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Abstract This paper introduces the first minimal solvers
that jointly estimate lens distortion and affine rectification
from the image of rigidly-transformed coplanar features.
The solvers work on scenes without straight lines and, in
general, relax strong assumptions about scene content made
by the state of the art. The proposed solvers use the affine
invariant that coplanar repeats have the same scale in rec-
tified space. The solvers are separated into two groups that
differ by how the equal scale invariant of rectified space is
used to place constraints on the lens undistortion and recti-
fication parameters. We demonstrate a principled approach
for generating stable minimal solvers by the Gröbner basis
method, which is accomplished by sampling feasible mono-
mial bases to maximize numerical stability. Synthetic and
real-image experiments confirm that the proposed solvers
demonstrate superior robustness to noise compared to the
state of the art. Accurate rectifications on imagery taken with
narrow to fisheye field-of-view lenses demonstrate the wide
applicability of the proposed method. The method 1 is fully
automatic.
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Fig. 1: Input (top left) is a distorted view of a scene plane,
and the outputs (top right, bottom) are the undistorted and
rectified scene plane. The method is fully automatic.
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1 Introduction

Scene-plane rectification is used in many classic computer
vision tasks, including single-view 3D reconstruction, cam-
era calibration, grouping coplanar symmetries, and image
editing [27,34,41]. In particular, the affine rectification of
an imaged scene plane transforms the camera’s principal
plane so that it is parallel to the scene plane. This restores
the affine invariants of the imaged scene plane, such as the
parallelism of lines and ratios of areas [17]. There is only
an affine transformation between the affine-rectified imaged
scene plane and its real-world counterpart. The removal of
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Fig. 2: A Shortcut to Affine Rectification. The hierarchy
of rectifications from distorted to metric space is traversed
clockwise from the top left. The proposed method is a direct
path to affine-rectified space using only rigidly-transformed
coplanar repeats, in contrast to the state of the art, which
requires scene lines or sampled undistortions. The scene
plane’s vanishing line is shown in the original and undis-
torted image (̃l and l, respectively). The affine-covariant re-
gions are in the 222-configuration (see Sec. 4.2), where cor-
responded coplanar regions are the same color. All affine-
rectified images are metrically upgraded with the method of
[34] for presentation (see Sec. 6.3).

the effects of perspective imaging is helpful to understand
the geometry of the scene plane.

This paper proposes minimal solvers that jointly esti-
mate affine rectification and lens distortion from local fea-
tures extracted from essentially arbitrarily repeating copla-
nar texture (see Fig. 2). Wide-angle lenses with significant
radial lens distortion are common in consumer cameras like
the GoPro series of cameras. In the case of Internet imagery,
the camera and its metadata are often unavailable for use
with off-line calibration techniques. The state of the art has
several approaches for rectifying (or partially calibrating) a
distorted image, but these methods make restrictive assump-
tions about scene content by assuming, e.g., the presence of
sets of parallel scene lines [3,40] or translational symme-
tries [35]. The proposed solvers relax the need for specific
assumptions about scene content to unknown repeated struc-
tures (see Table 1).

The proposed minimal solvers exploit the scale con-
straint: two instances of rigidly-transformed coplanar re-
peats occupy identical areas in the scene plane and in the

affine rectified image of the scene plane (e.g., see the rec-
tifications in Figs. 2, 3, and 4). There are two groups of
solvers introduced in this paper: the directly-encoded scale
and change-of-scale solvers, which are differentiated by the
way in which the scale constraint is used. The directly-
encoded scale solvers, which we acronymize as the DES
solvers for short, encode the unknown area of a rectified re-
gion as a dependent function of the measured region, van-
ishing line, and undistortion parameter (see Sec. 4). The
change-of-scale solvers – CS solvers for short – linearize
the undistorting and rectifying transformation and use its
Jacobian determinant to induce constraints on the unknown
undistortion and rectification parameters (see Sec. 5). The
Jacobian determinant measures the local change-of-scale of
the rectifying transformation (and, more generally, of any
differentiable transformation).

The input to the solvers are intra-image correspondences
of local features. Geometrically, the local features are repre-
sented by local affine frames, that is, by triplets of (semi-) lo-
cally measured image points. There are three different min-
imal configurations of corresponding features that provide
a sufficient number of constraints to solve for the unknown
undistortion and rectification parameters (see Sec. 4.3). The
minimal configurations are shown in Fig. 4 and are the same
for the DES and CS groups of solvers. We generate solvers
for all input configurations for both groups of solvers to pro-
vide for flexible sampling during robust estimation.

The solvers are fast and robust to noisy feature detec-
tions, so they work well in robust estimation frameworks
like RANSAC [14]. The proposed work is applicable for sev-
eral important computer vision tasks including symmetry
detection [16], inpainting [27], and single-view 3D recon-
struction [41].

1.1 Previous Work

Several state-of-the-art methods can rectify from imaged
coplanar repeated texture, but these methods assume the pin-
hole camera model [1,2,9,12,27,33,42]. A subset of these
methods introduce solvers that use algebraic constraints in-
duced by the equal-scale invariant of affine-rectified space
[9,12,33] in a similar formulation to the proposed solvers
(see Fig. 2). These methods are members of the change-of-
scale (CS) solver group (see (see Sec. 5) since they use the
Jacobian determinant of the affine-rectifying transformation
to induce constraints on the imaged scene plane’s vanish-
ing line. To complete the family of affine-rectifying minimal
solvers for pinhole cameras [9,12,33], we also construct and
evaluate a novel DES solver that assumes the pinhole cam-
era model in Section 4.5.

Pritts et al. [34] rectify images of scene planes with lens-
distortion using a two-step approach: a rectification that is
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Wildenauer et al. [40] Antunes et al. [3] Pritts et al. [35] Proposed

Feature Type Fitted circles Fitted circles Affine-covariant Affine-covariant
Assumption 3 & 2 parallel lines 4 & 3 parallel lines 2 trans. repeats 4 repeats

Rectification Multi-model Multi-model Direct Direct

Table 1: Scene Assumptions. Solvers [40,3] require distinct sets of parallel scene lines as input and multi-model estimation
for rectification. Pritts et al. [35] is restricted to scenes with translational symmetries. The proposed solvers directly rectify
from as few as 4 rigidly transformed repeats (also see Fig. 4).

estimated from a minimal sample using the pinhole assump-
tion is refined by a nonlinear program that incorporates lens
distortion. However, even with relaxed thresholds, a robust
estimator like RANSAC [14] discards measurements around
the boundary of the image since this region is the most af-
fected by radial distortion and cannot be accurately modeled
with a pinhole camera. Neglecting lens distortion during the
labeling of good and bad measurements, as done during the
verification step of RANSAC, can give fits that are biased to
barrel distortion [22], which degrades rectification accuracy.

Pritts et al. [35] first proposed minimal solvers that
jointly estimate affine rectification and lens distortion, but
this method is restricted to scene content with translational
symmetries (see Table 1). Furthermore, we show that the
conjugate translation solvers of [35] are more noise sensi-
tive than the proposed scale-based solvers (see Figs. 7 and
8).

