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Abstract In this paper we survey and put in a com-

mon framework several works that have been developed

in different contexts, all dealing with the same abstract

problem, called synchronization by some authors, or

averaging, or graph optimization by others. The prob-

lem consists in recovering some variables from a set of

pairwise relation measurements. In particular, we con-

centrate on instances where the variables and the mea-

sures belong to a (semi-)group and the measures are

their mutual differences (or ratios, depending on how

the group operation is called). The groups we deal with

have a matrix representation, which leads to an elegant

theory and closed-form solutions.

Keywords synchronization · averaging · graph

optimization ·multiple point-set registration · structure

from motion · multi-view matching

1 Introduction

Consider a network of nodes where each node is char-

acterized by an unknown state, and suppose that pairs

of nodes can measure the ratio (or difference) between

their states. The goal is to infer the unknown states

from the pairwise measures. This is a general state-

ment of the synchronization problem [63,49,99]. States

are represented by elements of a group Σ, that is why
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the problem is actually referred to as group synchro-

nization. The groups of interest are defined in Table 1,

while Figure 2 represents their inclusion.

The problem can be usefully modelled by introduc-

ing a graph G = (V, E), which is referred to as the

measurement graph, where nodes correspond to the un-

known states and edges correspond to the pairwise mea-

sures, and it is well-posed only if such a graph is con-

nected. Synchronization can be seen as upgrading from

relative (pairwise) information, which involves two nodes

at a time, onto absolute (global) information, which in-

volves all the nodes simultaneously. In the literature,

the same problem is also referred to as averaging [53,

117,58] or graph optimization [34] in some cases.

?

?

?

?

?

?

4

2

-1

7

-2

-1

6

-1

7

Fig. 1: Synchronization over (Z,+).

As an example, consider the graph in Figure 1, where

nodes and edges are labelled with integer numbers: the

task is to recover the unknown numbers in the nodes by

measuring their differences (on the edges). Two things

can be immediately observed: a solution exists only if
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Table 1: Matrix groups/semigroups considered in this paper.

GL(d)
The General Linear Group is the set of invert-
ible matrices:
GL(d) = {M∈Rd×d s.t. det(M)6=0}

SL(d)
The Special Linear Group is the set of matri-
ces with unit determinat:
SL(d) = {M ∈ Rd×d s.t. det(M) = 1}

O(d)
The Orthogonal Group is the set of rotations
and reflections:
O(d) = {M ∈ Rd×ds.t. MTM = MMT = Id}

SO(d)
The Special Orthogonal Group is the set of
rotations:
SO(d) = {M ∈ O(d) s.t. det(M) = 1}

GA(d)

The General Affine Group is the set of affine
maps:

GA(d) =

{[
M t
0T 1

]
, s.t. M ∈ GL(d), t ∈ Rd

}

SE(d)

The Special Euclidean Group is the set of di-
rect isometries:

SE(d) =

{[
M t
0T 1

]
, s.t. M ∈ SO(d), t ∈ Rd

}

Sd
The Symmetric Group is the set of total per-
mutations:
Sd = {M ∈ {0, 1}d×d s.t. M1 = 1, 1M = 1}

Id
The Symmetric Inverse Semigroup is the set
of partial permutations:
Id = {M ∈ {0, 1}d×d s.t. M1 ≤ 1, 1M ≤ 1}

the sum of the differences along any cycle is zero, and,

when it exists, the solution is not unique, for adding a

constant to the nodes does not change the differences.

Measures are typically corrupted by errors, which

can be gross errors (outliers) and/or a diffuse noise with

small variance. If G is a tree then these errors will creep

in the solution, however, as soon as redundant mea-

sures are considered (i.e. the graph has at least one

cycle), they are exploited by synchronization to glob-

ally compensate the errors. The solution minimizes a

suitable cost function which evaluates the coherence be-

tween the unknown states and the pairwise measures.

By construction synchronization enforces cycle consis-

tency [44,121], namely the property that the composi-

tion of relative measures along any cycle in the mea-

surement graph should return the identity.

Several instances of synchronization have been stud-

ied in the literature. Σ = R yields clock synchronization

(with offset) [63,49], from which the term synchroniza-

tion originates, where all the nodes in a network are

synchronized to a common clock. The same problem

is studied under the name levelling in topography and

surveying [22]. If the clock model includes also a drift

(besides the offset), the problem can be addressed in

Σ = GA(1) [102]. Synchronization over GA(3) has also

GL(d)

SL(d) O(d)

SE(d-1)

SO(d)

Sd

IGA(d-1)

Fig. 2: Subgroups of GL(d). The identity is in the intersection
of all of them.

been applied to RGB colour matching in image mo-

saicking [92]. Σ = Z2 gives sign synchronization [40],

which was used to identify communities in a network

where the interaction between the nodes is described

by two dichotomous values, e.g., agreement/disagree-

ment, and the network has a natural partition into

two communities. Σ = Rd is a translation synchroniza-

tion [13,91,108,80,2], namely the problem of localiz-

ing a set of nodes in space from pairwise differences.

Σ = SO(d) corresponds to rotation synchronization

(also known as rotation averaging) [97,75,99,104,39,

47,24,58,36,116,7,111] and Σ = SE(d) results in rigid-

motion synchronization (also known as motion averag-

ing or pose graph optimization) [48,53,107,109,18,11,

10,90,89], which find application in structure from mo-

tion, registration of 3D point sets and simultaneous lo-

calization and mapping (SLAM). Σ = SL(d) produces

homography synchronization [95], which is an essential

step in the context of image stitching or mosaicking.

Finally, Σ = Sd and Σ = Id give rise to permuta-

tion synchronization [85,98,120] and partial permuta-

tion synchronization [8], respectively, which are related

to multi-view matching, as it will be clarified in Section

8.2.

While it is clear that synchronization over Rd can

be reduced to a linear system of equations, the other

instances of synchronization involve the minimization

of a non convex cost function, which make the problem

difficult to solve.

However, if Σ admits a matrix representation, i.e.

it can be embedded in Rd×d, then synchronization re-

duces to an eigenvalue decomposition, resulting in an

efficient and closed-form solution. Specifically, the un-

known states are derived from the top eigenvectors of

a matrix constructed from the pairwise measures. An

equivalent null-space formulation can also be derived.
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This procedure was introduced in [99] for Σ = SO(2),

extended in [3,100] to Σ = SO(3), and further gener-

alized in [11,18] to Σ = SE(3). The same formulation

appeared in [95] and [85] for Σ = SL(d) and Σ = Sd
respectively. The latter was extended to Σ = Id in [8].

Other techniques exploiting a matrix representation

of the group can be found in the literature, which ex-

press the synchronization problem in terms of well stud-

ied mathematical tools, such as semidefinite program-

ming [99,116,90] or matrix completion [9], resulting in

iterative solutions. These approaches, however, are not

applicable to all groups. For example, the semidefinite

programming formulation derives from specific proper-

ties of O(d) and SE(d), namely the fact that the ma-

trix constructed from the pairwise measures is positive

semidefinite when considering the Orthogonal Group

[99,116], and the property that the convex hull of the

Special Euclidean Group admits a semidefinite repre-

sentation [90]. The matrix completion formulation [9],

instead, is based on the property that the matrix con-

taining the pairwise measures is low-rank and it is in-

coherent (see [29]). Unfortunately in the Σ = Sd case

the matrix is sparse, being composed of permutation

matrices, and hence it does not satisfy the incoherence

assumption.

Other approaches include iterating local solutions

on the measurement graph or explicit minimization of

a cost function. The former comprises [97], where the

error is distributed over a set of cycles, and [107,1],

where each state is updated in turn in a distributed

fashion. The latter includes Quasi-Newton iterations

[48], the Levenberg-Marquardt algorithm [39], Rieman-

nian trust-region optimization [24], Riemannian gradi-

ent descent [109], integer quadratic programming [33],

and the Gauss-Seidel method [120]. These techniques,

however, heavily depend on the chosen group and its

parametrization. For instance, unit quaternions are used

in [35] and dual quaternions in [107], which represent

rotations and rigid-motions in 3-space, respectively. See

also the references in [33].

1.1 Scope and outline

In this paper we provide a comprehensive survey on

closed-form solutions to group synchronization, namely

linear least squares [13,91] and spectral decomposition

[99,95,100,3,85,18,11,8]. The former solves synchro-

nization over Rd in an optimal way. The latter, although

suboptimal, is theoretically appealing since it can be

applied to any group admitting a matrix representa-

tion (e.g. homographies, rigid motions, permutations,

. . . ), as opposed to other techniques which are based on

ad-hoc minimizations of specific cost functions. These

solutions are extremely fast and they easily cope with

weights on individual relative measures, allowing a ro-

bust extension via Iteratively Reweighted Least Squares

(IRLS) [60].

We also set forth a theoretical unified framework

where several synchronization problems are seen as in-

stances of a more abstract principle, gathering several

works that were developed in different communities (in-

cluding Computer Vision, Photogrammetry, Robotics

and Graph Theory), and we show how this framework

can be profitably used in several applications.

The paper is organized as follows. Section 2 formally

defines the synchronization problem, which is grounded

on the notion of group-labelled graph. Section 3 is de-

voted to synchronization over (Rd,+), which is expressed

as a linear system of equations. Section 4 addresses syn-

chronization over (GL(d), ·), which can be cast to a

spectral decomposition or a null-space problem. Then,

several subgroups of GL(d) are analysed in Section 5,

namely SL(d), O(d), SE(d − 1), GA(d − 1) and Sd,
in which cases the solution needs to be projected onto

the group, as closure is not guaranteed. Section 6 shows

that the spectral solution can be extended to synchro-

nization over Id, which is an inverse monoid and a sub-

semigroup of Sd. Some considerations about the opti-

mization problem associated with the spectral solution

are reported in Section 7. Finally, Section 8 describes

how some Computer Vision problems can be addressed

in terms of synchronization and Section 9 briefly dis-

cusses pros and cons of spectral synchronization. The

results presented in this paper require some basic no-

tions from graph theory, which are covered in Appendix

B, and the definitions of the Kronecker, Hadamard and

Khatri-Rao products, which are given in Appendix A.

2 Theoretical framework

Let us start by introducing the notion of group-labelled

graph [43]. Let (Σ, ∗) be a group with unit element

1Σ , and let G = (V, E) be a simple directed graph

with vertex set V = {1, 2, . . . , n} and edge set E , with

m = |E|. A Σ-labelled graph is a directed graph with

a labelling of its edge set by elements of Σ, that is a

tuple Γ = (V, E , z) where

z : E → Σ (1)

is such that if (i, j) ∈ E then (j, i) ∈ E and

z(j, i) = z(i, j)−1. (2)

Thus, we may also view G as an undirected graph.
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Definition 1 Let Γ = (V, E , z) be a Σ-labelled graph.

We say that a circuit {(i1, i2), (i2, i3), . . . , (i`, i1)} is a

null cycle1 if and only if the composition of the edge

labels along the circuit returns the identity, namely

z(i1, i2) ∗ z(i2, i3) ∗ . . . ∗ z(i`, i1) = 1Σ . (3)

The “null” term clearly refers to an additive nota-

tion for the group (which is used in [65,38,57]), without

implying that Σ needs to be Abelian. Note that if the

group is not commutative, then it may happen that

cyclic shifts of the same circuit yield different elements

of the group. Nevertheless the notion of null cycle is well

defined, as either all of the cyclic shifts are equal to 1Σ
or none of them, as observed also in [57]. As noted in

[14], the concept of null cycle resembles Kirchoff’s volt-

age law, stating that the electrical potential differences

around any cycle sum to zero.

