
Noname manuscript No.
(will be inserted by the editor)

Bi-Real Net: Binarizing Deep Network towards
Real-Network Performance

Zechun Liu · Wenhan Luo · Baoyuan
Wu · Xin Yang · Wei Liu · Kwang-Ting
Cheng

Received: date / Accepted: date

Abstract In this paper, we study 1-bit convolutional neural networks (CNNs),
of which both the weights and activations are binary. While being efficient, the
lacking of a representational capability and the training difficulty impede 1-bit
CNNs from performing as well as real-valued networks. To this end, we propose
Bi-Real net with a novel training algorithm to tackle these two challenges. To
enhance the representational capability, we propagate the real-valued activa-
tions generated by each 1-bit convolution via a parameter-free shortcut. To
address the training difficulty, we propose a training algorithm using a tighter
approximation to the derivative of the sign function, a magnitude-aware bi-
narization for weight updating, a better initialization method, and a two-step
scheme for training a deep network. Experiments on ImageNet show that an
18-layer Bi-Real net with the proposed training algorithm achieves 56.4% top-
1 classification accuracy, which is 10% higher than the state-of-the-arts (e.g.,

Zechun Liu
Hong Kong University of Science and Technology, Hong Kong, China
E-mail: liuzechun0216@gmail.com

Wenhan Luo
Tencent AI lab, Shenzhen, China
E-mail: whluo.china@gmail.com

Baoyuan Wu
Tencent AI lab, Shenzhen, China
E-mail: wubaoyuan1987@gmail.com

Xin Yang
Huazhong University of Science and Technology, Wuhan, China
E-mail: xinyang2014@hust.edu.cn

Wei Liu
Tencent AI lab, Shenzhen, China
E-mail: wl2223@columbia.edu

Kwang-Ting Cheng
Hong Kong University of Science and Technology, Hong Kong, China
E-mail: timcheng@ust.hk

ar
X

iv
:1

81
1.

01
33

5v
2

 [
cs

.C
V

]
 4

 S
ep

 2
01

9

2 Zechun Liu et al.

XNOR-Net), with a greater memory saving and a lower computational cost.
Bi-Real net is also the first to scale up 1-bit CNNs to an ultra-deep network
with 152 layers, and achieves 64.5% top-1 accuracy on ImageNet. A 50-layer
Bi-Real net shows comparable performance to a real-valued network on the
depth estimation task with merely a 0.3% accuracy gap.

Keywords 1-bit CNNs · Binary Convolution · Shortcut · 1-layer-per-block

1 Introduction

Deep Convolutional Neural Networks (CNNs) have achieved substantial ad-
vances in a wide range of vision tasks, such as object detection and recog-
nition [21,33,37,36,11,8,31], depth perception [6,26], visual relation detec-
tion [43,44], face tracking and alignment [34,48,50,40,39], object tracking [28],
etc. However, the superior performance of CNNs usually requires powerful
hardware with abundant computing and memory resources, for example, high-
end graphics processing units (GPUs). Meanwhile, there are growing demands
to run vision tasks, such as augmented reality and intelligent navigation, on
mobile hand-held devices and small drones. The CNN models are usually
trained on GPUs and deployed on mobile devices for inference. Most mo-
bile devices are equipped with neither powerful GPUs nor adequate memory
to store and run expensive CNN models. Consequently, the high demand for
computation and memory becomes the bottleneck of deploying powerful CNNs
on most mobile devices. In general, there are two major approaches to alle-
viate this limitation. The first is to reduce the number of weights with more
compact network design or pruning. The second is to quantize the weights or
quantize both the weights and activations, with the extreme case of both the
weights and activations being binary.

In this work, we study the extreme case of the second approach, i.e., one
binary CNN. It is also called 1-bit CNN, as each weight parameter and activa-
tion can be represented by a single bit. As demonstrated in [30], up to a 32×
memory saving and a 58× speedup on CPUs have been achieved for a 1-bit
convolutional layer, in which the computationally heavy matrix multiplication
operations can be implemented using light-weighted bitwise XNOR operations
and popcount operations. The current binarization methods achieve compa-
rable accuracy to real-valued networks on small datasets (e.g., CIFAR-10 and
MNIST). However, on large-scale datasets (e.g., ImageNet), the binarization
method based on AlexNet in [16] encounters a severe accuracy degradation,
from 56.6% to 27.9% [30]. This suggests that the capability of conventional
1-bit CNNs is not sufficient to cover the great diversity in large-scale datasets
like ImageNet. Another binary network called XNOR-Net [30] enhances the
performance of 1-bit CNNs by utilizing the absolute mean of weights and ac-
tivations. XNOR-Net improves the accuracy to 44.2% on AlexNet, which is
encouraging, but there still remains a performance gap regarding the real-
valued networks.

Bi-Real Net: Binarizing Deep Network towards Real-Network Performance 3

Fig. 1 Networks with intermediate feature visualization. Yellow lines denote real values
propagated inside the path, while blue lines denote binary values. (a) A 1-bit CNN without
shortcuts, and (b) the proposed Bi-Real net with shortcuts propagating real-valued features.

The objective of this study is to further improve 1-bit CNNs, as we believe
that their potential has not yet been fully explored. One important observa-
tion is that during the inference process, a 1-bit convolutional layer generates
integer outputs, as a result of the popcount operations. The integer outputs
become real values after a BatchNorm [19] layer. These real-valued activa-
tions are then binarized to −1 or +1 through the consecutive sign function, as
shown in Fig. 1(a). Obviously, compared to binary activations, these integers
or real activations contain more information, which is lost in conventional 1-
bit CNNs [16]. Based on this observation, we propose to use parameter-free
shortcut paths to collect all the real-valued outputs from each 1-bit convolu-
tional layer, and add them to the next most adjacent real-valued outputs with
matched dimensions. This proposed network is dubbed Bi-Real net, with real-
valued shortcut paths transmitting high-precision features and efficient 1-bit
convolutional layers extracting new features, respectively. Because ResNet [11]
is the most prevalent network structure, we verify our shortcut design princi-
ple on the shallow ResNet-based structures as well as the deep ResNet with
the bottleneck structure.

For a shallow ResNet-based structure, we propose to add shortcuts for-
warding the real activations to be added with the real-valued activations of
the next block, as shown in Fig. 1(b). By doing so, the representational capa-
bility of the proposed model becomes much greater than that of the original
1-bit CNNs, with only a negligible computational cost incurred by the extra
element-wise addition and without any additional memory cost. This shortcut
design results in a so-called 1-(convolutional-)layer-per-block structure, which
is more effective than the 2-layer-per-block structure proposed in ResNet. The
original ResNet argues that a shortcut has to bypass at least two convolutional
layers; however, we provide a mathematical explanation of the feasibility of
the 1-layer-per-block structure in Sec. 3.2

For a deep ResNet-based structure with the bottleneck, we propose to add
another shortcut path in addition to the original shortcut path in ResNet.
This shortcut path adds the input activations to the sign function before the
3×3 convolutional layer and the output activations of the 3×3 convolutional

4 Zechun Liu et al.

Fig. 2 The proposed network structure. (a) The shallow Bi-Real net for 18-layer and 34-
layer structures, and (b) the deep Bi-Real net for 50-layer and 152-layer structures. The
dashed lines denote a 2x2 average pooling layer followed by a 1×1 convolutional layer for
down-sampling and dimension matching.

layers in series, as shown in Fig. 2. This additional shortcut works jointly with
the original shortcut collecting all the real-valued outputs in the 1-bit CNN,
and the representational capability is thus greatly enhanced.

We further propose a novel training algorithm for 1-bit CNNs including
four special technical features:

– Magnitude-aware binarization with respect to weights. As the gra-
dient of the loss with respect to the binary weight will not be large enough
to trigger the change to the sign of the binary weight, the binary weight
cannot be directly updated using the standard gradient descent algorithm.
In BinaryNet [16], the real-valued weight is first updated using gradient
descent, and the new binary weight is then obtained through taking the
sign of the updated real weight. However, we observed that the gradient
with respect to the real weight only depends on the sign of the current
real weight, while independent of its magnitude. To derive a more effective
gradient, we propose to use a magnitude-aware sign function during train-
ing, resulting in the desired dependence of the gradient with respect to the
real weight on both the sign and the magnitude of the current real weight.
After convergence, the binary weight (i.e., -1 or +1) is obtained through
the sign function of the final real weight for inference.

