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Abstract Single image super resolution aims to en-

hance image quality with respect to spatial content,

which is a fundamental task in computer vision. In this

work, we address the task of single frame super resolu-

tion with the presence of image degradation, e.g., blur,

haze, or rain streaks. Due to the limitations of frame

capturing and formation processes, image degradation

is inevitable, and the artifacts would be exacerbated

by super resolution methods. To address this problem,

we propose a dual-branch convolutional neural network

to extract base features and recovered features sepa-

rately. The base features contain local and global infor-

mation of the input image. On the other hand, the re-

covered features focus on the degraded regions and are

used to remove the degradation. Those features are then

fused through a recursive gate module to obtain sharp
features for super resolution. By decomposing the fea-

ture extraction step into two task-independent streams,

the dual-branch model can facilitate the training pro-

cess by avoiding learning the mixed degradation all-in-
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one and thus enhance the final high-resolution predic-

tion results. We evaluate the proposed method in three

degradation scenarios. Experiments on these scenarios

demonstrate that the proposed method performs more

efficiently and favorably against the state-of-the-art ap-

proaches on benchmark datasets.

Keywords super resolution · image restoration · deep

learning

1 Introduction

Single image super resolution (SISR) aims to restore a

high-resolution (HR) image from a low-resolution (LR)

one, such as those captured from surveillance and mo-

bile cameras. The generated HR image can improve the
performance of the numerous high-level vision tasks,

e.g., object detection (Zhang et al., 2011), face recog-

nition (Bai et al., 2018), and surveillance applications

(Zhang et al., 2010; Zou and Yuen, 2012). However,

image degradation is often inevitable due to the limi-

tations of the imaging processors and complex captur-

ing scenes. For example, motion blur, as well as hazy

and rainy weather would introduce undesired artifacts

in the captured LR images. Those artifacts cannot be

fully removed by the imaging formation pipeline and

would adversely affect the super resolution algorithms

and the following high-level tasks. The problems of su-

per resolution and image restoration from degradation

are often dealt with separately, as each one is known to

be ill-posed. However, such a strategy is neither optimal

nor efficient due to error accumulation.

In this work, we address the joint problem of sin-

gle image super resolution and restoration. We evalu-

ate the proposed super resolution architecture on im-

ages with three representative image degradations: mo-
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(a) Blurry low-resolution input

(b) Input patch (c) Lim et al. (2017) (d) Ours

(e) Input patch (f) Nah et al. (2017) (g) Ours

Fig. 1 Joint image deblurring and super resolution. While the state-of-the-art super resolution algorithm by Lim
et al. (2017) does not reduce the non-uniform blur in the input image due to the assumption of bicubic downsampling, the
top-performing non-uniform deblurring algorithm by Nah et al. (2017) generates sharp results but with few details. In contrast,
the proposed model generates a sharp HR image with more details.

tion blur, rain streaks, and haze. Here, we use super

resolution of a blurred image as the example to illus-

trate this joint task. Motion blur is often caused by

camera shake, object motion, and scene depth varia-

tion. Figure 1 shows one blurry LR image, which con-

tains non-uniform blur. As the existing super resolu-

tion algorithms (Lim et al., 2017; Ledig et al., 2017;

Lai et al., 2018; Kim et al., 2016a) are not designed to

handle motion blur explicitly, the resulting HR image

is still blurry (see Figure 1(b) and Figure 1(c)). On the

other hand, the state-of-the-art non-uniform deblurring
methods (Noroozi et al., 2017; Gong et al., 2017; Nah

et al., 2017; Kupyn et al., 2018) generate sharp images

but cannot restore fine details or enlarge the spatial

resolution (see Figure 1(e) and Figure 1(f)).

With the advances of deep Convolutional Neural

Networks (CNNs), the state-of-the-art image super res-

olution (Lim et al., 2017; Ledig et al., 2017; Lai et al.,

2018) and image restoration (Nah et al., 2017; Kupyn

et al., 2018; Mei et al., 2018; Zhang et al., 2017b; Zhang

and Patel, 2018b; Li et al., 2018c) methods are devel-

oped based on end-to-end networks and achieve promis-

ing performance. To jointly handle the image super res-

olution and degradation restoration, a straightforward

approach is to solve the two sub-problems sequentially,

i.e., performing image restoration followed by super res-

olution, or vice versa. However, there are numerous is-

sues within such an approach. First, a simple concate-

nation of two models is prone to error accumulation.

That is, the estimation error of the first model will be

propagated and exacerbated in the second model. Sec-

ond, the two-step network does not fully exploit the de-

pendence between the two tasks. For example, the fea-

ture extraction and image reconstruction steps are per-

formed twice and result in computational redundancy.

As both the training and inference processes are mem-

ory and time consuming, these approaches cannot be

applied to resource-constrained real-time applications,

e.g., autonomous driving and video surveillance.

Several recent methods (Xu et al., 2017; Yu et al.,

2018; Zhang et al., 2018a; Bao et al., 2017) jointly

solve the degraded image super resolution problem us-

ing end-to-end networks. However, these methods focus

on either domain-specific inputs, e.g., face and text (Xu

et al., 2017; Yu et al., 2018) images, or extending the

existing architecture to a particular degradation (Bao

et al., 2017).

Zhang et al. (2018a) propose a network with two

output branches to solve the joint deblurring and su-

per resolution task on natural images. Although this

method can be extended to super resolve other de-

graded images by changing the loss functions and train-

ing data, it does not perform well when severe degrada-

tion exists, e.g., non-uniform blur, heavy rain, or uneven

haze. In this work, we aim to handle these severe degra-

dations for natural images, which is more challenging.

We use a common image in a dynamic scene to il-

lustrate the motivation of the proposed method. The

blurry LR input is mixed with degraded (motion blur
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in this example) regions and relatively sharper regions.

If we extract features from these two regions in one

single branch, the training data contains noisy sam-

ples and thus makes it difficult to learn an effective

model for deblurring. To address this problem, we pro-

pose a Gated Fusion Network (GFN) which con-

sists of two branches: a restoration branch to extract

features for recovering the sharp LR image, and a base

branch to extract features for fusing. We adopt a recur-

sive gate module to adaptively fuse the features from

two branches for super resolution. The fused features

are then fed into an image reconstruction module to

generate the sharp HR image. Extensive evaluations

demonstrate that the proposed model performs favor-

ably against the combination of the state-of-the-art su-

per resolution and image restoration methods as well

as the existing joint models in different applications.

The contributions of this work are threefold:

– To the best of our knowledge, the proposed method

is the first generic deep learning architecture for im-

age super resolution under different degradations.

– We decouple the joint problem into two sub-tasks for

better network regularization. We propose a dual-

branch network to extract the base features and

recovered features separately and learn a recursive

gate module for adaptive feature fusion.

– The proposed model entails low computational cost

as most operations are performed in the LR space.

Our model performs more efficiently than the com-

binations of the state-of-the-art super resolution and

image restoration methods while achieving signifi-

cant performance improvement.

2 Related Work

Both image super resolution and image restoration are

fundamental problems in computer vision. In this sec-

tion, we discuss image super resolution and restoration

methods closely related to this work.

Image super resolution. Single image super resolu-

tion is an ill-posed problem as there are multiple HR im-

ages corresponding to the same LR input image. Con-

ventional approaches learn the LR-to-HR mappings us-

ing sparse dictionaries (Timofte et al., 2014), random

forest (Schulter et al., 2015), or self-similarity (Huang

et al., 2015). In recent years, the CNN-based methods

(Dong et al., 2016; Kim et al., 2016a) have demon-

strated significant improvement against conventional su-

per resolution approaches. Several techniques have been

developed based on recursive learning (Tai et al., 2017;

Kim et al., 2016b), pixel shuffling (Shi et al., 2016; Lim

et al., 2017), Laplacian pyramid (Lai et al., 2018), back-

projection (Haris et al., 2018), and channel attention

(Zhang et al., 2018b). In addition, several approaches

use the adversarial loss (Ledig et al., 2017), perceptual

loss (Johnson et al., 2016), and texture loss (Sajjadi

et al., 2017) to generate super resolution images. As

most super resolution algorithms assume that the LR

images are generated by a simple downsampling kernel,

e.g., bicubic kernel, they do not perform well when the

input images suffer from other unexpected degradation.