There are two recent methods that affine-rectify lens-
distorted images by enforcing the constraint that scene lines
are imaged as circles with the division model [3,40]. The
input to these solvers are circles fitted to contours extracted
from the image. Sets of circles whose preimages are copla-
nar parallel lines are used to induce constraints on the di-
vision model parameter and vanishing points. These meth-
ods require two distinct sets of imaged parallel lines (5 total
lines for [40] and 7 for [3]; see Table 1) to estimate rectifi-
cation, which is a strong scene-content assumption. In addi-
tion, these methods must perform a multi-model estimation
to label distinct vanishing points as pairwise consistent with
a vanishing line. In contrast, the proposed solvers can undis-
tort and rectify from as few as 4 coplanar repeated local fea-
tures (see Table 1).

2 Preliminaries

In this section, we provide a brief review of the parameter-
izations, methods, and notations that are used in this paper.
We use the one-parameter division model to parameterize
the radial undistortion function. The strengths of this model
were shown by Fitzgibbon [15] for the joint estimation of
two-view geometry and non-linear lens distortion. The divi-
sion model is especially suited for minimal solvers since it
is able to express a wide range of distortions with a single

parameter (denoted λ), as well as yielding simpler equations
compared to other distortion models (see Sec. 3.1).

The polynomial system of equations encoding the recti-
fying constraints is solved using an algebraic method based
on Gröbner bases. Automated solver generators using the
Gröbner basis method [21,23] have been used to generate
solvers for several camera geometry estimation problems
[21,22,23,24,35]. However, the straightforward application
of automated solver generators to the proposed constraints
resulted in unstable solvers (see Sec. 7). Recently, Larsson
et al. [25] sampled feasible monomial bases, which can be
used in the action-matrix method. In [25] basis, sampling
was used to minimize the size of the solver. We modified
the objective of [25] to maximize for solver stability. Stabil-
ity sampling generated significantly more numerically stable
solvers (see Fig. 6).

Term Description

x, x̃ homogeneous pinhole and distorted image point
x, x̃ Euclidean pinhole and distorted image point (Sec. 5)
l, l̃ image of vanishing line and distorted vanishing line
l∞ the line at infinity
A, H affinity and homography
R̃,R distorted and affine-rectified region detection
s̃, s distorted and affine-rectified region scale measurement
x , x affine-rectified homogeneous and Euclidean point
λ the division model parameter for undistortion (Sec. 3.1)

Table 2: Common Denotations. Derivations are in the real
projective plane and use homogeneous coordinates with the
exception of the change-of-scale solvers in Sec. 5, which use
Euclidean points. Direct affine rectification from a radially
distorted image requires the joint estimation of the vanishing
line l and division model parameter λ.

2.1 Notation

For most of the text imaged points are modeled with ho-
mogeneous coordinates and are denoted xi =

(
xi, yi, 1

)>
,

where xi, yi are the image coordinates. The image of a scene
plane’s vanishing line is denoted l =

(
l1, l2, l3

)>
and the

line at infinity is l∞ =
(
0, 0, 1

)>
. Matrices are in typewriter

font; e.g., an affinity is A, and a homography is H. For the
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Fig. 3: Wide-Angle Results. Input (top left) is an image of a scene plane. Outputs include the undistorted image (top right)
and rectified scene planes (bottom row). The method is automatic.

derivation of the solvers in Sec. 5, it is convenient to use
Euclidean points, which are given by inhomogeneous coor-
dinates and typeset as xi =

(
xi, yi

)>
.

A covariant region detection (see Sec. 6.1) is a distorted
function of some region from the pinhole image and is de-
noted R̃. Likewise, a distorted point extracted from a region
detection is denoted x̃ =

(
x̃, ỹ, 1

)>
, and its Euclidean rep-

resentation is x̃ =
(
x̃, ỹ

)>
. Under the division model, the

distorted image of the vanishing line is a circle [7,15,37,39]
and is denoted l̃.

The affine-rectified images of regions, homogeneous
points and Euclidean points are denoted as Ri,xi =(
xi, yi, 1

)>
, and xi =

(
xi, yi

)>
, respectively.

3 Problem Formulation

An affine-rectifying homography H transforms the image of
the scene plane’s vanishing line l =

(
l1, l2, l3

)>
to the line

at infinity l∞ =
(
0, 0, 1

)>
[17]. Thus any homography H

satisfying the constraint

ηl = H>l∞ =
[
h1 h2 h3

]0

0

1

 , η 6= 0, (1)

and where l is an imaged scene plane’s vanishing line, is
an affine-rectifying homography. Constraint (1) implies that
h3 = l, and that the line at infinity is independent of rows h>1
and h>2 of H. Thus, assuming l3 6= 0, the affine-rectification

of image point x to the affine-rectified point x can be de-
fined as

αx =
(
αx, αy, α

)>
= Hx

s.t. H =

1 0 0

0 1 0

l>

 and α 6= 0.
(2)

3.1 Radial Lens Distortion

Rectification, as given in (2), is valid only if x is imaged
by a pinhole camera. Cameras always have some lens dis-
tortion, and the distortion can be significant for wide-angle
lenses. For a lens distorted point, denoted x̃, an undistortion
function f is needed to transform x̃ to the pinhole point x.
A common parameterization for radial lens undistortion is
the one-parameter division model [15], which has the form

γx = f(x̃, λ) =
(
x̃, ỹ, 1 + λ(x̃2 + ỹ2)

)> (3)

where x̃ =
(
x̃, ỹ, 1

)>
is a feature point with the distortion

center subtracted, which is assumed to be fixed at the image
center. Substituting (3) into (2) gives

αx =
(
αx, αy, α

)>
= Hf(x̃, λ) =(

x̃, ỹ, l1x̃ + l2ỹ + l3(1 + λ(x̃2 + ỹ2))
)>
.

(4)

The unknown division model parameter λ and vanishing line
l appear only in the third coordinate. This property sim-
plifies the solvers derived in Sec. 4 and Sec. 5. We also
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generated a solver using the standard second-order Brown-
Conrady model [17,6,11]; however, these constraints gener-
ated a very larger solver with 85 solutions because the radial
distortion coefficients appear in the first two coordinates.

For most cameras, the center of distortion coincides with
the principal point, which we assume to be the image center.
While this assumption is not strictly satisfied in practice, we
will see in the experiments in Sec. 7 that the method is robust
to these small deviations. In particular, Fig. 13 (right pair)
demonstrates a successful rectification of a fisheye image,
where the principal point is clearly shifted from the image
center.

4 The Directly-Encoded Scale (DES) Solvers

The proposed DES solvers use the invariant that rectified
coplanar repeats have equal scales. In Secs. 4.1 and 4.2 the
equal-scale invariant is used to formulate a system of poly-
nomial constraint equations on rectified coplanar repeats
with the vanishing line and radial undistortion parameter as
unknowns. The radial lens undistortion function is param-
eterized with the one-parameter division model as defined
in Sec. 3.1. Affine-covariant region detections are used to
model repeats since they encode the necessary geometry for
scale estimation (see Fig. 4 and Sec. 6.1). The geometry
of an affine-covariant region is uniquely given by an affine
frame (see Sec. 4.1). The solvers require 3 points from each
detected region to measure the region’s scale in the image
space. The scale of the rectified coplanar repeat is defined as
the area of the triangle defined by the 3 rectified points that
represent a corresponding affine-covariant region.