– Initialization. As a highly non-convex optimization problem, training 1-
bit CNNs could be sensitive to initialization. In [24], the 1-bit CNN model

Bi-Real Net: Binarizing Deep Network towards Real-Network Performance 5

is initialized using the real-valued CNN model with the ReLU function
pre-trained on ImageNet. We propose to replace ReLU by the clip function
in pre-training, as the activation of the clip function is closer to the binary
activation than that of ReLU.

– A two-step training method for deep 1-bit CNNs with the bot-
tleneck structure. As the network goes deeper, training becomes more
difficult. Following the practice in multi-step training in quantizing the
network [51], we customize a two-step training method for our deep Bi-
Real net with the bottleneck structure to ease the training difficulty. We
first binarize the weights and activations in the 1×1 convolutional layers
and the activations in the 3×3 convolutional layers. After the network con-
verges, we further binarize the weights in the 3×3 convolutional layers.
This training procedure uses the real-valued weights in the 3×3 convolu-
tional layers as a transition for training the deep Bi-Real net, helping the
network converge to reach higher accuracy.

Experiments on ImageNet show that these ideas are useful to train 1-bit
CNNs. With the dedicatedly-designed shortcut and the proposed optimization
techniques, our Bi-Real net, with only binary weights and activations inside
each 1-bit convolutional layer, achieves 56.4% and 62.2% top-1 accuracy on the
ImageNet dataset with 18-layer and 34-layer structures, respectively, with up
to a 16.0×memory saving and a 19.0× computational cost reduction compared
to the full-precision CNN. Comparing to the state-of-the-art binary models
(e.g., XNOR-Net), Bi-Real net achieves 10% higher top-1 accuracy on the 18-
layer network. By using the shortcut propagating the real-valued feature map
in the bottleneck structure, Bi-Real net achieves 64.5% top-1 accuracy with
an ultra-deep 152-layer structure. We also apply Bi-Real net to a real-world
application, the depth estimation task. The experimental results demonstrate
that a 50-layer Bi-Real net achieves superior performance over BinaryNet [16]
and comparable accuracy to the real-valued counterpart.

This paper extends the preliminary conference paper [27] in several aspects.
1) We generalize the idea of using the shortcut propagating the real-valued
features to the ultra-deep ResNet structure with the bottleneck, enabling the
application of our Bi-Real net to both shallow and deep ResNets. The idea of
propagating real-valued activations in 1-bit CNNs with the shortcut is proven
to be effective with the general guideline that the real-valued outputs of each
convolutional layer should be added to the shortcut for propagation. 2) We
propose a two-step training method targeting at the deep Bi-Real net with the
bottleneck structure. By using the real-valued weights in the 3×3 convolutional
layers as an intermediate step, the ultra-deep Bi-Real net with the bottleneck
can converge to achieve higher accuracy. 3) We conduct an ablation study on
a higher-order approximation to the derivative of the sign function. We show
that using the higher-order approximation rather than the piecewise linear
function yields a marginal improvement in accuracy but induces computation
overhead. 4) We apply our 50-layer Bi-Real net as a feature extractor on a

6 Zechun Liu et al.

depth estimation network and demonstrate comparable accuracy to a real-
valued network.

2 Related Work

An overview of neural network compression and acceleration from both the
hardware and software perspectives is provided in [35]. In computer vision, the
network compression methods can be mainly divided into two major families.
Reducing the number of parameters. Several methods have been pro-
posed to compress neural networks by reducing the number of parameters
and neural connections. Previous works on compact neural network struc-
ture design have achieved a high compression rate with a negligible accuracy
degradation. In SqueezeNet [18], some 3×3 convolutions are replaced with 1×1
convolutions, resulting in a 50× reduction in the number of parameters. As an
extreme version of Inception-v4 [36], Xception [3] applies depth-wise separable
convolution to reduce the number of parameters, which brings a memory sav-
ing as well as a speedup in convolution with a negligible accuracy drop. Based
on depthwise separable convolutions, MobileNets [15] builds light-weight deep
neural networks and achieves a good trade-off between resource and accuracy.
ResNext [41] is proposed to use group convolution to achieve higher accuracy
with a limited parameter budget. Recently, ShuffleNet [45] utilizes both point-
wise group convolution and channel shuffle to achieve about a 13× speedup
over AlexNet with comparable accuracy.

Pruning is another effective solution for model compression and accelera-
tion. Pruning filters [23] in the network actually removes filters together with
the connected feature maps, which significantly reduces the computational
costs. He et al. [13] pruned the channel in the network and achieved a 5×
speedup with an only 0.3% increase of errors on VGG-16. Guo et al. [9] made
on-the-fly connection pruning and efficiently compressed LeNet-5 and AlexNet
by a factor of 108× and 17.7×, respectively, without any accuracy loss. Li et
al. proposed to use ADMM-based method for filter pruning. In Sparse CNN
[25], a sparse matrix multiplication operation is employed to zero out more
than 90% of parameters to accelerate the learning process. Motivated by the
Sparse CNN, Han et al. proposed Deep Compression [10], which employs con-
nection pruning, quantization with retraining, and Huffman coding to reduce
the number of neural connections.
Parameter quantization. The study in [22] demonstrates that real-valued
deep neural networks such as AlexNet [21], GoogLeNet [37], and VGG-16
[33] only encounter a marginal accuracy degradation when quantizing 32-bit
parameters to 8-bit. In Incremental Network Quantization [46], Zhou et al.
quantized the parameter incrementally and showed that it is even possible to
further reduce the weight precision to 2-5 bits with slightly higher accuracy
on the ImageNet dataset than a full-precision network. Based on that, Zhou et
al. further proposed explicit loss-error-aware quantization [47], which obtains
comparable accuracy to the real-valued network with very low-bit parameter

Bi-Real Net: Binarizing Deep Network towards Real-Network Performance 7

values. In BinaryConnect [4], Courbariaux et al. more radically employed 1-bit
precision weights (1 and -1) while maintaining sufficiently high accuracy on the
MNIST, CIFAR10, and SVHN datasets. Ho et al. utilized a proximal Newton
algorithm with a diagonal Hessian approximation that directly minimizes the
loss with regard to the binarized weights [14].

Quantizing weights properly can achieve considerable memory savings with
little accuracy degradations. However, acceleration via weight quantization
alone would be limited due to the real-valued activations (i.e., the input
to convolutional layers). Several recent studies have been conducted to ex-
plore new network structures and/or training techniques for quantizing both
weights and activations while minimizing the accuracy degradation. Success-
ful attempts include DoReFa-Net [49] and QNN [17], which explore neural
networks trained with 1-bit weights and 2-bit activations, and the accuracy
drops by 6.1% and 4.9%, respectively, on the ImageNet dataset compared
to the real-valued AlexNet. Recently, Zhuang et al. [51] proposed to jointly
train a full-precision model alongside the low-precision one, which leads to
no performance decrease in a 4-bit precision network compared with its full-
precision counterpart. Zhang et al. [42] proposed an easy-to-train scheme of
jointly training a quantized, bit-operation-compatible DNN and its associated
quantizers, which can be applied to quantize weights and activations with
arbitrary-bit precision. Additionally, BinaryNet [16] uses only 1-bit weights
and 1-bit activations in a neural network and achieves comparable accuracy
as a full-precision neural network on the MNIST and CIFAR-10 datasets. In
XNOR-Net [30], Rastegari et al. further improved BinaryNet by multiplying
the absolute mean of the weight filter and activation with the 1-bit weight and
1-bit activation to improve the accuracy. ABC-Net [24] is proposed to enhance
the accuracy by using more weight bases and activation bases. The results of
these studies are encouraging, but the additional usage of real-valued weights
and real-valued operations offsets the memory saving and speedup of binarizing
the network. In [1], Bagherinezhad et al. proposed label refinery technique for
further improving the accuracy of the quantized networks, which is orthogonal
to other quantization methods.