Definition 2 Let Γ = (V, E , z) be a Σ-labelled graph.

Let x : V → Σ be a vertex labelling. We say that x is a

consistent labelling if and only if

z(e) = x(i) ∗ x(j)−1 ∀ e = (i, j) ∈ E . (4)

A Σ-labelled graph admitting a consistent labelling

is also called balanced [62]. Equation (4) means that

each edge label is the ratio of the corresponding vertex

labels, as shown in Figure 3. Such condition is referred

to as consistency constraint and it is equivalent to

z(e) ∗ x(j) = x(i) ∀ e = (i, j) ∈ E . (5)

It is understood that a consistent labelling is defined

up to a global (right) product with any group element,

in the sense that if x : V → Σ is consistent then also

y : V → Σ, y(i) = x(i) ∗ s, is consistent, for any (fixed)

s ∈ Σ.

The notion of consistent labelling is strictly related

to that of null cycle, as stated by the following result.

Proposition 1 ([57]) Let Γ = (V, E , z) be a Σ-labelled

graph. There exists a polynomial algorithm which either

finds a non-null cycle in Γ or finds a consistent labelling

of Γ .

The following procedure draws an outline of the

proof. First, compute a spanning tree (see Appendix

B) and use Equation (5) to label nodes, starting from

the root labelled with the identity 1Σ : this is a con-

sistent labelling by construction. Then add one by one

the edges not belonging to the spanning tree, thereby

creating a circuit. If the cycle is null then the edge can

be added and leave the labelling consistent, otherwise

a non-null cycle has been found.

1 A circuit is also a cycle; definitions are given in Appendix
B.
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Fig. 3: Consistent labelling.

Corollary 1 ([57]) The Σ-labelled graph Γ = (V, E , z)
has a consistent labelling if and only if it does not con-

tain a non-null cycle.

One direction is an immediate consequence of Propo-

sition 1. The opposite direction follows from the obser-

vation that, if Equation (4) holds, then all the terms

in the left side in Equation (3) simplify, yielding the

identity.

2.1 Group Feedback Edge Set

The problem of finding non-null cycles in a group-labelled

graph is studied in Graph Theory community under the

name of “group feedback edge set” problem [57]. Specif-

ically, the goal is to break non-null cycles by deleting k

edges, where k ∈ N is assumed to be known.

Definition 3 Let Γ = (V, E , z) be a Σ-labelled graph.

The Group Feedback Edge Set (GFES) problem is de-

fined as follows: on input (Γ, k) for some k ∈ N, decide

whether there exists a subset of the edges S ⊆ E with

|S| ≤ k such that the labelled graph of the remaining

edges Γ ′ = (V, E \ S, z) does not contain a non-null

cycle.

With some abuse of notation, in Definition 3 we

denote with (V, E\S, z) the Σ-labelled graph with edges

in S removed from E , even though formally z has in its

domain edges that do not exist in E \ S.

The set S satisfying Definition 3 (if it exists) is

called the feedback edge set of Γ . The interpretation

is that S identifies edges with outlying labels that pro-

hibit a consistent labelling to be found. Note that in

the presence of noise we have to relax Equation (3) and

consider the following

δ
(
z(i1, i2) ∗ z(i2, i3) ∗ . . . ∗ z(i`, i1), 1Σ

)
/
√
` ≤ τ (6)
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where τ ≥ 0 is a given threshold and it is assumed

that Σ admits a metric function δ : Σ × Σ → R+.

The normalization factor
√
` takes into account error

propagation when considering long cycles [44].

Outlying labels can be detected through the meth-

ods in [115,42], which come from Graph theory commu-

nity. Alternatively, Computer Vision solutions can be

used, which include outlier rejection heuristics [44,12],

Random Sample Consensus (RANSAC) [54,82], and

Bayesian inference [121,81,26]. However, these strate-

gies are computationally demanding and do not scale

well with the size of the graph.

2.2 Group synchronization

Let us assume thatΣ is equipped with a metric function

δ : Σ×Σ → R+ and let ρ : R+ → R+ be a non-negative

non-decreasing function with a unique minimum at 0

and ρ(0) = 0. Some instances are the quadratic loss

function ρ(y) = y2 or robust loss functions used in M-

estimators [60].

Definition 4 Let Γ = (V, E , z) be a Σ-labelled graph.

Let x̃ : V → Σ be a vertex labelling. We define the

consistency error of x̃ as the quantity

ε(x̃) =
∑

(i,j)∈E

ρ
(
δ
(
z̃(i, j), z(i, j)

))
(7)

where z̃ is the edge labelling induced by x̃, namely

z̃(i, j) = x̃(i) ∗ x̃(j)−1.

A vertex labelling is consistent if and only if it has

zero consistency error. In practical applications a la-

belling with zero error hardly exists, since the edge la-

bels are corrupted by noise, thus the goal is to address

the following problem.

Definition 5 Given a Σ-labelled graph Γ = (V, E , z),
the group synchronization problem consists in finding a

vertex labelling with minimum consistency error.

In other words, one wants to recover the unknown

group elements (vertex labels) given a redundant set

of noisy measurements of their ratios (edge labels), as

shown in Figure 4.

A related approach (e.g. [97]) consists in minimizing

the cost function (7) with respect to the edge labelling z̃

while imposing the constraint that all the cycles are null

(a.k.a. cycle consistency). For the Σ = Rd case this is

equivalent to synchronization (Proposition 2), whereas

analogous results are not known in general.

The synchronization problem requires the graph to

be connected, but error compensation happens only
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Fig. 4: The synchronization problem.

within cycles. The minimum number of relative mea-

sures is n− 1, which makes G a tree. In this case every

vertex can be labeled by simply propagating Equation

(5) along the tree, starting from the root labeled with

the identity element. In this case, however, there is no

remedy to error propagation: the error affecting an edge

label propagates down to the leaves of the tree without

compensation, as shown (e.g.) by experiments in [53].

In the synchronization problem, instead, the goal is to

exploit redundant relative measures in a global fashion

to improve the final estimate.

If the measures are also corrupted by outliers, one

needs to solve a GFES problem beforehand, using a

relaxed notion of null cycle, i.e., Equation (6). Alterna-

tively, a robust loss function can be used in (7) without

detecting outliers explicitly (as done in Section 9.5).

2.3 Synchronization over an inverse monoid

As observed in [8], the notion of synchronization can

be extended to the case where Σ is an inverse monoid.

One example is Σ = Id, which is a subsemigroup of Sd,
resulting in partial permutation synchronization [8].

Definition 6 An inverse semigroup (Σ, ∗) is a semi-

group in which for all s ∈ Σ there exists an element

t ∈ Σ such that s = s ∗ t ∗ s and t = t ∗ s ∗ t. In this

case, we write t = s−1 and call t the inverse of s. If Σ

has an identity element 1Σ (i.e. it is a monoid), then it

is called an inverse monoid.

Remark 1 Inverses in an inverse semigroup have many

of the same properties as inverses in a group, for in-

stance, (a ∗ b)−1 = b−1 ∗ a−1 for all a, b ∈ Σ.

If Σ is an inverse monoid, then Equations (4) and

(7) still make sense, with the provision that x(j)−1
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now denotes the inverse of x(j) in the semigroup. Note

that x(j)−1 ∗ x(j) and x(j) ∗ x(j)−1 are not necessarily

equal to the identity, thus Equation (4) is not equiva-

lent to (5). The solution to the synchronization prob-

lem over an inverse monoid is defined up to a global

(right) product with any element y ∈ Σ such that

y ∗ y−1 = 1Σ = y−1 ∗ y.

As concerns the notion of null-cycle, Equation (3)

still makes sense in the case of an inverse monoid, since

it only involves products between elements of the set

and the existence of a unit element 1Σ . However, Propo-

sition 1 (and hence one direction of Corollary 1) does

not straightforwardly extend to this case since the proof

exploits Equation (5), which is no longer equivalent to

the consistency constraint. Regarding the other direc-

tion of Corollary 1, note that, if the consistency con-

straint holds, then the left side in Equation (3) rewrites

z(i1, i2) ∗ z(i2, i3) ∗ . . . ∗ z(i`, i1) = (8)

= x(i1) ∗ x(i2)−1 ∗ x(i2)︸ ︷︷ ︸
6=1Σ

∗x(i3)−1 ∗ . . . ∗ x(i`) ∗ x(i1)−1

which, in general, does not coincide with the identity.

Developing a complete theory for synchronization over

an inverse monoid is outside the scope of this paper.

3 Synchronization over Rd

In this section we consider the synchronization of real

vectors with addition, namely (Σ, ∗) = (Rd,+), which

is also known as translation synchronization, and we

derive a direct solution following [13,91].

A vertex labelling x : V → Rd is consistent with a

given edge labelling z : E → Rd if and only if2

xi − xj = zij ∀ (i, j) ∈ E . (9)

Note that we can view each component in Equation (9)

as a synchronization over (R,+).

If we denote the incidence vector of the edge (i, j)

with

bij = [ 0, . . . , 1
↑
i

, . . . ,−1
↑
j

, . . . , 0 ]T (10)

then Equation (9) can be written as

[ x1, . . . ,xn ] bij = zij ∀ (i, j) ∈ E (11)

or, equivalently, in matrix form

XB = Z (12)

2 For simplicity of notation, hereafter we will use subscripts
instead of parenthesis to denote indices of a node/edge la-
belling.

where B is the n ×m incidence matrix of the directed

graph G, which has the vectors bij as columns, X is the

d× n matrix obtained by juxtaposing all the vertex la-

bels, namely X = [x1 . . .xn], and Z is the d×m matrix

obtained by juxtaposing all the edge labels (ordered as

in B), namely Z = [z12 . . . zij . . . ]. See Appendix

B.1 for the definition of incidence matrix and related

properties.

Applying the vectorization operator vec(·) to both

sides in (12) and using formula (87) we get

(BT ⊗ Id) vec(X) = vec(Z) (13)

where Id denotes the d × d identity matrix and ⊗ de-

notes the Kronecker product, defined in Appendix A,

which has the effect of “inflating” the incidence matrix

in order to cope with the vector representation of the

group elements.

Under the assumption that the graph is connected

we have rank(B) = n−1 and hence, using (89), we have

rank(BT⊗Id) = dn−d. The rank deficiency corresponds

to the translation ambiguity. Since the solution to the

synchronization problem is defined up to a global group

element, we are allowed w.l.o.g. to arbitrarily set xk =

0 = 1Σ for a chosen k ∈ V. Removing xk from the

unknowns and the corresponding row in B leaves a full-

rank matrix.

With a suitable choice of δ(·, ·) and ρ in Equation

(7), the consistency error of the synchronization prob-

lem writes

ε(X) = ‖(BT ⊗ Id) vec(X)− vec(Z)‖2 (14)

where ‖·‖ denotes the Euclidean norm. Thus the least-

squares solution of Equation (13) solves the synchro-

nization problem. This method is adopted in [13,91] to

localize a group of agents in a sensor network and in [6]

to recover camera positions in a structure-from-motion

pipeline.

Remark 2 If c ∈ {−1, 0, 1}m denotes the indicator vec-

tor of a circuit in G, the cycle is null if and only if

Zc = 0. (15)

If the equations coming from all the circuits in a cycle

basis are stacked, then the cycle consistency writes:

ZCT = 0 (16)

where C ∈ {−1, 0, 1}(m−n+1)×m denotes the cycle ma-

trix associated to the basis. See Appendix B or [31] for

the definitions of cycle basis and cycle matrix. Using

the vectorization operator and formula (87), cycle con-

sistency can also be expressed as

(C ⊗ Id) vec (Z) = 0. (17)
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It can be shown that the edge labels produced by

the synchronization process are the closest to the input

edge labels among those that yield null-cycles.