Three minimal cases exist for the joint estimation of
the vanishing line and division-model parameter (see Fig. 4
and Sec. 4.2). These cases differ by the number of affine-
covariant regions needed for each detected repetition. The
method for generating the minimal solvers for the three vari-
ants is described in Sec. 4.4. Finally, in Sec. 4.5, we show
that if the undistortion parameter is given, then the constraint
equations simplify, which results in a small solver for esti-
mating rectification under the pinhole camera assumption.

4.1 Equal Scales Constraint from Rectified
Affine-Covariant Regions

The geometry of an oriented affine-covariant region R is
given by an affine frame with its origin at the midpoint of the
affine-covariant region detection [29,38]. The affine frame is
typically given as the orientation-preserving homogeneous
transformation A that maps from the right-handed orthonor-
mal frame, which is the canonical frame used for descriptor

extraction, to the image space as

[
y o x

]
= A

0 0 1

1 0 0

1 1 1

 ,
where o is the origin of the linear basis defined by x and
y in the image coordinate system [29,38]. Thus the matrix[
y o x

]
is a parameterization of affine-covariant region R,

which we call its point-parameterization.
Let

[
x̃i,1 x̃i,2 x̃i,3

]
be the point parameterization of an

affine-covariant region R̃i detected in a radially-distorted
image. Then, by (4), the point parameterization of an affine-
rectified image of R̃i—namelyRi—is[
Hf(x̃i,1, λ) Hf(x̃i,2, λ) Hf(x̃i,3, λ)

]
=[

αi,1xi,1 αi,2xi,2 αi,3xi,3
]
,

(5)

where αi,j = l>f(x̃i,j , λ). Thus the scale si of Ri is given
as an area of a triangle defined by points in (5) as

si =
det
([
αi,1xi,1 αi,2xi,2 αi,3xi,3

])
αi,1αi,2αi,3

=
1

αi,1αi,2αi,3
·

∣∣∣∣∣∣
x̃i,1 x̃i,2 x̃i,3
ỹi,1 ỹi,2 ỹi,3
αi,1 αi,2 αi,3

∣∣∣∣∣∣
=

∣∣∣∣x̃i,2 x̃i,3ỹi,2 ỹi,3

∣∣∣∣
αi,2αi,3

−

∣∣∣∣x̃i,1 x̃i,3ỹi,1 ỹi,3

∣∣∣∣
αi,1αi,3

+

∣∣∣∣x̃i,1 x̃i,2ỹi,1 ỹi,2

∣∣∣∣
αi,1αi,2

.

(6)

The numerators of the second and third expressions in (6)
depend only on the undistortion parameter λ and l3 due to
cancellations in the determinant. The sign of si depends on
the handedness of the detected affine-covariant region. See
Sec. 4.7 for a method to use reflected affine-covariant re-
gions with the proposed solvers.

4.2 Eliminating the Rectified Scales

The affine-rectified scale in si (6) is a function of the un-
known undistortion parameter λ and vanishing line l =(
l1, l2, l3

)>
. This encoding of the rectified scale is the mo-

tivation for calling this solver group the Directly-Encoded
Scale (DES) solvers. A unique solution to (6) can be defined
by restricting the vanishing line to the affine subspace l3 = 1

or by fixing a rectified scale, e.g., s1 = 1. The inhomo-
geneous representation for the vanishing line is used since
it results in degree 4 constraints in the unknowns λ, l1, l2
and si as opposed to fixing a rectified scale, which results in
complicated equations of degree 7.

Let R̃i and R̃j be repeated affine-covariant region de-
tections. Then the scales si and sj of affine-rectified regions
Ri and Rj are equal, namely si = sj . Thus the unknown
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Input

222 32 4

HDES
222lλ HDES

32 lλ HDES
4 lλ

Fig. 4: Solver Variants. (top-left image) The input to the method is a single image. (bottom-left triptych, contrast enhanced)
The three configurations—222, 32, 4—of affine frames that are inputs to the proposed solvers variants. Corresponded frames
have the same color. (top row, right) Undistorted outputs of the proposed solver variants. (bottom row, right) Cutouts of
the dartboard rectified by the proposed solver variants. The affine frame configurations—222, 32, 4—are transformed to the
undistorted and rectified images. The rectifications were estimated by the proposed directly-encoded scale (DES) solvers
(see Sec. 4), but the input configurations are the same for the proposed change-of-scale (CS) solvers (see Sec. 5).

rectified scales of a corresponded set of n affine-covariant
repeated regions s1, s2, . . . , sn can be eliminated in pairs,
which gives n−1 algebraically independent constraints and(
n
2

)
polynomial equations that are obtained by cross multi-

plying the denominators of the rational equations si = sj .
After eliminating the rectified scales, 3 unknowns remain,
l =

(
l1, l2, 1

)>
and λ, so 3 constraints are needed.

4.3 Solver Variants

There are 3 minimal configurations for which we de-
rive 3 solver variants: (i) 3 affine-covariant region cor-
respondences, which we denote as the 222-configuration;
(ii) 1 corresponded set of 3 affine-covariant regions
and 1 affine-covariant region correspondence, denoted the
32-configuration; (iii) and 1 corresponded set of 4 affine-co-
variant regions, denoted the 4-configuration.

The notational convention introduced for the input con-
figurations — (222, 32, 4) — is extended to the change-of-
scale solvers introduced in Sec. 5 and the bench of state-
of-the-art solvers evaluated in the experiments (see Sec. 7)
to make comparisons between the inputs of all the solvers
easier. See Fig. 4 for examples of all input configurations
and results from each corresponding solver variant, and see
Table 3 for a summary of all the tested solvers.

The system of equations is of degree 4 regardless of the
input configuration and has the form

αj,1αj,2αj,3

3∑
k=1

(−1)kM (i)
3,kαi,k =

αi,1αi,2αi,3

3∑
k=1

(−1)kM (j)
3,kαj,k,

(7)

where M
(i)
3,k is the (3, k)-minor of the rectified point-

parameterization matrix
[
αi,1xi,1 αi,2xi,2 αi,3xi,3

]
de-

fined by (5).
Note that the minors M (i)

3,· are constant coefficients (see
(6)). The 222-configuration results in a system of 3 polyno-
mial equations of degree 4 in three unknowns l1, l2 and λ;
the 32-configuration results in 4 equations of degree 4, and
the 4-configuration gives 6 equations of degree 4. Only 3
constraints are needed, but we found that for the 32- and
4- configurations that all

(
n
2

)
equations must be used to

avoid spurious solutions that are introduced when the rec-
tified scales are eliminated and the original rational equa-
tions si = sj are multiplied with their denominators. For
example, if only the polynomial equations coming from the
constraints s1 = s2, s1 = s3, s1 = s4 are used for the
4-configuration

αi,1αi,2αi,3

3∑
k=1

(−1)kM (j)
3,kα1,k =

α1,1α1,2α1,3

3∑
k=1

(−1)kM (i)
3,kαi,k i = 2, 3, 4,

(8)
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Reference Rectifies Undistorts Motion # Regions # Sols. Size Linearized