In this study, we aim to design 1-bit CNNs aided with a real-valued shortcut
to compensate for the accuracy loss of binarization. In contrast to approaches
mentioned above, adding real-valued shortcuts does not incur non-trivial real-
valued operations nor extra memory. We further design 1) optimization strate-
gies for overcoming the gradient dis-match issue and discrete optimization diffi-
culties in 1-bit CNNs, 2) a customized initialization method, and 3) a two-step
training method for the ultra-deep network. The proposed solution enables us
to fully explore the potential of 1-bit CNNs with the limited resources.

8 Zechun Liu et al.

3 Methodology

3.1 Standard 1-Bit CNN and Its Representational Capability

1-bit convolutional neural networks (CNNs) refer to the CNN models with
binary weight parameters and binary activations in intermediate convolutional
layers. Specifically, the binary activation and weight are obtained through a
sign function,

ab = Sign(ar) =

{
−1 if ar < 0
+1 otherwise

, wb = Sign(wr) =

{
−1 if wr < 0
+1 otherwise

,

(1)

where ar and wr indicate the real activation and the real weight, respectively.
ar exists in both the training and inference processes of the 1-bit CNN, due to
the convolution and batch normalization (if used). For example, given a binary
activation map and a binary 3× 3 weight kernel, the output activation could
be an odd integer from −9 to 9. If a batch normalization is applied, as shown
in Fig. 3, then the integer activation will be transformed into real values. The
real-valued weights will be used to update the binary weights in the training
process, which will be introduced later.

Compared to real-valued CNN models with 32-bit weight parameters, the
1-bit CNNs gain up to a 32× memory saving. Moreover, as the activation is
also binary, the convolution operation could be implemented by the bitwise
XNOR operation followed by a popcount operation [30], i.e.,

ab ·wb = popcount(XNOR(ab,wb)), (2)

where ab and wb indicate the vectors of binary activations ab,i and binary
weights wb,i, respectively, with i being the entry index. In contrast, the con-
volution operation in real-valued CNNs is implemented by the expensive real
value multiplication. Consequently, the 1-bit CNNs could obtain up to a 64×
computation saving.

However, it has been demonstrated in [16] that the classification perfor-
mance of the 1-bit CNNs is much worse than that of real-valued CNN models
on large-scale datasets like ImageNet. We believe that the poor performance of
1-bit CNNs is caused by their low representational capacity. We denote R(x)
as the representational capability of x, i.e., the number of all possible configu-
rations of x, where x could be a scalar, vector, matrix, or tensor. For example,
the representational capability of 32 channels of a binary 14× 14 feature map
A is R(A) = 214×14×32 = 26272. Given a 3 × 3 × 32 binary weight kernel W,
each entry of A ⊗W (i.e., the bitwise convolution output) can choose even
values from (-288 to 288), as shown in Fig 3. Thus, R(A⊗W) = 2896272. Note
that since the BatchNorm layer is a unique mapping, it will not increase the
number of different choices but will scale the (-288,288) to a particular value.
If adding the sign function behind the output, each entry in the feature map
is binarized, and the representational capability shrinks to 26272 again.

Bi-Real Net: Binarizing Deep Network towards Real-Network Performance 9

Fig. 3 The representational capability (R) of each layer in (a) 1-bit CNNs without shortcuts,
and (b) 1-bit CNNs with shortcuts. Al

b indicates the output of the Sign function, Al
m denotes

the output of the 1-bit convolutional layer, and Al+1
r represents the output of the BatchNorm

layer. The superscript l indicates the block index.

Fig. 4 (a) The 1-layer-per-block structure that will not work [11]. (b) The proposed Bi-Real
net basic block with non-linearity inside that does work.

3.2 Shallow Bi-Real Net Model and Its Representational Capability

We propose to preserve the real activations before the sign function to increase
the representational capability of the 1-bit CNN through a simple shortcut.
Specifically, as shown in Fig. 3(b), one block indicates the structure ”Sign →
1-bit convolution → batch normalization → addition operator”. The short-
cut connects the input activations to the sign function in the current block
to the output activations after the batch normalization in the same block,
and these two activations are added through an addition operator, and then
the combined activations are input to the sign function in the next block. The
representational capability of each entry in the added activations is 2892. Con-
sequently, the representational capability of each block in the 1-bit CNN with
the above shortcut becomes (2892)6272. As both real and binary activations
are retained, we call the proposed model Bi-Real net.

The representational capability of each block in the 1-bit CNN is signifi-
cantly enhanced due to the simple identity shortcut. The only additional cost
of computation is the addition operation of two real activations, as these real
activations already exist in the standard 1-bit CNN (i.e., without shortcuts).
Moreover, as the activations are computed on the fly, no additional memory
is needed.

It is mentioned in ResNet [11] that a residual block with only one convolu-
tional layer will lose the superiority of the shortcut connections. As shown in
Fig. 4 (a), W ·σ(x)+σ(x) = (W +1) ·σ(x), which means the identity mapping
can be learned by the weight matrix and the block will act as a plain layer.
However, He et al., in [12], proposed to move the nonlinear function into the

10 Zechun Liu et al.

Fig. 5 The representational capability (R) of each layer in the deep Bi-Real net model. Ab

indicates the binary activations; Ar represents the real-valued activations; Aadd denotes the
real-valued activations after element-wise add operation; superscript l indicates the block
index.

block. Based on this, we find that 1-layer-per-block structure with a nonlinear
function inside the block performs residual learning and is distinct from a plain
layer. As shown in Fig. 4 (b), W · σ(x) + x 6= (W + 1) · σ(x). Thus, Bi-Real
net with the shortcut connecting every layer’s output extensively utilizes the
shortcut and this so-called 1-layer-per-block design brings a huge benefit for
1-bit CNNs.

3.3 Deep Bi-Real Net Model with the Bottleneck and Its Representational
Capability

Binarizing an ultra-deep network is not trivial. Increased depth induces a
training difficulty and also raises a higher requirement for the network struc-
ture design. As ResNet is the most prevalent network backbone structure, we
propose to binarize the deep ResNet with the bottleneck structure to verify
the superiority of our shortcut design and the training algorithm on a deep
network.

Although a deep ResNet bottleneck structure already has a shortcut for
each block, binarizing the convolutional layers would discard the real-valued
outputs of the intermediate layers in a bottleneck block. Thus, we suspect that
it could be much more effective to use the shortcut to propagate all the real-
valued outputs of each 1-bit convolutional layer. Based on this conjecture, we
propose to use another shortcut to propagate real-valued features generated
inside the bottleneck. As shown in Fig. 5, the newly added shortcut connects
the input activations to the sign functions before the 3×3 convolutional lay-
ers and the output activations of the 3×3 convolutional layers in series, by
an adding operation. This shortcut path together with the original shortcut
path jointly collects all the real-valued outputs of the convolutional layers,
greatly enhancing the representational capability. As illustrated in Fig. 5, the
representational capability of each entry in the original shortcut path, i.e., left
path, grows from 65 to 65 × 65 with the added shortcut. The representational

Bi-Real Net: Binarizing Deep Network towards Real-Network Performance 11

Fig. 6 An illustration of the training process of the 1-bit CNNs, with A being the activation,
W being the weight, and superscript l denoting the lth block consisting with Sign, 1-bit
Convolution, and BatchNorm. Subscript r denotes real value, b denotes binary value, and
m denotes the intermediate output before the BatchNorm layer.

capability of each entry in the additional shortcut path, i.e., right path, grows
from 257 to 257 × 577 × 257. The representational capability of each entry
after the adding operation will be the product of those of the input entries,
which grows exponentially with the network depth and greatly contributes to
the final accuracy.

