
30 April 2024

Is there anything new to say about SIFT matching? / Fabio Bellavia; Carlo Colombo. - In: INTERNATIONAL
JOURNAL OF COMPUTER VISION. - ISSN 0920-5691. - STAMPA. - 128:(2020), pp. 1847-1866.
[10.1007/s11263-020-01297-z]

Original Citation:

Is there anything new to say about SIFT matching?

Published version:
10.1007/s11263-020-01297-z

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1182190 since: 2020-06-29T09:16:09Z

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:

Noname manuscript No.
(will be inserted by the editor)

Is there anything new to say about SIFT matching?

Fabio Bellavia · Carlo Colombo

Received: n.a. / Accepted: n.a.

Abstract SIFT is a classical hand-crafted, histogram-

based descriptor that has deeply affected research on

image matching for more than a decade. In this paper,

a critical review of the aspects that affect SIFT match-

ing performance is carried out, and novel descriptor de-

sign strategies are introduced and individually evalu-

ated. These encompass quantization, binarization and

hierarchical cascade filtering as means to reduce data

storage and increase matching efficiency, with no signif-

icant loss of accuracy. An original contextual matching

strategy based on a symmetrical variant of the usual

nearest-neighbor ratio is discussed as well, that can in-

crease the discriminative power of any descriptor. The

paper then undertakes a comprehensive experimental

evaluation of state-of-the-art hand-crafted and data-

driven descriptors, also including the most recent deep
descriptors. Comparisons are carried out according to

several performance parameters, among which accuracy

and space-time efficiency. Results are provided for both

planar and non-planar scenes, the latter being eval-

uated with a new benchmark based on the concept

of approximated patch overlap. Experimental evidence

shows that, despite their age, SIFT and other hand-

crafted descriptors, once enhanced through the pro-

posed strategies, are ready to meet the future image

matching challenges. We also believe that the lessons

learned from this work will inspire the design of better

hand-crafted and data-driven descriptors.

Authors
Fabio Bellavia is with the Department of Mathemat-
ics and Computer Science, Università degli Studi di
Palermo, Via Archirafi, 34, 90123 Palermo, Italy. E-mail:
fabio.bellavia@unipa.it
Carlo Colombo is with the Department of Information Engi-
neering, Università degli Studi di Firenze, Via di S. Marta, 3,
50139 Firenze, Italy. E-mail: carlo.colombo@unifi.it

Keywords SIFT · sGLOH2 · quantization · binary

descriptors · symmetric matching · hierarchical cascade

filtering · deep descriptors · keypoint patch orientation ·
approximated overlap error

1 Introduction

Image matching through local descriptors is the core

of many computer vision applications including, among

others, object detection [40] and recognition [70], image

stitching [14], three-dimensional reconstruction [54] and

visual odometry [23]. This justifies the huge efforts and

progresses made over the years on this topic.

Local descriptors are conventionally divided into ha-

nd-crafted and data-driven [20] according to the pro-

cess used for extracting the descriptor vector from the

local keypoint patch. Hand-crafted descriptors mainly

employ histograms to accumulate a chosen local patch

property. The property upon which the popular Scale

Invariant Feature Transform (SIFT) descriptor [40] and

its inexhaustible crowd of descendants [3,9,19,22,26,31,

48] are based is gradient orientation. Other histogram-

based descriptors use pixel ordering [65], Haar wavelets

[8], convolutions with Gaussian [58] or other kernels [50],

and binary pixel comparisons [28]. Data-driven descrip-

tors are those whose structure and design have been

tuned and refined according to training data. Training

is used either to obtain low-dimensional binary descrip-

tors [20,55,61], or to find the best setup in the descrip-

tor parameter space [7, 15, 20]. Recently, the so called

deep descriptors [37,45,53,57,66] have appeared, lever-

aging deep learning and the growing availability of large

training datasets [15,46].

The main parameters that characterize descriptor

performance are discriminability, memory storage and

2 Fabio Bellavia, Carlo Colombo

matching speed. While the ideal descriptor should con-

jointly optimize such parameters, real descriptors are

usually the result of a trade-off, where a higher discrim-

inative power is balanced by a larger size and slower

computations, and vice versa. This can be referred to

as “discriminability vs space-time dilemma.”

This paper addresses the problem of enhancing de-

scriptor matching performance in two complementary

ways. On the one hand, we show that, for SIFT and

other SIFT-like descriptors, length and matching times

can be significantly compressed through a proper quan-

tization scheme. On the other hand, we explain how

the discriminative power of any (hand-crafted or data-

driven) descriptor can be increased by a carefully de-

signed contextual matching approach. An important

consequence of the above is that, for what concerns

the design of SIFT-like descriptors, one can avoid the

discriminability vs space-time dilemma above, and en-

hance conjointly all performance parameters. The pro-

posed quantization solution to space-time compression

will prove to be preferable over the more common de-

scriptor binarization, that nevertheless remains of some

theoretical interest, and will be addressed in the paper.

The paper also presents the results of a thorough

comparative evaluation, carried out on both planar and

non-planar scenes, and highlighting the impact of the

proposed descriptor enhancements on the recent state-

of-the-art. Experimental evidence shows that SIFT and

other hand-crafted descriptors, once suitably enhanced,

exhibit very interesting properties, which make them

still appealing for image matching. Results also show

that the usual SIFT patch orientation assignment strat-

egy, employed by most descriptors, is not optimal, and

can be conveniently replaced by more recent alterna-

tives based on deep learning [69]. Additionally, it is

also discovered that quantizing descriptors and match-

ing them using the L1 distance in the place of the stan-

dard L2 distance yields the same computational effi-

ciency of binary descriptors and the same high accuracy

of unquantized descriptors. Finally, according to our ex-

periments, deep descriptors do depend heavily on the

training set and hardware setup, which may limit their

use in general contexts and applications.

The paper is organized as follows. Section 2 intro-

duces the novel quantization scheme for SIFT-like de-

scriptors. In the particular case of SIFT, quantization

shrinks each byte either into nibbles (4 bits) or into

packets of 3 bits, according to application requirements.

The resulting Packed SIFT (PSIFT) reduces SIFT from

the original 128 bytes down to 48 bytes, thus at least

halving the storage requirements and reducing the mem-

ory bandwidth, yet without compromising running times

and matching accuracy. The same quantization scheme

is also applied to the recent doubled shifting Gradient

Histogram of Orientations (sGLOH2) [9], with similar

results. Section 3 expounds Binary SIFT (BiSIFT), a

descriptor generated according to the general approach

developed in [9]. BiSIFT is 61 bytes and uses the Ham-

ming distance for matching. Experimental evidence is

provided of the limitations of binary descriptors based

on sorting against those based on binary comparisons.

Section 4 presents Hierarchical Cascade Filtering (HCF)

as a strategy to supersede the descriptor matching pro-

cess and reduce the matching time, thanks to the in-

troduction of small descriptor fingerprints to pre-filter

the data. HCF is shown to be very useful in the case

of float descriptors, or when the L2 distance is em-

ployed for matching. The advantages of using a sym-

metric Nearest Neighbor Ratio (sNNR) for matching

are also investigated: To the best of our knowledge,

such analysis has never been carried out before. Sec-

tion 5 includes an exhaustive evaluation of the proposed

enhancements, that were embedded into and also com-

pared against recent state-of-the-art approaches. Ex-

perimental results are presented and discussed for pla-

nar and non-planar scenes. The latter were obtained

with a novel evaluation benchmark, designed around a

suitable approximation of the patch overlap error [11].

The evaluation also includes an analysis of the influence

of patch orientation assignment on the matching pro-

cess. Final considerations are provided and future work

is outlined in Sec. 6.

2 Quantization

2.1 Related work

SIFT is probably the most renown among the histogram-

based descriptors. It is constructed as the concatenation

of gradient orientation histograms for different keypoint

patch areas. Over the years, SIFT has been deeply an-

alyzed, and constantly ameliorated. In particular, al-

ternative grid arrangements and pooling schemes were

proposed in order to get rotational invariance [22, 33]

or improve robustness [18, 19]. Dimensionality reduc-

tion [26, 31] and alternative matching distances [3, 39]

were also introduced so as to increase discriminability.

The problem of space-time compression has been tradi-

tionally addressed through data-driven techniques such

as dimensionality reduction [29,31], hashing [55], bina-

rization [4, 9, 20] and quantization [17,63,67].

With the noticeable exception of [67], where it was

analyzed separately from other factors in descriptor de-

sign, descriptor vector quantization was somewhat un-

derestimated by the recent literature, and considered

Is there anything new to say about SIFT matching? 3

0 10 20 30 40 50 60 70 80 90 100 110 120 130
SIFT vector element value [0, 255]

 5

 0

 5

10

15

Fr
eq

ue
nc

y
(%

)

Fig. 1 Distribution of the quantized SIFT vector element
values after normalization by L1 and L2. Dashed lines indi-
cate mean values. Values outside the 98% of probability are
shown in light blue and yellow. (Best viewed in color.)

as a merely secondary optimization technicality. Nev-

ertheless, it is sensible to suppose that the scalability

and efficiency of practical applications strongly rely on

quantization for reducing the computational complex-

ity of the matching process in terms of running time,

storage requirements, and memory bandwidth.

2.2 Packed SIFT

Our quantization scheme originates from the observa-

tion that, when matching two histograms, the Euclidean

L2 distance tends to emphasize large errors occurring

on a few bins with respect to small errors on the re-

maining majority of bins. This behavior can be miti-

gated by employing alternative distances for histogram

comparison, such as the lower order Manhattan L1 [9]

or Hellinger’s [3] distances.

Let x be the real-valued SIFT vector obtained after

the last normalization by the L2 norm:

x = [x1, . . . , xls] (1)

with xi ≥ 0, ls = 128 and
∑
i x

2
i = 1. The final SIFT

vector is obtained by quantizing each xi into the byte

range [0, 255] as

qS(xi) = min (bmxic , 255) (2)

where b·c is the floor function and m = 512.

RootSIFT is a modern variant of SIFT that is ob-

tained by first normalizing x by the L1 norm

yi =
xi∑
j xj
≈ qS(xi)∑

j qS(xj)
(3)

and then extracting the square root of each yi. Comput-

ing the Hellinger’s distance between two SIFT vectors

is equivalent to computing the L2 distance between the

corresponding RootSIFT vectors [3].