In contrast, the proposed model is able to super resolve

LR images with severe degradation.

Motion Deblurring. Most existing image deblurring

approaches (Cho and Lee, 2009; Xu et al., 2013; Pan

et al., 2016; Shan et al., 2008; Schmidt et al., 2011,

2013) assume that the blur is uniform and spatially in-

variant across the entire image. However, due to depth

variation and object motion, real-world images typi-

cally contain non-uniform blur. Several approaches ad-

dress the non-uniform deblurring problem by jointly es-

timating blur kernels with scene depth (Paramanand

and Rajagopalan, 2013; Hu et al., 2014) or segmenta-

tion (Kim et al., 2013). As the kernel estimation step

is computationally expensive, recent methods (Hradǐs

et al., 2015; Noroozi et al., 2017; Nah et al., 2017;

Nimisha et al., 2017) learn deep CNNs to bypass the

kernel estimation and efficiently solve the non-uniform

deblurring problem. Kupyn et al. (2018) adopt the Wasser-

stein generative adversarial network (GAN) to generate

realistic deblurred images and facilitate the object de-

tection task.

Image Dehazing. Existing single image dehazing meth-

ods often rely on strong image priors or statistical as-

sumptions (Fattal, 2008; Tan, 2008; He et al., 2011).

Tan (2008) assumes that haze-free images should have

higher contrast compared with corresponding hazy im-

ages. He et al. (2011) propose the dark channel prior

for haze-free outdoor images and achieve impressive re-

sults. Recent algorithms (Ren et al., 2016; Zhang and

Patel, 2018a; Zhang et al., 2017b) adopt deep CNNs

to estimate the transmission map, a major component

in the haze model, for reconstructing the haze-free out-

puts. However, inaccurate transmission maps often ad-

versely affect the dehazing results (Zhang and Patel,

2018a). Therefore, end-to-end architectures have been

proposed (e.g., (Ren et al., 2018; Mei et al., 2018)) to

directly recover the haze-free image without estimating

the transmission map.

Image Deraining. It is challenging to develop restora-

tion algorithms to deal with images captured from out-

door scenes as the contents are complex, dynamic, and
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with large lighting variations. Existing deraining meth-

ods can be categorized as video-based (Li et al., 2018b;

Liu et al., 2018; Jiang et al., 2017) or image-based

(Mairal et al., 2009; Liu et al., 2013; Reynolds et al.,

2000; Zhang and Patel, 2018b; Zhang et al., 2017a; Li

et al., 2018c,a; Yang et al., 2017; Fan et al., 2017). Al-

though video-based algorithms perform better by ex-

ploiting the temporal information, the single image de-

raining problem receives much research attention be-

cause of its flexibility and generality. Early methods rely

on handcrafted low-level features and prior informa-

tion, e.g., sparse coding and dictionary learning (Mairal

et al., 2009), low-rank representation (Liu et al., 2013),

and Gaussian mixture models (Reynolds et al., 2000).

However, these schemes are prone to failures of recover-

ing high-frequency details and removing the rain streaks

completely. Recent approaches show promising improve-

ment based on deep CNNs (Zhang and Patel, 2018b;

Zhang et al., 2017a; Li et al., 2018a; Fan et al., 2017),

recurrent neural network (RNNs) (Li et al., 2018c), and

iterative networks (Yang et al., 2017). Zhang and Pa-

tel (2018b) propose a multi-streaming network for joint

rain event detection and deraining. Recently, Zhang

et al. (2017a) introduce the conditional adversarial loss

to recover high-frequency details and a refined loss to

suppress the artifacts. Li et al. (2018c) utilize a deep

convolutional RNN to remove the overlap rain streaks

with multiple stages.

Degraded Image Super Resolution. Most super

resolution methods in the literature operate on images

without significant degradation caused by noise or blur.

Some approaches (Yamaguchi et al., 2010; Park and

Lee, 2017; Bascle et al., 1996) aim to solve the joint

task of super resolution and deblurring by exploiting

temporal information from the videos. As these meth-

ods depend on the optical flow estimation, such schemes

cannot be applied to the case of single input images.

Xu et al. (2017) train a generative adversarial network

to super resolve blurry face and text images. As face

and text images have distinct structured properties that

can be exploited, compact models can be developed to

address the joint task of super resolution and deblur-

ring for specific object categories. Zhang et al. (2018a)

propose a deep encoder-decoder network (ED-DSRN)

for joint image deblurring and super resolution. How-

ever, the HR images are directly reconstructed from

the inputs, which tend to generate unexpected struc-

tures in severely degraded regions. In this work, we de-

sign the network architecture to better extract features

in the presence of complex degradations. The proposed

model has fewer parameters than those of (Zhang et al.,

2018a) and can generate sharp HR images under differ-

ent degradations.

3 Gated Fusion Network

In this section, we describe the architecture design, train-

ing loss functions, and implementation details of the

proposed GFN for super resolution on degraded images.

3.1 Network Architecture

Given a degraded LR image Ldeg as the input, our goal

is to recover a sharp HR image Ĥ. In this work, we con-

sider the case of 4 times super resolution, i.e., the width

and height of Ĥ are 4 times larger than those of Ldeg.

The proposed model has a dual-branch architecture and

consists of four major modules: (i) a restoration mod-

ule Gres for recovering a sharp LR image L̂, (ii) a base

feature extraction module Gbase to extract visual infor-

mation from the blurry LR input, (iii) a gate module

Ggate for merging the features from the restoration and

base feature extraction modules, and (iv) a reconstruc-

tion module Grecon to reconstruct the final HR output

image. An overview of the proposed model is illustrated

in Figure 2.

Restoration Module. The goal of this restoration

module is to extract features for recovering a sharp

LR image L̂ from the degraded LR input Ldeg. We use

an asymmetric residual encoder-decoder architecture to

enlarge the receptive field. The encoder consists of three

scales, where each scale has a residual group (six resid-

ual blocks as proposed by Lim et al. (2017)) and the

first two residual groups are followed by a strided con-

volutional layer to downsample the feature maps by
1/2 times. The decoder has two deconvolutional lay-

ers to enlarge the spatial resolution of feature maps.

Finally, we use two additional convolutional layers to

reconstruct a sharp LR image L̂. We denote the output

features of the decoder by φRF , which are fed into the

gate module for feature fusion.

Base Feature Extraction Module. We use eight

residual blocks (Lim et al., 2017) to extract base fea-

tures from the degraded input Ldeg. To retain the spa-

tial information, we do not use any pooling or strided

convolutional layers. We denote the base features by

φBF .

Gate Module. In Figure 3, we show the responses

of φRF , φBF and fused features φnfusion from a blurry

LR input. While the base features φBF contain both

sharp and unclear contours (as shown on the wall of

Figure 3(b)), the recovered (deblurring) features φRF

have high response on the regions with large motion
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Base Feature Extraction Module Gate Module Reconstruction Module 
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Fig. 2 Architecture of the proposed GFN model. Our model consists of four major modules: restoration module Gres,
base feature extraction module Gbase, gate module Ggate, and reconstruction module Grecon. The features extracted by Gres

and Gbase are fused by Ggate and then fed into Grecon to reconstruct the HR output image.

(as shown by the pixels of the moving person in Fig-

ure 3(c)). Thus, the responses of φRF and φBF comple-

ment each other, especially on the degraded (blurry) re-

gions. To better extract features for super resolution, we

adaptively merge the recovered features and base fea-

tures by learning a gate module, which has been shown

effective to discover feature importance for multi-modal

fusion (Hochreiter and Schmidhuber, 1997; Ren et al.,

2018). We apply a basic gate block and adopt a recur-

sive merging strategy to progressively fuse the features.

As shown in Figure 4, each gate block consists of a

concatenation layer, two convolutional layers with the

filter size of 3 × 3 and 1 × 1, and a leaky rectified lin-

ear unit (LReLU) between the two convolutional layers.