H2luλ [35] X X translation 2 2 24x26
H22luvλ [35] X X translation 4 4 76x80

H22λ [15] X rigid1 4 18 18x18
HDES
22 l X rigid 4 9 12x21

HDES
222lλ X X rigid 6 54 133x187
HDES
32 lλ X X rigid 5 45 154x199

HDES
4 lλ X X rigid 4 36 115x151
HCS
22l [9] X rigid 4 1 4x4 X

HCS
222lλ X X rigid 6 54 133x187 X

HCS
32lλ X X rigid 5 45 154x199 X

HCS
4 lλ X X rigid 4 36 115x151 X

1 The preimages of both region correspondences must be related by the same rigid transform in the scene plane.

Table 3: State of the Art vs. Proposed Solvers (shaded in grey). The proposed solvers return more solutions, but typically
only 1 solution is feasible (see Fig. 9). Note that the directly-encoded scale (DES) solvers (shaded in light grey, see Sec. 4)
have the same template size as the change-of-scale (CS) solvers (shaded in dark grey, see Sec. 5), despite being generated
from different constraints. The HCS

22 l solver of [9] is part of the change-of-scale group of solvers but assumes a pinhole camera
model.

then λ can be chosen such that
∑3
k=1(−1)kM

(i)
3,kα1,k =

0, and the remaining unknowns l1 or l2 chosen such that
α1,1α1,2α1,3 = 0, which gives a 1-dimensional family of
solutions. Thus, adding two additional equations removes
all spurious solutions. Furthermore, including all equations
simplified the elimination template construction.

In principle, a solver for the 222-configuration can be
applied to the 32- and 4-configurations by duplicating the
corresponding points in the input. Depending on how the
points are duplicated, different results are obtained. In prac-
tice we observed that if, as above, we select the input such
that s1 = s2, s1 = s3, s1 = s4, the solver breaks down. This
is expected since the ideal is no longer zero-dimensional.
However, other input configurations, e.g. s1 = s2, s2 = s3,
s3 = s4, allow us to recover the same solutions as the 4-
configuration solver in addition to a set of spurious solutions
corresponding to some

∑3
k=1(−1)kM

(i)
3,kαi,k vanishing.

4.4 Creating the Solvers

We used the automatic generator from Larsson et al. [23] to
make the polynomial solvers for the three input configura-
tions: 222, 32, and 4. The directly-encoded scale solver cor-
responding to each input configuration is denoted HDES

222 lλ,
HDES
32 lλ, and HDES

4 lλ, respectively. The resulting elimina-
tion templates were of sizes 101 × 155 (54 solutions),
107 × 152 (45 solutions), and 115 × 151 (36 solutions).
The equations have coefficients of very different magnitude.
E.g., the center-subtracted image coordinates have magni-
tude x̃i, ỹi ≈ 103, and thus the distance to the image center
x̃2i+ỹ

2
i is≈ 106. To improve numerical conditioning, we re-

scaled both the image coordinates and the squared distances

by their average magnitudes. Note that this corresponds to
a simple re-scaling of the variables in (λ, l1, l2), which is
inverted once the solutions are obtained.

Experiments on synthetic data (see Sec. 7.1.2) revealed
that using the standard GRevLex bases in the generator of
[23] gave solvers with poor numerical stability. To generate
stable solvers, we used the basis sampling technique pro-
posed by Larsson et al. [25]. In [25] the authors propose
a method for randomly sampling feasible monomial bases,
which can be used to construct polynomial solvers. We gen-
erated (with [23]) 1,000 solvers with different monomial
bases for each of the three variants using the heuristic from
[25]. Following the method from Kuang et al. [20], the sam-
pled solvers were evaluated on a test set of 1,000 synthetic
instances, and the solvers with the smallest median equa-
tion residual were kept. The resulting solvers have slightly
larger elimination templates (133 × 187, 154 × 199, and
115× 151); however, they are significantly more stable. See
Sec. 7.1.2 for a comparison between the solvers using the
sampled bases and the standard GRevLex bases (default in
[23]).

4.5 The Fixed Lens Distortion Variant

Finally, we consider the case of known division-model pa-
rameter λ. Fixing λ in (7) yields degree 3 constraints in only
2 unknowns l1 and l2. Thus only 2 correspondences of 2 re-
peated affine-covariant regions are needed. The generator of
[23] found a stable solver (denoted HDES

22 l) with an elimina-
tion template of size 12 × 21, which has 9 solutions. Basis
sampling was not required in this case. There is a second
minimal problem for 3 repeated affine-covariant regions;
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however, unlike the case of unknown distortion, this mini-
mal problem is equivalent to the H22 variant. It also has 9
solutions and can be solved with the HDES

222 lλ solver by du-
plicating a region in the input. The proposed HDES

22 l solver
contrasts to the solvers from [33,12,9] in that it is generated
from constraints directly induced by the rectifying homog-
raphy rather than its linearization.

4.6 Degeneracies

We observed three important degeneracies for the DES
solvers. First, if the vanishing line passes through the im-
age origin, i.e. l =

(
l1, l2, 0

)>
, then the radial term in the

homogeneous coordinate of (4) is canceled. In this case, it is
not possible to recover the radial distortion using the equa-
tions in (7). However, the degeneracy does not arise from
the problem formulation. An affine transform can be applied
to the undistorted image such that the vanishing line l in the
affine-transformed space has l3 6= 0. As future work, we will
investigate how to remove this degeneracy from the solvers.

Secondly, the problem degenerates if the scene plane is
already fronto-parallel to the camera and the correspond-
ing points from the affine-covariant regions fall on circles
centered at the image center. Since the corresponding points
have the same radii, they will undergo the same scaling due
to radial distortion (see (3)). In this case, the radial distortion
parameter again becomes unobservable since it is impossi-
ble to disambiguate the scale of the features from the scaling
of the lens distortion.

Third, suppose that (i) H is a rectifying homography
other than the identity matrix, (ii) that the image has no ra-
dial distortion, (iii) and that all corresponding points from
repeated affine-covariant regions fall on a single circle cen-
tered at the image center. As in the second case, applying
the division model (see Sec. 3.1) uniformly scales the points
about the image center. Given λ 6= 0, for a transformation by
f(·, λ) defined in (3) of the points lying on the circle there
is a scaling matrix S(λ) = diag(1/λ, 1/λ, 1) that maps the
points back to their original positions. Thus there is a 1D
family of rectifying homographies given by HS(λ) for the
corresponding set of undistorted images given by f(·, λ).

4.7 Reflections

In the derivation of (7), the rectified scales si were elim-
inated with the assumption that they had equal signs (see
Sec. 4.4). Reflections will have oppositely signed rectified
scales; however, reversing the orientation of left-handed
affine frames in a simple pre-processing step that admits
the use of reflections. Suppose that det

([
x̃i,1 x̃i,2 x̃i,3

])
<

0, where (x̃i,1, x̃i,2, x̃i,3) is a distorted left-handed point

parameterization of an affine-covariant region. Then re-
ordering the point parameterization as (x̃i,3, x̃i,2, x̃i,1) re-
sults in a right-handed point-parameterization such that
det
([
x̃i,3 x̃i,2 x̃i,1

])
> 0, and the scales of corresponded

rectified reflections will be equal.