Proposition 2 ([91]) If X̃ is the least-squares solu-

tion to Equation (13), then the induced edge labelling

Z̃ = X̃B solves the following constrained minimization

problem

min
Z̃
‖Z − Z̃‖2 s.t. Z̃CT = 0 (18)

where C denotes the cycle matrix associated to a cycle

basis of G.

This result was also known in topography, in the

context of the least-squares adjustment of leveling net-

works [22].

4 Synchronization over GL(d)

In this section we consider the synchronization problem

over the General Linear Group GL(d), which is the set

of all d × d invertible matrices, where the group oper-

ation ∗ reduces to matrix multiplication and 1Σ = Id.

A vertex labelling X : V → Rd×d is consistent with

a given edge labelling Z : E → Rd×d if and only if

Zij = Xi ·X−1j .

All the vertex/edge labels can be collected in two

matrices X ∈ Rdn×d and Z ∈ Rdn×dn respectively,

which are “matrices of matrices” defined as follows

X =


X1

X2

. . .

Xn

 , Z =


Id Z12 . . . Z1n

Zn1 Id . . . Z2n

. . . . . .

Zn1 Zn2 . . . Id

 . (19)

For a complete graph, the consistency constraint can

be expressed in matrix form as

Z = XX−[ (20)

where XX−[ contains the edge labels induced by X

and X−[ ∈ Rd×dn denotes the block-matrix contain-

ing the inverse of each d × d block of X, i.e. X−[ =

[X−11 X−12 . . . X−1n ]. Note that Equation (20) implies

that rank(Z) = d.

Remark 3 By computation it can be verified that

X−[X = nId (21)

and hence Z/n is idempotent.

If the graph is not complete then Z is not fully spec-

ified. In this case missing edges are represented as zero

entries, i.e. ZA := Z ◦ (A ⊗ 1d×d) represents the ma-

trix of the available measures, where ◦ is the Hadamard

product and A is the adjacency matrix of the graph G,

which gets “inflated” by the Kronecker product with

1d×d to match the block structure of the measures. Be-

ing a matrix of 0/1, the effect of its entry-wise product

with Z is to zero the unspecified entries and leave the

others unchanged. See Appendices B and A for the def-

initions of Hadamard product and adjacency matrix,

respectively. Hence the consistency constraint writes

ZA = (XX−[) ◦ (A⊗ 1d×d). (22)

With a suitable choice of δ(·, ·) and ρ in Equation

(7) the consistency error of the synchronization problem

writes

ε(X) = ‖ZA − (XX−[) ◦ (A⊗ 1d×d)‖2F (23)

where ‖·‖F denotes the Frobenius norm. The Hadamard

product with A⊗1d×d mirrors the summation over the

edges in E in the definition of the consistency error. The

minimization of ε is a non-linear least squares problem,

for which closed-form solutions do not seem to exist.

However, two direct solutions to a related version of

the problem exist [99,100,3], which can be derived by

considering the exact (noiseless) case.

4.1 Spectral solution

Let us consider the noiseless case, i.e. ε = 0, and let us

start assuming that the graph is complete. Using the
consistency constraint and (21) we obtain

ZX = nX (24)

which means that – in the absence of noise – the columns

of X are d (independent) eigenvectors of Z correspond-

ing to the eigenvalue n. Note that, since Z has rank

d, all the other eigenvalues are zero, thus n is also the

largest eigenvalue of Z.

We now consider the case of missing edges in which

the graph is not complete and the adjacency matrix

comes into play.

Proposition 3 ([99,100,3]) The columns of X are d

(independent) eigenvectors of (D⊗ Id)−1ZA associated

to the eigenvalue 1.

Proof In the case of missing data, it can be seen that

Equation (24) generalizes to

ZAX = (D ⊗ Id)X (25)
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where D is the degree matrix of the graph (see Ap-

pendix B.1). Indeed, the i-th block-row in the above

equation is∑
j s.t. (i,j)∈E

ZijXj = [D]iiXi (26)

which is satisfied since Zij = XiX
−1
j . ut

Note that the incomplete data matrix ZA has full

rank in general, thus 1 is not the unique nonzero eigen-

value of (D⊗ Id)−1ZA, in contrast to the case of Equa-

tion (24). However, it can be shown that 1 is the largest

eigenvalue of such a matrix.

Proposition 4 ([11]) The matrix (D ⊗ Id)−1ZA has

real eigenvalues. The largest eigenvalue is 1 with mul-

tiplicity d.

Proof By computation it can be verified that

ZA = blkdiag(X)(A⊗ Id) blkdiag(X)−1 (27)

where blkdiag(X) produces a dn × dn block-diagonal

matrix with d × d blocks X1, . . . , Xn along the diag-

onal. Note that the diagonal matrix (D ⊗ Id)−1 com-

mutes with blkdiag(X), since each d×d block along its

diagonal is a multiple of the identity matrix. Thus

(D ⊗ Id)−1ZA =

= blkdiag(X)(D ⊗ Id)−1(A⊗ Id) blkdiag(X)−1 =

= blkdiag(X)((D−1A)⊗ Id) blkdiag(X)−1 (28)

where the last equality follows from properties (85)

and (86). Hence (D ⊗ Id)
−1ZA is similar to the ma-

trix (D−1A)⊗ Id, i.e., they have the same eigenvalues.

The matrix D−1A is the transition matrix of the graph

G (see Appendix B.1), which – as a consequence of the

Perron-Frobenius theorem – has real eigenvalues and

1 is the largest eigenvalue (with multiplicity 1), if the

graph is connected. Since the eigenvalues of the Kro-

necker product of two matrices are the product of the

eigenvalues of the matrices, we conclude that the largest

eigenvalue of (D−1A)⊗ Id is 1 with multiplicity d. ut

The proof of Proposition 4 has pointed out that –

provided that Z is decomposable as Z = XX−[ – the

matrix (D ⊗ Id)
−1ZA has a particular structure that

yields real eigenvalues, although it is not symmetric. In

particular, the eigenvalues do not depend on the mea-

sured data, but they depend only on the structure of

the graph G (through the matrices D and A).

When noise is present, i.e. ε 6= 0, the eigenvectors

of (D ⊗ Id)−1ZA corresponding to the d largest eigen-

values are an estimate of the vertex labelling X. The

presence of noise, however, cripples the structure of ZA,

i.e. ZA 6= (XX−[)◦(A⊗1d×d), thus the eigenvalues and

the eigenvectors may be complex. As a consequence, af-

ter computing the leading eigenvectors, the imaginary

part is zeroed. This approach is adopted in [6] in the

d = 1 case to synchronize distances between camera

pairs in a structure-from-motion pipeline. To the best

of our knowledge, no general results are known linking

this spectral solution to the synchronization cost func-

tion. Results in the special case where Σ = O(d) are

reported in Section 7.1.

Ambiguity. Since the eigenvalue 1 is repeated, the cor-

responding eigenvectors span a linear subspace, and

hence any basis for such a space is a solution. However,

a change of the basis in the eigenspace corresponds to

right-multiply the eigenvectors by an invertible d × d
matrix, i.e., the solution to synchronization is defined

up the action of an element of GL(d), as expected.

Projection. Let U be the matrix containing the d lead-

ing eigenvectors of (D⊗ Id)−1ZA, where the imaginary

part (if any) is zeroed. The blocks of U are in general

non-singular, hence they belong to GL(d). This means

that the solution is intrinsic, and no projection is re-

quired.

Remark 4 The top eigenvector can be computed by the

power iteration method, which, considering (e.g.) the

case of a complete graph, starts with a random vector

x0 ∈ Rdn and iterates the relation xk+1 = Zxk/‖Zxk‖,
thus it requires to compute Zk, for k = 1, 2, . . . , kmax.

It is observed in [99] that multiplying the matrix Z

by itself integrates the consistency relation of triplets,

while high order iterations exploit consistency relations
of longer cycles. Indeed

Z2
ij =

n∑
k=1

ZikZkj (29)

Z3
ij =

n∑
k=1

n∑
h=1

ZikZkhZhj . . . (30)

Thus the top eigenvector integrates the consistency re-

lation of all cycles.

4.2 Null-space solution

We now show that synchronization over (GL(d), ·) can

also be expressed as a null-space problem. If ε = 0

Equation (24) is equivalent to

(nIdn − Z)X = 0 (31)

which means that, if the graph is complete, the vertex

labelling X coincides with the d-dimensional null-space



Synchronization Problems in Computer Vision with Closed-form Solutions 9

of nIdn−Z. In the case of missing edges, let us rewrite

(25) as

(D ⊗ Id − ZA)X = 0 (32)

thus X belongs to the null-space of D ⊗ Id − ZA.

Let us observe that the matrix D⊗Id coincides with

(D ⊗ 1d×d) ◦ Z, since Z has identity blocks along its

diagonal and D⊗1d×d is block-diagonal. Using the dis-

tributive property of the involved products, we obtain

an equivalent expression for D ⊗ Id − ZA
D⊗Id−ZA = ((D−A)⊗1d×d)◦Z = (L⊗1d×d)◦Z (33)

where L = D−A is the Laplacian matrix of G (see Ap-

pendix B.1), which gets inflated to a d× d-block struc-

ture by the Kronecker product with 1d×d, to match the

block structure of Z.

Note that in practice one cannot measure the ma-

trix (L⊗ 1d×d) ◦Z, since the full Z is not available. In

fact, only the product Z◦(A⊗1d×d) is available. There-

fore, the left side in (33) will be used in real scenarios.

However, the right side emphasizes the presence of the

Laplacian matrix, which is useful to prove that the null-

space of D ⊗ Id − ZA is d-dimensional, as happens in

the case of a complete graph.

Proposition 5 ([11]) The matrix D ⊗ Id − ZA has a

d-dimensional null-space.

Proof By computation it can be verified that

D ⊗ Id − ZA = (L⊗ 1d×d) ◦ Z =

= blkdiag(X)(L⊗ Id) blkdiag(X)−1 (34)

which means that D ⊗ Id − ZA and L⊗ Id are similar,

thus they have the same rank. The rank of the Lapla-

cian matrix is n − 1, under the assumption that the

graph is connected (see Appendix B.1). Since the rank

of the Kronecker product of two matrices is the product

of the rank of the matrices, we obtain

rank(D ⊗ Id − ZA) = rank(L) rank(Id) = dn− d (35)

thus we have the thesis. ut

When noise is present, an estimate of X is given by

the right singular vectors of D⊗ Id−ZA corresponding

to the d least singular values, which solve the following

problem

min
XTX=nId

‖(D ⊗ Id − ZA)X‖2F . (36)

A formal relationship between this cost function and

the consistency error of the synchronization problem

has still to be found.

The considerations about ambiguity/projection made

for the spectral method apply also to the null-space so-

lution, modulo the fact that singular vectors are real

even in the absence of noise, so no rounding is needed.

4.3 Additive solution

We observe that synchronization over the General Lin-

ear Group can be cast to a translation synchronization,

exploiting the fact that GL(d) has the structure of a Lie

group [114], where the associated Lie algebra consists

of all d×d real matrices with the commutator operator

serving as the Lie bracket, namely [Y,W ] = YW−WY .