The first recursive gate block, G1
gate, takes φRF , φBF ,

and the degraded LR input Ldeg as input, and gener-

ates a pixel-wise weight map. The fused features can be

formulated as,

φ1fusion = G1
gate(φRF , Ldeg, φBF )⊗ φRF + φBF , (1)

where ⊗ denotes the element-wise multiplication.

We propose a recursive strategy to exploit the de-

pendence of two independent branches for feature fu-

sion. We stack N gate blocks, where each block serves

as the same purpose of adaptively merging the recov-

ered features φRF into the main stream φnfusion (φBF

for the first block). The parameters are shared among

the recursive gate blocks, and the output of the previous

block φk−1
fusion, k = 2, . . . , N is used as the base features

in the next block. Figure 3 shows the proposed recur-

sive fusion process. Compared to the base features φBF ,

the features after the first fusion φ1fusion contain sharp

contours of the moving person. The fused features after

the second and third fusion steps contain clearer and

finer information of the person, especially on the chest

region, which is useful for HR image reconstruction.

The DGFN (Ren et al., 2018) method trains a net-

work to predict confidence maps for three hand-crafted

enhanced images derived from the input hazy image

and then uses a gate module to combine them for gen-

erating the sharp image without haze. This method

is specifically developed for the single-image dehazing

task, which cannot be straightforwardly extended to

other restoration tasks due to the usage of the hand-

crafted enhanced images. In contrast, the proposed method

is a generic framework for the joint image restoration

and super-resolution problem and does not involve any

heuristic process. Our gate module is designed to pre-

dict the confidence maps to adaptively fuse the features

from two sub-networks, where one extracts features for

restoration and another one extracts features from the

input image. The fused features are then fed into an

image reconstruction module to generate the sharp HR

output.

To retrieve more contextual information from hand-

crafted enhanced images, their gate module is constructed

with 3 dilated convolutional blocks and 3 deconvolu-

tional blocks. Since our gate module only aims to fuse
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(a) Input (b) φBF (c) φRF

(c) φ1
fusion (d) φ2

fusion (e) φ3
fusion

Fig. 3 Feature responses of the base features φBF ,
recovered (deblurring) features φRF , and fused fea-
tures from different gate blocks φ1

fusion, φ2
fusion, and

φ3
fusion. The base features contain unclear contours around

the degraded (blurry) regions, while the recovered (deblur-
ring) features have strong responses on those regions. The
fused features restore sharp structure and contours informa-
tion progressively by selectively merging φRF into φBF in
a recursive way. We normalize the feature maps for better
visualization.

two extracted features, our gate module only consists

of two convolutional layers and a leaky rectified linear

unit (LReLU) to maintain simplicity.

Reconstruction Module. In the final stage, the fused

features φNfusion are fed into eight residual blocks (Lim

et al., 2017) and two pixel-shuffling layers (Shi et al.,

2016) to enlarge the spatial resolution by 4 times. We

then use two final convolutional layers to reconstruct an

HR output image Ĥ. We note that most of the network
operations are performed in the LR feature space. Thus,

the proposed model entails low computational cost in

both training and inference phases.

3.2 Loss Functions

The proposed network generates two output images: a

recovered LR image L̂ and a sharp HR image Ĥ. In

our training data, each degraded LR image Ldeg has a

corresponding ground truth HR image H and a ground

truth LR image L, which is bicubic-downsampled from

H. Thus, we train our network by jointly optimizing a

super resolution loss and a recovering loss:

minLSR(Ĥ,H) + αLrecover(L̂, L), (2)

where α is a weight to balance the two loss terms.

Without the recovering loss, both the base feature

extraction module and restoration module are solely

guided by the super resolution loss. In this case, there

is no guarantee that the dual-branch architecture can

learn to extract recovered features. We have trained

GFN without recovering loss and found that its re-

sult in PSNR is worse than the proposed GFN (27.69

vs. 27.91) on the joint deblurring and super resolu-

tion problem. Therefore, we impose a guidance on the

restoration branch using the recovering loss to encour-

age the branch to extract recovered features for the

restoration task. We use the pixel-wise L2 loss func-

tion for both LSR and Lrecover, and empirically set α

to 0.5.

3.3 Implementation Details

In the proposed network, the filter size is set as 7 × 7

in the first and the last convolutional layers, 4 × 4 in

the deconvolutional layers, 1 × 1 in the last convolu-

tional layers of the gate blocks, and 3 × 3 in all the

other convolutional layers. We randomly initialize all

the trainable parameters by using the method of (He

et al., 2015). We use the leaky rectified linear unit

(LReLU) with a negative slope of 0.2 as the activation

function. As suggested in (Lim et al., 2017), we do not

use any batch normalization layers in order to retain

the range flexibility of features. To facilitate the train-

ing process, we use skip connections in the restoration

module and base feature extraction module (refer to

the dashed lines in Figure 2). From quantitative evalu-

ations (see Table 4), we find that the gate module with

3 recursive gate blocks, i.e., N = 3, achieves the best

performance on all three applications. Thus we set N to

3 as the default parameter of the proposed GFN model.

We use the ADAM solver (Kingma and Ba, 2015) with

β1 = 0.9 and β2 = 0.999 to optimize the network. All

the training and evaluation processes are conducted on

an NVIDIA 1080Ti GPU. The source code can be found

at https://github.com/BookerDeWitt/GFN-IJCV.

4 Experimental Results

In this section, we evaluate the proposed GFN model on

super resolving blurry, hazy images, and rainy images.

We present quantitative and qualitative comparisons

with state-of-the-art approaches. In addition, we carry

out ablation studies to analyze several design choices of

the proposed model.

4.1 Super Resolving Blurry Image

Training Dataset and Details. We use the GOPRO

(Nah et al., 2017) dataset to generate the training data

https://github.com/BookerDeWitt/GFN-IJCV
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Fig. 4 Structure of the recursive gate module. We use recursive gate blocks to fully exploit the correlation between the
features from two independent branches and fuse them progressively. Since each block serves as the same purpose of adaptively
merging the recovered features φRF into the main stream φn

fusion (φBF for the first block), the parameters are shared among
blocks.

for the joint super resolution and deblurring problem.

The GOPRO dataset contains 2103 blurry and sharp

HR image pairs for training. To augment the training

data, we resize each HR image pair with three random

scales within the scale of 0.5 and 1.0. We then crop the

HR images into several patches with a size of 256×256

and a stride of 128. We downsample the blurry HR

patch Hblur and sharp HR patch H by 4 times us-

ing bicubic downsampling to generate the blurry LR

patches Lblur and sharp LR patches L. We obtain 107,584

triplets of {Lblur, L,H} for training (the blurry HR

patches Hblur are discarded during training). The gen-

erated dataset is referred to as LR-GOPRO in the fol-

lowing.

To facilitate the training process, we use a three-

stage training strategy. First, we pre-train the network

without the gate module by simply fusing φRF and

φBF via addition. Therefore, only the restoration mod-

ule, base feature extraction module, and reconstruction

modules are updated in this stage. We use an initial

learning rate of 10−4 with a decay rate of 0.5 every

6 epochs. The network is trained from scratch for 25

epochs. We note that the rapidly decaying pre-training

without the gate module is important in the early stage

as it helps avoid the exploding gradient issues. In the

second stage, we continue training the models without

the gate module for 60 epoch. The learning rate is re-

set to 10−4 and multiplied by 0.1 for every 30 epochs.

Finally, we include the gate module and train the en-

tire network for 60 epochs. The learning rate is set to

5× 10−5 and multiplied by 0.1 for every 25 epochs. We

use a batch size of 16.