5 The Change-of-Scale (CS) Solvers

The proposed change-of-scale (CS) solvers use the Jacobian
determinant of the rectifying transformation to induce local
constraints on the imaged vanishing line and the unknown
parameter for the division model of radial lens distortion
(see Sec. 3.1). In particular, the derivation uses the fact that
the unknown division model parameter is encoded exclu-
sively in the third coordinate (see (3)), which results in a
formulation that is tractable for automatic solver generators.

In fact, there are several related works that linearize the
homography and impose constraints on the Jacobian deter-
minant [5,9,33,18,19]; however, the proposed CS solvers
are the first solvers to incorporate lens distortion with this
approach. The Jacobian determinant gives the change of
scale of a function at a point, which motivates the name
Change of Scale (CS) for the solvers proposed in this sec-
tion. It is a surprising discovery that the combined effects of
severe lens distortion and perspective imaging from oblique
views can be linearized over regions with scales that are typ-
ical for covariant region detections (see Fig. 5), which mea-
sure the relative scale change between coplanar repeats due
to imaging. In fact, the change-of-scale solvers are used to
rectify near fisheye distortions effectively (see Fig. 5).

The CS solvers have the advantage over the DES solvers
in that they admit strictly scale-covariant regions detections,
whereas the DES solvers require affine-covariant region de-
tections. As with the DES solvers in Sec. 4.4, the solvers re-
store the affine invariant that coplanar repeated regions have
the same scale.

5.1 The Change-of-Scale Formulation

The Euclidean coordinates (xi, yi)
> of the rectified point

xi = αi
(
xi, yi, 1

)>
= Hf(x̃i, λ) (refer to (4)), of any im-

aged point x̃i = (x̃i, ỹi, 1)
> on the scene plane is given by

the vector-valued nonlinear function

x(x̃, ỹ) =
(
x(x̃, ỹ), y(x̃, ỹ)

)>
=
(

x̃
l>f(x̃,λ)

, ỹ
l>f(x̃,λ)

)>
.

The function x , which returns the inhomogeneous coordi-
nates of the undistorted and rectified point

(
x, y

)
, can be

linearized at (x̃, ỹ) with the first-order Taylor expansion,

x(x̃+ δx̃, ỹ + δỹ) = x(x̃, ỹ) + Jx (l, λ)|(x̃,ỹ) ·
(
δx̃, δỹ

)>
.
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The Jacobian determinant det(Jx (l, λ)|(x̃i,ỹi)) gives the ap-
proximate change of scale of the rectifying and undistorting
function x near the point (x̃, ỹ)>. Let s̃i be the scale of an
image region R̃i with its centroid at

(
x̃i, ỹi

)>
, where the

preimage Ri of R̃i is on some scene plane Π . Let si be the
rectified scale of Ri. Then the unknown rectified scale si
can be expressed in terms of the distorted scale s̃i and the
Jacobian determinant as

si = s̃i · det
(
Jx (l, λ)|(x̃i,ỹi)

)
=

−s̃i(λ(x̃2i + ỹ2i )− 1)

(λ(x̃2i + ỹ2i ) + l1x̃i + l2ỹi + 1)3
.

(9)

5.2 Eliminating the Rectified Scale

The equation for the rectified scale given in (9) defines the
unknown geometric quantities: (i) division-model parameter
λ, (ii) scene-plane vanishing line l =

(
l1, l2, l3

)>
, (iii) and

the rectified scale si of the rectified image region Ri. The
distorted scale s̃i of imaged region R̃i is measured by some
scale-covariant region detector, e.g., the SIFT or Hessian
Affine detector [26,29]. Let R̃i and R̃j be detected repeated
coplanar regions. Then the scales of their rectified preim-
ages Ri and Rj are equal, namely si = sj . A unique solu-
tion is defined by restricting the vanishing line to the affine
subspace l3 = 1, which results in degree 4 constraints. The
alternative of fixing the rectified scale si is rejected since it
results in higher degree constraints. Thus, the unknown rec-
tified scales of a group of n co-planar repeats s1, s2, . . . , sn
can be eliminated in pairs (see (10)), which gives n−1 alge-
braically independent constraints and

(
n
2

)
polynomial equa-

tions that are obtained by cross multiplying the denomina-
tors of the rational equations si = sj .

5.3 Creating the solver

After eliminating the rectified scales 3 unknowns remain,
namely l =

(
l1, l2, 1

)>
and λ, so 3 equations are needed.

The minimal configurations are the same as the DES solvers
and an analogous naming scheme is adopted for the CS
solvers. The CS solvers can be obtained from 3 corre-
spondences of 2 coplanar repeats, denoted HCS

222lλ, 1 corre-
sponded set of 3 and 1 correspondence of 2 coplanar repeats,
denoted HCS

32 lλ, or 1 corresponded set of 4 coplanar repeats,
denoted HCS

4 lλ (see the comparison in Table 3). The system
of equations contains rational expressions of the form

s̃i · det(Jx (l, λ)|(x̃i,ỹi)) = s̃j · det
(
Jx (l, λ)|(x̃j ,ỹj)

)
. (10)

After multiplying equations (10) by common denomina-
tors we obtain a system of three quartic polynomial equa-
tions in three unknowns, namely l1, l2 and λ. Again we used

the automatic generator from Larsson et al. [23] to create
the polynomial solvers for all of the minimal configurations.
The structure of the change-of-scale solvers turned out to be
similar to the DES solvers (i.e., same monomials and num-
ber of solutions, but the coefficients in equations are com-
puted differently).

5.4 Degeneracies

The change-of-scale solvers suffer from the same degenera-
cies that are listed in Sec. 4.6 for the DES solvers. There
are likely different degeneracies between the two families
of solvers, but an exhaustive analysis is difficult.

5.5 Dense Change of Scale Due to Imaging

Up to a global scale ambiguity, the rectified scale s of an
imaged scene plane region can be approximated with (9).
The projective and radial lens distortion components of the
imaging transformation are linearized in (9), so the approx-
imation of the rectified scale s is more accurate for smaller
regions.

The combined change-of-scale effects of lens distortion
and perspective warping due to the imaging of a scene plane
can be seen in Fig. 5. The reference point is the image of
the centroid of the convex hull of rectified coplanar covari-
ant regions. The dense relative change of scale is rendered
by the alpha-blended parula colormap in the original images
of Fig. 5. Regions with larger scale change due to imaging
are orange; regions close to the scale change of the imaged
reference point are blue, and regions with vanishing rela-
tive scale change are purple. The purple regions will be ex-
panded in the rectified image and the yellow regions shrunk
such that the affine rectification restores the affine invariant
that coplanar regions whose preimages are of equal scale are
the same scale in the rectified image.

For pinhole cameras, regions undergoing an equal
change of scale from imaging are projected to isolines [12].
However, as seen in Fig. 5, for radially-distorted cameras
parameterized by the division model (see Sec. 3.1), regions
undergoing equal change of scale from imaging are con-
strained to circles. This is consistent with the fact that scene
lines are imaged as circles under the division model of ra-
dial lens distortion [7,15,37,39]. The distorted image of the
vanishing line as a circle under the division model is shown
in a synthetic scene of Fig. 2 and in real images in Figs. 5
and 14 (the orange circular segments).