Informally, a Lie group can be locally viewed as topolog-

ically equivalent to a vector space, and the local neigh-

bourhood of any group element can be adequately de-

scribed by its tangent space, whose elements form a Lie

algebra. The Lie algebra and the Lie group are related

by the exponential mapping, and the inverse mapping

from the Lie group to the Lie algebra is given by matrix

logarithm.

By taking the logarithm, the consistency constraint

of the synchronization problem overGL(d), that is Zij =

XiX
−1
j , can be transformed into the consistency con-

straint of an additive group, namely

log(Zij) = log(Xi)− log(Xj) (37)

assuming that the each of the above matrices admits a

unique real logarithm. Specifically, by vectorizing each

side in (37), a relation of the form (9) is obtained, which

defines a translation synchronization problem. Thus the

solution can be found by solving a linear system in the

least-squares sense, as done in Section 3, or via IRLS

(to gain robustness to outliers), as explained in Section

9.5. In other words, the synchronization problem is

addressed in the Lie algebra rather than in the group.

However, as observed in [53], the Euclidean distance

in the Lie algebra does not coincide with the Rieman-

nian distance in the group, but it constitutes a first-

order approximation, as stated by the Baker-Campbell-

Hausdorff formula [114]. For this reason, in [53,54,36]

the solution is found by iterating between solving the

linear system in the Lie algebra and remapping onto

the group.

As a final note, it is straightforward to see that the

approach of Section 4 also applies to synchronization

over (R \ {0}, ·), for it coincides with (GL(1), ·).

5 Synchronization over subgroups of GL(d)

The analysis carried out in Section 4 can be extended

to the case where Σ is a subgroup of GL(d), i.e., it

can be embedded in Rd×d, where the group operation

∗ reduces to matrix multiplication and 1Σ = Id. In this

case Propositions 4 and 5 still hold, and the synchro-

nization problem can be addressed either via the spec-

tral solution, which computes the top d eigenvectors of
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(D⊗Id)−1ZA (which may be complex in the presence of

noise), or via the null-space solution, which computes

the least d right singular vectors of D ⊗ Id − ZA. Al-

ternatively, the (approximate) null-space of Idn− (D⊗
Id)
−1ZA can be computed, as done in [95].

Let U be the dn × d matrix containing either the

output of the spectral method or the null-space solu-

tion. Recall that U is not uniquely determined (even in

the absence of noise) but it is defined up to (right) mul-

tiplication by an element of GL(d), since any basis for

the null-space of D⊗ Id−ZA (or, equivalently, any ba-

sis for the eigenspace of (D ⊗ Id)−1ZA associated with

eigenvalue 1) is a solution. Thus a procedure that re-

duces the ambiguity up to an element of Σ is required,

since the solution to the synchronization problem is in-

herently defined up to an element of the group.

Note that closure is not always guaranteed. In other

words, the spectral and the null space methods produce

an extrinsic estimate of the vertex labelling X which

needs to be eventually projected onto Σ. This approach

is clearly suboptimal with respect to working in the

group, and represents the price to be paid for simplicity

and computational efficiency.

In the following sections we will analyze synchro-

nization is some subgroups of GL(d) (see Table 1 and

Figure 2). They basically differ from each other by the

ambiguity fixing and the projection stages.

Remark 5 Synchronization over a subgroup of GL(d)

can also be addressed via the approach detailed in Sec-

tion 4.3, as done in [53,54,36]. Particularly interesting

are the Σ = SO(3) and Σ = SE(3) cases, where the

associated Lie algebras are described by 3 and 6 param-

eters, respectively, and the exponential and logarithm

maps admit closed form expressions [79,30].

5.1 Synchronization over SL(d)

The Special Linear Group SL(d) is the set of d × d

matrices with unit determinant. Synchronization over

SL(3) is studied in [95] within the context of multiple-

view homography estimation, that is why the problem

is referred to as homography synchronization.

Ambiguity. U is the solution up to multiplication by

element of GL(d), which can be reduced to SL(d) after

permutation of two columns of U s.t. det(U1) > 0 and

division by d
√

det(U1), where U1 denotes the first d× d
block in U .

Projection. In order to obtain elements of SL(d) from

U , each d×d block in U, denoted by Ui, must be scaled

to unit determinant, which can be done by dividing Ui

by d
√

det(Ui). In the case of the spectral solution, before

performing such projection, the imaginary part of the

eigenvectors is zeroed.

5.2 Synchronization over O(d)

The Orthogonal Group O(d) is the set of orthogonal

transformations in d-space, which admits a matrix rep-

resentation through d× d orthogonal matrices. An im-

portant subgroup of O(d) is the Special Orthogonal

Group SO(d), that is the set of orthogonal matrices

with determinant 1, which represent rotations in d-

space. Synchronization over SO(d) is also known as

rotation (angular) synchronization [99] or multiple ro-

tation averaging [58,117]. A comprehensive survey on

existing solutions can be found in [34,111].

From the theoretical perspective, synchronization

over SO(3) is analyzed in depth in [58,117]. In [58] the

consistency error (7) is studied under the choice ρ(y) =

yp (with p ≥ 1) and several distance measures are con-

sidered, including quaternion, angular (geodesic) and

chordal distances, where each metric is related to a par-

ticular parametrization of the rotation space. In [117]

it is shown that smaller and well-connected graphs are

easier than larger and noisy ones, based on a local

convexity analysis. Further theoretical analysis is re-

ported in [25] where Cramèr-Rao bounds for synchro-

nization over SO(d) are derived, namely lower bounds

on the variance of unbiased estimators, assuming a cer-

tain noise model.

The spectral method was introduced in [99] for Σ =

SO(2) and extended in [100,3] to Σ = SO(3). A related

approach is adopted in [75], where the Σ = SO(3) case
is considered and the least eigenvectors of D ⊗ I3 −
ZA are computed (instead of the least right singular

vectors).

Remark 6 Note that both Z and ZA are symmetric

even in the presence of noise, since, by assumption, a

group-labelled graph satisfies Zji = Z−1ij for all (i, j) ∈
E , which becomes Zji = ZT

ij in the Σ = O(d) case. The

matrix (D⊗Id)−1ZA is not symmetric, but it is similar

to the symmetric matrix (D⊗ Id)−1/2ZA(D ⊗ Id)−1/2,

thus its eigenvalues are real and it admits an orthonor-

mal basis of real eigenvectors.

Ambiguity. The solution U is defined up to an element

of O(d), since a change of the orthonormal basis in the

eigenspace (or null-space) corresponds to (right) multi-

plication by an orthogonal d × d matrix. This reduces

to SO(d) after permutation of columns of U such that

det(U1) is positive.
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Projection. Each d × d block of U is not guaranteed

to belong to O(d) and has to be projected onto the

group. Such projection can be obtained by solving an

orthogonal Procrustes problem, e.g. via Singular Value

Decomposition (SVD) [66]. Specifically, if Q ∈ Rd×d is

a given matrix, then the nearest orthogonal matrix (in

the Frobenius norm sense) is given by

R = WV T ∈ O(d) (38)

where Q = WSV T denotes the singular value decom-

position of Q. If the synchronization problem over Σ =

SO(d) is considered, the projection step is slightly dif-

ferent. Specifically, the nearest rotation matrix (in the

Frobenius norm sense) is given by

R = W diag([1, . . . , 1,det(WV T)])V T ∈ SO(d). (39)

Note that the final rounding step which is required for

GL(d), i.e., zeroing the imaginary part of the eigenvec-

tors, is not necessary here due to Remark 6.

5.3 Synchronization over GA(d)

The General Affine Group GA(d) is the set of invert-

ible affine transformations in d-space, which admits a

matrix representation through (d+1)×(d+1) matrices

GA(d) =

{[
M t

0T 1

]
, s.t. M ∈ GL(d), t ∈ Rd

}
. (40)

Synchronization over GA(d) is referred to as affine syn-

chronization [18,92].

Ambiguity. The solution U is unique up to the action of

an element of GL(d+1), which can be reduced to GA(d)

by computing a linear combination of the columns of U

such that the output matrix has the vector [01×d 1] in

rows multiple of d+1. More precisely, let F ∈ Rn×(d+1)n

be the 0/1-matrix such that FU ∈ Rn×(d+1) consists

of the rows of U with indices multiple of d + 1. The

coefficients a,b ∈ Rd+1 of the linear combination are

solution of

FUa = 0n×1, FUb = 1n×1 (41)

where the first equation has a d-dimensional solution

space. If a1, . . . ,ad denotes a basis for the null-space of

FU , then U is transformed into U [a1, . . . ,ad,b]. In the

presence of noise, Equation (41) is solved in the least

squares sense.

Projection. In order to project the solution ontoGA(d),

the rows of U multiple of d + 1 are forced to [01×d 1],

and the imaginary part of the eigenvectors is zeroed (in

the case of the spectral solution).

5.4 Synchronization over SE(d)

The Special Euclidean Group SE(d) is the set of direct

isometries (or rigid motions) in d-space, which admits a

matrix representation through (d+1)×(d+1) matrices

SE(d) =

{[
R t

0T 1

]
, s.t. R ∈ SO(d), t ∈ Rd

}
. (42)

Synchronization over SE(d) is also known as rigid-motion

synchronization [11,18] or motion averaging [53,55] or

pose-graph optimization [34]. The spectral and null-space

solutions can be regarded as the extension of the rota-

tion synchronization approach introduced in [99,100,3],

and were developed independently by [18] and [11].

Ambiguity. The solution U is unique up to the action

of an element of GL(d+ 1). In order to reduce the am-

biguity up to an element of SE(d) we must design a

suitable transformation that maps, e.g., the first block

of U onto an element of SE(d). In order to do that

let us apply a linear combination of the columns of U

such that the (d+ 1)th row becomes [01×d 1], as in the

Σ = GA(d) case, and subsequently transform U such

that U1, the first d× d block of U , becomes an element

of SO(d). Let U1 = RP be the polar decomposition of

U1, with R ∈ O(d) and P symmetric positive definite.

Since U1 is invertible, then R = U1P
−1, and P−1 is the

sought transformation. In the presence of noise, a least

square solution that brings every row multiple of d+ 1

as close as possible to [01×d 1] is sought, as in the affine

case.

Projection. In order to project the solution onto SE(d)

– as in [16] – the rows of U multiple of d+ 1 are forced

to [01×d 1] and the d× d rotation blocks are projected

onto SO(d). In the case of the spectral solution, before

performing such projection, the imaginary part of the

eigenvectors is zeroed.

Two-step synchronization. Since the Special Euclidean

Group is the the semi-direct product of SO(d) and

Rd, synchronization over SE(d) can be alternatively

addressed by breaking the problem into rotation and

translation and solving the two sub-problems separately,

as done (e.g.) in [6]. Let Xi ∈ SE(d) denote the (un-

known) label of node i

Xi =

[
Ri ti
0T 1

]
(43)

where Ri ∈ SO(d) and ti ∈ Rd denote the rotation

and translation components of the rigid motion, respec-

tively. Similarly, each edge label Zij ∈ SE(d) can be
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expressed as

Zij =

[
Rij tij
0T 1

]
(44)

with Rij ∈ SO(d) and tij ∈ Rd. Using this notation, the

consistency constraint for synchronization over SE(d),

namely Zij = XiX
−1
j , can be equivalently rewritten as

Rij = RiR
T
j (45)

tij = −RiRT
j tj + ti. (46)

Note that Equation (45) defines a rotation synchroniza-

tion problem, thus the rotation components of the un-

known vertex labels can be recovered as explained in

Section 5.2. Equation (46) can be equivalently written

as

−RT
i tij = RT

j tj −RT
i ti = xi − xj (47)

using the substitution xi = −RT
i ti. Thus – assuming

that rotations have been computed beforehand – recov-

ering the translation components of the vertex labels

can be reduced to a translation synchronization prob-

lem (as defined in Section 3), where the edge labels are

given by zij = −RT
i tij .