Figure 1 shows the distribution of the quantized vec-

tor values ẏi = qS(yi) and ẋi = qS(xi), obtained from

the SIFT descriptors of the Oxford dataset [44] after

normalization by L1 and L2, respectively. The distribu-

tion of ẏi is less dispersed (with mean value, standard

deviation and 98% cutoff value equal to µy = 3.99,

σy = 4.08 and y? = 16, respectively) than that of ẋi
(µx = 32.52, σx = 30.95 and x? = 115). The above dis-

crepancy between distributions suggested us to devise

the following quantization scheme, which is alternative

to the one of Eq. 2 and based on the L1 norm:

qg,t(yi) = min

(⌊
g(myi)

g∗
2t
⌉
, 2t − 1

)
(4)

In Eq. 4, g : R → R is a monotonic function, g∗ is a

scale factor depending on g, b·e denotes the rounding

operation and t is the saturation threshold expressed in

bits. Three possible g maps are considered hereafter:

I(yi) = yi (5)

R(yi) = y
1/2
i (6)

N(yi) =

{
yi if yi < ȳ

(yi − ȳ)1/2 + ȳ otherwise
(7)

where ȳ = µy − 1. The scale factors replacing g∗ in

Eq. 4 are set to I∗ = I(y?), R∗ = R(y?) and N∗ =

N(y? − 1) + 1, respectively. The corresponding quan-

tization maps are plotted in Fig. 2 for t = 3 (a) and

t = 4 (b). Notice that N(yi) behaves linearly as I(yi)

for values lower than µy, and according to the square

root R(yi) for higher values. The function N can be

viewed as a lower order analogue of the Huber loss

function, that replaces the squared/linear components

of the Huber loss respectively with linear/root square

components. For the sake of completeness, we show that

the theoretical expected value E(ẏi) can be used in the

place of the empirical mean µy = 3.99, under the as-

sumption that the distribution of ẏi is independent of

the bin position. Indeed, since lsE(ẏi) =
∑
iE(ẏi) =

E (
∑
i ẏi) ≈ E (m

∑
i yi) ≈ E(m) = m, it holds

E(ẏi) ≈
m

ls
=

512

128
= 4 (8)

The effects of packing by quantization the descrip-

tor vector elements are illustrated in Fig. 3. When the

saturation threshold is t = 4 bits, half byte (one nib-

ble) can be used to store a single vector value. In the

case of SIFT, descriptor length is halved from 128 to 64

bytes, and so is the memory storage. Pairs of consec-

utive nibbles can be stored exactly into a single byte,

without waste of space or memory alignment issues.

Nibble packing and unpacking can be done efficiently

by shifting and masking bits as described in the left

part of Fig. 3. If the total time for retrieving and un-

packing nibble vectors is not greater than that required

4 Fabio Bellavia, Carlo Colombo

(a) (b)

Fig. 2 Quantization maps qg,t(yi) in the case of (a) packets
of 3 bits (t = 3) and (b) nibbles (t = 4). Dashed lines refer to
the values before rounding off and saturation. (Best viewed
in color.)

nl=b>>4 nr=b&15

uchar b=(nl<<4)|nr

Fig. 3 (left) Memory storage alignments for the proposed
quantized descriptors and (right) corresponding stretching for
vector manipulation in the case of packets of 3 bits. Bit op-
erations are shown in C code. (Best viewed in color.)

to retrieve the equivalent byte vectors, then all data

operations with packed SIFT and t = 4 can be car-

ried out in-place, i.e., without unpacking the vector

into memory before computation. When t = 3 bits,

only 48 bytes (i.e., 3/8 of the original SIFT length) are

needed for storage purposes. However, descriptors have

to be unpacked before any vector manipulation, due to

memory alignment issues—see the right part of Fig. 3.

The most trivial unpacking strategy is to interleave a

0 bit between values, thus leading back to the nibble

case. Alternatively, if descriptor comparisons have to

be done using the L1 distance, each i-th packet with

value qg,3(yi) can be stretched into a byte so that the

first qg,3(yi)+1 bits are set to 1 and the remaining to 0.

As the Hamming distance H between two of these un-

packed vectors is the same as the L1 distance between

the original vectors, this representation“trick” can save

matching time on all hardware configurations where H

is faster than L1 to compute.

2.3 Experimental results

Table 1 reports on image matching results obtained

with the proposed quantization scheme with planar scenes

from the WISW [10] and Oxford [44] datasets (19 se-

quences in all, 15 from WISW and 8 from Oxford, 4

sequences being in common between the datasets. Each

sequence contains 6 images, the first of which is used as

reference, for a total of 19 × (6 − 1) = 95 image pairs)

which include viewpoint changes, the most challenging

sources of image distortion, also in combinations with

other relevant image transformations, such as illumina-

tion changes. Matching accuracy is expressed in terms

of mean Average Precision (mAP), based on the overlap

error. The setup is the same of [9].

Besides SIFT (the VL SIFT implementation [64]),

the recent SIFT-like descriptor sGLOH2 [9] using the

sGOr2a? matching strategy is also tested (the distri-

bution of the sGLOH2 values is almost identical to

the one shown in Fig. 1 for SIFT, see additional ma-

terial). Correspondences were obtained using Nearest

Neighbor Ratio (NNR) matching, with the descriptor

default distance (L2 for SIFT, permutation-based L1

for sGLOH2). Results for SIFT matched with the L1

distance (referred to as SIFTL1
) are reported as well.

In the table, results with the original quantized de-

scriptor implementations, i.e. ẋi for SIFT and SIFTL1
,

and ẏi for sGLOH2, are reported in the first column.

The second column shows the results when the map-

ping function g is applied without quantization, thus

obtaining floating-point descriptor vectors (in particu-

lar, I(yi) corresponds to real-valued descriptor vectors

normalized by L1). The square root R gives the best

results on unquantized descriptors, confirming previous

evidence [3] (notice that R(yi) in the SIFT row corre-

sponds to RootSIFT).

The table clearly shows that quantization of a given

descriptor does not affect significantly its matching ac-

curacy. Better still, 3 bits quantization with N map-

ping qN,3(yi) slightly improves accuracy, yielding the

best results for both SIFT and sGLOH2. Similarly to

PCA, qN,3(yi) appears to reduce the effects of noise on

data, but differently from PCA it does not operate on

vector dimensions but on value ranges, thus producing

discrete values that can be represented as integers and

allow for efficient computation.

Table 2 reports the average running times required

for matching two descriptors on an Intel Core i7-3770K

with 8 GB of RAM and Ubuntu 16.04. Two different

versions of the code were implemented. In the first im-

plementation, the code was optimized explicitly using

SSE 4.1 instructions on 128 bits XMM registers, and

the popcount (64 bits) instruction for an efficient Ham-

ming distance. In the second implementation the code

was compiled with no explicit optimization1, save for

popcount (32 bits), so as to generate a more portable

1 only the “-O3” flag was enabled in GCC.

Is there anything new to say about SIFT matching? 5

Table 1 Quantized descriptors mAP (%) on planar scenes. For each row, the 1st, 2nd and 3th best values are colored
respectively in red, blue and green. (Best viewed in color.)

g(yi) qg,3(yi) qg,4(yi)
ẋi|ẏi

I R N I R N I R N

SIFT 63.60 62.94 63.87 63.82 62.78 62.46 64.01 63.13 62.70 62.84
SIFTL1

63.97 63.58 63.75 63.81 62.92 62.42 63.74 63.52 62.75 63.19
sGLOH2 77.20 77.31 78.29 75.54 77.05 77.25 78.36 76.73 77.76 76.79

bits/element 8 32 32 32 3 3 3 4 4 4

Table 2 Matching average running times (ns) for quantized
descriptors. 3 bits packets are stretched to one byte and
matched with the Hamming distance.

uchar float nibble 3 bits

SIFT 37 44 34 –
SIFTL1

12 38 16 20

S
S

E
4
.1

sGLOH2 418 667 414 441

SIFT 67 157 126 –
SIFTL1

134 163 144 47

si
n

g
le

th
re

a
d

p
o
p
c
o
u
n
t

sGLOH2 1110 1396 1070 500

SIFT 12 15 11 –
SIFTL1

5 15 7 6

S
S

E
4
.1

sGLOH2 124 180 117 120

SIFT 19 43 34 –
SIFTL1

37 49 41 13

m
u
lt

i
th

re
a
d

p
o
p
c
o
u
n
t

sGLOH2 288 353 293 132

and manageable software. Running times are provided

for different descriptor value allocation units (notice

that C types uchar and float are respectively 1 and

8 bytes on x64 CPU registers, and 1 and 4 bytes on

XMM registers).

Results are given for both single-threaded and multi-

threaded (8 cores) code execution. Multi-threading scales

down the running times without changing the relative

time performance obtained with single-threading. Hence,

the following discussion will be limited to single-threaded

code efficiency.

With SSE 4.1 optimization, the best performance

of all is achieved by matching uchar SIFT using the

L1 distance, that can be computed with just one in-

struction, i.e., the Sum of Absolute Values (SAD). 3

bits SIFTL1
with 8 bits stretching (see Sec. 2.2) takes

almost twice the time, as two instructions are required

(i.e., the bitwise xor followed by popcount) to com-

pute the Hamming distance. Matching nibble SIFTL1 in

place as explained in Sec. 2.2 is slightly slower than us-

ing uchar SIFTL1
, yet much faster than float SIFTL1

.

Nibble SIFTL1 can thus be conveniently used instead

of uchar SIFTL1
in the presence of memory bandwidth

constraints. Conversely, nibble SIFTL1
can always be

converted into uchar SIFTL1 , thus enjoying a faster dis-

tance computation, at the expense of a larger memory

storage2. Notice that float SIFTL1
is about four times

slower than uchar SIFTL1 , as the size of a float is four

times that of a uchar on XMM registers. Similar consid-

erations could be derived for other data types, such as

ushort (2 bytes) and uint (4 bytes): Running times are

roughly proportional to data length. Concerning match-

ing SIFT with the default L2 distance, there is virtually

no gain in using uchar in the place of float: There is in

fact no equivalent to SAD for L2. Differently from the

L1 case, nibble SIFT is faster than uchar SIFT. This

is probably due to the fact that nibble integers raised

to the square can always be represented with a uchar

((24 − 1)2 ≤ 255), while uchar integers cannot. Com-

paring the time performance figures of uchar SIFTL1

and classical SIFT, we notice that the former is always

between three and four times faster the latter, depend-

ing on the data type used (float is the slowest, nibble

is the fastest). Finally, sGLOH2 has the worst running

times, due to the more complex matching distance em-

ployed.

With no explicit SIMD vectorization, 3 bits SIFTL1

with 8 bits stretching gives the best results, followed

by uchar SIFTL1
, for which the compiler is able to

automatically optimize the code. The other data types

behave quite similarly to each other.

According to the results obtained, the qN,3 quanti-

zation scheme is the one with the best overall perfor-

mance in terms of descriptor size, accuracy, computa-

tional efficiency and adaptability to coding constraints.

From now on, the SIFT descriptor quantized according

to qN,3 will be referred to as PSIFT.

A final word must be said about computing match-

ing distances using GPUs. Currently, only L2 is im-

plemented through optimized float matrix multiplica-

tion. Due to the huge bandwidth reduction obtained by

quantizing float into nibble (about 1/8), and consid-

ering that GPUs have instructions that are equivalent

to those of SSE 4.1 (e.g., vsadu4 and popcll are the

2 More generally, any smaller data type can be accommo-
dated, at matching time, into larger data types, but not vicev-
ersa. For this reason, qN,3(yi) can be used with any of the
data types examined, while RootSIFT, being a float descrip-
tor, cannot even be put into uchar.