The dense relative change of scale is useful for automatic
rectification. E.g., in images where the image of the vanish-
ing line intersects the image extents, regions approaching
the vanishing line rectify to arbitrarily large scales. Thus a
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Fig. 5: Change-of-Scale Solver Results. The input images are on the first and third rows and show the distorted image of the
vanishing line in orange and the dense change of scale (see Sec. 5.5) in the parula color map that is alpha blended on the
scene plane. Purple corresponds to the smallest relative scale change due to the imaging of the scene plane and yellow to the
largest with respect to a chosen reference point on the plane. The second and fourth rows contain the rectified results from
the HCS

222lλ change-of-scale solver (see Sec. 5).

bound on the rectified scale is needed to prevent the rec-
tified image from blowing up. Using (9), an image can be
masked such that any masked point has a relative change of
scale bounded by some user threshold, which can be used to
generate reasonably sized rectifications. All images in this
document were automatically generated with this method.

6 Robust Estimation

The solvers are used in a LO-RANSAC-based robust-
estimation framework [10]. Affine rectifications and undis-

tortions are jointly hypothesized by one of the proposed
solvers. A metric upgrade is attempted, and models with
maximal consensus sets are locally optimized by an ex-
tension of the method introduced in [34]. The metric-
rectifications are presented in the results.

6.1 Local Features and Descriptors

Affine-covariant region detectors are highly repeatable on
the same imaged scene texture with respect to significant
changes of viewpoint and illumination [30,31]. Their proven
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Fig. 6: Stability Study. The equation residuals (deviation
from 0) for the particular polynomial system of equations
solved by each of the DES and CS solvers is used to mea-
sure solver stability (see Secs. 4.2 and 5.2, respectively) .
The minimal solution closest to the ground truth is evalu-
ated and reported for 1000 noiseless synthetic scenes. The
basis selection method of [25] is essential for stable solver
generation.

robustness in the multi-view matching task makes them
good candidates for representing the local geometry of re-
peated textures. In particular, we use the Maximally-Stable
Extremal Region and Hessian-Affine detectors [28,29]. The
affine-covariant regions are given by an affine transform (see
Sec. 4.1), equivalently 3 distinct points, which defines an
affine frame in the image space [32]. The image patch local
to the affine frame is embedded into a descriptor vector by
the RootSIFT transform [4,26].

6.2 Appearance Clustering and Sampling

Affine frames are tentatively labeled as repeated texture by
their appearance. The appearance of an affine frame is given
by the RootSIFT embedding of the image patch local to the
affine frame [4]. The RootSIFT descriptors are agglomer-
atively clustered, which establishes pair-wise tentative cor-
respondences among connected components. Each appear-
ance cluster has some proportion of its indices correspond-
ing to affine frames that represent the same coplanar re-
peated scene content, which are the inliers of that appear-
ance cluster. The remaining affine frames are the outliers.

Sample configurations for the proposed minimal solvers
are illustrated in Fig. 4 and detailed in Sec. 4.3. To recap, the
solver variants for the proposed undistorting and rectifying
minimal solvers—either from the DES or CS family—are
3 correspondences of 2 covariant regions (the 222-solvers),
a corresponded set of 3 covariant regions and a correspon-
dence of 2 covariant regions (the 32-solvers), and a corre-
sponded set of 4 covariant regions (the 4-solvers). For each
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Fig. 7: Warp Errors for Fixed 1-σ Pixel Noise. Reports
the cumulative distributions of raw warp errors ∆warp (see
Sec. 7.1.1) for the bench of solvers on 1000 synthetic scenes
with 1-σ pixel of imaging white noise added. The proposed
solvers (with undistortion estimation) give significantly bet-
ter proposals than the state of the art.

RANSAC trial, appearance clusters are selected with the
probability given by its relative size to the other appearance
clusters, and the required number of correspondences or cor-
responded sets are drawn from the selected clusters.

6.3 Metric Upgrade and Local Optimization

The affine-covariant regions that are members of the min-
imal sample are affine rectified by each feasible model re-
turned by the solver; typically there is only 1 (see Fig. 9).
A metric upgrade is estimated from the affine-rectified min-
imal sample set using the linear solver introduced in [34].
Then all affine-covariant regions are metrically-upgraded
using the estimate. The consensus set is measured in the
metric-rectified space by verifying the congruence of the ba-
sis vectors of the corresponded affine frames. Congruence is
an invariant of metric-rectified space and is a stronger con-
straint than the equal-scale invariant of affine-rectified space
that was used to derive the proposed solvers. The metric
upgrade essentially comes for free by inputting the affine-
covariant regions sampled for the proposed solvers to the
linear metric-upgrade solver proposed in [34]. By using the
metric-upgrade, the verification step of RANSAC can enforce
the congruence of corresponding affine-covariant region ex-
tents (equivalently, the lengths of the linear basis vectors) to
estimate an accurate consensus set. Models with the maxi-
mal consensus set are locally optimized in a method similar
to [34].
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Fig. 8: Sensitivity Benchmark. Comparison of two error measures after 25 iterations of a simple RANSAC for different
solvers with increasing levels of white noise added to the affine frame correspondences, where the normalized division model
parameter is set to -4 (see Sec. 3.1), which is similar to the distortion of a GoPro Hero 4. (top row) Shows results for translated
coplanar repeats, and (bottom row) shows results for rigidly-transformed coplanar repeats. (left column) Reports the root
mean square warp error ∆warp

RMS, and (right column) reports the relative error of the estimated division model parameter. The
proposed solvers are significantly more robust for both types of repeats on both error measures.

7 Experiments

The stabilities and noise sensitivities of the proposed solvers
are evaluated on synthetic data. We compare the proposed
solvers to a bench of 4 state-of-the-art solvers (see Ta-
ble 3). We apply the denotations for the solvers introduced in
Sec. 4.3 to all the solvers in the benchmark; e.g., a solver re-
quiring 2 correspondences of 2 affine-covariant regions will
be prefixed by H22, while the proposed solver requiring 1
corresponded set of 4 affine-covariant regions is prefixed by
H4.

Included are two state-of-the-art single-view solvers
for radially-distorted conjugate translations, denoted H2luλ

and H22luvλ [35]; a full-homography and radial distortion
solver, denoted H22λ [15]; and the change-of-scale solver for
affine rectification of [9], denoted HCS

22 l.

The sensitivity benchmarks measure the performance of
rectification accuracy by the warp error (see Sec. 7.1.1) and
the relative error of the division parameter estimate. Stabil-
ity is measured by the equation residuals of the solution that
is closest to ground truth. The H22λ solver is omitted from
the warp error since the vanishing line is not estimated, and
the HCS

22 l and HDES
22 l solvers are omitted from benchmarks in-

volving lens distortion since the solvers assume a pinhole
camera.

