost), the gain in terms of
object detection is not that obvious (around 2%). We believe
the discrepancy descends from the classification inaccuracy.

5.6 One Stage vs Two Stage

We also embed the spirit of deconvolution and MAD unit
in a single stage manner, where the SSD detector is invoked
as the prototype. Compared with the 76.8% mAP (SSD in
Table 6) baseline on PASCAL, the single stage trained de-
tector with our design achieves better performance at 78.1%,
we believe the enhancement derive from better feature rep-
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Table 6: Ablation study for object detection on the PASCAL VOC 2007 test set. The training data comes from both 2007 and
2012 training and validation set. ‘Zoom-out’ indicates that the network structure is the standard convolution type without
up-sampling. E means MAD extension; B means boosting and EB denotes the combination.

method data mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Faster R-CNN 07+12 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0
SSD512 07+12 76.8 82.4 84.7 78.4 73.8 53.2 86.2 87.5 86.0 57.8 83.1 70.2 84.9 85.2 83.9 79.7 50.3 77.9 73.9 82.5 75.3
R-FCN 07+12 79.5 82.5 83.7 80.3 69.0 69.2 87.5 88.4 88.4 65.4 87.3 72.1 87.9 88.3 81.3 79.8 54.1 79.6 78.8 87.1 79.5

Zoom-out 07+12 71.3 72.1 77.3 73.4 62.8 50.1 79.6 81.2 82.7 49.6 82.6 65.4 83.7 81.4 73.5 75.4 38.3 74.1 73.6 81.1 68.5
ZIP baseline 07+12 73.1 73.8 79.2 75.8 64.2 53.7 81.3 83.0 85.2 51.4 85.7 66.2 84.4 83.7 75.1 76.8 40.5 76.2 75.4 83.1 67.9
ZIP MAD 07+12 76.8 74.1 80.1 76.0 65.7 55.4 83.5 85.3 87.5 54.2 87.3 68.6 87.4 85.2 77.2 77.7 40.9 77.8 77.5 84.6 70.3
ZIP MAD B 07+12 77.1 75.6 88.2 76.1 66.7 57.9 86.2 86.7 90.5 56.8 88.3 69.3 89.9 90.3 79.4 78.5 45.6 78.0 78.2 85.1 75.6
ZIP MAD E 07+12 77.4 75.8 87.5 76.4 67.0 58.1 86.6 87.2 90.1 57.2 89.1 72.5 87.3 91.2 80.1 78.9 46.0 78.5 78.2 85.4 75.8
ZIP MAD EB 07+12 79.8 79.8 85.5 78.5 72.1 57.7 88.8 88.1 93.1 58.9 93.7 73.3 91.8 92.4 84.9 81.2 47.5 81.3 81.5 88.3 75.5

Table 7: Average precision (AP) for object detection on the
ILSVRC val2 set. To evaluate the performance of differ-
ent proposals, we use the same R-FCN detector (Dai et al.,
2016) across approaches. Note that the first two methods are
listed for reference only since they have their own network
structures and detection pipelines.

Method AP@0.50 AP@0.75 AP@0.5:0.95

SSD 43.4 - -
ResNet 60.5 - -

EdgeBox 49.94 35.24 31.47
Selective Search 51.98 35.13 34.22
AttractioNet 52.07 35.93 35.47
RFCN 53.11 36.41 35.63
ZIP 54.08 36.72 35.66

Method AP@small AP@medium AP@large

EdgeBox 3.98 20.61 60.98
Selective Search 4.86 23.24 61.78
AttractioNet 4.90 26.37 63.11
RFCN 4.93 26.81 64.77
ZIP 4.97 27.04 65.36

resentation by deconvolution and the automatic feature se-
lection via MAD unit. However, compared to our final two-
stage detector, which has a 79.8% mAP, the single stage
counterpart is inferior. In the two-stage scheme, region pro-
posals are uniquely generated and separated from the sec-
ond stage, which provides a more accurate set of candidate
boxes (hypothesis) for the detection process in the second
stage. Such an observation is in accordance with findings in
(Huang et al., 2017).

However, we still believe the single-stage spirit of ob-
ject detection will dominate the field and will be prevalent.
The one-stage framework is trained end-to-end without con-

sidering the two tasks separately and seems more neat and
unified. We leave such an investigation as future work.

6 Conclusions

In this work, we devise a zoom-out-and-in network that both
utilizes low-level details and high-level semantics. The in-
formation from top layers is gradually up-sampled by de-
convolution to reach suitable resolution for small-sized ob-
jects. Such a strategy could alleviate the drawback of identi-
fying small objects on feature maps with a large stride. We
further propose a map attention decision (MAD) unit to ac-
tively search for neuron activations and attend to specific
maps that could weigh more during the feature learning in
the final RPN layer. Several training strategies are also pro-
posed and investigated to enhance the quality of region pro-
posals. Experiments for both the region proposal generation
and object detection tasks show that our proposed algorithm
(ZIP with map attention decision) performs superior against
previous state-of-the-arts on popular benchmarks, including
PASCAL VOC 2007, ImageNet DET and MS COCO.
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I., Grabska-Barwińska, A., Colmenarejo, S. G., Grefen-
stette, E., Ramalho, T., Agapiou, J., Badia, A. P., Her-
mann, K. M., Zwols, Y., Ostrovski, G., Cain, A., King,
H., Summerfield, C., Blunsom, P., Kavukcuoglu, K., and
Hassabis, D. (2016). Hybrid computing using a neural
network with dynamic external memory. Nature, advance
online publication.

Hariharan, B., Arbelez, P., Girshick, R., and Malik, J.
(2014). Hypercolumns for object segmentation and fine-
grained localization. In CVPR.