Performance Evaluation. We evaluate the proposed

GFN model with the state-of-the-art super resolution

methods (Ledig et al., 2017; Lim et al., 2017; Zhang

et al., 2018b), joint image deblurring and super resolu-

tion approaches (Xu et al., 2017; Zhang et al., 2018a),

and straightforward combinations of super resolution

and non-uniform deblurring schemes (Nah et al., 2017;

Kupyn et al., 2018; Tao et al., 2018). For fair compar-

isons, we re-train the SCGAN (Xu et al., 2017), SRRes-

Net (Ledig et al., 2017), and ED-DSRN (Zhang et al.,

2018a) models on the same training dataset discussed

above. Other super resolution methods are trained on

the DIV2K dataset (Agustsson and Timofte, 2017) and

deblurring methods are trained on the GOPRO dataset

(Nah et al., 2017).

We use bicubic downsampling to generate blurry LR

images from the test set of the GOPRO (Nah et al.,

2017) and Köhler (Köhler et al., 2012) datasets for eval-

uation. Table 1 shows the quantitative evaluation in

terms of PSNR, SSIM, and average inference time. The

tradeoff between image quality and efficiency is bet-

ter visualized in Figure 5. The proposed GFN model

performs favorably against existing methods on both

datasets and maintains a low computational cost and

execution time. While the re-trained SCGAN and SR-

ResNet perform better than their pre-trained models,

both methods do not handle the complex non-uniform

blur well due to their small model capacity. It is noted

that the SCGAN takes bicubic upsampled images as

the inputs, and most operations are performed in the

HR feature space. In contrast, the ED-DSRN and our

GFN take LR images as the inputs, and most opera-

tions are performed in the LR feature space. Therefore,

the SCGAN runs slower than others even with fewer

parameters. The ED-DSRN method performs well us-

ing a large model with more parameters. However, the
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single-branch architecture of ED-DSRN is less effective

than the proposed dual-branch network.

The straightforward approaches by combining super

resolution and deblurring methods are generally less ef-

fective due to the error accumulation. We note that the

approaches first using super resolution (i.e., performing

super resolution followed by image deblurring) typically

perform better than the alternatives (i.e., performing

image deblurring followed by super resolution). How-

ever, the strategy by first performing super resolution

entails heavy computational cost as the time-consuming

image deblurring step is performed in the HR image

space. Compared with the best-performing combination

of EDSR and DeepDeblur methods, the proposed GFN

model executes 116 times faster and uses 78% fewer

model parameters.

We present the qualitative results of the LR-GOPRO

dataset in Figure 6 and a real blurry image in Figure 7.

The methods using the combination scheme, e.g., Deep-

Deblur + EDSR and EDSR + DeepDeblur, often intro-

duce undesired artifacts due to the error accumulation

problem. Existing joint super resolution and deblurring

methods (ED-DSRN and SCGAN) do no handle non-

uniform blur well. In contrast, the proposed algorithm

generates sharp HR images with more details.

4.2 Super Resolving Hazy Image

Training Dataset and Details. We use the RESIDE

(Li et al., 2017b) dataset to generate the training data

for the joint super resolution and dehazing problem. For

training, we randomly select 5005 outdoor hazy and

sharp HR image pairs in 35 different haze concentra-

tions and 5000 indoor HR pairs in 10 different haze

concentrations from RESIDE training sets. We apply

the same procedure as the LR-GOPRO dataset to gen-

erate the training triplets of {Lhaze, L,H}. We refer to

the generated dataset as LR-RESIDE in the following.

Since the training process of joint dehazing and su-

per resolution is more stable compared with that of

joint deblurring and super resolution, we simplify the

training process into two stages. First, we train the

network without the gate module from scratch for 25

epochs. The learning rate is set to 10−4 and multiplied

by 0.5 for every 7 epochs. Second, we enable the gate

module and train the complete model for 60 epochs

where the learning rate is set to 10−4 and multiplied

by 0.1 for every 25 epochs. The other settings are the

same as those for blurry image super resolution.

Performance Evaluation. We choose 500 indoor im-

age pairs and 500 outdoor image pairs from the test set

of the RESIDE dataset for evaluation. We compare the

proposed GFN model with the state-of-the-art super

resolution methods (Ledig et al., 2017; Lim et al., 2017;

Zhang et al., 2018b), joint image deblurring and super

resolution approaches (Zhang et al., 2018a; Xu et al.,

2017), and combinations of super resolution algorithms

and dehazing schemes (He et al., 2011; Berman et al.,

2016; Ren et al., 2018; Mei et al., 2018; Li et al., 2017a;

Chen et al., 2019). For fair comparisons, we re-train

the models of SRResNet (Ledig et al., 2017), ED-DSRN

(Zhang et al., 2018a), and PFFNet (Mei et al., 2018) on

our training set1. Other super resolution methods are

trained on the DIV2K dataset (Agustsson and Timo-

fte, 2017) and deep learning-based dehazing methods

are trained on the RESIDE dataset (Li et al., 2017b).

The quantitative evaluations in Table 2 show that the

proposed GFN model performs well in terms of PSNR

and SSIM with shorter inference time. We present qual-

itative results on the LR-RESIDE dataset in Figure 8.

The state-of-the-art super resolution method (RCAN)

does not remove the haze from the hazy input, and the

straightforward combination schemes, e.g., PFFNet +

RCAN and RCAN + PFFNet, generate undesired arti-

facts and distorted colors on the flat regions due to the

error accumulation problem. The re-trained SRResNet

and ED-DSRN methods do not recover the details well.

In contrast, the proposed model generates better results

with more details.

4.3 Super Resolving Rainy Image

Training Dataset and Details. Since there is no off-

the-shelf dataset for rainy image super resolution, we

use the Rain1200 (Zhang and Patel, 2018b) dataset to

generate rainy LR images. We note that directly ap-

plying bicubic downsampling on the rainy HR images

tends to remove rain streaks as this operator, similar to

low-pass filtering, reduces high-frequency details such

as thin structures. As shown in Figure 9, the LR im-

age directly downsampled from rainy HR image does

not contain many rain streaks and is similar to the LR

image downsampled from the clean HR image (see Fig-

ure 9(b) and (c)). In order to obtain more realistic LR

inputs, we generate rainy LR images by synthesizing

rainy streaks on downsampled sharp images. We first

apply bicubic downsampling on the sharp HR image H

to generate the sharp LR image L. Similar to (Zhang

and Patel, 2018b), we use Photoshop to synthesize rain

streaks on L to generate the rainy LR image Lrain.

1 Since the pre-trained model of the PFFNet is not avail-
able, we train the network directly on the RESIDE dataset
and achieve quantitative results on the RESIDE dataset bet-
ter than the reported results. We use this model in the fol-
lowing experiments.
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Table 1 Quantitative comparison with the state-of-the-art methods on super resolving the blurry images.
The evaluated methods include super resolution methods, SRResNet (Ledig et al., 2017), EDSR (Lim et al., 2017), RCAN
(Zhang et al., 2018b), image deblurring methods, DeepDeblur (Nah et al., 2017), DeblurGAN (Kupyn et al., 2018), SRN
(Tao et al., 2018), and joint approaches, SCGAN (Xu et al., 2017), ED-DSRN (Zhang et al., 2018a). The methods with a ?
sign are trained on our LR-GOPRO training set. Red texts indicate the best performance. The proposed GFN model performs
favorably against existing methods while maintaining a small model size and fast inference speed.