3.4 Training Bi-Real Net

As both activations and weight parameters are binary, the continuous opti-
mization method, i.e., the stochastic gradient descent (SGD), cannot be di-
rectly adopted to train the 1-bit CNN. There are two major challenges. One
is how to compute the gradient of the sign function on activations, which is
non-differentiable, while the other is that the gradient of the loss with respect
to the binary weight is too small to change the sign of the weight. The authors
of [16] proposed to adjust the standard SGD algorithm to approximately train
the 1-bit CNN. Specifically, the gradient of the sign function on activations
is approximated by the gradient of the piecewise linear function, as shown in
Fig. 7(b). To tackle the second challenge, the method proposed in [16] updates
the real-valued weights by the gradient computed with regard to the binary
weight, and obtains the binary weight by taking the sign of the real weights.
As the identity shortcut will not add difficulty for training, the training algo-
rithm proposed in [16] can also be adopted to train the Bi-Real net model.
However, we propose a novel training algorithm to tackle the above two major
challenges, which is more suitable for the Bi-Real net model as well as other
1-bit CNNs. Additionally, we also propose a novel initialization method.

We present a graphical illustration of the training of Bi-Real net in Fig. 6.
The identity shortcut is omitted in the graph for clarity, as it will not change
the main part of the training algorithm.

12 Zechun Liu et al.

Fig. 7 (a) The sign function and its derivative. (b) The clip function and its derivative
for approximating the derivative of the sign function, as proposed in [16]. (c) The proposed
differentiable piecewise polynomial function and its triangle-shaped derivative for approxi-
mating the derivative of the sign function in gradients computation, and (d) the differentiable
third-order piecewise polynomial function and its derivative.

3.4.1 Approximation to the derivative of the sign function with respect to
activations.

As shown in Fig. 7(a), the derivative of the sign function is an impulse function,
which cannot be utilized in training.

∂L
∂Al,t

r

=
∂L
∂Al,t

b

∂Al,t
b

∂Al,t
r

=
∂L
∂Al,t

b

∂Sign(Al,t
r)

∂Al,t
r

≈ ∂L
∂Al,t

b

∂F (Al,t
r)

∂Al,t
r

, (3)

where F (Al,t
r) is a differentiable approximation of the non-differentiable Sign(Al,t

r).
In [16], F (Al,t

r) is set as the clip function, leading to the derivative as a step-
function (see Fig. 7(b)). In this work, we utilize a piecewise polynomial function
(see Fig. 7(c)) as the approximation function, as follows:

F (ar) =


−1 if ar < −1
2ar + a2r if − 1 6 ar < 0
2ar − a2r if 0 6 ar < 1
1 otherwise

. (4)

As shown in Fig. 7, the shaded areas with blue slashes reflect the difference be-
tween the sign function and its approximation. The shaded area corresponding
to the clip function is 1, while that corresponding to Eq. (4) is 2

3 . We conclude
that Eq. (4) is a closer approximation to the sign function than the clip func-
tion. Consequently, the derivative of Eq. (4) is formulated as

∂F (ar)

∂ar
=

2 + 2ar if − 1 6 ar < 0
2− 2ar if 0 6 ar < 1
0 otherwise

, (5)

Bi-Real Net: Binarizing Deep Network towards Real-Network Performance 13

which is a piecewise linear function.
Although we can use a higher-order approximation to obtain closer ap-

proximation, the gain would be limited. We carry out an ablation study on
the third-order approximation to the sign function, formulated as

F (ar) =


−1 if ar < −1
(ar + 1)3 − 1 if − 1 6 ar < 0
(ar − 1)3 + 1 if 0 6 ar < 1
1 otherwise

. (6)

Its derivative is a piecewise quadratic function:

∂F (ar)

∂ar
=

3(ar + 1)2 if − 1 6 ar < 0
3(ar − 1)2 if 0 6 ar < 1
0 otherwise

. (7)

Intuitively, the gradient dis-match decreasing from the second-order ap-
proximation to the third-order approximation is small, as shown in Fig. 7, and
the experimental results also show that the corresponding accuracy increase
is very limited. Thus, we conclude that the second-order approximation is suf-
ficient. The limited gain from a higher-order approximation is not worthwhile
for the computational overhead.

3.4.2 Magnitude-aware binarization with respect to weights.

Updating the binary parameters is challenging. The naive solution induces
the magnitude dis-match issue between the binary weights and real-valued
weights. This magnitude dis-match issue is in turn aggravated in gradient
with the existence of the BatchNorm layer and hampers the convergence of 1-
bit networks. To tackle this we use a magnitude-aware binarization scheme to
match the magnitudes between the binary weights and the real-valued weights
at the training time. After training, we use the naive sign function for weight
binarization to keep inference simple and fast.

Here we present how to update the binary weight parameter in the lth

block. The standard gradient descent algorithm cannot be directly applied as
the gradient is not large enough to change the binary weights.

To tackle this problem, the method of [16] introduces a real weight Wr

and a sign function during training. Hence the binary weight parameter can
be seen as the output to the sign function, i.e., Wb = Sign(Wr), as shown in
the upper sub-figure in Fig. 6. Wr is updated using gradient calculated with
respect to Wb in the backward pass, as follows:

Wt+1
r = Wt

r − η
∂L
∂Wt

b

· 1|Wt
r|<1. (8)

This method solves the problem of updating the discrete binary weights,
but the sign function binarizing weights induces a magnitude dis-match prob-
lem between binary weights and real-valued weights. As shown in Fig. 8 (a),

14 Zechun Liu et al.

the magnitude of binary weights ‖Wb ‖1,1 equals to 1; however, for empirical
reasons, the magnitude of real weights ‖Wr ‖1,1 is around 0.1.

Thus in binary networks, we have

‖Wb ‖1,1= α ‖Wr ‖1,1, (9)

where α ≈ 10 is a non-negligible number.
With the existence of the BatchNorm layer in the prevalent architectures,

the magnitude difference between Wb and Wr will incur a reciprocal magni-
tude difference in gradient, which in turn harms the convergence of the binary
networks. We explain this phenomenon through starting with a simple lemma.

Lemma1: With the presence of a BatchNorm layer in a convolutional
neural network, if every element in the weight kernel is amplified by α, the
gradient will become 1

α of the previous gradient.
Proof: For clarity, we assume that there is only one weight kernel, i.e., W

is a matrix.
Forward Pass: We consider a convolutional layer followed by a BatchNorm

layer in the convolutional neural network, where the original parameters are
denoted with superscript (1) and the parameters after scaling are denoted with
superscript (2). When weights in the convolutional layer are amplified by α,

W(2) = αW(1), (10)

and the output of the convolutional layer is

Y = X ·W, so, Y(2) = αY(1). (11)

For the BatchNorm layer which normalizes Y, the mean (µ) and variance
(σ) can be calculated as

µ =
1

m

m∑
i=1

Yi, σ2 =
1

m

m∑
i=1

(Yi − µ)2, (12)

where m is the number of entries in the weight matrix. Thus, we have

µ(2) = αµ(1), σ(2) = ασ(1). (13)

The output Z of the BatchNorm layer in the forward pass is independent
of the scaling factor α,

Z =
Y− µ
σ

, so, Z(2) = Z(1). (14)

Backward Pass: As we assume that other layers besides the concerned layer
are the same, the gradient back propagated to the corresponding BatchNorm
layer should be identical, that is,

Bi-Real Net: Binarizing Deep Network towards Real-Network Performance 15

Fig. 8 The weight distribution in the 18-layer Bi-Real net, with the blue distribution denot-
ing real-valued weights and the yellow line denoting binarized weights, respectively. (a) Mag-
nitude difference between real-valued weights and the sign of real-valued weights (i.e., bina-
rized weights); (b) Magnitude difference between real-valued weights and binarized weights
obtained by the magnitude-aware sign.