6 Fabio Bellavia, Carlo Colombo

CUDA GPU equivalent instructions of mm sad epu8

and builtin popcountll, that respectively were used

to implement SAD and popcount in our CPU optimized

code), it would be worth investigating alternative im-

plementations of both L2 and L1 for smaller data types.

3 Binarization

3.1 Related work

Binary descriptors are designed to be compact and fast

in both extraction and matching, at the expense of

their robustness. They are defined as concatenations

of binary values, to be matched using the Hamming

distance. Descriptor binary values are usually obtained

from intensity comparisons among regions of the same

keypoint patch [2, 16, 28]. However, alternative charac-

terizations exist for binary descriptors. For instance, a

non binary descriptor can be binarized by thresholding

the result of manipulations inside the descriptor vec-

tor space [55,61] or, in the case of histogram-based de-

scriptors, by relying on comparisons among histogram

bins [4, 9]. Existing binary descriptors based on patch

intensity mainly differ from each other by the size and

location of the patch regions under comparison, that

can either be chosen according to some pre-defined pat-

tern [2,28], or learned and optimized according to patch

data [16,20]. Patch intensity alterations due to specific

geometric deformations of the patch (e.g., scale changes

or more general affine transformations) can also be ex-

ploited so as to improve descriptor matching robust-

ness [7, 68].

In [4] a binary version of SIFT was proposed, named

BInarization of Gradient Orientation Histograms (BIG-

OH), concatenating binary comparisons between suc-

cessive histograms bins for each grid cell (i.e., between

SIFT descriptor vector elements). BisGLOH2 [9] bina-

rizes sGLOH2 by comparing all possible pairs of his-

tograms bins in a hierarchical way. This kind of ap-

proach differs from those based on intensity or gradi-

ent comparisons, since it works directly on the final

descriptor, i.e., on histograms (that are more robust)

and at different patch levels. Additionally, it does not

rely on information about descriptor space provided by

training data, as data-driven binary descriptors based

on hashing, linear embedding or thresholds do. Here-

after, a new binary SIFT derived from the BisGLOH2

approach is discussed and evaluated.

Fig. 4 Left: the SIFT patch is subdivided into 4 × 4 cells
wherein gradient orientation histograms hj are computed
(the highlighted circular area stands for the Gaussian mask
used for histogram weighting). Dots and background colors
indicate respectively the cell and its label (blue corresponds
to v = 1, yellow to v = 2, see text). Middle: Tj strings are
defined according to the comparison of the histogram orienta-
tion bins inside each cell. Dropped comparisons are indicated
with shallow colors. Right: Dv strings are obtained similarly.
In this example, d = 4 orientations are used. (Best viewed in
color.)

3.2 Binary SIFT

BiSIFT compresses the original SIFT into less than half

of its size (explicitly, 61 bytes), like PSIFT. Neverthe-

less, while PSIFT is 128 bytes long when matched us-

ing the Hamming distance, BiSIFT matching requires

61 bytes only.

The BiSIFT descriptor is defined as follows. The

real-valued SIFT descriptor vector x of Eq. 1 is nor-

malized by L1 norm, and then quantized to m̄ = 2048

levels, i.e., zi = bm̄yic, where yi is defined in Eq. 3.

The vector z is made up of r = 16 gradient orienta-

tion histograms hj , j = 1, . . . , r, corresponding to the

4 × 4 Cartesian grid cells into which the SIFT patch

is subdivided (see Fig. 4, left). Each histogram hj is in

turn given by the concatenation ⊕ of d = 8 orientation

bins hj,w, w = 1, . . . , d, so that z = [z1, . . . zls] can be

expressed as

z = ⊕
j,w

hj,w (9)

The BiSIFT descriptor b is defined as

b = ⊕
j
Tj ⊕

v
Dv (10)

where the binary strings Tj and Dv are obtained from

a linear re-arrangement of upper triangular matrices

defined in terms of the components hj,w of z, and v ∈
{1, 2} (see Fig. 4, middle, right). Explicitly,

Tj = ⊕
(w1,w2)
w1<w2

(hj,w1
≤ hj,w2

) (11)

where w1, w2 scan the same index range of w. Each

string Tj has length lt = d(d−1)
2 , and its bits are ob-

tained from pairwise comparisons of the bins hj,w in-

Is there anything new to say about SIFT matching? 7

side the histogram hj . Likewise, assuming different la-

bels Lj = v for each grid cell of the SIFT patch (see

Fig. 4, left), the binary strings Dv are defined as

Dv = ⊕
(j1,j2)
j1<j2

Lj1=Lj2=v

(∑
w

hj1,w ≤
∑
w

hj2,w

)
(12)

where j1, j2 scan the same index range of j so that

only index pairs with the same label value v contribute

to Dv. Since the grid cells labeled 1, 2 are respectively

c1 = 8 and c2 = 4, the total length lb in bits of the

BiSIFT descriptor is

lb = r lt +
c1(c1 − 1)

2
+
c2(c2 − 1)

2
= 482 (13)

and BiSIFT can be efficiently stored into d482/8e = 61

bytes. The main difference between BiSIFT and Bis-

GLOH2 is in the different grid arrangements, Cartesian

for BiSIFT and circular for BisGLOH2, which implies

a different computation of Dv, and the fact that while

BisGLOH2 is rotationally invariant, BiSIFT is not so.

Descriptor matching with BiSIFT is done, similarly

to BisGLOH2, using the modified Hamming distance

HS , weighing twice the strings Dv with respect to the

strings Tj :

HS(b, b̄) =

r lt∑
i′=1

xor(bi′ , b̄i′) + 2

lb∑
i′′=r lt+1

xor(bi′′ , b̄i′′)

(14)

This can be computed efficiently on standard hardware,

since r lt = 448 is a multiple of 64, so that no memory

alignment issues arise.

Notice that the discriminability power of BiSIFT

decreases with the number of bins of histogram hj hav-

ing duplicate values. This phenomenon is illustrated in

Fig. 5, comparing the case when all the bin values are

distinct from each other (first row, left) with the case of

two bin pairs with equal values (first row, right). In the

former case, the upper and lower extra-diagonal trian-

gular parts of the d×d matrix Qj embedding the results

of all possible pairwise bin comparisons have comple-

mentary binary values (second row, left). This does not

hold in the latter case (second row, right). Therefore,

the entries of the string Tj , which correspond to the

upper extra-diagonal triangular part of Qj , contain all

possible bin comparison information in the former case,

but not in the latter case. Analogous considerations can

be made for Dv.

The observation above has important consequences

on the possibility of further compressing BiSIFT. In-

deed, assuming for the moment that there are no du-

plicate values inside hj , the string Tj can be mapped

Fig. 5 BiSIFT compression (see text). The histogram hj
(first row), in the case of distinct (left) or duplicate (right)
values for strings Tj . Second row: the matrix Qj , whose up-
per triangular part (solid color) is encoded in Tj . Third and
fourth rows: column-wise sums of Qj , before and after sort-
ing. Indexes w are reported as subscripts. Fifth row: the final
encoding for BiπSIFT. Values giving rise to representation
ambiguities are marked in red. In this example d = 8. (Best
viewed in color.)

uniquely into the sorted list

hj,π1 < hj,π2 < . . . < hj,πd (15)

for some permutation πw of the index w. From Fig. 5

(third and fourth rows, left), it is easy to see that πw can

be recovered from Qj (hence, from Tj) by sorting the

array of its column-wise sums. Using log2 (dd− 1e) = 3

bits for coding the first d − 1 permutation indexes πw
(the last one is unnecessary, as it is unequivocally deter-

mined given the others), only (d−1) log2 (dd− 1e) = 21

bits are needed to store a representation of Tj , instead

of the lt = 28 bits required for the uncompressed string.

As similar considerations hold for Dv, a more compact

descriptor BiπSIFT of 46 bytes only can be defined,

to be unpacked in the matching process. In the case

of duplicate bin values, occurring when the “=” sign

applies in Eq. 11, ambiguities arise during sorting (see

From Fig. 5, third and fourth rows, right). These can

be removed through stable sorting, i.e., if w1 < w2

and hj,w1
= hj, w2 at packing time, then hj,w1

< hj,w2

at unpacking time. It has to be eventually remarked

that BiSIFT and unpacked BiπSIFT are identical only

in the case of distinct bin values inside the same his-

togram. Otherwise, the permutation-based compression

of BiSIFT into BiπSIFT is lossy, thus yielding a possi-

bly less discriminant descriptor.

8 Fabio Bellavia, Carlo Colombo

Table 3 Binarized descriptors mAP (%) on planar scenes,
average matching running times (ns) and byte length.

SSE 4.1 popcountmAP
(%) � � � �

byte
length/

BiSIFT 62.10 13 5 17 6 61/61
BiπSIFT 57.93 13 4 17 6 46/61

BisGLOH2 76.19 377 90 401 98 126/160
BiπsGLOH2 66.16 356 87 390 93 95/160

�/� single/multi thread running times (ns)
/ packed/unpacked

3.3 Experimental results

Table 3 reports results in terms of mAP and average

running time for matching several binary descriptors

derived from SIFT and sGLOH2. The matching setup

of Sec. 2.3 was used. The “Bi” and “Biπ” prefixes in-

dicate uncompressed and compressed binarization, re-

spectively.

Concerning matching accuracy, Bi-descriptors ex-

hibit slightly inferior (about 2-4%) mAP values with

respect to their quantized counterparts (compare with

Table 1), while for Biπ-descriptors this degradation is

more evident (up to 15% of mAP difference).

Concerning running times, there is no noticeable dif-

ference between the two alternative binarizations. In

the case of SSE 4.1 optimization, while BiSIFT per-

forms nearly the same as PSIFT, BisGLOH2 exhibits

an improvement with respect to its quantized counter-
part (compare with Table 2). When no explicit opti-

mization except for the popcount instruction is avail-

able, binarized descriptors have a clear advantage over

the quantized ones, especially in conjunction with multi-

threading. This is sensible, since PSIFT length is more

than twice the corresponding Bi-descriptor counterpart,

while both use the Hamming distance.

As already noted by other authors [72], binary de-

scriptors matched with the Hamming distance are al-

most equivalent to descriptors based on sorting matched

with the Kendall τ correlation function. However, from

the results above, Biπ-descriptors, that rely more on

sorting than on comparing, do not seem to be valid al-

ternatives to Bi-descriptors, since their more compact

storage size does not justify their major gap in terms

of matching accuracy. This suggests that just sorting is

less informative than having a partial list of compar-

isons, because the probability of obtaining equal bin

values with discretized image values is relevant.

4 Contextual matching

4.1 Related work

Besides defining a measure of (dis)similarity between

descriptors, a good criterion for matching must operate

globally so as to adapt itself to data. Most matching

criteria are based on the concept of Nearest Neighbor

(NN) search. In particular, NN and NN Ratio (NNR)

are the most popular and plain matching strategies [44],

upon which more complex variants have been built.