LR-GOPRO 4× LR-Köhler 4×
Method #Params

PSNR / SSIM / Time (s) PSNR / SSIM / Time (s)
SCGAN 1.1M 22.74 / 0.783 / 0.66 23.19 / 0.763 / 0.45

SRResNet 1.5M 24.40 / 0.827 / 0.07 24.81 / 0.781 / 0.05
EDSR 43M 24.52 / 0.836 / 2.10 24.86 / 0.782 / 1.43
RCAN 16M 24.54 / 0.836 / 1.76 24.87 / 0.782 / 1.17

SCGAN? 1.1M 24.88 / 0.836 / 0.66 24.82 / 0.795 / 0.45
SRResNet? 1.5M 26.20 / 0.818 / 0.07 25.36 / 0.803 / 0.05
ED-DSRN? 25M 26.44 / 0.873 / 0.10 25.17 / 0.799 / 0.08

DeepDeblur + SRResNet 13M 24.99 / 0.827 / 0.66 25.12 / 0.800 / 0.55
SRResNet + DeepDeblur 13M 25.93 / 0.850 / 6.06 25.15 / 0.792 / 4.18
DeblurGAN + SRResNet 13M 21.71 / 0.686 / 0.14 21.10 / 0.628 / 0.12
SRResNet + DeblurGAN 13M 24.44 / 0.807 / 0.91 24.92 / 0.778 / 0.54

DeblurGAN + EDSR 54M 21.53 / 0.682 / 2.18 20.74 / 0.625 / 1.57
EDSR + DeblurGAN 54M 24.66 / 0.827 / 2.95 25.00 / 0.784 / 1.92
DeepDeblur + EDSR 54M 25.09 / 0.834 / 2.70 25.16 / 0.801 / 2.04
EDSR + DeepDeblur 54M 26.35 / 0.869 / 8.10 25.24 / 0.795 / 5.81
DeepDeblur + RCAN 37M 25.10 / 0.833 / 3.91 25.16 / 0.801 / 3.52
RCAN + DeepDeblur 37M 26.34 / 0.870 / 5.39 25.24 / 0.794 / 4.67

SRN + RCAN 17M 25.62 / 0.867 / 3.10 25.18 / 0.798 / 1.66
RCAN + SRN 17M 26.00 / 0.874 / 5.76 25.20 / 0.799 / 4.49

GFN? (ours) 12M 27.91 / 0.902 / 0.07 25.79 / 0.818 / 0.05

(a) PSNR vs. inference time (b) PSNR vs. number of parameters

Fig. 5 Performance versus inference time and model parameters. The results are evaluated on the LR-GOPRO
dataset.

After data augmentation, we obtain 24,000 triplets of

{Lrain, L,H} for training and 1,200 triplets for testing.

We refer to the generated dataset as LR-Rain1200 in

the following.

To remove long streaks in the rainy images, we mod-

ify the network structure of the restoration module to

enlarge the receptive field. Specifically, we use the struc-

ture in (Mei et al., 2018) as the encoder-decoder archi-

tecture of the restoration module. Since the resolution

of a rainy LR input in this dataset is relatively low

(128 × 128), we remove the last strided convolutional

layer and set the output channels of the rest three scales

to 64, 128, and 256 respectively. Moreover, we apply the

residual learning scheme in the reconstruction module

Grecon to accelerate the training process. We use a de-

convolutional layer with the filter size of 4×4 to upsam-

ple the rainy LR input before merging with the output

of the reconstruction module Grecon. The training pro-

cesses are mostly the same as the one for the blurry

image super resolution task except that we use a batch

size of 6 due to limited GPU memory.

Performance Evaluation. Table 3 shows the quanti-

tative results in terms of PSNR, SSIM, and average in-

ference time. Since there exists no approach for joint im-
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(a) Ground-truth HR (b) Blurry LR input (c) DeepDeblur + EDSR (d) EDSR + DeepDeblur
PSNR / SSIM 21.04 / 0.787 24.58 / 0.846 25.04 / 0.876

(e) SCGAN? (f) ED-DSRN? (g) SRResNet? (h) GFN? (ours)
23.00 / 0.835 26.07 / 0.896 25.63 / 0.881 29.02 / 0.929

Fig. 6 Visual comparison on the LR-GOPRO dataset. The evaluated methods include SRResNet (Ledig et al., 2017),
EDSR (Lim et al., 2017), SCGAN (Xu et al., 2017), ED-DSRN (Zhang et al., 2018a), and DeepDeblur (Nah et al., 2017). The
methods with a ? sign are trained on our LR-GOPRO training set. The proposed method generates sharper HR images with
more details.

(a) Blurry LR input (b) ED-DSRN? (c) SRResNet? (d) GFN? (ours)

Fig. 7 Visual comparison on the real blurry image dataset (Su et al., 2017). The methods with a ? sign are trained
on our LR-GOPRO training set. The proposed GFN model is more robust to outliers in real images and generates sharper
results than the re-trained state-of-the-art methods ED-DSRN (Zhang et al., 2018a) and SRResNet (Ledig et al., 2017).

age deraining and super resolution, we evaluate against

the state-of-the-art super resolution algorithms (Ledig

et al., 2017; Lim et al., 2017; Zhang et al., 2018b),

joint image deblurring and super resolution approaches

(Zhang et al., 2018a; Xu et al., 2017), and straightfor-

ward combinations of super resolution and deraining

schemes (Zhang and Patel, 2018b; Zhang et al., 2017a;

Li et al., 2018c). For fair comparisons, we re-train the

SRResNet (Ledig et al., 2017) and ED-DSRN (Zhang

et al., 2018a) models on our training set. The other

super resolution methods are trained on the DIV2K

dataset (Agustsson and Timofte, 2017) and deep learning-

based deraining methods are trained on the Rain800

dataset (Zhang et al., 2017a) (RESN and IDGAN) and

Rain1200 dataset (Zhang and Patel, 2018b) (DID-MDN).

As shown in Table 3, the proposed model with a large

receptive field, denoted by GFN-Large, achieves bet-

ter performance with shorter inference time and fewer

model parameters than the evaluated methods. Some

deblurred results are shown in Figure 10. Although the

RCAN method recovers some high-frequency details, it

does not remove the rain streaks on the image. The

re-trained SRResNet model and straightforward com-

bination approaches, DID-MDN + RCAN and RCAN

+ DID-MDN, do not remove long rain streaks and of-

ten introduce unexpected artifacts on the rich texture



Gated Fusion Network for Degraded Image Super Resolution 11

(a) Ground-truth HR (b) Hazy LR input (c) RCAN (d) PFFNet + RCAN
PSNR / SSIM 7.28 / 0.401 7.30 / 0.419 17.08 / 0.800

(a) RCAN + PFFNet (b) ED-DSRN? (c) SRResNet? (d) GFN? (ours)
24.03 / 0.920 27.23 / 0.952 24.84 / 0.917 28.85 / 0.961

Fig. 8 Visual comparison on the LR-RESIDE dataset. The evaluated methods include SRResNet (Ledig et al., 2017),
RCAN (Zhang et al., 2018b), ED-DSRN (Zhang et al., 2018a), and PFFNet (Mei et al., 2018). The methods with a ? sign are
trained on our LR-RESIDE training set. The proposed model generates sharper HR images with more details.

regions due to the error accumulation problem. The re-

trained ED-DSRN model removes most rain streaks but

does not restore clear contours and high-frequency de-

tails. The proposed GFN-Large model accurately re-

moves the rain streaks while preserving the structural

information and recovering more details.

4.4 Ablation Study and Analysis

The proposed GFN consists of four modules: a restora-

tion module to extract recovered features; a dual-branch

architecture instead of a concatenation of base and restora-

tion modules; a fusion approach on the feature level;

and a gate module to adaptively fuse base and recovered

features. To further analyze the components, we train

the combination of the base feature extraction module

and reconstruction module (Gbase+Grecon) as the base-

line and introduce other modules progressively to eval-

uate them. All the models in this section are trained

from scratch using the same settings for fair compar-

isons. Without loss of generality, we conduct these ex-

periments on two applications, blurry image super res-

olution and hazy image super resolution. The evaluated
network architectures are illustrated in Figure 11, and

the results are shown in Table 4.

Effect of Restoration Module. We use the restora-

tion module and baseline model in two ways: restoration

first (Model-1) and SR first (Model-2). The restoration

module shows significant performance improvement over

the baseline on both applications (0.62 dB and 1.24 dB

for blurry and hazy images, respectively). The SR-first

combination scheme achieves better performance but

has slower execution speed.

Effect of Dual-Branch Architecture. We use a dual-

branch structure to extract the base and recovered fea-

tures separately (Model-3 listed in Table 4). The out-

puts of the two modules are fused by direct addition,

and the recovering loss is used to guide this process.