7.1 Synthetic Data

The performance of the proposed solvers on 1000 synthetic
images of 3D scenes with known ground-truth parameters is
evaluated. A camera with a random but realistic focal length
is randomly placed with respect to a scene plane such that
it is mostly in the camera’s field-of-view. The image reso-
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Fig. 9: (left) Real Solutions. The histograms of the number of real solutions returned by the proposed solvers. (right) Feasible
Solutions. Typically, only 1 solution is feasible. Feasibility is determined by checking that the division model parameter falls
in a reasonable interval. The frequencies were calculated on results from 150,000 trials on different scenes with varying
levels of imaged white-noise.

lution is set to 1000x1000 pixels. The noise sensitivity of
the solvers are evaluated both on conjugately-translated and
rigidly-transformed coplanar repeats (see Fig. 8). Scenes
with conjugately-translated coplanar repeats are evaluated
so that the proposed solvers can be compared to state-of-
the-art solvers of [35]. For either motion type, affine frames
are generated on the scene plane such that their scale with
respect to the scene plane is realistic. The modeling choice
reflects the use of affine-covariant region detectors on real
images (see Sec. 4.1).

The image is distorted according to the division model.
For the sensitivity experiments, isotropic white noise is
added to the distorted affine frames at increasing levels. Per-
formance is characterized by the relative error of the es-
timated distortion parameter and by the warp error, which
measures the accuracy of the affine-rectification.

7.1.1 Warp Error

Since the accuracy of scene-plane rectification is a primary
concern, the warp error for rectifying homographies pro-
posed by Pritts et al. [36] is reported, which we extend to
incorporate the division model for radial lens distortion [15].
A scene plane is tessellated by a 10x10 square grid of points
{Xi }100i=1 and imaged as { x̃i }100i=1 by the lens-distorted
ground-truth camera. The tessellation ensures that error is
uniformly measured over the scene plane. A round trip be-
tween the image space and rectified space is made by affine-
rectifying { x̃i }100i=1 using the estimated division model pa-
rameter λ̂ and rectifying homography Ĥ and then imaging
the rectified plane by the ground-truth camera P. Ideally, the
ground-truth camera P images the rectified points {xi }100i=1

onto the distorted points { x̃i }100i=1. There is an affine am-
biguity, denoted A, between Ĥ and the ground-truth camera

matrix P. The ambiguity is estimated during computation of
the warp error,

∆warp = min
A

∑
i

d2(x̃i, f
d(PAĤf(x̃i, λ̂)), λ), (11)

where d(·, ·) is the Euclidean distance, fd is the inverse of
the division model (the inverse of (3)), and { x̃i }100i=1 are the
imaged grid points of the scene-plane tessellation. The root
mean square warp error for { x̃i }100i=1 is reported and denoted
as∆warp

RMS. The vanishing line is not directly estimated by the
solver H22λ of [15], so it is not reported.

7.1.2 Numerical Stability

The stability study of Fig. 6 compares compares the solver
variants generated using the standard GRevLex bases ver-
sus solvers generated using the basis selection method of
[25] (also see Sec. 4.4). The generator of Larsson et al. [23]
was used to generate both sets of solvers. Stability is mea-
sured as the equation residual (equivalently, deviation from
0) of the polynomial system of equations associated with
each solver (see Secs. 4.2 and 5.2) for the solution that is
closest to ground truth for noiseless affine-frame correspon-
dences across realistic synthetic scenes, which are generated
as described in the introduction of Sec. 7.1.

The normalized ground-truth parameter of the division
model λ is set to -4, a value typical for wide field-of-view
cameras like the GoPro, where the image is normalized by
1/(width + height). Fig. 6 reports the histogram of log10
equation residuals and shows that the basis selection method
of [25] significantly improves the stability of the generated
solvers. The basis-sampled solvers are used for the remain-
der of the experiments.
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7.1.3 Noise Sensitivity

The proposed and state-of-the-art solvers are tested with in-
creasing levels of white noise added to the point parameter-
izations (see Sec. 4.1) of the affine-covariant region corre-
spondences that are either translated or rigidly-transformed
on the scene plane (see Fig. 8). The amount of white noise
is given by the standard deviation of a zero-mean isotropic
Gaussian distribution, and the solvers are tested at noise lev-
els of σ ∈ { 0.1, 0.5, 1, 2, 5 }. The ground-truth normalized
division model parameter is set to λ = −4, which is typical
for GoPro-type imagery in normalized image coordinates.

The cumulative distributions of warp errors in Fig. 7
show that for 1-pixel white noise on conjugate-translated
affine frames, the proposed solvers—HDES

222 lλ, HDES
32 lλ,

HDES
4 lλ,HCS

222lλ, HCS
32 lλ and HCS

4 lλ—give significantly more
accurate estimates than the state-of-the-art conjugate trans-
lation solvers of [35]. Interestingly, all of the proposed
undistorting variants from both the DES and CS families of
rectifying solvers have nearly identical performance.

If 5 pixel RMS warp error is fixed as a threshold for a
good model proposal, then 30% of the models given by the
proposed solvers are good versus roughly 10% by [35]. The
proposed HDES

22 l solver and the HCS
22 l of [9] each give biased

proposals since they cannot estimate lens distortion.
The solvers are wrapped by a basic RANSAC estimator

that minimizes the RMS warp error ∆warp
RMS over 25 mini-

mal samples of affine frames for each of the conjugately-
translated and rigidly-transformed coplanar repeat sensi-
tivity studies in Fig. 8. The RANSAC estimates are sum-
marized in boxplots for 1000 synthetic scenes. The in-
terquartile range is contained within the extents of a box,
and the median is the horizontal line dividing the box. As
shown in Fig. 8, the proposed solvers — HDES

222 lλ, HDES
32 lλ,

HDES
4 lλ,HCS

222lλ, HCS
32 lλ and HCS

4 lλ— again give the most ac-
curate lens distortion and rectification estimates. In fact, the
proposed solvers are superior to the state of the art at all
noise levels. The proposed distortion-estimating solvers give
solutions with less than 5-pixel RMS warp error∆warp

RMS 75%
of the time and estimate the correct division model param-
eter more than half the time at the 2-pixel noise level. The
proposed fixed-lens distortion solver HDES

22 l and the HCS
22 l of

[9] give biased solutions since they assume the pinhole cam-
era model.

7.1.4 Feasible Solutions and Runtime

This study shows the number of real and feasible solutions
given by the proposed solvers for 150000 trials across 1000
scenes at varying noise levels with a fixed normalized divi-
sion model parameter of λ = −4. Fig. 9 (left) shows the
number of real solutions, and Fig. 9 (right) shows the sub-
set of feasible solutions as defined by the estimated normal-
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Fig. 10: Distortion Study. Reports the root-mean-square
warp error ∆warp

RMS (see Sec. 7.1.1) for 1000 synthetic scenes
imaged by cameras with varying normalized division model
parameter with 1-σ pixel white noise. Solvers HDES

22 l | λ =

−4, HDES
22 l | λ = −2, and HDES

22 l | λ = 0 rectify the pin-
hole image that is undistorted with the given fixed division
model parameter. The HDES

222 lλ solver is competitive even for
the case where the fixed division model parameter matches
ground truth and gives stable performance across all distor-
tion levels.

ized division-model parameter solution falling in the interval
[−8, 0.5]. All solutions are considered feasible for the HDES

22 l

solver. Fig. 9 (right) shows that in 97% of the scenes only
1 solution is feasible, which means that nearly all incorrect
solutions can be quickly discarded.