∂L
∂Z(2)

=
∂L
∂Z(1)

. (15)

We can calculate the gradient with respect to the weights by Chain Rule:

∂L
∂W

=
∂L
∂Z
· ∂Z
∂Y
· ∂Y
∂W

=
∂L
∂Z
· 1

σ
·X. (16)

Since σ(2) = ασ(1), we have

∂L
∂W(2)

=
1

α

∂L
∂W(1)

. (17)

The gradient with respect to the weight is scaled to 1
α . Obviously this

lemma holds in the convolutional layer with multiple output channels.
Proof completed.
According to Lemma1 , this magnitude difference between the binary

weights and the real-valued weights induces the gradient to be rescaled in
the converse direction:

‖ ∂L
∂Wb

‖1,1≈
1

α
‖ ∂L
∂Wr

‖1,1 . (18)

This effect makes the weight update of the weights in the binary net-
work in-precise and hinders the binary network from converging to a higher
accuracy. To address this issue, we adopt the magnitude-aware binarization
Wb = ||Wr||1,1×sign(Wr) for matching the dimension between binary weight
and real-valued weights. Thus, we have

16 Zechun Liu et al.

‖Wb ‖1,1=‖Wr ‖1,1 and ‖ ∂L
∂Wb

‖1,1≈‖
∂L
∂Wr

‖1,1 . (19)

After training the binary network with the more accurate gradients, we no
longer need to re-scale the binary weights at inference time, as the output of
the BatchNorm layer is independent of the scaling factor. By setting W′

b =
sign(Wr) and µ′ = µ

‖Wr‖1,1 , σ
′ = σ

‖Wr‖1,1 , we can obtain the same value in

the output,

Z′ =
Y′b − µ′b
σ′b

=
X′ ·W′

b − µ′b
σ′b

=
X · Wb

‖Wr‖1,1 −
µb

‖Wr‖1,1
σb

‖Wr‖1,1
= Z. (20)

Thus we can simply use the sign function for binarizing the weights at the
inference phase for easy deployment.

Using Wb =‖Wr ‖1,1 ·sign(Wr) for weight binarization is first proposed
in XNOR-Net [30] and inherited by the following works [24,38]. But previous
works use this scaling factor for enhancing the representational capability of
the binary weights in both training time and inference time, which results in
extra computation in deploying the binary model. To the best of our knowl-
edge, we are the first to explicitly point out that this scaling factor can be
used as an auxiliary parameter to help convergence at training time and be
normalized by the BatchNorm layer at inference time.

3.4.3 Initialization.

As discussed in the previous section, training the 1-bit CNN means updating
the stored real-valued weight and using its sign to update the binary weight.
The value of a real-valued weight denoting how likely it is a binary weight is
going to change its sign. A good initialization of the real-valued weights is of
great importance for a rapid convergence and a high accuracy of the model.
Previous works proposed to fine-tune the 1-bit CNN from the corresponding
real-valued network with ReLU non-linearity [24]. However, the activation of
ReLU is non-negative, as shown in Fig. 9 (a), while that of Sign is −1 or
+1. Due to this difference, the real-valued CNNs with ReLU may not provide
a suitable initial point for training the 1-bit CNNs. Instead, we propose to
replace ReLU with clip(−1, x, 1) to pre-train the real-valued CNN model. The
activation of the clip function is closer to the sign function than ReLU, as
shown in Fig. 9 (b), and yields a better initialization which will be further
validated in the following experiments.

The initialization method and the magnitude-aware binarization with re-
spect to weights can be viewed as a whole process to match the magnitude
of activations and weights in the real-valued network with that in the 1-bit
CNNs. Replacing the ReLU non-linearity with the clip function in initializa-
tion reshapes the activation distribution to be closer to -1 and +1. Then the

Bi-Real Net: Binarizing Deep Network towards Real-Network Performance 17

Fig. 9 The activation distribution in the 18-layer Bi-Real net with different non-linearity
functions: (a) ReLU function, and (b) clip function.

magnitude-aware sign matches the magnitude of the binary weights and the
real-valued weights to obtain more effective gradients. After training for con-
vergence, we use the BatchNorm layer to normalize the scaling factor and scale
back the binary weights to -1 and +1. In this process, we manage to convert
the real-valued networks to 1-bit CNNs.

3.4.4 Two-step training method for a deep 1-bit CNN with the bottleneck
structure.

To further alleviate the difficulty in training a deep 1-bit CNN, we followed the
progressive quantization methods [51] to binarize the entire network in a two-
step manner, in which the real-valued weights in the 3×3 convolutional layers
are used as auxiliary variables. Specifically, we first binarize the activations
and weights in all the 1×1 convolutional layers and the activations in the
3×3 convolutional layers in the bottleneck blocks. We train the network till
convergence, and then binarize the weights in the 3×3 convolutional layers.
With the proposed two-step training method, we manage to decompose the
big challenge of binarizing the deep network into two sub-problems, facilitating
the network converge to higher accuracy.

4 Experiments

In this section, we first introduce the dataset for experiments, and present im-
plementation details in Sec 4.1. Then, we conduct an ablation study in Sec. 4.2
to investigate the effectiveness of the proposed techniques. This is followed by
comparing our Bi-Real net with other state-of-the-art binary networks regard-
ing accuracy in Sec 4.3. Sec. 4.4 reports the memory usage and computation
cost in comparison with other networks. In Sec. 4.5, we deploy the Bi-Real net
to a real-world application, the depth estimation task.

18 Zechun Liu et al.

4.1 Dataset and Implementation Details

The experiments are carried out on the ILSVRC12 ImageNet classification
dataset [32]. ImageNet is a large-scale dataset with 1.2 million training images
and 50K validation images of 1,000 classes. Compared to other datasets like
CIFAR-10 [20] or MNIST [29], ImageNet is more challenging due to its large
scale and great diversity. The study on this dataset will validate the superiority
of the proposed Bi-Real network structure and the effectiveness of the novel
training techniques for 1-bit CNNs. In our experiment, we report both the
top-1 and top-5 accuracies.

For each image in the ImageNet dataset, the lower dimension of the image
is rescaled to 256 while keeping the aspect ratio intact. For training, a random
crop of size 224 × 224 is selected from the rescaled image or its horizontal flip.
For inference, we employ the 224 × 224 center crop from images.

Pre-training: We fine-tune the real-valued network with the clip non-linear
function from the corresponding network with the ReLU non-linear function.
For easy convergence, we use the network with the leaky clip as a transition,
which has a negative slope of 0.1 instead of 0 outside the range of (-1,1). The
fine-tuning procedure is ReLU → Leaky-Clip → Clip.

Training: We train four instances of the Bi-Real net, including an 18-layer,
a 34-layer, a 50-layer, and a 152-layer Bi-Real net. The training of them con-
sists of two steps: training the 1-bit convolutional layer and retraining the
BatchNorm. In the first step, the weights in the 1-bit convolutional layer are
binarized using the magnitude-aware binarization with respect to the weights.
We use the SGD solver with the momentum of 0.9 and set the weight-decay
to 0, which means that we no longer encourage the weights to be close to 0.
For the 18-layer Bi-Real net, we run the training algorithm for 20 epochs with
a batch size of 128. The learning rate starts at 0.01 and is decayed twice by
multiplying 0.1 at the 10th and the 15th epoch. For the 34-layer Bi-Real net,
the training process includes 40 epochs and the batch size is set to 1024. The
learning rate starts at 0.08 and is multiplied by 0.1 at the 20th and the 30th
epoch respectively. For the 50-layer Bi-Real net and 152-layer Bi-Real net, the
first step is further divided into two sub-steps: 1) binarizing the activations
and weights in 1×1 convolutional layers along with the activations in 3×3 con-
volutional layers, and 2) binarizing the weights in 3×3 convolutional layers.
For the 50-layer Bi-Real net, each sub-step includes 100 epochs and the batch
size is set to 800. The learning rate starts from 0.064 and is multiplied by 0.1 at
the 50th and the 75th epoch respectively. For the 152-layer Bi-Real net, each
sub-step includes 120 epochs and the batch size is set to 4000. The learning
rate starts at 0.1 and is multiplied by 0.1 at the 60th and the 90th epoch,
respectively. In the second step, we constrain the weights to -1 and 1, and set
the learning rate in all convolutional layers to 0 and retrain the BatchNorm
layer for one epoch to absorb the scaling factor.

Inference: we use the trained model with binary weights and binary activa-
tions in the 1-bit convolutional layers for inference.