RANdom SAmple Consensus (RANSAC) [24], spatial

geometrical constraints [12, 34, 42], cross-checking and

relaxation of correspondences [71] are some of the tech-

niques employed to achieve matching robustness. Am-

ong similarity measures, the Euclidean, Manhattan and

Hamming distances still remain the most common cho-

ices. This is mainly due to their ease of implementa-

tion, computational efficiency on current hardware, and

adaptability to large-scale NN search problems through

Approximated NN search (ANN) [30, 43, 49] or cas-

cade filtering [2]. Several cascade filtering approaches

have been designed for speeding-up SIFT. Some of these

are not adaptive and require off-line preprocessing [59],

while others do not explicitly take into account the

inter-relations among the descriptor histogram bins [62].

In the following, a novel cascade filtering strategy

for SIFT-like descriptors, both adaptive and hierarchi-

cal, is introduced. An effective matching strategy based

on NNR is also presented and discussed.

4.2 Hierarchical Cascade Filtering

In the design of BiSIFT in Sec. 3, the descriptor is sub-

divided into the Dv and Tj strings, representing respec-

tively its coarser and finer scale levels. This idea in-

spired us to design a hierarchical framework for contex-

tual matching, where patch cells represent the coarser

scale level, and orientation bins the finer level. In our

interpretation of contextual matching, the distance be-

tween two corresponding descriptors is statistically lo-

wer than the average distance between two non-cor-

responding descriptors. Hierarchical Cascade Filtering

(HCF) between two sets of descriptor vectors works as

follows. Short fingerprints of all descriptors are first

computed at the coarsest scale. Unlikely matches are

then removed using a statistical criterion. Finally, the

remaining candidate matches are processed as usual,

thus avoiding unnecessary computation of distances be-

tween unlikely matches. HCF implementation is dis-

cussed hereafter only in the case of exhaustive brute

force matching, that should be preferred, when possi-

ble, to ANN approaches. Nevertheless, thanks to its hi-

Is there anything new to say about SIFT matching? 9

erarchical partitioning scheme, HCF can be adapted to

other NN search approaches as well.

The SIFT fingerprint ḟ has length r = 16 elements.

Using the notation of Sec. 3, each element ḟj is defined

as

ḟj =
∑
w

hj,w (16)

where summation extends over the bin orientation in-

dex. The sGLOH2 fingerprint f̈ has length 32, and en-

joys the additional property of being rotationally in-

variant. It is defined as the two-rings version of the

Rotation Invariant Feature Transform (RIFT) descrip-

tor [33], obtained by summing histogram values over

the region direction index introduced in [9]. The fin-

gerprint for binarized descriptors is
...
f = Dv, defined

in Eq. 12. Fingerprints for non-binary descriptors can

be efficiently computed and stored: This needs to be

done only once at runtime. No fingerprint needs to be

computed for a binary descriptor, as it is simply a sub-

string of the descriptor itself. Notice that the data type

of a fingerprint depends on the data type of the corre-

sponding descriptor. In particular, uchar, ushort and

float fingerprints are required for nibble, uchar and

float descriptors, respectively (e.g., for nibbles, the

maximum fingerprint value is (24− 1)×d = 120 < 255,

with d = 8).

HFC matching of two descriptor sets S1 = {d1
1, . . . ,d

1
s1}

and S2 = {d2
1, . . . ,d

2
s2} removes iteratively unlikely

matches according to the fingerprint. At the n-th it-

eration, the (k1, k2) entry of the distance matrix Mn ∈
Rs1×s2≥0 is computed as

Mn
k1,k2 =

{
Mn−1
k1,k2

if Mn−1
k1,k2

≤ µn−1
k1

andMn−1
k1,k2

≤ µn−1
k2

∞ otherwise

(17)

where µnk1 and µnk2 are the average values of the k1-th

row and k2-th column of Mn, respectively, excluding

non-finite entries. The matrix is initialized as

M0
k1,k2 = D

(
f(d1

k1), f(d2k2)
)

(18)

where f(d) is the fingerprint of the descriptor d, and

D is the distance function that would be used to match

descriptors d1
k1

and d2
k2

. The final distance matrix M is

obtained at the end of the last iteration n̄ by computing

descriptor distances for potentially good matches only

Mk1,k2 =

{
D
(
d1
k1
,d2

k2

)
if M n̄

k1,k2
6=∞

∞ otherwise
(19)

The total running time of the above matching pro-

cedure is the sum of two main contributions, TM0 and

TM , representing respectively the times needed to com-

pute M0 and M . For example, in the case of Root-

SIFT, the first contribution evaluates theoretically as

TM0 ∝ (α ls)s1s2, where α = 16/128 is the ratio be-

tween the fingerprint and descriptor lengths. Similarly,

TM ∝ ls(βs1s2), where β is the proportion of surviving

matches, ranging between 0.52n̄ = 0.0625 (best case)

and 0.5n̄ = 0.25 (worst case) by limiting iterations

to n̄ = 2 (found experimentally to provide the best

balance between computational efficiency and match-

ing quality). Notice that unfiltered matching can also

be represented in this general framework by defining a

dummy fingerprint f0 = 0, so that α0 ' 0 and β0 = 1.

Hence, the final theoretical speedup is given by (α0 +

β0)/(α+ β), and ranges between 267% and 533%. The

theoretical speedup for all the other descriptors can be

computed analogously.

Once M is computed, a greedy procedure such as

that described in [44] can be used to get NNR matches

from NN matches. Starting by an empty list L = ∅, all

the table entries Mk1,k2 are scanned for increasing dis-

tance values. Assuming that the ongoing list L contains

matches of the form (d1
k′1
,d2

k′2
) and that Mk1,k2 is be-

ing currently checked, the list L is updated to include

(d1
k1
,d2

k2
) if both descriptors in the matching pair are

not already used by matches already in L, i.e. k1 6= k′1
and k2 6= k′2. List updating stops when no finite Mk1,k2

remains to be checked. Notice that L contains by con-

struction the whole set of mutual matches as a subset.

The NNR distance

DNNR =
D(d1

k′1
,d2

k′2
)

D(d1
k′1
,d2

k′′2
)

=
Mk′1,k

′
2

Mk′1,k
′′
2

(20)

is eventually used to sort matches (d1
k′1
,d2

k′2
) ∈ L in

decreasing order, where k′′2 = argmin
k2 6=k′2

Mk′1,k2
≥ Mk′1,k

′
2

is the index of the 2nd best match. In the place of NNR,

we actually use an improved distance, referred to as

symmetric NNR (sNNR):

DsNNR =
2D(d1

k′1
,d2

k′2
)

D(d1
k′1
,d2

k′′2
) +D(d1

k′′1
,d2

k′2
)

(21)

In Eq. 21, index k′′1 is defined analogously to k′′2 .

DsNNR is the harmonic mean between the two values

obtained from DNNR when the 2nd best is chosen from

either S1 or S2. DsNNR has no computational overheads

with respect to DNNR, and has the remarkable advan-

tage of taking into account the statistical context of

both the descriptor sets S1 and S2. To the best of our

knowledge, this is the first time that sNNR is defined

and evaluated.

10 Fabio Bellavia, Carlo Colombo

Table 4 mAP (%) using HCF on the planar scenes.

ẋi|ẏi R(yi) qN,3(yi)

SIFT 62.72 62.80 63.22
ḟ

SIFTL1
63.19 62.75 62.91

f̈ sGLOH2 73.55 74.77 75.28

BiSIFT 60.11 – –...
f BisGLOH2 68.83 – –

Table 5 Average running time speedup (%) for matching
using HCF. Red values indicate performance loss.

uchar float nibble H

SIFT 144 160 138 –
SIFTL1

56 170 99 119
BiSIFT – – – 80

sGLOH2 267 330 258 274S
S

E
4
.1

BisGLOH2 – – – 157

SIFT 194 291 270 –
SIFTL1

276 306 262 127
BiSIFT – – – 98

sGLOH2 383 414 360 244

si
n

g
le

th
re

a
d

p
o
p
c
o
u
n
t

BisGLOH2 – – – 194

SIFT 142 157 136 –
SIFTL1

69 165 107 117
BiSIFT – – – 81

sGLOH2 318 367 316 316S
S

E
4
.1

BisGLOH2 – – – 177

SIFT 281 271 278 –
SIFTL1

253 275 292 133
BiSIFT – – – 94

sGLOH2 402 419 391 281

m
u

lt
i

th
re

a
d

p
o
p
c
o
u
n
t

BisGLOH2 – – – 524

H 3 bits stretched | binary (both use Hamming)

4.3 Experimental results

Results for the HCF strategy obtained with the same

experimental setup of Secs. 2.3 and 3.3 are reported in

terms of mAP in Table 4. Both the original descriptors

and their variants were tested. Using HCF, the num-

ber of correct matches only slightly decreases for SIFT

and BiSIFT (performance loss is about 1% of mAP).

A more evident loss, yet negligible in practice, is found

for sGLOH2 (about 3%), while BisGLOH2 exhibits the

most relevant loss (about 6%).

Concerning the matching computational efficiency,

Table 5 reports the measured speedup, that is the ra-

tio between the running time of the matching proce-

dure without HCF and with HCF, expressed in per-

centage. The amortized running time, i.e. the sum of

the times required to compute M0 and M divided by

s1 × s2, is considered. Values less than 100% (shown in

red) indicate the unfavorable case when HCF is slow-

ing down the computations. The purpose of HCF is ac-

tually to improve computational efficiency, and indeed

Table 6 mAP (%) using sNNR on planar scenes with and
without HCF.

ẋi|ẏi R(yi) qN,3(yi)

SIFT 64.69 65.31 65.11
SIFTL1

65.04 65.22 64.80
BiSIFT 62.90 – –

sGLOH2 78.21 79.42 79.24
BisGLOH2 77.04 – –

SIFT 63.96 64.33 64.42
SIFTL1

64.39 64.31 64.05
BiSIFT 61.02 – –

sGLOH2 74.61 75.87 76.25H
C

F

BisGLOH2 69.78 – –

it succeeds at that in all cases save for BiSIFT and

SIFTL1
with SSE optimization on non-floating point

data. This is possibly due to the relatively high compu-

tational overhead required by HCF, as compared with

the most efficient matching distance implementations.

The HCF speedup is more evident, attaining values up

to about 300%, when either a large data type (e.g.,

float) is used, or when the L2 distance is used with-

out code optimization. HCF is less effective on binary

descriptors, while it is especially beneficial to sGLOH2,

thanks to the fact that RIFT fingerprint f̈ is rotation-

ally invariant.

Table 6 reports the mAP using sNNR in the place

of NNR. Better matching results are usually obtained

by sNNR with respect to NNR (compare with Tables 1

and 3): An increase of about 2% in terms of mAP is

generally observed, which suggests that, for the purpose

of ranking matches, sNNR should always be preferred

to NNR.