5.5 Synchronization over Sd

The Symmetric Group Sd is the set of bijections be-

tween d objects, which admits a matrix representation

through d × d permutation matrices. A permutation

matrix is such that exactly one entry in each row and

column is equal to 1 and all other entries are 0. Synchro-

nization over Sd is also known as permutation synchro-

nization, which finds application in multi-view match-

ing (see Section 8.2). The spectral solution was intro-

duced in [85] for a complete graph (based on [99]) and

subsequently extended in [98] to the case of missing

data.

Ambiguity. The solution U is defined up to an element

of O(d), as a consequence of Remark 6. However, the

solution to permutation synchronization is inherently

defined up to an element of Sd. Let Q be the unknown

orthogonal transformation such that X = UQ, where

X is the solution, a matrix whose blocks are in Sd. Let

U1 be the first d rows of U , then from X1 = U1Q we

have Q = UT
1 X1, i.e., Q = UT

1 up to a permutation. U1

is indeed orthogonal because U1U
T
1 = X1X

T
1 = Id.

Projection. Even after fixing the ambiguity, the blocks

of U will not be permutation matrices (in general). We

need to project them onto Sd by solving the so-called

permutation Procrustes problem, e.g., with the Kuhn-

Munkres algorithm [71]. Note that the spectral solution

returns real eigenvectors, as in the Σ = O(d) case.

6 Synchronization over Id

Let us consider now the Symmetric Inverse Semigroup

Id, that is the set of bijections between (different) sub-

sets of d objects, which admits a matrix representa-

tion through d×d partial permutation matrices. A par-

tial permutation matrix – which represents matches be-

tween different objects (see Figure 6) – has at most

one nonzero entry in each row and column, and these

nonzero entries are all 1. The synchronization problem

over Id is also known as partial permutation synchro-

nization [8].

The set Id is an inverse monoid with respect to ma-

trix multiplication (and a subsemigroup of Sd) where

the inverse is given by matrix transposition (see Defi-

nition 6). Let Xi ∈ Id denote the (unknown) label of

vertex i and let Zij ∈ Id denote the (known) label of

edge (i, j) ∈ E , which are linked by the consistency con-

straint

Zij = XiX
T
j . (48)

If [Xi](h,k) = 1 for some index h we say that “node i

sees object k”. Note that XT
i Xi is not equal, in general,

to the identity, unless Xi ∈ Sd. Indeed, [XT
i Xi](k,k) = 1

if node i sees object k and [XT
i Xi](k,k) = 0 otherwise.

However, it can be checked that XT
i Xi ≤ Id.

Remark 7 If {(i1, i2), (i2, i3), . . . , (i`, i1)} denotes a cir-

cuit in G, then – assuming that the consistency con-

straint (48) holds – the composition of edge labels along

its edges becomes

Zi1i2Zi2i3 · . . . · Zi`i1 =

= Xi1 X
T
i2Xi2︸ ︷︷ ︸
≤Id

XT
i3 · . . . ·Xi`X

T
i1 ≤ Id. (49)

In contrast to the case of total permutations, where

synchronization implies that compositions of edge la-

bels over circuits must be equal to the identity (see

Corollary 1), in the case of partial permutations we ob-

tain that compositions of edge labels over circuits must

be a subset of the identity, as observed also in [19]. In

other words, with reference to the multi-view matching

application (see Section 8.2), due to potential missing

matches (i.e. zero rows/columns in Zij) along a cyclic

path, some of the original matches may vanish, and only

those matches that are seen in all the images survive.
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6.1 Spectral solution

Despite the fact that the group structure is missing3,

it can be shown that a spectral solution can be derived

under the assumption that the graph is complete. Let

X and Z be two block-matrices containing the vertex

labels and edge labels respectively – defined as in (19)

– so that the consistency constraint becomes Z = XXT

with Z of rank d. Note that here the diagonal of Z is

not filled with identity matrices, in general. When all

the objects seen by node i are different from those seen

by node j we have XiX
T
j = 0, resulting in a zero block

in Z.

Proposition 6 ([8]) The columns of X are d (orthog-

onal) eigenvectors of Z and the corresponding eigenval-

ues are contained in the diagonal of the following d× d
matrix

V := XTX =

n∑
i=1

XT
i Xi. (50)

Proof Using (50) and the consistency constraint, we ob-

tain

ZX = XV (51)

which is a spectral decomposition, i.e. the columns of X

are d eigenvectors of Z and the corresponding eigenval-

ues are on the diagonal of V . Recall that Z admits an

orthonormal basis of real eigenvectors since it is sym-

metric. ut

Although Id is not a group, an eigenvalue decom-

position problem has been obtained, where the non-
zero eigenvalues are contained in the diagonal of V .

Specifically, the k-th eigenvalue counts how many nodes

see object k, thus all the eigenvalues are integer num-

bers lower than or equal to n. This implies that, when

the number of objects is larger than the number of

nodes (i.e., d > n) – which is likely to happen in the

multi-view matching application – the eigenvalues are

repeated. In the case of total permutations (i.e.Σ = Sd)
all the nodes see all the objects, thus V = nId and all

the eigenvalues are equal, hence Equation (51) reduces

to (24). In the presence of noise, the eigenvectors of

Z corresponding to the d largest eigenvalues are com-

puted.

This result holds for a complete graph. When it

is not, Proposition 6 can not be straightforwardly ex-

tended as we did for Σ = GL(d) case.

3 Note that 0 ∈ Id, thus we can not distinguish between
the case of missing measures and the case of missing corre-
spondences between nodes, as it was the case for the sub-
groups of GL(d).

Remark 8 Equation (51) could also be expressed as a

null-space problem, but in that case the matrix V , which

is unknown, have to be estimated somehow.

Ambiguity. Note that the reverse of Proposition 6 is

not true in general, i.e., the matrix U is not neces-

sarily equal to the vertex labelling X. Indeed, U is

not uniquely determined if the eigenvalues of Z are re-

peated. So we have to face the problem of how to select,

among the infinitely many Us, the one that resembles

X, a matrix composed of partial permutations. Note

that the reasoning reported in Section 5.5 does not ap-

ply here, since the first block U1 is not orthogonal in

general, due to the presence of zero rows. A key obser-

vation is reported in the following proposition, suggest-

ing that such a problem can be solved via clustering

techniques.

Proposition 7 ([8]) Let U be the nd× d matrix com-

posed by the d leading eigenvectors of Z; then U has

d + 1 different rows (in the absence of noise). One of

these is the zero row.

Proof Let λ1, λ2, . . . , λ` denote all the distinct eigenval-

ues of Z (with ` ≤ d), and let m1,m2, . . . ,m` be their

multiplicities such that
∑`
k=1mk = d. Let Uλk denote

the mk columns of U corresponding to the eigenvalue

λk, and let Xλk be the corresponding columns of X. Up

to a permutation of the columns, we have

U = [Uλ1
Uλ2

. . . Uλ` ], X = [Xλ1
Xλ2

. . . Xλ` ]. (52)

Since Uλk and Xλk are (orthogonal) eigenvectors cor-

responding to the same eigenvalue, there exists an or-

thogonal matrix Qk ∈ Rmk×mk representing a change of

basis in the eigenspace of λk, such that Uλk = XλkQk.

In matrix form this rewrites

U = X blkdiag(Q1, Q2, . . . , Q`)︸ ︷︷ ︸
Q

. (53)

Note that the rows of X are the rows of Id plus the zero

row. Since Q is invertible (hence injective), U = XQ

has only d+ 1 different rows as well. ut

Specifically, an estimate of the vertex labelling can be

obtained by clustering the rows of U into d+ 1 clusters

(e.g. with k-means), then assigning the centroid which

is closest to zero to the zero row, and arbitrarily as-

signing each of the other d centroids to a row of Id.

This arbitrary assignment corresponds to the fact that

the solution to partial permutation synchronization is

defined up to an element of Sd.



14 Federica Arrigoni, Andrea Fusiello

Projection. Even after fixing the ambiguity, valid per-

mutation matrices may not be obtained. Indeed, since

there are no constraints in the clustering phase, it may

happen that different rows of a d× d block in U are as-

signed to the same cluster, resulting in more than one

entry per column equal to 1. For this reason, for each

d × d block in U , the partial permutation matrix that

best maps such block into the set of centroids has to be

computed (e.g. via the Kuhn-Munkres algorithm [71]),

and such permutation is output as the sought solution.

7 Spectral and other relaxations

In this section we concentrate mainly on the Σ = O(d)

case. We frame the spectral solution as an instance of a

constraint relaxation pattern by setting it side by side

with rank relaxation [7,10,124] and semidefinite pro-

gramming [99,37,90], which are not closed-form, though.

Moreover we highlight the link between the spectral so-

lution and the consistency error of the synchronization

problem (which is available only for Σ = O(d)).

Note that this is a special case, since the inverse

equals matrix transposition, thus the consistency con-

straint rewrites Zij = XiX
T
j which, if the graph is com-

plete, is equivalent to

Z = XXT. (54)

Such a decomposition implies that, if ε = 0, the matrix

Z is symmetric and positive semidefinite, besides being

low-rank. In the case of missing edges, the consistency

constraint translates into

ZA = (XXT) ◦ (A⊗ 1d×d) (55)

and the consistency error of the synchronization prob-

lem becomes

ε(X) =
∑

(i,j)∈E

‖Zij −XiX
T
j ‖

2
F =

= ‖ZA − (XXT) ◦ (A⊗ 1d×d)‖2F . (56)

In particular, since the Frobenius norm of a matrix can

be defined in terms of its trace, Equation (56) can be

expressed as

ε(X) =

=

n∑
i,j=1

tr(ZT
ijZij)+tr(XjX

T
i XiX

T
j )−2tr(XT

i ZijXj) =

=

n∑
i,j=1

tr(ZT
ijZij)+d−2tr(XT

i ZijXj) (57)

where a complete graph is considered and the last equal-

ity holds since XT
i Xi = Id = XT

j Xj . Therefore

min
X∈O(d)n

ε(X)⇐⇒ max
X1,...,Xn∈O(d)

n∑
i,j=1

tr(XT
i ZijXj) =

max
X∈O(d)n

tr(XTZX). (58)

Solving the synchronization problem over O(d) is

difficult since the feasible set is non-convex, and the

cost function may have multiple local minima in dif-

ferent regions of attraction, as shown in [58]. Several

relaxations will be considered.

7.1 Spectral relaxation

Let us start with the case of a complete graph and let

us consider the following minimization problem

min
XTX=nId

‖Z −XXT‖2F (59)

where the columns of X are constrained to be orthog-

onal rather than imposing that each d × d block in X

belongs to O(d). This is called the spectral relaxation,

and, reasoning as in Equation (58), it can be shown

to be equivalent to the following generalized Rayleigh

problem

max
XTX=nId

tr(XTZX). (60)

Proposition 8 Equation (60), with Z symmetric, ad-

mits a closed-form solution given by the d leading eigen-

vectors of Z.