Hayder, Z., He, X., and Salzmann, M. (2016). Learning to
co-generate object proposals with a deep structured net-
work. In CVPR.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual
learning for image recognition. In CVPR.

He, S. and Lau, R. W. (2015). Oriented object proposals. In
ICCV.

Hosang, J., Benenson, R., Dollár, P., and Schiele, B. (2015).
What makes for effective detection proposals? IEEE
Trans. on PAMI.

Hu, J., Shen, L., and Sun, G. (2017). Squeeze-and-excitation
networks. In arXiv preprint: 1709.01507.

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A.,
Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama,
S., and Murphy, K. (2017). Speed/accuracy trade-offs for
modern convolutional object detectors. In CVPR.

Humayun, A., Li, F., and Rehg, J. M. (2014). Rigor: Reusing
inference in graph cuts for generating object regions. In
CVPR.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal co-
variate shift. In ICML.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R., Guadarrama, S., and Darrell, T. (2014).
Caffe: Convolutional architecture for fast feature embed-
ding. In ACM Multimedia.

Jie, Z., Liang, X., Feng, J., Lu, W. F., Tay, E. H. F., and
Yan, S. (2016). Scale-aware pixelwise object proposal
networks. IEEE Trans. on Image Processing, 25.

Kaiming, H., Xiangyu, Z., Shaoqing, R., and Sun, J. (2014).
Spatial pyramid pooling in deep convolutional networks
for visual recognition. In ECCV.

Kong, T., Yao, A., Chen, Y., and Sun, F. (2016). Hypernet:
Towards accurate region proposal generation and joint ob-
ject detection. In CVPR.

Krahenbuhl, P. and Koltun, V. (2014). Geodesic object pro-
posals. In ECCV.

Krahenbuhl, P. and Koltun, V. (2015). Learning to propose
objects. In CVPR.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural net-
works. In NIPS, pages 1106–1114.

Kuo, W., Hariharan, B., and Malik, J. (2015). DeepBox:
Learning objectness with convolutional networks. In
ICCV.

Li, H., Liu, Y., Ouyang, W., and Wang, X. (2017a). Zoom
out-and-in network with recursive training for object pro-
posal. In arXiv preprint: 1702.05711. arXiv.

Li, H., Liu, Y., Zhang, X., An, Z., Wang, J., Chen, Y., and
Tong, J. (2017b). Do we really need more training data



14 Hongyang Li et al.

for object localization. In IEEE International Conference
on Image Processing. IEEE.

Li, H., Ouyang, W., and Wang, X. (2016). Multi-bias non-
linear activation in deep neural networks. In ICML.

Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., and
Belongie, S. (2017). Feature pyramid networks for object
detection. CVPR.

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick,
R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L., and
Dollar, P. (2014). Microsoft COCO: Common Objects in
Context. arXiv preprint:1405.0312.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., and Reed, S.
(2016). SSD: Single shot multibox detector. In ECCV.

Liu, Y., Li, H., and Wang, X. (2017a). Learning deep fea-
tures via congenerous cosine loss for person recognition.
In arXiv preprint: 1702.06890. arXiv.

Liu, Y., Li, H., Yan, J., Wei, F., Wang, X., and Tang, X.
(2017b). Recurrent scale approximation for object detec-
tion in cnn. In IEEE International Conference on Com-
puter Vision.

Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convo-
lutional networks for semantic segmentation. In CVPR.

Manén, S., Guillaumin, M., and Van Gool, L. (2013). Prime
Object Proposals with Randomized Prim’s Algorithm. In
ICCV.

Newell, A., Yang, K., and Deng, J. (2016). Stacked hour-
glass networks for human pose estimation. In ECCV.

Noh, H., Hong, S., and Han, B. (2015). Learning deconvo-
lution network for semantic segmentation. In ICCV.

Pinheiro, P. O., Collobert, R., and Dollar, P. (2015). Learn-
ing to segment object candidates. In NIPS.

Pinheiro, P. O., Lin, T.-Y., Collobert, R., and Dollr, P. (2016).
Learning to refine object segments. In ECCV.

Pont-Tuset, J. and Gool, L. V. (2015). Boosting object pro-
posals: From pascal to coco. In CVPR.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object de-
tection. In CVPR.

Redmon, J. and Farhadi, A. (2016). Yolo9000: Better, faster,
stronger. In arXiv preprint: 1612.08242.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-
CNN: Towards Real-Time Object Detection with Region
Proposal Networks. In NIPS.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image segmenta-
tion. arXiv preprint: 1505.04597.

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R.,
and LeCun, Y. (2014). Overfeat: Integrated recognition,
localization and detection using convolutional networks.
In ICLR.

Simonyan, K. and Zisserman, A. (2015). Very deep con-
volutional networks for large-scale image recognition. In
International Conference on Learning Representations.

Sun, C., Paluri, M., Collobert, R., Nevatia, R., and Bourdev,
L. (2016). ProNet: Learning to propose object-specific
boxes for cascaded neural networks. In CVPR.

Uijlings, J., van de Sande, K., Gevers, T., and Smeulders, A.
(2013). Selective search for object recognition. Interna-
tional Journal of Computer Vision.

Wang, X., Shrivastava, A., and Gupta, A. (2017). A-fast-
rcnn: Hard positive generation via adversary for object
detection. CVPR.

Wen, Y., Zhang, K., Li, Z., and Qiao, Y. (2016). A discrim-
inative feature learning approach for deep face recogni-
tion. In ECCV.

Zitnick, L. and Dollar, P. (2014). Edge Boxes: Locating ob-
ject proposals from edges. In ECCV.


	1 Introduction
	2 Related Work
	3 ZIP with Map Attention for Region Proposal
	4 Zoom Network for Object Detection
	5 Experiments
	6 Conclusions