Table 7 reports the average matching accuracy and

running times of SIFT and RootSIFT (with uchar and

float data types, respectively) when different approx-

imated matching methods are employed. Besides HCF,

two ANN implementations were evaluated, i.e. the Fast

Library for Approximate Nearest Neighbors (FLANN)

[49] and the header-only Hierarchical Navigable Small

World graphs NN search library (HNSW) [43]. For both

FLANN and HNSW, several parameter setups were che-

cked, only the most accurate (referred to as “+”) and

fastest (“×”) of which are shown in the table (more

details can be found in the additional material). No-

tice that HNSW is only available for matching with L2.

For ANN matching, a data structure is built from one

image, and the 1st and 2nd nearest neighbors are re-

trieved for each descriptor on the other image, used as

query. In the table, the total time required for build-

ing the data structure and querying are shown. Clearly,

using ANN can be very efficient when several images

have to be matched against a single one, since a sin-

Is there anything new to say about SIFT matching? 11

Table 7 mAP (%) and average matching total running times
(s) per image pairs of approximated matching strategies.

RootSIFT SIFTapprox.
method

matching
strategy mAP � mAP �

– sNNR 60.06 0.1177 58.78 0.0339
HCF sNNR 59.33 0.0721 58.21 0.0617

FLANN+ NNR 53.00 0.3293 54.55 0.3287L
1

FLANN× NNR 46.12 0.0186 46.64 0.0186

– sNNR 59.88 0.1341 57.90 0.1066
HCF sNNR 57.43 0.0850 59.29 0.0763

FLANN+ NNR 52.59 0.3190 53.54 0.3192
HNSW+ NNR 48.97 0.0594 51.04 0.0618

FLANN× NNR 45.11 0.0182 45.44 0.0182

L
2

HNSW× NNR 23.91 0.0172 27.40 0.0174

� single thread running times + best setup × fastest setup

gle data structure has to be built. On the other hand,

using sNNR with ANN would imply doubling the run-

ning time, as computation of the search data structure

for both the images of a given pair would be required

(besides, as reported in Table 6, this would bring a gain

no larger than %3). According to the results, HCF is

more accurate then any ANN approach and relatively

faster than the most accurate ANN equivalent methods.

Using their fastest setup, both FLANN and HNSW are

remarkably more efficient than HCF, yet at the expense

of a considerable accuracy drop.

5 Comparative evaluation of descriptors

5.1 Related work

The purpose of tidying up the crowded panorama of lo-

cal descriptors has emphasized the need of good evalua-

tion benchmarks, exposing both the potential strengths

and weaknesses of descriptors. Scene content, computa-

tional constraints, matching precision and application

task all affect the choice of a descriptor. However, a fact

that should be taken into account when choosing a de-

scriptor is that even slight differences in the evaluation

benchmark or in the descriptor implementation can at

times lead to unclear performance results [5, 9, 52].

The most common benchmarks employ planar scenes,

for which the ground truth can easily be obtained. The

de facto standard Oxford benchmark [44] has been re-

cently sided by the HPatches benchmark [5], that con-

siders a larger dataset and variability of operational

conditions. By construction, planar benchmarks are un-

able to take into account critical issues, such as oc-

clusions, arising with non-planar scenes. To deal with

these critical issues, benchmarks on non-planar scenes

have been proposed as well over the years, including

datasets with few simple 3D scenes [25] and more com-

plex ones with either approximated [11,47] or more re-

fined and expensive sensor-based [21,56] ground-truths.

Yet, ground-truths obtained with the approaches above

are typically limited to a set of selected image regions.

Quite recently, application-based evaluation benchmarks

have also been introduced, attempting to indirectly in-

fer descriptor characteristics from the expected output

of an assigned visual task. These benchmarks mainly

target at object retrieval tasks [22], Structure-from-

Motion (SfM) [52] or visual Simultaneous Localization

and Mapping (SLAM) [13] applications. Application-

based benchmarks also suffer of important limitations,

as they introduce a bias towards the considered appli-

cation. For example, SfM-based benchmarks, that fo-

cus on keypoint localization accuracy and are generally

built and optimized over SIFT, consider SIFT to be

globally the best [32, 52]. On the other hand, bench-

marks based on object retrieval do not rank SIFT as

the best descriptor, as they usually require a higher

tolerance to patch deformations [6, 9].

In the following, a new and general benchmark for

non-planar scenes is introduced, that extends and re-

fines the one proposed in [11] and employed in a recent

descriptor evaluation [10]. This benchmark is aimed

at evaluating descriptor behavior in real-world scenes,

thus providing a deep insight into descriptor character-

istics, while compensating for the limitations of both

the planar and the application-based benchmarks.

5.2 A new benchmark for non-planar scene matching

Given a pair of images I1 and I2, the method requires

that the user provides an initial set P of point corre-

spondences, the generic pair being (p1,p2), with p1 ∈
I1, and p2 ∈ I2 (see Fig. 6). A user-friendly Matlab in-

terface to select these points is provided, together with

the data and code employed in the evaluation 3.

Referring to Fig. 7, given two elliptical keypoint

patches E1 ⊂ I1 and E2 ⊂ I2, the two points t2 and t′2
of tangency on E2 from p2, are computed and repro-

jected onto I1 as the epipolar lines l and l′. The points

q and r on line l at minimal distance with respect to

the points of tangency t1 and t′1 on E1 from p1, are the

best candidate approximations for the mapping of t2

onto I1 according to the epipolar geometry. Similarly,

q′ and r′ on line l′ are the best candidate approxima-

tions for the mapping of t′2 onto I1. (Notice that, since

two points in I1 are actually obtained for each point

of tangency in I2, a two-fold correspondence ambiguity

arises, that will be removed hereafter.) Repeating this

process for all p2’s belonging to corresponding pairs,

3 https://drive.google.com/open?id=

1kDdToyc11QnYtH6eHr5gXYPN_Jk0tKnV

12 Fabio Bellavia, Carlo Colombo

(a) (b)

Fig. 6 A zoom of the input setup in the case of non-planar scene for an example image pair I1 (a) and I2 (b). User-defined
corresponding matches, occluded points, and keypoint centers are shown respectively in red, cyan and yellow. The blue/green
wire-frames represent the Delaunay triangulations T1 and T2 when local mapping homographies are present/absent. (Best
viewed in color.)

Fig. 7 Construction of the approximated reprojecting poly-
gon E2→1. Distinct colors refer to different user-given corre-
spondences (p1,p2). (Best viewed in color.)

the best polygon E2→1 approximating the mapping of

E2 onto I1 is found, where all the two-fold ambiguities

are removed by considering the global minimal error so-

lution in terms of distance between epipolar lines and

tangency points. This construction is akin to the one

proposed in [11] to define quadrilaterals inscribed and

circumscribed to the ellipse, yet it yields a more pre-

cise ellipse reprojection, since it uses more than just

two correspondences (p1,p2). Analogously, a polygon

E1→2 ⊂ I2 can be computed, by which the maximal

approximated overlap error can be defined as

ε = 1−min

(
E1 ∩ E2→1

E1 ∪ E2→1
,
E2 ∩ E1→2

E2 ∪ E1→2

)
(22)

By construction, when two patches E1 and E2 actu-

ally match, using ε to decide whether the two patches

match would give no true negatives. Nevertheless, given

two patches E1 and E′2 that do not match, a false posi-

tive arises when E2 (actually matching with E1) and E′2

Fig. 8 X -related statistics for decreasing values of the over-
lap error ε. tX = 2 in the yellow plot. (Best viewed in color.)

share, either exactly or approximately, the same tan-

gent lines through the epipole in I2. To alleviate this

issue and increase the evaluation precision, statistics

about ellipse centers were extrapolated and incorpo-

rated into the matching process. Ellipse center statis-

tics were extrapolated with a Monte-Carlo simulation

involving 4×107 runs. In each run, a pair of ellipses was

randomly generated, then its overlap error was com-

puted, together with the distance X between the two

ellipse centers, normalized by the major semi-axis of

one of the two ellipses. Figure 8 shows the statistics re-

lated to X , where µX (ε) and σX (ε) are respectively the

mean and standard deviation of X for a given overlap

error ε, and tX is a user-defined constant.

The above statistics can be exploited as follows: A

match between two elliptical patches E1 and E2 with

an overlap error ε is retained only if ε < tε (where tε is

a threshold, experimentally set as shown later) and

X ≈ min
(
‖c1−c2→1‖

a1
, ‖c2−c1→2‖

a2

)
≤ µX (ε) + tXσX (ε) (23)

In Eq. 23, c1 and c2 are respectively the centers of E1

and E2, c2→1 is the reprojection of c2 onto I1 and,

Is there anything new to say about SIFT matching? 13

similarly, c1→2 is the reprojection c1 onto I2; a1, a2 are

the major semi-axes of E1 and E2, respectively. (No-

tice that, also in the case of non-planar scenes, an el-

liptical patch in one image is expected to be roughly

elliptical after reprojection onto the other image.) In

order to estimate the unknown quantities ‖c1 − c2→1‖
and ‖c1 − c2→1‖ appearing in Eq. 23, local homography

maps or, when these do not fit the data, their nearest

neighbor approximations, are employed. To this aim,

the Delaunay triangulations T1 on I1 and T2 on I2 are

constructed from the information provided by the user,

i.e., the set of correspondences P = {(pk1 ,pk2)}Kk=1, plus

the occlusion point sets O1 ⊂ I1 and O2 ⊂ I2 (see again

Fig. 6). In particular, the pk1 ’s and O1 are the triangle

vertexes for T1, and similarly the pk2 ’s and O2 are the

triangle vertexes for T2. Notice that in general it is not

possible to transfer a triangulation from one image to

another, due to the presence of parallax. The search for

compatible homography maps is described hereafter.

Consider the triangle
(
p1

1,p
2
1,p

3
1

)
of T1 that includes

the point c1. For each pair
((

p1
1,p

2
1,p

3
1

)
,
(
p1

1,p
3
1,p

4
1

))
of adjacent triangles not containing vertexes in O1, the

homography H that maps the ordered vertex list V1 =

{p1
1,p

2
1,p

3
1,p

4
1} onto V2 = {p1

2,p
2
2,p

3
2,p

4
2} ⊂ I2 is com-

puted (see Fig. 9). The homography H is retained if∥∥ph2 −H−1ph1
∥∥ ≤ tH (24)

where tH is a threshold on the reprojection error ex-

perimentally set to 5 pixels, and the index h spans all

correspondences for which either ph2 ∈ V2, or (see again

Fig. 9, right) it is the vertex of a triangle in T2 that in-

tersects with triangle
(
p1

2,p
2
2,p

3
2

)
. If such intersection

occurs with a triangle of T2 having a vertex in O2, H

is also rejected. The first of the unknown quantities in

Eq. 23 can then be obtained as

‖c1 − c2→1‖ ≈ min
H∈H1→2

∥∥c1 −H−1c2

∥∥ (25)

provided that H1→2, denoting the set of the homogra-

phies (at most three) assigned to triangle
(
p1

1,p
2
1,p

3
1

)
,

is not empty. The procedure can be repeated by swap-

ping the two images, thus obtaining ‖c2 − c1→2‖.
When H1→2 = H2→1 = ∅, the procedure above does

not apply, and the unknowns are obtained by nearest

neighbor estimation as follows. Define P1 ⊂ P as the

set composed of vertexes pf1 of triangles in T1 that in-

tersect with a circle centered in c1 whose area is equal

to the average area of the triangles in T1 (see Fig. 10).