Bi-Real Net: Binarizing Deep Network towards Real-Network Performance 19

Fig. 10 (a) The elemental block structure of conjoint layers of Sign, 1-bit Convolution, and
the BatchNorm. Three networks differ in the shortcut design of connecting the blocks, shown
in (b), (c) and (d). (b) Bi-Real net with shortcut bypassing every block, (c) Res-Net with
shortcut bypassing two blocks, which corresponds to the ReLU-only pre-activation proposed
in [12], and (d) Plain-Net without the shortcut. These three structures shown in (b), (c)
and (d) have the same number of weights.

4.2 Ablation Study

Three building blocks. The shortcut in our Bi-Real net transfers real-valued
representation without additional memory cost, which plays an important role
in improving its capability. To verify its importance, we implemented a Plain-
Net structure without shortcuts, as shown in Fig. 10 (d), for comparison. At
the same time, as our network structure employs the same number of weight
filters and layers as the standard ResNet, we also carry out a comparison with
the standard ResNet shown in Fig. 10 (c). For fair comparison, we adopt the
ReLU-only pre-activation ResNet structure in [12], which differs from Bi-Real
net only in the structure of two layers per block instead of one layer per block.
The layer order and shortcut design in Fig. 10 (c) are also applicable for 1-bit
CNNs. The comparison can justify the benefit of implementing our Bi-Real
net by specifically replacing the 2-conv-layer-per-block Res-Net structure with
two 1-conv-layer-per-block Bi-Real structures.

As discussed in Sec. 3, we propose to overcome the optimization chal-
lenges induced by discrete weights and activations by 1) approximation to the
derivative of the sign function with respect to activations, 2) magnitude-aware
binarization with respect to weights, and 3) clip initialization. To study how
these proposals benefit the 1-bit CNNs individually and collectively, we train
the 18-layer structure and the 34-layer structure with a combination of these
techniques on the ImageNet dataset. Thus, we derive 2 × 3 × 2 × 2 × 2 = 48
pairs of values of top-1 and top-5 accuracies, which are presented in Table 1.

Based on Table 1, we can evaluate each technique’s individual contribution
and collective contribution of each unique combination of these techniques
towards the final accuracy.

1) Comparing the 4th − 7th columns with the 8th − 9th columns, both the
proposed Bi-Real net and the binarized standard ResNet outperform their
plain counterparts with a significant margin, which validates the effectiveness
of the shortcut and the disadvantage of directly concatenating the 1-bit convo-
lutional layers. As Plain-18 has a thin and deep structure, which has the same
weight filters but no shortcut, binarizing it results in very limited network

20 Zechun Liu et al.

Table 1 Top-1 and top-5 accuracies (in percentage) of different combinations of the three
proposed techniques on the three different network structures, Bi-Real net, ResNet and Plain
Net, shown in Fig. 10.

Initiali- Weight Activation Bi-Real-18 Res-18 Plain-18 Bi-Real-34 Res-34 Plain-34
zation update backward top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

ReLU

Original
Original 32.9 56.7 27.8 50.5 3.3 9.5 53.1 76.9 27.5 49.9 1.4 4.8

Proposed 36.8 60.8 32.2 56.0 4.7 13.7 58.0 81.0 33.9 57.9 1.6 5.3

Proposed
Original 40.5 65.1 33.9 58.1 4.3 12.2 59.9 82.0 33.6 57.9 1.8 6.1

Proposed 47.5 71.9 41.6 66.4 8.5 21.5 61.4 83.3 47.5 72.0 2.1 6.8

Real-valued Net 68.5 88.3 67.8 87.8 67.5 87.5 70.4 89.3 69.1 88.3 66.8 86.8

Clip

Original
Original 37.4 62.4 32.8 56.7 3.2 9.4 55.9 79.1 35.0 59.2 2.2 6.9

Proposed 38.1 62.7 34.3 58.4 4.9 14.3 58.1 81.0 38.2 62.6 2.3 7.5

Proposed
Original 53.6 77.5 42.4 67.3 6.7 17.1 60.8 82.9 43.9 68.7 2.5 7.9

Proposed 56.4 79.5 45.7 70.3 12.1 27.7 62.2 83.9 49.0 73.6 2.6 8.3

Real-valued Net 68.0 88.1 67.5 87.6 64.2 85.3 69.7 89.1 67.9 87.8 57.1 79.9

Full-precision original ResNet[11] 69.3 89.2 73.3 91.3

representational capacity in the last convolutional layer, and can thus hardly
achieve good accuracy.

2) Comparing the 4th− 5th and 6th− 7th columns, the 18-layer Bi-Real net
structure improves the accuracy of the binarized standard ResNet-18 by about
18%. This validates the conjecture that the Bi-Real net structure with more
shortcuts further enhances the network capacity compared to the standard
ResNet structure. Replacing the 2-conv-layer-per-block structure employed in
Res-Net with two 1-conv-layer-per-block structures, adopted by Bi-Real net,
could even benefit a real-valued network.

3) All proposed techniques for initialization, weight update, and activation
backward improve the accuracy to various extent. For the 18-layer Bi-Real net
structure, the improvement from the weight (about 23%, by comparing the
2nd and 4th rows) is greater than the improvement from the activation (about
12%, by comparing the 2nd and 3rd rows) and the improvement from replacing
ReLU with Clip for initialization (about 13%, by comparing the 2nd and 7th

rows). These three proposed training mechanisms are orthogonal to each other
and can function collaboratively towards enhancing the final accuracy.

4) The proposed training methods can improve the final accuracy for all
three networks in comparison with the original training method, which implies
that these proposed three training methods are universally suitable for various
networks.

5) The two implemented Bi-Real nets (i.e., the 18-layer and 34-layer struc-
tures) together with the proposed training methods achieve approximately
83% and 89% of the accuracy level of their corresponding full-precision net-
works, but with a huge amount of speedup and computation cost saving.

In brief, the shortcut enhances the network representational capability, and
the proposed training methods help the network approach the accuracy upper
bound.

Bi-Real Net: Binarizing Deep Network towards Real-Network Performance 21

Table 2 Top-1 and top-5 accuracies (in percentage) comparison between using the different
approximation to the derivative of the sign function on 18-layer Bi-Real net.

ApproxSign Third-order ApproxSign

Top-1 56.40% 56.46%
Top-5 79.50% 79.74%

Table 3 This table compares both the top-1 and top-5 accuracies of our Bi-Real net with
other state-of-the-art binarization methods: BinaryNet [16] , XNOR-Net [30], and ABC-Net
[24] on both the Res-18 and Res-34 [11]. The Bi-Real net outperforms the other methods
by a considerable margin.

Bi-Real net BinaryNet[16] ABC-Net[24] XNOR-Net[30] Full-precision[11]

18-layer
Top-1 56.4% 42.2% 42.7% 51.2% 69.3%
Top-5 79.5% 67.1% 67.6% 73.2% 89.2%

34-layer
Top-1 62.2% – 52.4% – 73.3%
Top-5 83.9% – 76.5% – 91.3%

As discussed in Sec. 3.4.1, we investigate a higher-order approximation to
the derivative of the sign function. Specifically, we carry out an ablation study
to answer the question of how much increase in performance can we obtain
by using a higher order approximation to the derivative of the sign function.
As shown in Table 2, the gain from changing the second-order approximation
of the sign function to the third-order approximation is diminished, to only
a 0.06% increase in top-1 accuracy. Considering the computational overhead,
we suggest using the second-order approximation.

4.3 Accuracy Comparison with State-of-the-Arts

While the ablation study demonstrates the effectiveness of our 1-layer-per-
block structure and the proposed techniques for optimal training, it is also
necessary to make a comparison with other state-of-the-art methods to evalu-
ate Bi-Real net’s overall performance. To this end, we carry out a comparative
study with three methods: BinaryNet [16], XNOR-Net [30], and ABC-Net [24].
These three networks are representative methods of binarizing both weights
and activations for CNNs and achieve state-of-the-art results. Note that for
fair comparison, our Bi-Real net contains the same number of weight filters as
the corresponding ResNet that these methods attempt to binarize, differing
only in the shortcut design.