Proof Let F be the unconstrained cost function corre-

sponding to problem (60), namely

F(X) = tr(XTZX) + tr(Λ(XTX − nId)) (61)

where Λ ∈ Rd×d is a symmetric matrix of unknown La-

grange multipliers. Setting to zero the partial deriva-

tives of F with respect to X we obtain

∂F
∂X

= 2ZX + 2XΛ = 0⇒ ZX = −XΛ. (62)

Let ui denote d eigenvectors of Z (normalized so that

‖ui‖ =
√
n) for i = 1, . . . , d and let λi be the corre-

sponding eigenvalues. Then X = [u1 u2 . . . ud] sat-

isfies both (62) and the constraint XTX = nId, with

Λ = −diag([λ1, λ2, . . . , λd]). In other words, any set

of d eigenvectors is a stationary point for the objective

function F . The corresponding stationary value is given

by n(λ1 + λ2 + . . . λd), hence the maximum is attained

if ui are the eigenvectors of Z corresponding to the d

largest eigenvalues. ut
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If the graph is not complete, we consider a different

definition for the consistency error

ε(X) =
∑

(i,j)∈E

[D]−1ii ‖Zij −XiX
T
j ‖

2
F (63)

in which the term associated to the edge (i, j) is weighted

with the inverse of the degree of node i. Reasoning as

before we get

min
X∈O(d)n

ε(X) ⇐⇒

max
X1,...,Xn∈O(d)

∑
(i,j)∈E

[D]−1ii tr(XT
i ZijXj) =

max
X∈O(d)n

tr(XT(D ⊗ Id)−1ZAX) (64)

which, if the spectral relaxation is adopted, becomes

max
XTX=nId

tr(XT(D ⊗ Id)−1ZAX) (65)

whose solution is given by the d leading eigenvectors of

(D ⊗ Id)−1ZA.

We have shown, following [3], that the spectral so-

lution minimizes the consistency error of the synchro-

nization problem under relaxed constraints. Note that

this result is due to the special structure of O(d), it also

holds for subgroups of O(d), and it is not available in

general for synchronization over GL(d).

Concerning the Symmetric Inverse Semigroup, since

Z is symmetric, Proposition 8 holds. However, the com-

putation above linking Problem (60) to the synchro-

nization cost function is no longer valid since the equa-

tion XT
i Xi = Id = XT

j Xj does not hold for Σ = Id.

7.2 Rank relaxation

Let Ω = A ⊗ 1d×d denote the pattern (also known as

the sampling set) of ZA, that is the index set of avail-

able entries. Using this notation, the synchronization

problem can be expressed as

min
X∈Σn

ε(X) = min
X∈Σn

‖(Z −XX−[) ◦Ω‖2F ⇐⇒ (66)

min
Z̃
‖(Z − Z̃) ◦Ω‖2F s.t. Z̃ = XX−[, X ∈ Σn (67)

where the problem of finding a consistent vertex la-

belling X is reduced to that of finding an edge labelling

Z̃ induced by X.

If the rank relaxation is adopted [12], i.e. the ma-

trix Z̃ is enforced to have rank (at most) d (while the

remaining properties on Z̃ are not enforced), then Prob-

lem (67) becomes

min
Z̃
‖(Z − Z̃) ◦Ω‖2F s.t. rank(Z̃) ≤ d (68)

which is a matrix completion problem [29], that is the

problem of recovering a low-rank matrix starting from

an incomplete subset of its entries (possibly corrupted

by noise), which can be solved via (e.g.) the OptSpace

algorithm [68].

In order to handle outliers, a robust matrix com-

pletion framework can be considered instead of (68),

namely

min
Z̃,S
‖(Z − Z̃ − S) ◦Ω‖2F

s.t. rank(Z̃) ≤ d, S is sparse in Ω

(69)

where the additional variable S represents outliers, which

are sparse over the measurement graph (by assump-

tion). Available algorithms to solve problem (69) in-

clude R-Godec [7], Grasta [59] and L1-Alm [123].

This approach was introduced in [7] for Σ = SO(d)

and extended in [10] to Σ = SE(d).

In the Σ = Sd case, however, the optimization vari-

able Z̃ is sparse, being composed of binary matrices,

and hence it does not satisfy the incoherence assump-

tion (see [29]) that make “generic” matrix completion

algorithms work in practice. To overcome this draw-

back, the authors of [124] consider the following prob-

lem instead of (68)

min
Z̃
‖(Z − Z̃) ◦Ω‖2F + α‖Z̃‖1

s.t. rank(Z̃) ≤ d, 0 ≤ Z̃ ≤ 1
(70)

where the regularization term α‖Z̃‖1 is included to pro-

mote a sparse solution, and the optimization variable

is enforced to lie in the interval [0, 1] (while the binary

constraints are not enforced). The resulting cost func-

tion is minimized via the Alternating Direction Method

of Multipliers (ADMM) [27].

7.3 Semidefinite relaxation

Let us consider the Σ = O(d) case. Reasoning as in

Equation (67), we can express the synchronization prob-

lem as

min
Z̃
‖(Z − Z̃) ◦Ω‖2F s.t. Z̃ = XXT, X ∈ Σn. (71)

If the semidefinite relaxation is employed [99,100,3],

i.e. the optimization variable Z̃ is constrained to be

symmetric positive semidefinite and covered by identity

blocks along its diagonal (while the remaining proper-

ties on Z̃ are not enforced), then Problem (71) reduces

to a semidefinite program

min
Z̃
‖(Z − Z̃) ◦Ω‖2F s.t. Z̃ � 0, Z̃ii = Id (72)
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which can be solved (e.g.) though interior point meth-

ods [119]. In [116] the `1-norm is used in (72) in place

of the `2-norm, exploiting the fact that the former is

more robust to outliers than the latter.

In order to deal with the Σ = Sd case, the authors of

[37] introduce in (72) the non-negative constraint Z̃ ≥ 0

and a sparsifying regularization term α‖Z̃‖1, similarly

to (70), resulting in the following problem

min
Z̃
‖(Z − Z̃) ◦Ω‖2F + α‖Z̃‖1

s.t. Z̃ � 0, Z̃ii = Id, Z̃ ≥ 0
(73)

which is solved via the ADMM algorithm.

Concerning the Special Euclidean Group, in [90] a

cost function tightly related to (67) is considered and

the feasible set SE(d) is relaxed to its convex hull,

which admits a semidefinite representation [93]. A con-

vex relaxation is also employed in [89,32] where the au-

thors, using the theory of Lagrangian duality, develop

an algorithm for certifying the global optimality of a

candidate solution to rigid-motion synchronization.

It should be noted that although semidefinite relax-

ation solutions are not closed-form, they are nonetheless

convex problems, which are relatively easy to compute.

8 Synchronization in Computer Vision

Among the several applications that have been men-

tioned in the introduction (image mosaicking, multi-

view matching, synchronization, etc.) we concentrate

here on the few ones where the formulation of the prob-

lem in terms of synchronization might require some

clarification.

8.1 Homography synchronization

When elements of SL(d) are identified with homogra-

phies of the (d − 1)-dimensional projective space, syn-

chronization over SL(3) can be easily seen as a conve-

nient way to align multiple images into a mosaic, start-

ing from pairwise homographies. This works because

any real non-singular 3 × 3 matrix can be scaled to a

real unit determinant matrix, as first mentioned in [95].

The same trick does not apply when d is even because

of complex roots.

8.2 Permutation synchronization

Consider a set of d objects, which is attached to each

node in the measurement graph in a random order, i.e.,

each node has its own local labelling of the objects with

integers in the range {1, . . . , d}, represented as a per-

mutation. It is assumed that pairs of nodes can match

these objects, establishing which objects are the same

in the two nodes, despite the different naming, and the

goal is to infer a global labelling of the objects, such

that the same object receives the same label in all the

nodes (see Figure 5).
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Fig. 5: In the center, two nodes with partial visibility match
their three common objects. At the extrema the ground truth
ordering of the objects. Each node sees some of the objects
(white circles are missing objects) and puts them in a different
order, i.e., it gives them different numeric labels.

A more concrete problem statement can be given in

terms of multi-view matching [37,124,76], where nodes

are images and objects are features. A set of matches

between pairs of images is computed in isolation, and

the goal is to jointly update them so as to maximize

their consistency. In general, not all the features are

visible (or matchable) in all the images, so each match-

ing is modelled as a partial permutation (Figure 6).
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Fig. 6: Partial permutation matrix representing the matches
between two nodes.

Specifically, the permutation matrix P represent-

ing the matching between node B and node A is con-
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structed as follows:

[P ]h,k =

{
1 if obj. k ∈ B is matched with obj. h ∈ A;

0 otherwise.

If row [P ]h,· contains only zeros, then object h in node

A does not have a matching object in node B. If column

[P ]·,k is made of zeros, then object k in node B does not

have a matching object in node A.

Let Zij denote the permutation matrix represent-

ing the matching between node j and node i, and let

Xi (resp. Xj) denote the unknown permutation that

reveals the true identity of the objects in node i (resp.

j). It can be easily verified that Zij = XiX
T
j , thus the

problem of finding the global labelling of the objects

can be modelled as a synchronization problem over the

Symmetric Inverse Semigroup Id (if permutations are

partial), or over the Symmetric Group Sd (if permuta-

tions are total).

8.3 Rigid-motion Synchronization

Elements of SE(d) represent the angular attitude and

position of a d-dimensional reference frame. These two

properties are collectively referred to as motion in Com-

puter Vision, orientation in Photogrammetry, or pose

in Robotic (although pose is also used in Vision). Syn-

chronization over SE(d) is tantamount to recovering

the location and attitude of a set of reference frames

organized in a network, where the links of this network

are relative transformations of one frame with respect

to (some of) the others. This is also called network ori-

entation [46], pose graph optimization [34], or sensor

network localization [41]. If we restrict the attention

to the angular attitude (leaving out the position) then

we get a rotation synchronization. Similarly, if position

only is considered, it results in translation synchroniza-

tion.

Such local frames can be local coordinates where

3D points are represented, in which case we are deal-

ing with multiple point-set registration [87], or camera

reference frames, in which case we are in the context of

(global) structure-from-motion [84].

In the first case, the goal is to find the rigid transfor-

mation that brings multiple (n > 2) 3D point sets into

alignment. The problem can be solved in point space

or in frame space. In the former case all the transfor-

mations are simultaneously optimized with respect to a

cost function that depends on the distance between cor-

responding points [86,17,70,105,45]. In the latter case

the optimization criterion is related to the internal co-

herence of the network of transformations applied to

the local coordinate frames [97,48,107,56,10]. This is

exactly an instance of rigid-motion synchronization, as

shown in Figure 7, where the input edge labels are typ-

ically computed via the Iterative Closest Point algo-

rithm [20].

In the structure from motion application the goal

is to recover both scene structure (3D coordinates of

scene points) and camera motion starting from a set of

images. In this case G is known as the epipolar graph

[81,5] or the viewing graph [72] (see Figure 8).

Structure from motion is a well studied problem

that can be addressed in several ways (see the recent

survey by Ozyesil et al. [84]). One stream of research

focuses on methods that compute the motion before re-

covering the structure, and in this paper we are specif-

ically interested in frame-space methods, that do not

make use of points in order to compute the global mo-

tion. These methods are usually faster than sequential

and hierarchical methods (e.g. [101,94,106]), while en-

suring a fair distribution of the errors among the cam-

eras, being global. On the other hand, accuracy is usu-

ally worse than that achieved by point-space methods,

such as bundle adjustment.

We are interested in these “structure-free” methods

because they reduce to a rigid-motion synchronization,

modulo the fact that the relative translations are only

known as directions, as the magnitude is unknown.