Considering the flow
(
pf2 − pf1

)
of any pf1 ∈ P1, the

first of the unknown quantities in Eq. 23 is estimated

as

‖c1 − c2→1‖ ≈ min
(pf1 ,p

f
2)∈P1

∥∥∥c1 −
(
c2 −

(
pf2 − pf1

))∥∥∥ (26)

Fig. 9 The local homography H mapping quadrilateral V1

to V2 is assigned to triangle (p1
1,p

2
1,p

3
1) if V1 ∩ O1 6= ∅, no

triangle intersecting with (p1
2,p

2
2,p

3
2) has a vertex ph2 ∈ O2,

and H−1 correctly reprojects ph2 onto I1. (Best viewed in
color.)

Fig. 10 In the case no local homography is found, the ver-
texes of the triangles intersecting with a circle centered in
c1 (red) are considered (see text). Among the flows pf2 − pf1
(colored left-to-right arrows), the one that minimizes the re-
projection distance between centers c2 and c1 is selected to
define c2→1 (in this case the blue right-to-left arrow). Oc-
cluded points are represented as gray dots. (Best viewed in
color.)

An analogous procedure is used to estimate ‖c2 − c1→2‖.

Fig. 11 shows the estimated correct (a) and dis-

carded (b) matches according to the proposed non-pla-

nar benchmark protocol. Clearly, the approach just di-

scussed works with scenes with a well-defined structure

and, as any other non-planar evaluation benchmark,

could hardly deal with very complex and highly de-

tailed and chaotic scenarios, such as images of dense

vegetation.

5.3 Experimental results

In this section, a comprehensive comparative evaluation

of local descriptors is carried out, focusing on image

matching for both planar and non-planar scenes.

Results are presented for SIFT, sGLOH2 and their

variants described in the previous sections (the “P” and

“R” prefixes indicate respectively qN,3(yi) and R(yi),

RSIFT being a synonymous of RootSIFT), and for a

large representative of recent state-of-the-art descrip-

tors. These include: (a) Hand-crafted descriptors: MKD

[50], LIOP [65], BRISK [35], FREAK [2], (b) Non-deep

data-driven descriptors: MIOP [65], RFD [20], BRIEF

[16], LATCH [36], BinBoost [60], ORB [51], BGM [61],

14 Fabio Bellavia, Carlo Colombo

(a) (b)

Fig. 11 An example of non-planar scene matching output. (a) Spatial flows for (yellow) the user-given correspondences, and
for keypoint matches with ε < 0.5 and tX = 2 when local homographies are (blue) present, (red) absent. (b) Spatial flows for
discarded matches when local homographies are (purple) present or (cyan) absent. (Best viewed in color.)

LDAHash [55], (c) Deep descriptors: DeepDesc [53],

HardNet [45], L2-Net and its binary variant BiL2-Net

[57], Geo-Desc [41] and DOAP [27], together with its

binary variant BiDOAP. Several versions of the above

descriptors are tested, among those proposed by their

authors. HardNetPS, i.e., the HardNet network trained

with the PS dataset [46] is also included, since it is

reported to perform better than the original. In the

following, the ‘s’ suffix indicates all descriptors of the

same class (e.g., “SIFTs” stands for SIFT, PSIFT and

RSIFT). All descriptors are matched using the sNNR

matching strategy which, as noted in Sec. 4.3, performs

always better than NNR (results with NNR are re-

ported anyway in the additional material). The sym-

bol ‘�’ indicates the use of HCF. For SIFT, LIOP and

GeoDescQ, results with both L1 and L2 distances are re-

ported. The remaining descriptors, except for sGLOH2s

(that use a permutation-based L1), binary descriptors

(that use the Hamming distance) and MKDs (that use

the dot product) are optimized by construction for the

L2 distance, either by PCA or training (this also holds

for GeoDescQ, yet interesting results are obtained with

L1). In order to provide a further insight into the critical

steps of image matching, results using deep-based patch

orientation assignment [69] in the place of the standard

SIFT patch orientation approach are also given.

Results are shown in Table 8 in terms of accuracy

and average matching running times, together with a

short summary of the properties of each descriptor (len-

gth, data type). Running times refer to the fastest im-

plementation of the descriptor (e.g., running times for

PSIFT refer to its uchar implementation, see also Ta-

ble 2). Notice that the time spent to get keypoint patches

and to compute the descriptors is not taken into ac-

count, since in many cases descriptor code is not op-

timized and hardware-dependent (deep descriptors are

fast on GPUs but not on CPUs, while no GPU imple-

mentation is currently available for most of the remain-

ing descriptors). In the table, colored bands are used

for a quick visualization of ranking order for the cor-

responding column. Different colors indicate a ranking

step of 20%. For mAP, ranking refers to the best ac-

curacy between those achieved with the two possible

patch orientation assignments: SIFT (‘�’) and deep-

based (‘�’). For running times ranking refers to the sin-

gle thread implementation. The table gives performance

figures as averages over the whole datasets. More de-

tailed results for each image pair can nevertheless be

found in the additional material. Data and code used

for the evaluation are freely available on-line for sup-

porting the reproducibility of the results3.

5.3.1 Planar scenes

For planar scene evaluation, the same datasets and set-

up of the previous experimental sections (see Secs. 2.3,

3.3 and 4.3) were employed. Results are provided for

the Oxford and WISW datasets, that allow investigat-

ing descriptor behavior using different patch orientation

assignment methods4.

Concerning matching accuracy, significant improve-

ments over SIFT-based orientation (about 4-8% of mAP

4 The HPatches dataset uses square patches that cannot
be rotated using patch orientation assignment without losing
patch data [10]. As this would compromise the fairness of
the comparison, HPatches is not considered in the present
evaluation.

Is there anything new to say about SIFT matching? 15

Table 8 Comparative evaluation of descriptors on planar and non-planar scenes. (Best viewed in color.)

mAP (%) matching running times (ns)

planar non-planar SSE 4.1 popcount

� � � � � � � �

#
data
type

SIFT 65.04 67.83 28.70 32.18 12 5 134 37 128 uchar

SIFT� 64.39 67.12 28.23 31.77 22 7 49 15 128 uchar

PSIFT 64.80 67.32 28.66 31.44 12 5 48 14 128 3 bits
PSIFT� 64.05 66.59 28.25 31.68 16 7 37 11 128 3 bits
RSIFT 65.22 68.06 30.13 33.64 38 15 163 49 128 float

RSIFT� 64.31 67.33 29.40 32.95 23 8 54 16 128 float

sGLOH2 – 78.21 – 39.31 418 124 1110 288 256 uchar

sGLOH2� – 74.61 – 36.76 157 39 290 72 256 uchar

PsGLOH2 – 79.24 – 41.09 412 116 500 132 256 3 bits
PsGLOH2� – 76.25 – 38.99 160 37 205 47 256 3 bits
RsGLOH2 – 79.42 – 42.50 670 180 1400 353 256 float

RsGLOH2� – 75.87 – 39.76 203 49 338 84 256 float

LIOP – 75.28 – 30.81 13 5 145 39 144 uchar

L
1

GeoDescQ 79.06 80.25 40.16 43.24 12 5 134 38 128 uchar

SIFT 64.69 67.33 27.56 30.69 37 12 67 19 128 uchar

SIFT� 63.96 66.82 27.12 30.44 26 9 35 10 128 uchar

PSIFT 65.11 67.62 28.44 31.44 35 11 126 35 128 3 bits
PSIFT� 64.42 66.81 28.08 31.11 25 8 47 13 128 3 bits
RSIFT 65.36 68.13 29.34 32.61 44 15 157 43 128 float

RSIFT� 64.33 67.49 28.61 32.07 27 9 55 16 128 float

LIOP – 73.44 – 28.93 39 13 70 20 144 uchar

MIOP – 77.59 – 32.40 45 16 160 45 128 float

DeepDesc 55.73 59.37 29.38 33.38 44 15 156 45 128 float

DOAP 70.37 76.38 38.29 43.76 44 15 157 44 128 float

GeoDesc 80.25 82.61 40.92 43.89 44 15 159 45 128 float

GeoDescQ 80.32 82.58 40.92 43.98 38 13 67 19 128 uchar

HardNetPS 75.05 80.33 36.72 41.61 44 15 159 46 128 float

HardNet++ 71.52 77.96 38.14 43.27 45 14 156 43 128 float

L2-Net 61.52 63.92 33.35 37.53 46 16 158 46 128 float

L
2

L2-NetCS 68.54 73.97 38.16 43.87 68 21 281 79 256 float

MKDW 63.54 68.18 30.81 35.34 38 13 141 39 128 float∗

MKD 63.71 68.20 29.97 34.35 62 20 216 64 238 float

BiSIFT 62.90 64.96 26.07 29.32 13 5 17 6 482 bit
BiSIFT� 61.02 62.74 25.28 28.18 16 6 18 7 482 bit

BisGLOH2 – 77.04 – 35.23 376 90 401 98 1152 bit
BisGLOH2� – 69.78 – 30.92 240 51 278 57 1152 bit

BGM 56.06 57.21 21.88 24.04 10 3 16 5 256 bit
BinBoost64 33.83 30.36 11.13 11.25 8 4 9 4 64 bit
BinBoost128 49.57 48.36 18.16 19.34 8 3 11 4 128 bit
BinBoost256 56.91 57.21 21.94 23.51 9 5 16 16 256 bit

BRIEF32 56.11 55.89 18.25 19.15 9 4 16 5 256 bit
BRIEF64 57.85 58.40 19.76 20.81 13 6 25 8 512 bit
BRISK 59.26 59.20 22.31 22.65 13 6 23 9 256 bit

FREAK 52.87 51.87 19.25 20.39 13 5 23 8 512 bit
LATCH32 56.80 56.86 17.48 19.19 9 4 15 5 256 bit
LATCH64 60.08 60.52 19.71 21.70 13 5 24 7 512 bit

LDAHash64 51.19 49.17 18.51 19.16 8 3 9 3 64 bit
LDAHash128 58.60 58.51 22.31 23.77 7 3 11 4 128 bit

ORB 56.60 54.82 17.32 17.39 9 4 15 6 256 bit
RFDR 68.93 70.12 29.79 28.77 11 4 18 5 293 bit
RFDG 69.43 70.67 31.22 30.37 13 5 22 8 406 bit

BiDOAP 61.04 62.68 27.32 29.62 10 4 15 5 256 bit
BiL2-Net 50.22 50.53 25.42 28.52 8 4 11 5 128 bit

H

BiL2-NetCS 62.76 67.53 33.82 38.35 10 5 16 6 256 bit

� SIFT patch orientation � deep-based patch orientation or none � single thread � multi thread

rank (best to worst) # descriptor length ∗ dot product � HCF

16 Fabio Bellavia, Carlo Colombo

in all cases except for some binary descriptors) are ob-

tained with deep-based patch orientation assignment.