Table 3 shows the results. The results of the three networks are quoted
directly from the corresponding references, except the result of BinaryNet,
which is quoted from ABC-Net [24]. The comparison clearly indicates that the
proposed Bi-Real net outperforms the three networks by a considerable margin
in terms of both the top-1 and top-5 accuracies. Specifically, the 18-layer Bi-
Real net outperforms its 18-layer counterparts BinaryNet and ABC-Net with a

22 Zechun Liu et al.

Table 4 This table compares both the top-1 and top-5 accuracies of our Bi-Real net with
binarization methods in BinaryNet [16] and XNOR-Net [30] on Res-50 and Res-152 [11].
The results of XNOR-Net is quoted from [1]. The Bi-Real net outperforms BinaryNet by
a considerable margin and achieves comparable results as the XNOR-Net with a simpler
binarization function.

Bi-Real net BinaryNet[16] XNOR-Net[30] Full-precision Res-Net[11]

50-layer
Top-1 62.6% 9.4% 63.1% 74.7%
Top-5 83.9% 22.4% 83.6% 92.1%

152-layer
Top-1 64.5% 8.9% – 76.5%
Top-5 85.5% 21.0% – 93.2%

relative 33% advantage and achieves a roughly 10% relative improvement over
XNOR-Net. Similar improvements can be observed for the 34-layer Bi-Real
net. In short, our Bi-Real net is more competitive than the state-of-the-art
binary networks.

Table 4 shows the results of Bi-Real net on the deeper network with the
bottleneck structure. Our Bi-Real net contains the same number of weight
filters as the corresponding ResNet. We re-implement the method proposed in
BinaryNet on ResNet-50 and ResNet-152. For fair comparison, both methods
use the same data augmentation with the lower dimension of the image ran-
domly sampled in [256,480] while keeping the aspect ratio intact. A random
crop of size 224 × 224 is selected from the rescaled image or its horizontal
flip. The results show that Bi-Real net with an ultra-deep network structure
outperforms the method in BinaryNet [16] by a large margin. The results also
show that without adding extra shortcuts to preserve every layer’s real-valued
output, the 1-bit CNNs can hardly scale up to 152-layers deep, while our pro-
posed Bi-Real net can achieve 64.5% top-1 accuracy. Bi-Real net also achieves
comparable accuracy to XNOR-Net [30] on the 50-layer structures. Compared
to XNOR-Net, we do not need to store or compute the real-valued scaling
factor for multiplying with the binary weights and activations, which makes
our network easier for implementation and execution.

4.4 Efficiency and Memory Usage Analysis

In this section, we analyze the saving of memory usage and speedup in com-
puting Bi-Real net by both theoretical analysis and real-world estimation on
FPGA devices.

4.4.1 Resource computation

The memory usage is computed as the summation of 32 bits times the number
of real-valued parameters and 1 bit times the number of binary parameters in
the network. For efficiency comparison, following the suggestion of Uniq [2],
we use BOPs to measure the total multiplication computation in Bi-Real net.
BOP refers to the number of bit-operations in a neural network, where the

Bi-Real Net: Binarizing Deep Network towards Real-Network Performance 23

Table 5 Memory usage and BOPs calculation in Bi-Real net.

Memory usage Memory saving BOPs Speedup

18-layer
Bi-Real net 33.6 Mbit 11.14× 1.04 ×1010 11.06×

XNOR-Net[30] 33.7 Mbit 11.10× 1.07 ×1010 10.86×
Full-precision Res-Net[11] 374.1 Mbit – 1.16 ×1011 –

34-layer
Bi-Real net 43.7 Mbit 15.97× 124 ×1010 18.99×

XNOR-Net[30] 43.9 Mbit 15.88× 127 ×1010 18.47×
Full-precision Res-Net[11] 697.3 Mbit – 234 ×1011 –

calculation method is the same as calculating FLOPs for the floating-point
operations in [11], excepting the operation calculated in BOPs is bit-wise.

We follow the suggestion in XNOR-Net [30], to keep the weights and acti-
vations in the first convolution and the last fully-connected layers to be real-
valued. We also adopt the same real-valued 1×1 convolution in the Type B
shortcut [11], as implemented in XNOR-Net. Note that this 1×1 convolution
is for the transition between two stages of ResNet and thus all information
should be preserved. As the number of weights in those three kinds of layers
accounts for only a very small proportion of the total number of weights, the
limited memory saving for binarizing them does not justify the performance
degradation caused by the information loss.

For both the 18-layer and the 34-layer networks, the proposed Bi-Real
net reduces the memory usage by 11.1 times and 16.0 times, respectively,
and achieves computation reduction of about 11.1 times and 19.0 times, in
comparison with the full-precision counterparts. Without using real-valued
weights and activations for scaling binary ones during the inference time, our
Bi-Real net requires fewer BOPs and uses less memory than XNOR-Net and
is also much easier to implement.

4.4.2 On-board speed estimation

We estimate the execution time of an 18-layer Bi-Real net as well as its real-
valued counterpart on FPGA (Field-Programmable Gate Array) with the Vi-
vado Design Suite [5], which is targeted at embedded applications. Table 7
shows the speed and resource usage comparison of the entire networks. The
proposed Bi-Real net achieves a 6.07× speed up with the same or fewer re-
sources compared to its real-valued counterpart on an FPGA board. Table 6
shows the speed estimation of each individual module. Binary convolutional
layers achieve a 15.8× speed up compared with real-valued convolutions. By
adding up the execution time of all the operations, 18-layer Bi-Real net is
able to achieve a 7.38× speedup than the real-valued network with the same
structure.

24 Zechun Liu et al.

Table 6 Execution time and resource usage comparison between inferring the 18-layer Bi-
Real net and its real-valued counterpart on FPGA. The codes and other implementation
details will be released at https://github.com/liuzechun/Bi-Real-net.

Execution Time(ms) Resource usage

LUT FF BRAM

32-bit network 2394.6 256207 315644 2086
1-bit network 394.7 154036 197606 2086

Time/Resource reduction ratio 6.07× 1.66× 1.60× 1×

Table 7 Speed comparison of individual modules in 18-layer Bi-Real net with 1-bit convo-
lutions and 32-bit convolutions on FPGA.

Execution time Speedup ratio

1-bit network 32-bit network

3 × 3 Convolutional layers 2.55s 24.23s 15.8×
Downsampling layers 0.13s 0.13s –

First convolutional layer 0.08s 0.08s –
Fully-connected layer 1.02ms 1.02ms –

BatchNorm layers 0.62s 0.62s –
All operations considered 3.4s 25.1s 7.38×

4.5 Application: Pixelwise Depth Estimation

Depth estimation is an important task for autonomous driving and drone
navigation. Compressing a depth estimation CNN is crucial to deploying the
powerful CNN to mobile devices which have limited memory and computa-
tional resources. In this section, we replace the real-valued Res-50 network in
[6] with a 50-layer Bi-Real net for pixelwise depth estimation.

The experimental evaluations were carried out on the KITTI dataset [7],
which contains pictures of the roads captured using a stereo camera mounted
on a moving vehicle. We employed the same training/validation split and data
pre-processing method as [6] for fair comparison.

In the training phase, the images were resized to 160 × 608 and no data
augmentation was applied. We trained the network for 60K iterations with a
mini-batch size of 10. We started from a learning rate of 0.001 and divided
it by 10 at every 30K iterations. We pre-trained the real-valued network and
then used it to initialize and fine-tune the binarized network.

In the testing phase, we evaluated our results on the same cropped re-
gion of interests as [6] and compared the depth prediction results with the
corresponding ground-truth depth maps.

The results show that Bi-Real net achieves comparable accuracy to the
real-valued network proposed in [6] and is 2% higher than directly binarizing
the original network with the method in [16]. The results provide a piece of
evidence that the proposed Bi-Real net not only works well on classification

Bi-Real Net: Binarizing Deep Network towards Real-Network Performance 25

Table 8 Comparison on accuracy of the 50-layer Bi-Real net and binarizing full-precision
network [6] with the method proposed in BinaryNet [16]. The accuracy of the network with
full-precision resolution [6] is also included for reference.