8.3.1 Localization

We consider here the two-step formulation of synchro-

nization over SE(3), described in Section 5.4. Since the

magnitude of translations are unknown, we are required

to estimate such magnitudes either directly or indirectly

(i.e., by computing camera locations from the direc-

tions only). We will only hint at these solutions here,

since they fall outside the domain of synchronization,

although being related to it. As a matter of fact, the

starting point is the translation synchronization equa-

tion

(BT ⊗ I3) vec(X) = vec(Z) (74)

and from here two paths can be followed:

– first recover the magnitude of translations [5,108]

and then solve a translation synchronization;

– solve the problem straight from the direction infor-

mation: bearing-only localization [28,122].

Direct computation of magnitudes. If the relative mea-

sures zij are expanded into magnitude αij = ‖zij‖ and

direction uij = zij/‖zij‖, then the matrix Z rewrites

Z = U diag(α) (75)
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Fig. 7: The goal of the multiple point-set registration problem is to find the rigid transformations that bring multiple 3D point
sets into alignment, where each rigid transformation is represented by a direct isometry.
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Fig. 8: The epipolar graph: each node represents one camera
and each edge is labelled with the essential matrix of the cor-
responding camera pair, which encodes the relative rotation
and translation (up to scale).

where U denotes the 3×mmatrix obtained by juxtapos-

ing all the edge directions, namely U = [u12 . . . uij . . . ],

and α ∈ Rm denotes the vector containing all the un-

known magnitudes, namely α = [α12 . . . αij . . . ]T.

Thus, using Property (92), we get

vec(Z) = (Im � U)α (76)

where� denotes the Khatri-Rao product (see Appendix

A). Hence, Equation (74) rewrites

(BT ⊗ I3) vec(X) = (Im � U)α. (77)

This equation is also called the edge-based bearing con-

straint in [108]. Let us consider the cycle matrix C ∈
{−1, 0, 1}(m−n+1)×m associated with a cycle basis of

G = (V, E) and let us multiply left and right sides in

(77) by (C ⊗ I3)

(C ⊗ I3)(BT ⊗ I3) vec(X) = (C ⊗ I3)(Im � U)α. (78)

Using Properties (86), (91) and (108) we get

(CBT ⊗ I3) vec(X) = 0 = (C � U)α. (79)

Note that Equation (79) is nothing else but the cycle

consistency (Equation (17)) rewritten in terms of direc-

tions and magnitudes.

Proposition 9 ([5,108]) The unknown translation mag-

nitudes can be uniquely (up to a global scale) recovered

if and only if rank(C�U) = m−1. In this case the so-

lution is given by the 1-dimensional null-space of C�U .

Bearing-only localization. Let us multiply (74) by the

block-diagonal matrix

S = blkdiag ({[uij ]×}(i,j)∈E) (80)

where [uij ]× denotes the 3× 3 skew-symmetric matrix

corresponding to the cross-product with uij , yielding

S(BT ⊗ I3) vec(X) = S vec(Z) = 0. (81)

This step has the effect of substituting Z, which is un-

known, with S (derived from U) which is known in-

stead. Expanding this equation for a single edge (i, j)

of the graph yields the more custom expression:

uij × (xi − xj) = 0. (82)

This equation is also called the node-based bearing con-

straint in [108]. Its solution yields the node locations

X, hence implicitly recovering the magnitudes. It is

observed in [67] that least squares solution of (81),

which is used (e.g.) in [52], is equivalent to the method

presented in [28]. A bearing-only formulation is also

adopted in [81,61,118,110,83,50] within the context of

structure from motion.

This last section led us to glimpse the problem of

localization. The goal of localization is to compute the
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position of n nodes in d-space given measures on the

edges. As in a translation synchronization problem the

nodes correspond to positions, i.e., elements of Rd, but

the available measures are not differences of states, i.e.

translations, for they can be directions (bearings) or

distances. Figure 9 hopefully helps to clarify this rela-

tionship.

Localization

Direction:
xi − xj
‖xi − xj‖

Distance:
‖xi − xj‖

Translation:
xi − xj

Synchronization

Rotation ...

Fig. 9: The relationship between synchronization and local-
ization.

The problem of localization from directions and the

conditions under which an epipolar graph is localizable

are discussed with continuity of notation by the same

authors of this paper in [4].

9 Discussion

In this section we report some considerations about the

pros and cons of the closed-form solutions reviewed in

this paper.

9.1 Simplicity

These methods are particularly attractive for their sim-

plicity. As an example we report the Matlab code of ro-

tation and translation synchronization in 3-space (List-

ings 1 and 2).

In particular, rotation synchronization can be taken

as a prototype of synchronization in any subgroup of

GL(d): the only step that changes is the projection. In

fact, the removal of the ambiguity with division by the

first block works in all cases, since the identity belongs

to any subgroup.

This does not hold for Id, which is not a subgroup

of GL(d). In this case, removal of the ambiguity reduces

to a clustering problem, as explained in Section 6. See

also [112] for the relation between clustering and partial

permutation synchronization. Note that synchroniza-

tion over Id requires to know the value of d in advance,

which is not available in the multi-view matching appli-

cation, since it corresponds to the total number of fea-

tures (or tracks) present in the images. To overcome this

drawback, a practical solution to multi-view matching

Listing 1: Rotation synchronization

1 function R = rotation_synch(Z,A)

2 n = size(A,1);

3 iD = diag (1./ sum(A,2));

4 [Q,~]= eigs( kron(iD ,eye (3))*Z, 3);

5
6 % Remove ambiguity

7 Q = Q/(Q(1:3, 1:3));

8
9 % Projection onto SO(3)

10 R=cell(1,n);

11 for i=1:n

12 [U,~,V] = svd(Q(3*i -2:3*i ,:));

13 R{i} = U*diag([1,1,det(U*V ’)])*V’;

14 end

15 end

Listing 2: Translation synchronization

1 function T = translation_synch(U,B)

2
3 B(1,:) = []; % remove node 1

4 F=kron(B’,eye (3));

5 X=F\U(:);

6 X=[0;0;0;X]; % add node 1

7 X=reshape(X,3 ,[]);

8
9 T = num2cell(reshape(X,3 ,[]) ,...

10 [1,size(X ,2)]);

11 end

is developed in [76], where the authors compute refined

edge labels (instead of vertex labels), in order to avoid

the ambiguity issue.

9.2 Spectral solution versus null-space solution

In the presence of noise the null-space and spectral so-

lutions do not coincide, in general. In the case of a com-

plete graph, for instance, they coincide if and only if the

unique non zero eigenvalue of Z is exactly n, which is

unlikely to happen in practice.

An empirical comparison between the two approaches

– for the Σ = SE(3) case – is reported in [11] where

it is shown that the spectral solution achieves the same

accuracy as the null-space method but it is faster. In

particular, it turns out that the final rounding step,

i.e. zeroing the imaginary part of the eigenvectors, do

not compromise the accuracy achieved by the spectral

method.

Note that in both cases the matrices inherit the

same sparsity pattern as the adjacency matrix A, thus

sparse solvers can be exploited, e.g., eigs for the spec-
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tral method and svds for the null-space solution, as

done in Listing 1. As a matter of fact, svds(F) calls

eigs([0 F; F’ 0]), as reported in the function doc-

umentation, and consequently it runs more slowly, for

the dimension of the matrix is double. From the com-

putational complexity point of view, every iteration of

the Lanczos method (implemented by eigs) is linear

in n [51], if the matrix is sparse, but the number of

iterations cannot be bounded by a constant.

9.3 Efficiency

The considered instances of synchronization translate

into efficient closed form solutions, such as spectral de-

composition or linear least squares. As a matter of fact,

in the experiments reported in the literature [3,18,11]

they are consistently the fastest method. For instance,

the rigid-motion synchronization pipeline in [6] takes 7

seconds for the Madrid Metropolis dataset [118], whose

epipolar graph contains about 300 nodes and 65% of

missing edges (with respect to the complete graph).

Note also that the spectral/null-space solutions aim

at recovering the vertex labelling X, thus they require

to store a dn×dmatrix in addition to the dn×dnmatrix

ZA containing the input measures, which is sparse if

the graph is not complete. Semidefinite and rank relax-

ations, instead, aim at computing a refined edge label

for each pair of nodes, represented by the optimization

variable Z̃ (see Sections 7.2 and 7.3), thus they require

an additional amount of memory to store a full dn×dn
matrix.

9.4 Accuracy

The least-squares solution to translation synchroniza-

tion is statistically optimal, whereas the spectral (or,

equivalently, null-space) solution to the other instances

of synchronization provides an extrinsic estimate, whose

quality is – in general – inferior to those provided by

intrinsic methods. Note also that the spectral technique

is a weaker relaxation than semidefinite programming

(namely it enforces less constraints on the optimization

variable), as explained in Section 7, and it does not

guarantee exact recovery (in contrast to [116,89,32]).

In [11] the spectral method is compared to [90],

which minimizes a geometric error tightly related to

the synchronization cost function with a convex relax-

ation. The latter returns a more accurate solution, but

it requires a significant amount of time (for instance, it

takes around ten minutes on a synthetic scenario with

n = 100 and 30% of missing edges, whereas the spectral

approach is able to compute a solution in less than 2

seconds with up to n = 1000).

Experiments on multiple point-set registration con-

ducted in [9] – graphs with up to 95% of missing edges –

demonstrate that the spectral solution and the semidef-

inite relaxation proposed in [89] are comparable in ac-

curacy but the latter requires additional time. However,

the same comparison4 on the SLAM dataset used in [89]

– with more than 99% of missing edges – reveals that

[89] achieves a running time comparable with the spec-

tral method on these very sparse graphs. The authors

of [88] suggest that some computational enhancements

can be incorporated in semidefinite relaxations in or-

der to speed up the computation further. Finally, the

same study performed in [9] indicates also that meth-

ods based on matrix completion [7], instead, fail when

the percentage of missing data is higher than 90%.

Although the accuracy obtained by the spectral me-

thod is not optimal, it is however high, as demonstrated

by experiments performed in [11] in a variety of scenar-

ios (for instance, it gets an average rotation error of

the order of 1 degree on the popular Stanford 3D Scan-

ning Repository [103]). As a consequence, it can be seen

as a good and fast initialization for a subsequent local

refinement (e.g. bundle adjustment in structure from

motion).

9.5 Robustness

The least-squares solution for translation synchroniza-

tion of Section 3 can be made resistant to outliers (i.e.

rogue edge labels) by replacing ρ(y) = y2 in Equa-

tion (14) with another function ρ(y) with sub-quadratic

growth, and solving the resulting minimization prob-

lem, e.g., with Iteratively Reweighted Least Squares

(IRLS) [60]. This technique iteratively solves weighted

least squares problems where the weights are computed

at each iteration as a function of the residuals of the

current solution.

As for synchronization over GL(d), it is easy to see

that the analysis of Section 4 can be extended to han-

dle weighted measurements, which translates in relax-

ing the entries of the adjacency matrix A to assume

real values in [0, 1], where 0 still indicates a missing

measurement and the other values reflect the reliability

of the edge labels. This allows to apply an IRLS-like

scheme: first, an estimate for the vertex labelling with

given edge weights is obtained via either the spectral

approach or the null-space solution; then, the weights

are updated based on the current estimate of the vertex

4 Unpublished experiments made by the authors
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labels, and these steps are iterated until convergence or

a maximum number of iterations is reached.

Experiments in [11] report good performances in the

Σ = SE(d) case (resilience to about 40% of wrong edge

labels) and it is shown in [9] that the spectral relax-

ation is comparable to methods performing robust ma-

trix completion in terms of robustness to outliers.