The best mAPs () are achieved by GeoDescs, Hard-

Nets, MIOP, sGLOH2s and BisGLOH2, followed by ()

DOAP, LIOP, L2-NetCS , and then () SIFT, MKDs

and BiL2-NetCS . The proposed BiSIFT () performs

generally better than most of the other binary descrip-

tors (), that rank last. The proposed quantization sche-

me considerably shrinks descriptor length, yet without

compromising accuracy, which is even slightly increased

on SIFT with L2 and sGLOH2. It is worth noting that

both SIFTs and LIOP perform slightly better with L1

than with L2, although the latter is the only distance

considered for these descriptors in the previous litera-

ture.

5.3.2 Non-planar scenes

In order to evaluate descriptor matching according to

the new benchmark protocol introduced in Sec. 5.2, 35

non-planar sequences were chosen from [1, 9, 47, 56]. In

particular, 3 images were selected from 18 of these se-

quences, and 2 from each of the remaining 17, for a

total of (18× 3) + 17 = 71 distinct image pairs (see ad-

ditional material). For each pair, 450 correspondences

and 380 occluded keypoints were manually selected on

average, in order to estimate the ground-truth match-

esas described in Sec. 5.2. The same dataset was also

used for the WISW contest [10], but with a less accu-

rate method for overlap error estimation than the one

used here.

The question arises whether the precision of the pro-

posed descriptor matching evaluation depends on the

thresholds values tε (maximum allowed approximated

overlap error) and tX (patch center distance). Indeed,

lower threshold values may increase the precision of cor-

rect matches, and decrease the matching tolerance. In

order to show the robustness of the current evaluation

in terms of ranking stability, tests were repeated con-

sidering the 3× 3 = 9 possible thresholds combinations

obtained from tε ∈ {0.4, 0.5, 0.6} and tX ∈ {1, 2, 2.5}.
Tests in terms of the Kendall τ rank correlation coef-

ficient show that descriptor ranking keeps quite stable

and does not exhibit relevant fluctuations, so that using

a single threshold pair for the evaluation is sufficient to

acquire a clear understanding of the relative behavior

of descriptors.

Accuracy results are shown in Table 8 for tε = 0.5

and tX = 2. As with planar scenes, sNNR and deep

patch orientation assignment are preferable to their al-

ternatives. In terms of absolute values, mAP results

generally halve for worse, clearly because non-planar

scenes exhibit more inherent complexity. Descriptors

ranked first () are GeoDescs, L2NetCS , DOAP, Hard-

Nets and sGLOH2s. With respect to the planar case,

some remarkable changes in ranking order are observed.

Specifically, LIOP and MIOP fall down by two ranking

classes, while DeepDesc, MKDs, DOAP and L2-NetCS
rise up by one class, the latter two reaching first class

placements. Moreover, HardNetPS gets worse, swap-

ping with HardNet++. Relative changes for hand-cra-

fted descriptors can be related to their degree of special-

ization with respect to plane-induced patch deforma-

tions. For example, LIOP and MIOP are somewhat too

focused on planar transformations, hence they hardly

tolerate the presence of patch deformations induced by

3D content. Changes in ranking order for deep descrip-

tors can be related to the nature of the datasets used

for training and testing them. In particular, since Hard-

NetPS uses training data obtained by SfM, its perfor-

mance loss with respect to HardNet++ is possibly due

to a specific bias towards SfM applications.

5.3.3 Running times for the matching procedure

Concerning running times for the matching step, rank-

ing order is almost the same with or without explicit

SIMD code optimization (see again Table 8). The most

efficient descriptors () are of course the binary ones,

but also uchar SIFTs, LIOP and GeoDescQ perform

equally well, if matched with L1. In particular, Geo-

DescQ, when matched with L1 instead than with the

usual L2, quadruples the speed with negligible accu-

racy loss, thus ranking first both for accuracy and effi-

ciency. Non-binary descriptors of standard design (i.e.,

128 float vectors matched with L2) have intermediate

rankings (), and are about three-four times slower

than those above. sGLOH2s are the most computation-

ally demanding descriptors ().

HCF is usually effective at lowering running times

by about one half, at the expense of a small accuracy

drop (see e.g. the case of RootSIFT), with the only ex-

ceptions of uchar SIFTs matched with L1 and BiSIFT

(for an explanation, see again Sec. 4.3).

In order to achieve their fast performance, deep de-

scriptors such as GeoDescs and HardNets heavily rely

on GPU power for the descriptor computation phase.

Without a GPU, their computational efficiency is very

poor. For example, in our basic setup (Intel Core i7-

3770K with 8 GB of RAM, no GPU), the time required

by HardNet to compute 2500 descriptors is about 10

sec, to be compared with 1 sec, that is the time ap-

proximately required by SIFTs for the same task. This

also implies that deep descriptors are less flexible and

adaptable to different system configurations than those

which are not based on deep learning.

Is there anything new to say about SIFT matching? 17

5.4 Recapitulation and afterthoughts

From early attempts such as DeepDesc, deep descrip-

tors have evolved and matured, so that recent descrip-

tors based on deep learning, such as GeoDescs and

HardNets, prove to provide the best accuracy for a wide

class of image transformations. Nevertheless, deep de-

scriptors are not exempt from disadvantages, including

an obvious dependency on the training data and heavy

requirements in terms of storage and GPU hardware,

by which to achieve reasonable running times. In the

authors’ opinion, the matching accuracy improvements

offered by deep descriptors do not fully compensate for

their lack of flexibility in practical scenarios, and uni-

versality.

SIFT is confirmed to be the reference general-purpose

descriptor, being still able to compete, despite its age,

with recent non-binary hand-crafted descriptors (MKDs,

MIOP and LIOP) [52]. As shown in this paper, SIFT

can be made even more competitive and appealing by

packing it into PSIFT according to the introduced quan-

tization scheme. Although being only 48 bytes long,

PSIFT does not exhibit performance losses with respect

to SIFT. The proposed BiSIFT also yields very good re-

sults, both in accuracy and efficiency, as compared with

most state-of-the-art binary descriptors. RootSIFT, cur-

rently the most accurate yet slowest among the SIFT

variants, can be made twice as fast by using the pro-

posed HCF approach. HCF is also a good way to im-

prove efficiency for all SIFTs using L2 as matching dis-

tance, and sGLOH2s.

As evident from our experimental results, the best

trade-off between accuracy and efficiency is obtained
with uchar descriptors matched with the L1 distance.

Exemplary in this respect is GeoDescQ which, if matched

with L1 instead than with the usual L2, quadruples the

speed with negligible accuracy loss. A similar behavior

has to be expected for all descriptors. Indeed, on the one

hand, L1 and L2 give comparable values for all high-

dimensional descriptor vectors, which explains why the

accuracy loss is minimal. On the other hand, the maxi-

mal computational efficiency is obtained with the SAD

instruction, which implements L1 and requires that the

descriptor be represented as a uchar. The above ob-

servation could be taken into account when designing

novel non-binary descriptors and making them as fast

as binary descriptors and as accurate as their float,

L2-matched counterparts.

Exploiting data context at running time instead of

injecting data knowledge into the descriptor at training

time can offer new solutions for matching, which were

not entirely explored so far (geometric constraints [12,

24, 38] also share the same objective, but are less gen-

eral). This is the idea behind the design of the matching

strategy sNNR and the descriptor class derived from

sGLOH2, that is essentially a rotating SIFT. sGLOH2s

are very stable and robust, and currently are the only

handcrafted descriptors comparable with deep descrip-

tors in terms of matching accuracy.

According to our evaluation, patch orientation al-

ways plays a key role in descriptor design. In particu-

lar, the more correct matches are needed, the finer the

orientation registration has to be, save for those de-

scriptors (i.e., sGLOH2s, LIOP and MIOP) embedding

a mechanism to handle rotational invariance.

6 Conclusions and future work

This paper addressed the design and evaluation of com-

putational strategies aimed at enhancing image match-

ing with SIFT. We have undertaken a critical review

of the main aspects of descriptor design that affect

matching performance, and devised new ways to do

old things better: From quantization and binarization,

through contextual matching, to experimental bench-

marking. Most of the enhancements are actually SIFT-

independent, and can be employed with any hand-cra-

fted or data-driven descriptors, also including deep de-

scriptors. Moreover, we have produced a thorough ex-

perimental analysis, including a very comprehensive com-

parison of baseline and state-of-the-art descriptors. From

both the theoretical and experimental discoveries made,

the following conclusions can be drawn, which we hope

will prove useful to practitioners in the field, who are

invited to download our code and data3.

– Quantization can improve spatial and tempo-

ral descriptor computational efficiency with-

out compromising matching accuracy (Sec. 2).

A novel quantization scheme for SIFT was intro-

duced. The quantized descriptor, called PSIFT, at

least halves the number of bits required to store the

descriptor, yet without any significant loss in terms

of both accuracy and efficiency. The 48-bytes PSIFT

can also be recoded into a 128-bytes binary descrip-

tor with no loss of accuracy, with improved efficiency

when no optimized code is available.

– Comparing and sorting are strictly related in

binary descriptor design (Sec. 3). An alternative

binarization scheme for SIFT was investigated, re-

sulting in a light descriptor (BiSIFT), competitive

with other state-of-the-art binary descriptors. Ex-

perimental evidence with BiSIFT provided an in-

sight into the benefits of comparing against sorting

in binary descriptor design.

18 Fabio Bellavia, Carlo Colombo

– A hierarchical coarse-to-fine descriptor rep-

resentation can improve matching efficiency

in the case of heavy distance computation

(Sec. 4). A hierarchical cascade filtering (HCF) ap-

proach was proposed that, relying on the extraction

of small descriptor fingerprints and exploiting the

multi-level structure of SIFT-like descriptors, can

further speedup the descriptor matching process, es-

pecially with float descriptors matched with the L2

distance.

– One-side distances may be not optimal when

matching a pair of images (Sec. 4). A symmetri-

cal variant of NNR (sNNR) was defined, and shown

experimentally to increase the matching accuracy.

– Designing benchmarks for non-planar scenes

is not an easy task (Sec. 5). A novel evaluation

benchmark extending the concept of patch overlap

to the non-planar case was developed, allowing us

to compare descriptor behavior on both planar and

non-planar scenes.

– Descriptor ranking may change even signifi-

cantly from planar to non-planar scenes (Sec.

5). In particular, training data for deep descriptors

should be chosen carefully, in order to avoid any bias

towards a specific scene geometry.

– Deep descriptors achieve the best matching

accuracy, SIFT is still well balanced overall

(Sec. 5). According to the evaluation, deep descrip-

tors are currently those that perform best in terms

of accuracy, and can also be computationally effi-

cient on GPUs. SIFT-like descriptors, especially if

properly quantized and matched, remain competi-

tive still today in terms of balance between accuracy,

storage, efficiency and hardware-software flexibility.