Compared with the sequential restoration and super

resolution method (Model-1), it achieves 0.19 dB and

0.28 dB improvement on blurry and hazy images, re-

spectively. Furthermore, the Model-3 performs compa-
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Table 2 Quantitative comparison with the state-of-
the-art methods on super resolving the hazy images.
The evaluated methods include super resolution meth-
ods, SRResNet (Ledig et al., 2017), EDSR (Lim et al., 2017),
RCAN (Zhang et al., 2018b), image dehazing methods,
DCP (He et al., 2011), NLD (Berman et al., 2016), DGFN
(Ren et al., 2018), GCANet (Chen et al., 2019), PFFNet
(Mei et al., 2018), AODN (Li et al., 2017a), and joint ap-
proaches, SCGAN (Xu et al., 2017), ED-DSRN (Zhang
et al., 2018a). The methods with a ? sign are trained on our
LR-RESIDE training set. Red texts indicate the best perfor-
mance. The proposed GFN performs favorably against exist-
ing methods while maintaining a small model size and fast
inference speed.

LR-RESIDE 4×
Method #Params

PSNR / SSIM / Time (s)
SRResNet 1.5M 13.29 / 0.566 / 0.02

EDSR 43M 13.71 / 0.650 / 0.12
RCAN 16M 13.72 / 0.652 / 0.30

SRResNet? 1.6M 23.58 / 0.791 / 0.02
ED-DSRN? 25M 24.89 / 0.813 / 0.04

DGFN + SRResNet 2.2M 19.62 / 0.618 / 0.03
SRResNet + DGFN 2.2M 19.34 / 0.607 / 0.08
AODN + SRResNet 1.5M 16.49 / 0.597 / 0.02
SRResNet + AODN 1.5M 17.07 / 0.563 / 0.05

EDSR + DCP 16M 17.46 / 0.572 / 24.0
EDSR + NLD 16M 17.70 / 0.576 / 10.6

AODN + EDSR 43M 17.05 / 0.702 / 0.12
EDSR + AODN 43M 18.30 / 0.713 / 0.13
DGFN + EDSR 44M 21.03 / 0.740 / 0.13
EDSR + DGFN 44M 21.89 / 0.775 / 0.18
DGFN + RCAN 16M 21.04 / 0.740 / 0.30
RCAN + DGFN 16M 21.92 / 0.777 / 0.36

PFFNet + RCAN 38M 20.55 / 0.678 / 0.31
RCAN + PFFNet 38M 23.76 / 0.795 / 0.31
RCAN + GCANet 17M 22.93 / 0.786 / 1.2

GFN? (ours) 12M 25.77 / 0.830 / 0.02

rably with the SR-first method (Model-2) but more ef-

ficiently. This is due to the heavy computation load of

the restoration process carried out in the HR feature

space for Model-2.

Effect of Feature Level Fusion. Since the recover-

ing loss in the Model-3 is computed after fusion, it does

not provide explicit guidance on each branch. In the

Model-4, we impose the recovering loss on the restora-

tion branch as explicit regularization. Furthermore, to

reduce the computational redundancy and avoid error

accumulation, we fuse the branches on the feature level,

instead of fusing them on the pixel level. Compared

with the Model-3, the Model-4 achieves 0.52 dB and

0.11 dB performance improvement and lower computa-

tional cost on two tasks.

Effect of Gate Module. We introduce the gate mod-

ule to enable local and channel-wise feature fusion from

two branches. The gate module also helps exploit the

dependence between the features. Here, we evaluate the

gate module in terms of the number of recursive blocks

Table 3 Quantitative comparison with the state-of-
the-art methods on super resolving the rainy images.
The evaluated methods include super resolution meth-
ods, SRResNet (Ledig et al., 2017), EDSR (Lim et al., 2017),
RCAN (Zhang et al., 2018b), image deraining methods,
RESN (Li et al., 2018c), IDGAN (Zhang et al., 2017a), DID-
MDN (Zhang and Patel, 2018b), and joint approaches, SC-
GAN (Xu et al., 2017), ED-DSRN (Zhang et al., 2018a). The
methods with a ? sign are trained on our LR-Rain1200 train-
ing set. Red texts indicate the best performance. The GFN-
Large scheme performs favorably against existing methods
while maintaining a small model size and fast inference speed.

LR-Rain1200 4×
Method #Params

PSNR / SSIM / Time (s)
SRResNet 1.5M 16.27 / 0.341 / 0.02

EDSR 43M 19.88 / 0.548 / 0.12
RCAN 16M 19.94 / 0.548 / 0.30

SRResNet? 1.6M 23.29 / 0.624 / 0.02
ED-DSRN? 25M 23.86 / 0.694 / 0.04

RESN + SRResNet 1.7M 19.01 / 0.497 / 0.05
SRResNet + RESN 1.7M 17.75 / 0.386 / 0.72

IDGAN + SRResNet 1.8M 18.28 / 0.451 / 0.30
SRResNet + IDGAN 1.8M 17.25 / 0.407 / 0.37

RESN + EDSR 43M 20.71 / 0.617 / 0.15
EDSR + RESN 43M 22.37 / 0.644 / 0.82

IDGAN + EDSR 43M 19.57 / 0.581 / 0.40
EDSR + IDGAN 43M 19.96 / 0.606 / 0.47
RESN + RCAN 16M 20.74 / 0.618 / 0.33
RCAN + RESN 16M 22.53 / 0.650 / 1.00

DID-MDN + RCAN 82M 22.31 / 0.610 / 0.31
RCAN + DID-MDN 82M 23.50 / 0.685 / 0.35

GFN? (ours) 12M 24.64 / 0.705 / 0.02
GFN-Large? (ours) 24M 25.24 / 0.709 / 0.02

N . As shown in Table 4, the gate module with 3 recur-

sive blocks performs best, with improvements of 0.38

dB and 0.58 dB over the Model-4 on two tasks. We

note that the gate module with more than 3 recursive

blocks does not perform well.

Generalizability of GFN. To show that the proposed

architecture is a generic framework, we replace the orig-

inal restoration and reconstruction modules with more

advanced network architectures and show that it can

obtain further performance gains. We use the Residual

Dense Block (RDB) in the RDN (Zhang et al., 2018c)

to replace the ResBlock in the reconstruction module

and use the dilation architecture in the GCANet (Chen

et al., 2019) to replace the classical encoder-decoder ar-

chitecture in the restoration module. As shown in Ta-

ble 5, using the more advanced structure improves the

performance under the same training settings. More ab-

lation study are included in the appendix.

4.5 Limitations

To remove non-local degradation, such as haze or long

rain streaks, we use an encoder-decoder architecture

to extract global and contextual information. However,
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Table 4 Analysis of key components in the proposed GFN. All models are trained on the LR-GOPRO dataset or the
LR-RESIDE dataset with the same hyper-parameters. The baseline method is the network with the base feature extraction
module and the reconstruction module. DB is the abbreviation for “deblurring”, and DH is the abbreviation for “dehazing”.

Modifications Baseline Model-1 Model-2 Model-3 Model-4 GFNN=1 GFNN=2 GFNN=3 GFNN=4

restoration module X X X X X X X X
dual-branch X X X X X X
feature level X X X X X
gate module X X X X

SR-first X
DB + SR PSNR(dB) 26.20 26.82 27.00 27.01 27.53 27.74 27.87 27.91 27.86

Time (s) 0.07 0.09 0.57 0.10 0.07 0.07 0.07 0.07 0.07
DH + SR PSNR(dB) 23.58 24.82 25.12 25.10 25.21 25.44 25.69 25.77 25.72

Time (s) 0.02 0.03 0.16 0.03 0.02 0.02 0.02 0.02 0.02

Table 5 Qualitative results using different restoration and reconstruction modules on the LR-RESIDE dataset.
We evaluate the following methods: replacing the ResBlock in the proposed GFN with the Residual Dense Block (RDB) in the
RDN (Zhang et al., 2018c) (GFN RDN), replacing the restoration module in the proposed GFN with the dilation architecture
in the GCANet (Chen et al., 2019) (GFN GCANet), and replacing both of them (GFN RDN GCANet). All the models are
trained using the same setting.