The runtimes of the DES family of solvers are reported.
The MATLAB implementation of the solvers on a standard
desktop are 2 ms for HDES

222 lλ, 2.2 ms for HDES
32 lλ, 1.7 ms for

HDES
4 lλ, and 0.2 ms for HDES

22 l. Due to the similar structure in
the equations, the CS solvers have comparable performance.

7.2 Distortion Study

The distortion study evaluates the accuracy of rectifications
as measured by the warp error (see Sec. 7.1.1) over a nor-
malized ground truth division model parameter from λ ∈
{−5,−4,−3,−2,−1, 0 }, which are values that are charac-
teristic of near-fisheye to pinhole lenses (see Sec. 3.1). The
images have fixed 1px-σ white noise added. The methodol-
ogy of scene generation is the same as detailed in Sec. 7.1.

Since the sensitivity experiments of Sec. 7.1.3 show that
the performance of the proposed solvers is essentially the
same with respect to noise, we choose HDES

222 lλ as their repre-
sentative. It is evaluated against 3 solvers—HDES

22 l | λ = −4,
HDES
22 l | λ = −2, and HDES

22 l | λ = 0—each of which undis-
tort at a different fixed normalized division model parameter,
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[narrow] [medium] [wide] [fisheye]

Fig. 11: Field-of-View Study. The proposed solver HDES
222 lλ gives accurate rectifications across all fields-of-view: (left-to-right)

Nikon D60, GoPro Hero 4 at the medium- and wide-FOV settings, and a Panasonic DMC-GM5 with a Samyang 7.5mm
fisheye lens. The outputs are the undistorted (middle row) and rectified images (bottom row).

[H22luvλ + LO] [HCS
22l + LO] [HDES

22 l + LO] [HDES
222lλ + LO]

Fig. 12: Solver Comparison. The state-of-the art solvers H22luvλ [35] and HCS
22 l [9] are compared with the proposed solvers

HDES
222 lλ and HDES

22 l on images containing either translated or rigidly-transformed coplanar repeated patterns with increasing
amounts of lens distortion. (top) small distortion, rigidly-transformed; (middle) medium distortion, translated; (bottom) large
distortion, rigidly-transformed. Accurate rectifications for all images are only given by the proposed HDES

222 lλ.
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Fig. 13: Straight Lines Don’t Have to be Straight. (left pair) It is difficult to disentangle the effects of radial lens distortion
from the projections of curvilinear forms in the image. E.g., the waterfront, fence and compass tile mosaic are circles, which
violate the plumb-line assumption and cannot be used for undistortion or rectification [13]. However, the imaged rigidly-
transformed coplanar repeats can be used to rectify this image with the solvers proposed in this paper. (right pair) Note that
the distortion center is clearly decentered in the third image, but a good rectification is still achieved for the fisheye image.

namely λ ∈ {−4,−2, 0 }, respectively. The fixed distortion
solvers estimate the affine rectification with the proposed
HDES
22 l (see Sec. 4.5) using the undistorted minimal sample,

which is computed with the given fixed division model pa-
rameter of the solver.

Fig. 10 shows that even for the case where the fixed
division model parameter of the solver is equivalent to the
ground truth, the best solutions of the proposed HDES

222 lλ are
equivalent to rectifying with known ground truth. Further-
more, the HDES

222 lλ is stable, giving the same performance at a
fixed noise level across all ground truth division model pa-
rameters. As expected, the warp error quickly increases for
the HDES

22 l | λ = −4, HDES
22 l | λ = −2, and HDES

22 l | λ = 0

solvers as the ground truth division model parameter differs
from the fixed division model parameter.

7.3 Real Images

The field-of-view experiment of Fig. 11 evaluates the pro-
posed HDES

222 lλ solver on real images taken with narrow,
medium, wide-angle, and fish-eye lenses. Images with di-
verse scene content were chosen. Fig. 11 shows that the
HDES
222 lλ gives accurate rectifications for all lens types. Addi-

tional results for wide-angle and fisheye lenses are included
in Fig. 14 near the end of this document.

Fig. 12 compares the proposed HDES
222 lλ and HDES

22 l solvers
to the state-of-the-art solvers on images with increasing lev-
els of radial lens distortion (top to bottom) that contain ei-
ther translated or rigidly-transformed coplanar repeated pat-
terns. Only the proposed HDES

222 lλ accurately rectifies on both
pattern types and at all levels of distortion. The results are
after a local optimization and demonstrate that the method
of Pritts et al. [34] is unable to accurately rectify without a
good initial guess at the lens distortion. The proposed fixed-
distortion solver HDES

22 l gave a better rectification than the
change-of-scale solver HCS

22 l of Chum et al. [9].

Fig. 13 shows the rectifications of a deceiving picture
of a landmark taken by wide-angle and fisheye lenses. From
the wide-angle image, it is not obvious which lines are really
straight in the scene making undistortion with the plumb-
line constraint difficult.

8 Conclusion

This paper proposes two groups of solvers (DES and CS)
that extend affine-rectification to radially-distorted images
that contain essentially arbitrarily repeating coplanar pat-
terns. Both solver groups use the invariant that imaged
coplanar repeats have the same scale if rectified. Despite us-
ing the equal scale invariant of rectified coplanar repeats in
different ways to impose constraints on the undistortion and
rectification parameters, the generated solvers have identi-
cal structure and similar stability and robustness to imaging
noise. This was a surprising finding since the CS solvers lin-
earize the undistorting and rectifying transformation to gen-
erate the constraint equations. Given the results for the CS
solvers on synthetic benchmarks and challenging images, it
can be concluded that the first-order approximation of the
rectifying transformation is sufficient to handle the effect of
severe lens distortion of an obliquely imaged scene plane.
Equivalently, the linearization is reasonable over a measure-
ment region that is typical for an affine-covariant region de-
tection.

Synthetic experiments show that both groups of pro-
posed solvers are more robust to noise with respect to the
state of the art, give stable estimates across a wide range
of distortions, and are applicable to a broader set of im-
age content. The paper also demonstrates that robust solvers
can be generated with the basis selection method of [25] by
maximizing for numerical stability. We expect basis selec-
tion to become a standard procedure for improving solver
stability. Experiments on difficult images with large radial
distortions confirm that the solvers give high-accuracy rec-
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Fig. 14: Wide-angle and fisheye results. Input images (left) with the estimated distorted vanishing line (orange), undistorted
(middle) and rectified (right). Results are produced with the proposed HDES

222 lλ solver.
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tifications if used inside a robust estimator. By jointly esti-
mating rectification and radial distortion, the proposed min-
imal solvers eliminate the need for sampling lens distortion
parameters in RANSAC. The code is published at https:
//github.com/prittjam/repeats.

In future work, we will attempt to remove the degenera-
cies from the solvers unrelated to the problem formulation.
Another future direction, similar to the recent work of [8], is
to generate a set of hybrid solvers by combining constraint
equations from the DES and CS and the conjugate transla-
tion solvers of [35]. The constraint equations for the DES
and CS solvers may be sensitive to different properties of
the inputted covariant regions, such as their size, shape and
relative orientation. During sampling, the most robust solver
given the properties of the minimal sample (as listed above)
can be chosen to hypothesize the model.
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