9.6 Limitations and open questions

In summary, the spectral and null-space methods pro-

vide fast, sub-optimal (but fairly accurate) solutions in

the presence of noise/outliers.

Further efficiency is needed in certain applications

involving very large-scale problems, such as multi-view

matching. For instance, the method in [76], which pro-

vides a practical approach to partial permutation syn-

chronization based on a spectral decomposition, took

one and half hour to compute a solution in the Dino

dataset [96], where d = 493 and n = 363 (resulting in

a matrix of size ≈ 180000). A possible way to speed-up

the computation is to split the synchronization prob-

lem into smaller subproblems in a distributed fashion,

similarly to [41,21].

Thanks to the group-labelling interpretation, the

formalism of synchronization permits to address a va-

riety of Computer Vision applications using the same

Linear Algebra approach without relying on features or

points, since the problem is formulated in frame space,

or, more abstractly, in a group/semigroup. An unex-

plored application involves projective frames, which are

represented by 4 × 4 invertible matrices defined up to

scale. As mentioned in Section 8.1, the idea of scaling

each matrix by the d-th root of its determinant, which

was used in [15], does not apply here because complex

roots may appear, hence further research is required in

order to formulate the problem in terms of synchroniza-

tion.

From the theoretical perspective, interesting open

questions include the link between the spectral solution

and the consistency error when the data matrix is not

symmetric, and the relation between the notion of null-

cycle and the synchronization problem over an inverse

monoid.

10 Conclusion

In this paper we gathered several disparate works within

the common framework of synchronization and showed

how this framework can be profitably used in several

Computer Vision applications. Besides exhibiting a nice

and clean formulation, synchronization can also benefit

from efficient and closed-form solutions such as spectral

decomposition or linear least squares. We hope that this

survey will serve as a starting point for more research

in this field.
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A Kronecker, Hadamard and Khatri-Rao

products

This appendix is devoted to the Kronecker, Hadamard and
Khatri-Rao products [113,78,73], which are widely used in
this paper.

Let A and B be two real matrices of dimension m×r and
n× s respectively. The Kronecker product of A and B [113],
denoted by A⊗B, is defined as

A⊗B =


[A]1,1B [A]1,2B . . . [A]1,rB
[A]2,1B [A]2,2B . . . [A]2,rB
. . . . . .

[A]m,1B [A]m,2B . . . [A]m,rB

 (83)

where each [A]i,jB is a block of dimension n× s, thus A⊗B
has dimension mn×rs. The Kronecker product is associative,
distributive (with respect to the sum of matrices), but not
commutative, and it satisfies the following properties

(A⊗B)T = AT ⊗BT (84)

(A⊗B)−1 = A−1 ⊗B−1 (85)

(A⊗B)(C ⊗D) = (AC)⊗ (BD) (86)

vec(AXB) = (BT ⊗A)vec(X) (87)

where vec(·) denotes the vectorization operator which trans-
forms a matrix into a vector by stacking the columns of the
matrix one underneath the other.

Let A = UAΣAV T
A and B = UBΣBV T

B be the singular
value decompositions of A and B, respectively, then

A⊗B = (UA ⊗ UB)(ΣA ⊗ΣB)(VA ⊗ VB)T (88)

which implies

rank(A⊗B) = rank(A) rank(B). (89)

Thus the Kronecker product of two matrices is invertible if
and only if both the factors are invertible.

Consider now two real matrices A and B of dimension
m × r and n × r respectively, and denote the columns of A
by a1, . . . ,ar and those of B by b1, . . . ,br. The Khatri-Rao
product of A and B [69,73], denoted by A�B, is defined as

A�B =
[
a1 ⊗ b1 a2 ⊗ b2 · · · ar ⊗ br

]
(90)
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where each ai ⊗ bi is a vector of dimension mn, thus A�B
has dimension mn × r. The Khatri-Rao product is associa-
tive, distributive, but not commutative, and it satisfies the
following equalities

(A⊗B)(C �D) = (AC)� (BD) (91)

vec(A diag(x)B) = (BT �A)x (92)

where diag(x) transforms the vector x = [x1 . . . xr]T into a
diagonal matrix with elements x1, . . . , xr along the diagonal.

To the best of our knowledge, equalities expressing the
rank of A � B in terms of the rank of the factors are not
present in the literature, in contrast to the case of the Kro-
necker product. Some inequalities are reported in [69], where
it is shown, for instance, that rank(A � B) ≥ rank(A), if all
the columns of B corresponding to independent columns of
A are non-null.

Let A and B be two real matrices of dimension m × r.
The Hadamard product (or entry-wise product) of A and B
[78], denoted by A ◦ B, has dimension m × r as well, and it
is simply the product of the corresponding elements

A ◦B =


[A]1,1[B]1,1 [A]1,2[B]1,2 . . . [A]1,r[B]1,r
[A]2,1[B]2,1 [A]2,2[B]2,2 . . . [A]2,r[B]2,r

. . . . . .
[A]m,1[B]m,1 [A]m,2[B]m,2 . . . [A]m,r[B]m,r

 .
(93)

The Hadamard product is associative, distributive, commu-
tative, and it satisfies the following properties

(A�B) ◦ (C �D) = (A ◦ C)� (B ◦D) (94)

(A�B)T(A�B) = (AAT) ◦ (BBT) (95)

vec(A ◦B) = diag(vec(A)) vec(B) (96)

diag(x) A diag(y) = A ◦ (xyT) (97)

rank(A ◦B) ≤ rank(A) rank(B). (98)

B Results from Graph Theory

In this section we review some useful concepts from graph
theory. A complete treatment of this subject can be found in
[23,64].

A graph is a pair G = (V, E) where V is a finite set and E is
a family of pairs of elements of V. We use n and m to denote
the number of vertices and edges respectively, namely n = |V|
and m = |E|. A weighted graph is a graph together with a
weight function ω : E → R+. If the graph is unweighted, we
set ω : E → 1 and call w the uniform weight function. An
edge occurring more than once is referred to as a multiple
edge, and a graph without multiple edges is called simple.
An edge of the form (v, v) is called a loop. In an undirected
graph, the degree of a vertex v is the number of times that
v occurs as an endpoint of an edge. In a directed graph, the
outdegree and indegree of a vertex v are the number of times
that v occurs as the tail and head of an edge, respectively.

A subgraph G′ = (V′, E′) of G is a graph with V′ ⊆ V
and E′ ⊆ E. If E′ is a subset of E, then G \ E′ denotes
the graph obtained by removing all the edges in E′ from
G. If V′ is a subset of V, then G \ V′ denotes the graph
obtained by removing all the vertices in V′ and their in-
cident edges from G. A path from v to w is a subgraph
G′ = (V′, E′) with V′ = {v0 = v, v1, . . . , vk = w} and
E′ = {(v0, v1), (v1, v2), . . . , (vk−1, vk)}. An undirected graph

is called connected if there exists a path from each vertex
to any other, and a directed graph is called connected if the
underlying undirected graph is connected. Any maximal con-
nected subgraph H is called a connected component. A graph
is a tree if it is connected and it has n− 1 edges. The disjoint
union of trees is called a forest. The number of edges in a
forest is n − cc, where cc denotes the number of connected
components in G. A subgraph G′ of a connected graph G is
called a spanning tree if it has the same vertices of G and it
is a tree. If G is not connected, any union of spanning trees
for each connected component is called a spanning forest.

A cycle in a graph G is a vector c ∈ Qm such that for any
vertex v ∈ V it holds∑
e∈δ+(v)

[c]e =
∑

e∈δ−(v)

[c]e (99)

where δ+(v) and δ−(v) denote the edges leaving and entering
v, respectively, and [c]e denotes the component of c indexed
by edge e. A cycle is simple if [c]e ∈ {−1, 0, 1} for all e ∈ E,
and a simple cycle is a circuit if its support (i.e. the set of
edges with [c]e 6= 0) is connected and for any vertex v ∈ V
there are at most two edges in the support incident to v. The
set of cycles forms a vector space over Q, which is called the
cycle space of G, and a cycle basis is a set of circuits forming
a basis of such a space. It can be shown [23,64] that if G is
connected the dimension of the cycle space is given by the
cyclomatic number

ν = m− n+ 1. (100)

B.1 Matrices associated with graphs

The adjacency matrix A of a graph G is the n × n matrix
whose elements indicate whether pairs of vertices are adjacent
or not, namely

[A]i,j =

{
1 if (i, j) ∈ E
0 otherwise.

(101)

If G does not contain loops, then A has zero diagonal. Note
that the adjacency matrix is symmetric if the graph is undi-
rected.

The incidence matrix B of a directed graph G is the n×m
matrix defined by

[B]k,e =


−1 if k is the head of edge e,

1 if k is the tail of edge e,

0 otherwise.

(102)

The rows of B correspond to vertices and the columns corre-
spond to edges. Note that each column has exactly two non
zero entries, which correspond to the endpoints of the edge
associated to that column. The incidence matrix B of an
undirected graph G is defined considering a particular orien-
tation of the edges. It is shown in [23] that, if G is connected,
then

rank(B) = n− 1. (103)

The degree matrix D of an undirected graph G is the n×n
diagonal matrix such that [D]i,i contains the degree of node
i. Equivalently, it can be defined as

D = diag(A1n×1) (104)
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where 1n×1 denotes a n×1 matrix filled by ones, thus A1n×1

is the sum of the rows of A. In the case of a directed graph, ei-
ther the indegree or the outdegree can be used. The transition
matrix P is defined as

P = D−1A. (105)

The Laplacian matrix L of a graph G is defined as

L = D −A. (106)

It can be checked that, independently of the orientation of
the edges, the following equation holds

L = BBT (107)

which implies that L is symmetric and positive semidefinite,
and, if the graph is connected, rank(L) = rank(B) = n − 1,
hence L is singular. Note that the vector 1n×1 is in the null-
space of L.

The notion of adjacency matrix can be extended to the
case of a weighted graph, which translates in letting the en-
tries of A to assume values in [0, 1]. Specifically, [A]i,j con-
tains the weight of edge (i, j), and [A]i,j = 0 still indicates
that (i, j) 6∈ E. In this case Equations (104), (105) and (106)
still make sense, which define the degree matrix, the transi-
tion matrix and the Laplacian matrix of a weighted graph,
respectively.

The cycle matrix C corresponding to a cycle basis of a
connected graph G is the (m − n + 1) × m matrix having
the incidence vectors of the circuits in the basis in its rows.
The following equation [23] expresses the relation between
the cycle matrix and the incidence matrix

CBT = 0. (108)

Note that, if the graph is undirected, the matrices A and
L are symmetric, thus their eigenvalues are real. The matrix
P is not symmetric, but it is similar to the symmetric matrix
N defined as

N = D−1/2AD−1/2 (109)

since P = D−1/2ND1/2. The matrices N and P have the
same eigenvalues, so P has real eigenvalues.

Theorem 1 (Perron-Frobenius [77]) If an n × n ma-
trix has non-negative entries then it has a non-negative real
eigenvalue λ which has maximum absolute value among all
the eigenvalues. This eigenvalue has a non-negative real eigen-
vector. If, in addition, the matrix has no block-triangular de-
composition, then λ has multiplicity 1 and the corresponding
eigenvector is positive.

As explained in [74], the Perron-Frobenius theorem im-
plies that, if G is connected, the largest eigenvalue of A has
multiplicity 1. Likewise, the largest eigenvalue of the transi-
tion matrix is 1 and it ha multiplicity 1. It is easy to check
that the eigenvector associated to such eigenvalue is 1n×1.
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