GFN GFN RDN GFN GCANet GFN RDN GCANet
PSNR/SSIM 25.77/0.830 25.88/0.833 25.83/0.831 25.90/0.833

(a) (b)

(c) (d)

Fig. 9 Examples of the generated low-resolution im-
age for super resolving rainy images. To generate train-
ing and testing dataset for super resolving rainy images, we
use rainy/sharp image pairs from Rain1200 dataset (Zhang
and Patel, 2018b) as the HR images. Simply applying bicubic
downsampling on the rainy HR image (a) results in the LR
image (c), where many rain streaks are removed. Thus, we
first obtain a sharp LR image (b) by applying bicubic down-
sampling on the sharp HR image and generate the rainy LR
image (d) by synthesizing rain streaks using the approach in
(Zhang and Patel, 2018b).

this approach does not effectively extract local features

commonly used for super resolution (Lim et al., 2017;

Ledig et al., 2017). As a result, the proposed method

tends to generate over-smoothed results compared to

the other schemes, as shown in some regions of Figure 8

and Figure 10. For future work, we will explore more

effective architectures to better exploit both global and

local visual information for super resolution on degraded

images.

5 Conclusions

In this paper, we propose an end-to-end architecture

to recover a sharp HR image from a degraded LR in-

put. The proposed network consists of two branches

to extract recovered and base features separately. The

extracted features are fused through a recursive gate

module and used to reconstruct the final results. The

network design decouples the joint problem into two

restoration tasks and enables efficient training and in-

ference. Extensive evaluations of different restoration

tasks demonstrate that the proposed model is effective

for super resolving degraded images.
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(a) Ground-truth HR (b) Rainy LR input (c) RCAN (d) DID-MDN + RCAN
PSNR / SSIM 18.80 / 0.761 18.58 / 0.726 22.28 / 0.806

(a) RCAN + DID-MDN (b) ED-DSRN? (c) SRResNet? (d) GFN-Large? (ours)
24.90 / 0.872 24.62 / 0.828 24.10 / 0.826 25.50 / 0.869

Fig. 10 Visual comparison on the LR-Rain1200 dataset. The evaluated methods include SRResNet (Ledig et al.,
2017), RCAN (Zhang et al., 2018b), ED-DSRN (Zhang et al., 2018a), and DID-MDN (Zhang and Patel, 2018b). The methods
with a ? sign are trained on our LR-Rain1200 training set. The proposed model is able to remove rain streaks and generates
sharper HR images with more details.
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Appendix

A Network Configuration

We present the detailed configuration of the proposed

network in Table A, with respect to the four modules

in the network: the deblurring module, SR feature

extraction module, recursive gate module, and

reconstruction module.

B List of the Evaluated Methods

All the the evaluated methods in Section 4 are listed in

Table B.

C Additional Visual Results

In this section, we present more qualitative comparisons

on the LR-RESIDE in Figure A, which includes the

combinations of the SR algorithm (Lim et al., 2017)

and dehazing algorithms (He et al., 2011; Berman et al.,

2016; Ren et al., 2018).

D Additional Ablation Study and analysis

To further demonstrate the importance of the dual-

branch architecture and gate module, more ablation

study and visual results are presented in this section.

We first compare the restoration module with the state-

of-the-art restoration methods to evaluate the perfor-

mance contribution brought by the image restoration

module. Then, the qualitative results of the ablation

study are presented to demonstrate how other modules

help to improve the performance.

Performance of Restoration Module. We provide

the quantitative results from the state-of-the-art restora-

tion methods and the proposed restoration module in

Table C. The restoration methods include deblurring

algorithms (DeepDeblur Nah et al. (2017), DeblurGAN

Kupyn et al. (2018), and SRN Tao et al. (2018)), de-

hazing algorithms (DGFN Ren et al. (2018), GCANet

Chen et al. (2019), and PFFNet Mei et al. (2018)),

and deraining algorithms (IDGAN Zhang et al. (2017a),

RESN Li et al. (2018c), and DID-MDN Zhang and Patel

(2018b)). Since these restoration methods are trained

on the high-resolution images (GOPRO, RESIDE,

Rain1200 datasets), we re-train the restoration mod-

ule on the same high-resolution datasets for fair com-

parisons. As shown in Table C, in none of these three

datasets does our restoration module acquire the best

results, while the proposed GFN still performs favor-

ably on all the three datasets as shown in Table 1,2,3

of the manuscript. Therefore, the favorable performance

of the proposed method comes from the architecture de-

signs, such as the dual-branch architecture and the gate

module.

Effect of dual-branch architecture and gate mod-

ule. To further demonstrate the benefits of the dual-

branch architecture and gate module, we present an

example in Figure B. Figure B(b) and (c) show the out-

puts of the restoration module Gres and Model-1 (Gres

+ Gbase + Grecon) in Figure 11(a). Since the artifacts

in the Gres are propagated to the Gbase and Grecon,

the Model-1 generates less satisfactory results as shown

in Figure B(c). Figure B(d) shows the output of the

Model-4 in Figure 11(d), which adopts the dual-branch

architecture without the gate moduleGgate. Figure B(d)

contains fewer artifacts than Figure B(c), especially on

the regions that are relatively sharper in the input im-

age. This is because the dual-branch architecture com-

bines features from both input images and recovered

images and, therefore, avoids error propagation from

only the recovered images. Figure B(e) shows the out-

put of the proposed GFN introducing the gate module

to adaptively fuse the features. By exploiting the con-

fidence of the features from two branches (φRF into

φBF ), the gate module manages to suppress the arti-

facts and blurry features via local and channel-wise fea-

ture fusion. Figure B(f)-(j) shows that our model pro-

gressively fuses features and suppresses artifacts through

the gate module.

E Applications on Detection Task

To demonstrate that the proposed method can help

the following high-level tasks, we compare the proposed

GFN with state-of-the-art methods on the object de-

tection task. We first generate two datasets from the

KITTI dataset (Geiger et al., 2012), one blurry low-

resolution dataset and a hazy low-resolution dataset.

For the blurry dataset, we apply the single image non-

uniform blurry synthesis method in Lai et al. (2016)

to generate the blurry HR images and use the bicubic

downsampling to generate the blurry LR images as the

inputs. We then generate recovered HR images with

the following methods: the bicubic upsampling, deblur-

ring method SRN (Tao et al., 2018) with super resolu-

tion method RCAN (Zhang et al., 2018b), joint restora-

tion and super-resolution method ED-DSRN (Zhang

et al., 2018a), and the proposed GFN. For the hazy

dataset, we first apply the single image depth estima-

tion method, the Monodepth2 (Godard et al., 2018), to
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(a) EDSR + DCP (b) EDSR + NLD (c) EDSR + DGFN (d) GFN (ours)
18.68 / 0.823 16.04 / 0.761 17.54 / 0.875 28.85 / 0.961

Fig. A More visual comparisons on the LR-RESIDE dataset. The evaluated methods include EDSR (Lim et al.,
2017), DCP (He et al., 2011), NLD (Berman et al., 2016), and DGFN (Ren et al., 2018). The proposed model generates sharper
HR images with more details.

(a) Blurry LR input (b) Gres in Model-1 (c) Model-1 (d) GFN w/o Ggate (e) GFN

(f) φBF (g) φRF (h) φ1
fusion (i) φ2

fusion (j) φ3
fusion

Fig. B Qualitative results of the ablation study. φBF denotes the base features from the base module Gbase and φRF

denotes the features from the restoration module Gres. All the models are trained on the LR-GOPRO dataset with the same
training settings as the proposed GFN.

predict a depth map for each image and then synthesize

the hazy image following the instruction of the RESIDE

dataset Li et al. (2017b). We compare the proposed

GFN with the following approaches: the bicubic upsam-

pling, dehazing method PFFNet (Mei et al., 2018) with

super resolution method RCAN (Zhang et al., 2018b),

and joint restoration and super-resolution method ED-

DSRN (Zhang et al., 2018a). We use the above meth-

ods to recover HR images and then use the YOLOv3

(Redmon and Farhadi, 2018) to evaluate the detection

accuracy.