Depth Estimation Network

Bi-Real net BinaryNet [16] Full-precision network [6]

84.9% 83.0% 85.2%

tasks but can also be applied to other regression tasks like pixelwise depth
estimation.

5 Conclusions

In this study, we proposed a novel 1-bit CNN model, dubbed Bi-Real net.
Compared to standard 1-bit CNNs, Bi-Real net utilizes a simple yet effective
shortcut to significantly enhance the representational capability of the 1-bit
CNNs. Furthermore, an advanced training algorithm was designed for training
1-bit CNNs (including Bi-Real net), including a tighter approximation to the
derivative of the sign function with respect to the activation, a magnitude-
aware binarization with respect to the weight, as well as a novel initialization
and a two-step training algorithm for deep 1-bit CNNs. The extensive experi-
mental results demonstrate that the proposed Bi-Real net and novel training
algorithm achieve superior results over the state-of-the-art methods and are
viable for real-world applications.

6 Acknowledgements

The authors would like to acknowledge HKSAR RGCs funding support un-
der grant GRF-16203918. We also would like to thank Zhuoyi Bai, Tian Xia,
Prof. Zhenyan Wang and Xiaofeng Hu from Huazhong University of Science
and Technology for their efforts in implementing Bi-Real net on FPGA and
carrying out the on-board speed estimation.

References

1. Hessam Bagherinezhad, Maxwell Horton, Mohammad Rastegari, and Ali Farhadi. Label
refinery: Improving imagenet classification through label progression. arXiv preprint
arXiv:1805.02641, 2018.

2. Chaim Baskin, Eli Schwartz, Evgenii Zheltonozhskii, Natan Liss, Raja Giryes, Alex M
Bronstein, and Avi Mendelson. Uniq: uniform noise injection for the quantization of
neural networks. arXiv preprint arXiv:1804.10969, 2018.

3. François Chollet. Xception: Deep learning with depthwise separable convolutions. arXiv
preprint, pages 1610–02357, 2017.

4. Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training
deep neural networks with binary weights during propagations. In Advances in neural
information processing systems, pages 3123–3131, 2015.

26 Zechun Liu et al.

5. Tom Feist. Vivado design suite. White Paper, 5:30, 2012.
6. Ravi Garg, Vijay Kumar BG, Gustavo Carneiro, and Ian Reid. Unsupervised cnn for

single view depth estimation: Geometry to the rescue. In European Conference on
Computer Vision, pages 740–756. Springer, 2016.

7. Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets
robotics: The kitti dataset. The International Journal of Robotics Research,
32(11):1231–1237, 2013.

8. Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 580–587, 2014.

9. Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient
dnns. In Advances In Neural Information Processing Systems, pages 1379–1387, 2016.

10. Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

11. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

12. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep
residual networks. In European conference on computer vision, pages 630–645. Springer,
2016.

13. Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep
neural networks. In International Conference on Computer Vision (ICCV), volume 2,
2017.

14. Lu Hou, Quanming Yao, and James T Kwok. Loss-aware binarization of deep networks.
In Proceedings of the International Conference on Learning Representations, 2017.

15. Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, To-
bias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

16. Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Binarized neural networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,
and R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages
4107–4115. Curran Associates, Inc., 2016.

17. Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Quantized neural networks: Training neural networks with low precision weights and
activations. The Journal of Machine Learning Research, 18(1):6869–6898, 2017.

18. Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally,
and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡
0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016.

19. Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

20. Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny
images. Technical report, Citeseer, 2009.

21. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012.

22. Liangzhen Lai, Naveen Suda, and Vikas Chandra. Deep convolutional neural net-
work inference with floating-point weights and fixed-point activations. arXiv preprint
arXiv:1703.03073, 2017.

23. Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning
filters for efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

24. Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural
network. In Advances in Neural Information Processing Systems, pages 345–353, 2017.

25. Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky.
Sparse convolutional neural networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 806–814, 2015.

26. Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian D Reid. Learning depth from single
monocular images using deep convolutional neural fields. IEEE Trans. Pattern Anal.
Mach. Intell., 38(10):2024–2039, 2016.

Bi-Real Net: Binarizing Deep Network towards Real-Network Performance 27

27. Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng.
Bi-real net: Enhancing the performance of 1-bit cnns with improved representational
capability and advanced training algorithm. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 722–737, 2018.

28. Wenhan Luo, Peng Sun, Fangwei Zhong, Wei Liu, Tong Zhang, and Yizhou Wang.
End-to-end active object tracking via reinforcement learning. ICML, 2018.

29. Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y
Ng. Reading digits in natural images with unsupervised feature learning. In NIPS
workshop on deep learning and unsupervised feature learning, volume 2011, page 5,
2011.

30. Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net:
Imagenet classification using binary convolutional neural networks. In European Con-
ference on Computer Vision, pages 525–542. Springer, 2016.

31. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In Advances in neural information
processing systems, pages 91–99, 2015.

32. Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet
large scale visual recognition challenge. International Journal of Computer Vision,
115(3):211–252, 2015.

33. Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

34. Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep convolutional network cascade for
facial point detection. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3476–3483, 2013.

35. Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing of
deep neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295–
2329, 2017.

36. Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-
v4, inception-resnet and the impact of residual connections on learning. In AAAI,
volume 4, page 12, 2017.

37. Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1–9, 2015.

38. Wei Tang, Gang Hua, and Liang Wang. How to train a compact binary neural network
with high accuracy? In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

39. Baoyuan Wu, Bao-Gang Hu, and Qiang Ji. A coupled hidden markov random field
model for simultaneous face clustering and tracking in videos. Pattern Recognition,
64:361–373, 2017.

40. Baoyuan Wu, Siwei Lyu, Bao-Gang Hu, and Qiang Ji. Simultaneous clustering and
tracklet linking for multi-face tracking in videos. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 2856–2863, 2013.

41. Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated
residual transformations for deep neural networks. In Computer Vision and Pattern
Recognition (CVPR), 2017 IEEE Conference on, pages 5987–5995. IEEE, 2017.

42. Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-nets: Learned
quantization for highly accurate and compact deep neural networks. In Proceedings of
the European Conference on Computer Vision (ECCV), pages 365–382, 2018.

43. Hanwang Zhang, Zawlin Kyaw, Shih-Fu Chang, and Tat-Seng Chua. Visual translation
embedding network for visual relation detection. In CVPR, volume 1, page 5, 2017.

44. Hanwang Zhang, Zawlin Kyaw, Jinyang Yu, and Shih-Fu Chang. Ppr-fcn: Weakly
supervised visual relation detection via parallel pairwise r-fcn. arXiv preprint
arXiv:1708.01956, 2017.

45. Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely
efficient convolutional neural network for mobile devices. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 6848–6856, 2018.

28 Zechun Liu et al.

46. Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network
quantization: Towards lossless cnns with low-precision weights. In Proceedings of the
International Conference on Learning Representations, 2017.

47. Aojun Zhou, Anbang Yao, Kuan Wang, and Yurong Chen. Explicit loss-error-aware
quantization for low-bit deep neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 9426–9435, 2018.

48. Erjin Zhou, Haoqiang Fan, Zhimin Cao, Yuning Jiang, and Qi Yin. Extensive facial
landmark localization with coarse-to-fine convolutional network cascade. In Proceedings
of the IEEE International Conference on Computer Vision Workshops, pages 386–391,
2013.

49. Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-
net: Training low bitwidth convolutional neural networks with low bitwidth gradients.
arXiv preprint arXiv:1606.06160, 2016.

50. Xiangyu Zhu, Zhen Lei, Xiaoming Liu, Hailin Shi, and Stan Z Li. Face alignment across
large poses: A 3d solution. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 146–155, 2016.

51. Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu, and Ian Reid. Towards
effective low-bitwidth convolutional neural networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 7920–7928, 2018.

	1 Introduction
	2 Related Work
	3 Methodology
	4 Experiments
	5 Conclusions
	6 Acknowledgements