We show the detection accuracy in Table D and

Table E. The HR images restored from the proposed

GFN obtain the best detection accuracy in both appli-

cations. The qualitative results in Figure C and Fig-

ure D demonstrate that our GFN not only generates

clean HR outputs but also improves the detection algo-

rithm to recognize the cars and pedestrians.
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(a) Bicubic (b) SRN+RCAN (c) RCAN+SRN

(d) ED-DSRN (e) GFN (ours) (f) Ground-truth HR

Fig. C Detection results using the recovered images from different methods. We compare the following methods:
bicubic upsampling, deblurring method SRN (Tao et al., 2018) + super resolution method RCAN (Zhang et al., 2018b), joint
restoration and super-resolution method ED-DSRN (Zhang et al., 2018a), and the proposed GFN.

(a) Bicubic (b) PFFNet+RCAN (c) RCAN+PFFNet

(d) ED-DSRN (e) GFN (ours) (f) Ground-truth HR

Fig. D Detection results using the recovered images from different methods. We compare the following methods:
bicubic upsampling, dehazing method PFFNet (Mei et al., 2018) + super resolution method RCAN (Zhang et al., 2018b),
joint restoration and super-resolution method ED-DSRN (Zhang et al., 2018a), and the proposed GFN.
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Table A Configuration of the proposed network. The values in the skip row are layer names, indicating whose outputs
are added to the outputs of the corresponding layers.

Restoration Module

layer output size kernel LReLU skip

Input 1 3 × h × w

conv1 64 × h × w 7

Resblock

1-6
64 × h × w 3 conv1

conv2 128 × h
2
× w

2
3

Resblock

7-12
128 × h

2
× w

2
3 conv2

conv3 256 × h
4
× w

4
3

Resblock

13-18
256 × h

4
× w

4
3 conv3

deconv1 128 × h
2
× w

2
4 X

deconv2 64 × h × w 4 X

conv4 64 × h × w 7 conv1

conv5 64 × h × w 3 X

conv6 3 × h × w 3

Base Feature Extraction Module

layer output size kernel LReLU skip

Input 1 3 × h × w

conv7 64 × h × w 7

Resblock

19-26
64 × h × w 3

conv8 64 × h × w 3 conv7

Gate Module

Input 2.0 131 × h × w

conv9 64 × h × w 3 X

conv10 64 × h × w 1

Elementwise

mul
64 × h × w conv8

Input 2.1 131 × h × w

conv9 64 × h × w 3 X

conv10 64 × h × w 1

Elementwise

mul
64 × h × w input 2.1

Input 2.2 131 × h × w

conv9 64 × h × w 3 X

conv10 64 × h × w 1

Elementwise

mul
64 × h × w input 2.2

Reconstruction Module

Input 3 64 × h × w

Resblock

27-34
64 × h × w 3

conv11 256 × h × w 3

pixel

shuffle
64 × 2h × 2w X

conv12 256 × 2h × 2w 3

pixel

shuffle
64 × 4h × 4w X

conv13 64 × 4h × 4w 3 X

conv14 3 × 4h × 4w 3

Table B List of the evaluated methods in Section 4.

Method Reference
SRResNet MSE-based SRResNet in “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network” by Ledig et al. (2017)

EDSR EDSR in “Enhanced deep residual networks for single image super-resolution” by Lim et al. (2017)

RDN RDN (D=20, C=6, and G=32) in “Residual dense network for image super-resolution” by Zhang et al. (2018c)

RCAN “Image super-resolution using very deep residual channel attention networks” by Zhang et al. (2018b)

SCGAN MSE-based SCGAN in “Learning to super-resolve blurry face and text images” by Xu et al. (2017)

ED-DSRN “A deep encoder-decoder networks for joint deblurring and super-resolution” by Zhang et al. (2018a)

DeepDeblur “Deep multi-scale convolutional neural network for dynamic scene deblurring” by Nah et al. (2017)

DeblurGAN “DeblurGAN: Blind motion deblurring using conditional adversarial networks” by Kupyn et al. (2018)

SRN “Scale-recurrent network for deep image deblurring” by Tao et al. (2018)

DCP “Single image haze removal using dark channel prior” by He et al. (2011)

NLD “Non-local image dehazing” by Berman et al. (2016)

AODN “Aod-net: All-in-one dehazing network” by Li et al. (2017a)

DGFN MSE-based DGFN in “Gated fusion network for single image dehazing” by Ren et al. (2018)

GCANet “Gated Context Aggregation Network for Image Dehazing and Deraining” by Chen et al. (2019)
PFFNet “Progressive feature fusion network for realistic image dehazing” by Mei et al. (2018)

RESN “Recurrent squeeze-and-excitation context aggregation net for single image deraining” by Li et al. (2018c)

IDGAN “Image de-raining using a conditional generative adversarial network” by Zhang et al. (2017a)

DID-MDN “Density-aware single image de-raining using a multi-stream dense network” by Zhang and Patel (2018b)
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Table C Quantitative comparison with the state-of-the-art restoration methods on three applications. All the
comparison methods for each application are trained using the same setting. Red texts and blue texts indicate the best and
the second-best performance respectively.

GOPRO dataset
Restoration Module DeepDeblur DeblurGAN SRN

Deblurring PSNR 29.16 27.48 27.02 30.26

RESIDE dataset
Restoration Module DGFN GCANet PFFNet

Dehazing PSNR 24.46 23.47 26.32 28.20

Rain1200 dataset
Restoration Module IDGAN RESN DID-MDN

Deraining PSNR 29.36 27.50 29.12 30.10

Table D Objects detection results on the KITTI detection dataset (Geiger et al., 2012) with non-uniform
motion blur. We test different joint deblurring and super-resolution methods, and use YOLOv3 (Redmon and Farhadi, 2018)
as the detection algorithm. The comparison methods include bicubic upsampling, deblurring method SRN (Tao et al., 2018) +
super resolution method RCAN (Zhang et al., 2018b), joint restoration and super-resolution method ED-DSRN (Zhang et al.,
2018a), and the proposed GFN. We also show the detection result using the ground-truth sharp HR image. The mAP is the
abbreviation of mean average precision. Red texts indicate the best detection precision except for the Ground-truth HR.

YOLOv3 Bicubic SRN+RCAN RCAN+SRN ED-DSRN GFN Ground-truth HR
Car 0.258 0.481 0.481 0.416 0.499 0.812
Van 0.149 0.358 0.392 0.298 0.406 0.724

Truck 0.208 0.558 0.578 0.499 0.584 0.842
Pedestrian 0.164 0.327 0.329 0.305 0.370 0.604

Person Sitting 0.028 0.187 0.105 0.122 0.163 0.436
Cyclist 0.026 0.203 0.171 0.158 0.283 0.592
Tram 0.108 0.331 0.314 0.272 0.383 0.796
mAP 0.120 0.316 0.308 0.267 0.352 0.646

Table E Objects detection results on the KITTI detection dataset (Geiger et al., 2012) with haze degradation.
We test different joint dehazing and super-resolution methods, and use YOLOv3 (Redmon and Farhadi, 2018) as the detection
algorithm. The comparison methods include bicubic upsampling, dehazing method PFFNet (Mei et al., 2018) + super resolution
method RCAN (Zhang et al., 2018b), joint restoration and super-resolution method ED-DSRN (Zhang et al., 2018a), and the
proposed GFN. We also show the detection result using the ground-truth sharp HR image. The mAP is the abbreviation of
mean average precision. Red texts indicate the best detection precision except for the Ground-truth HR.

YOLOv3 Bicubic PFFNet+RCAN RCAN+PFFNet ED-DSRN GFN Ground-truth HR
Car 0.146 0.073 0.254 0.431 0.505 0.812
Van 0.053 0.033 0.113 0.228 0.301 0.724

Truck 0.033 0.008 0.047 0.119 0.197 0.842
Pedestrian 0.178 0.067 0.297 0.406 0.461 0.604

Person Sitting 0.000 0.000 0.021 0.204 0.327 0.436
Cyclist 0.055 0.027 0.179 0.196 0.279 0.592
Tram 0.000 0.000 0.007 0.097 0.239 0.796
mAP 0.058 0.026 0.117 0.219 0.303 0.646