– Patch orientation is critical for matching (Sec.

5). This is evidenced from the evaluation by com-

paring the canonical SIFT orientation estimation

against the deep-based orientation estimation.

– Local and global descriptor contexts both ma-

tter in image matching (Secs. 4 and 5). This

is corroborated by the overall experimental results

with HCF, sNNR and patch orientation.

– The uchar descriptors matched with the L1

distance yield at the same time the computa-

tional efficiency of binary descriptors and the

high accuracy of float descriptors matched

with the L2 distance (Secs. 2 and 5). This should

be kept in mind when designing future descriptors.

Future work will address the problem of deep de-

scriptor quantization, as it plays a key role in encoding

any descriptor into uchar format, but also in view of

the recent bfloat16 half precision floating-point for-

mat5. Data context exploitation appears to be another

promising direction for future research in image match-

ing. Descriptor matching on GPUs is becoming common

practice. However, current implementations are limited

to float descriptors matched with the L2 distance.

Therefore, another topic of future investigation will be

the design of algorithms for GPUs leveraging quanti-

zation and the L1 distance for maximizing bandwidth

and speeding-up computations.

Acknowledgements The Titan Xp used for this research
was generously donated by the NVIDIA Corporation.

This work is based on research partially sponsored by the
Air Force Research Laboratory and the Defense Advanced
Research Projects Agency under agreement number FA8750-
16-2-0188. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon.

F. Bellavia is currently funded by the Italian Ministry of
Education and Research (MIUR) under the program PON
Ricerca e Innovazione 2014-2020, cofunded by the European
Social Fund (ESF), CUP B74I18000220006, id. proposta AIM
1875400, linea di attività 2, Area Cultural Heritage.

References

1. Aanæs, H., Dahl, A.L., Pedersen, K.S.: Interesting in-
terest points. International Journal of Computer Vision
97(1), 18–35 (2012)

2. Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: Fast retina
keypoint. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
510–517 (2012)

3. Arandjelović, R., Zisserman, A.: Three things everyone
should know to improve object retrieval. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2911–2918 (2012)

4. Baber, J., Dailey, M., Satoh, S., Afzulpurkar, N., Bakht-
yar, M.: BIG-OH: BInarization of gradient orientation
histograms. Image and Vision Computing 32(11), 940–
953 (2014)

5. Balntas, V., Lenc, K., Vedaldi, A., Mikolajczyk, K.:
HPatches: A benchmark and evaluation of handcrafted
and learned local descriptors. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
3852–3861 (2017)

6. Balntas, V., Riba, E., Ponsa, D., Mikolajczyk, K.: Learn-
ing local feature descriptors with triplets and shallow con-
volutional neural networks. In: Proceedings of the British
Machine Vision Conference (BMVC), pp. 119.1–119.11
(2016)

7. Balntas, V., Tang, L., Mikolajczyk, K.: Bold - binary on-
line learned descriptor for efficient image matching. In:
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2367–2375 (2015)

8. Bay, H., Ess, A., Tuytelaars, T., L.Van Gool: Speeded-
up robust features (SURF). Computer Vision and Image
Understanding 110(3), 346–359 (2008)

9. Bellavia, F., Colombo, C.: Rethinking the sGLOH de-
scriptor. IEEE Transactions on Pattern Analysis and
Machine Intelligence 40(4), 931–944 (2018)

5 https://cloud.google.com/tpu/docs/bfloat16

Is there anything new to say about SIFT matching? 19

10. Bellavia, F., Colombo, C.: “Which is Which?” Evaluation
of local descriptors for image matching in real-world sce-
narios. In: International Conference on Computer Anal-
ysis of Images and Patterns (CAIP), pp. 299–310 (2019).
URL http://cvg.dsi.unifi.it/wisw.caip2019

11. Bellavia, F., Valenti, C., Lupascu, C.A., Tegolo, D.: Ap-
proximated overlap error for the evaluation of feature
descriptors on 3D scenes. In: Proceedings of the Inter-
national Conference on Image Analysis and Processing
(ICIAP), pp. 270–279 (2013)

12. Bian, J., Lin, W.Y., Matsushita, Y., Yeung, S.K.,
Nguyen, T.D., Cheng, M.M.: GMS: grid-based motion
statistics for fast, ultra-robust feature correspondence.
In: 2017 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 2828–2837 (2017)

13. Bian, J., Zhang, L., Liu, Y., Lin, W.Y., Cheng, M.M.,
Reid, I.D.: Image matching: An application-oriented
benchmark. In: arXiv (2018)

14. Brown, M., Lowe, D.G.: Automatic panoramic image
stitching using invariant features. International Journal
of Computer Vision 74(1), 59–73 (2007)

15. Brown, M.A., Hua, G., Winder, S.A.J.: Discriminative
learning of local image descriptors. IEEE Transactions
on Pattern Analysis and Machine Intelligence 33(1), 43–
57 (2011)

16. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF:
Binary robust independent elementary features. In: Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pp. 778–792 (2010)

17. Chandrasekhar, V., Takacs, G., Chen, D.M., Tsai, S.S.,
Reznik, Y., Grzeszczuk, R., Girod, B.: Compressed his-
togram of gradients: A low-bitrate descriptor. Interna-
tional Journal of Computer Vision 96(3), 384–399 (2012)

18. Cui, Y., Hasler, N., Thormählen, T., Seidel, H.: Scale in-
variant feature transform with irregular orientation his-
togram binning. In: Proceedings of the International
Conference on Image Analysis and Recognition (ICIAR),
pp. 258–267 (2009)

19. Dong, J., Soatto, S.: Domain-size pooling in local descrip-
tors: DSP-SIFT. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR)
(2015)

20. Fan, B., Kong, Q., Trzcinski, T., Wang, Z., Pan, C., Fua,
P.: Receptive fields selection for binary feature descrip-
tion. IEEE Transactions on Image Processing 26(6),
2583–2595 (2014)

21. Fan, B., Kong, Q., Wang, X., Wang, Z., Xiang, S., Pan,
C., Fua, P.: A performance evaluation of local features
for image based 3d reconstruction. In: arXiv (2018)

22. Fan, B., Wu, F., Hu, Z.: Rotationally invariant descrip-
tors using intensity order pooling. IEEE Transactions on
Pattern Analysis and Machine Intelligence 34(10), 2031–
2045 (2012)

23. Fanfani, M., Bellavia, F., Colombo, C.: Accurate
keyframe selection and keypoint tracking for robust vi-
sual odometry. Machine Vision and Applications 27(6),
833–844 (2016)

24. Frahm, J., Matas, J., Pollefeys, M., Chum, O., Raguram,
R.: Usac: A universal framework for random sample con-
sensus. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 35(8), 2022–2038 (2013)

25. Fraundorfer, F., Bischof, H.: A novel performance evalu-
ation method of local detectors on non-planar scenes. In:
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 33–33 (2005)

26. Hassner, T., Mayzels, V., Zelnik-Manor, L.: On SIFTs
and their scales. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR),
pp. 1522–1528 (2012)

27. He, K., Lu, Y., Sclaroff, S.: Local descriptors optimized
for average precision. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR) (2018)

28. Heikkila, M., Pietikainen, M., Schmid, C.: Description
of interest regions with local binary patterns. Pattern
Recognition 42(3), 425–436 (2009)

29. Hua, G., Brown, M., Winder, S.: Discriminant embedding
for local image descriptors. In: Proceedings of the IEEE
International Conference on Computer Vision (ICCV),
vol. 0, pp. 1–8 (2007)

30. Jin, Z., Zhang, D., Hu, Y., Lin, S., Cai, D., He, X.:
Fast and accurate hashing via iterative nearest neighbors
expansion. IEEE Transactions on Cybernetics 44(11),
2167–2177 (2014)

31. Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive
representation for local image descriptors. In: Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), vol. 2, pp. 506–513 (2004)

32. Khan, N., Mccane, B., Mills, S.: Better than SIFT? Ma-
chine Vision and Applications 26(6), 819–836 (2015)

33. Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture
representation using local affine regions. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence
27(8), 1265–1278 (2005)

34. Lenc, K., Matas, J., Mishkin, D.: A few things one should
know about feature extraction, description and matching.
In: Proceedings of the Computer Vision Winter Work-
shop (CVWW), pp. 67–74 (2014)

35. Leutenegger, S., Chli, M., Siegwart, R.: BRISK: Binary
robust invariant scalable keypoints. In: Proceedings of
the IEEE International Conference on Computer Vision
(ICCV) (2011)

36. Levi, G., Hassner, T.: LATCH: Learned arrangements of
three patch codes. In: IEEE Winter Conference on Ap-
plications of Computer Vision (WACV), pp. 1–9 (2016)

37. Lin, K., Lu, J., Chen, C.S., Zhou, J., Sun, M.T.: Un-
supervised deep learning of compact binary descriptors.
IEEE Transactions on Pattern Analysis and Machine In-
telligence (2018)

38. Lin, W.Y., Wang, F., Cheng, M.M., Yeung, S.K., Torr,
P.H.S., Do, M.N., Lu, J.: Code: Coherence based deci-
sion boundaries for feature correspondence. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence
40(1), 34–47 (2018)

39. Ling, H., Okada, K.: Diffusion distance for histogram
comparison. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
vol. 1, pp. 246–253 (2006)

40. Lowe, D.: Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision
60(2), 91–110 (2004)

41. Luo, Z., Shen, T., Zhou, L., Zhu, S., Zhang, R., Yao, Y.,
Fang, T., Quan, L.: Geodesc: Learning local descriptors
by integrating geometry constraints. In: Proceedings of
the European Conference on Computer Vision (ECCV)
(2018)

42. Ma, J., Zhao, J., Jiang, J., Zhou, H., Guo, X.: Locality
preserving matching. International Journal of Computer
Vision 127(5), 512–531 (2019)

43. Malkov, Y.A., Yashunin, D.A.: Efficient and robust ap-
proximate nearest neighbor search using hierarchical nav-
igable small world graphs. arXiv (2016). URL https:

//github.com/nmslib/hnswlib/

20 Fabio Bellavia, Carlo Colombo

44. Mikolajczyk, K., Schmid, C.: A performance evaluation of
local descriptors. IEEE Transactions on Pattern Analysis
and Machine Intelligence 27(10), 1615–1630 (2005)

45. Mishchuk, A., Mishkin, D., Radenovic, F., Matas, J.:
Working hard to know your neighbor’s margins: Local
descriptor learning loss. In: Advances in Neural Informa-
tion Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems (NIPS), pp. 4829–
4840 (2017)

46. Mitra, R., Doiphode, N., Gautam, U., Narayan, S.,
Ahmed, S., Chandran, S., Jain, A.: A large dataset for
improving patch matching. In: arXiv (2018)

47. Moreels, P., Perona, P.: Evaluation of features detectors
and descriptors based on 3d objects. International Jour-
nal of Computer Vision 73(3), 263–284 (2007)

48. Morel, J., Yu, G.: ASIFT: A new framework for fully
affine invariant image comparison. SIAM Journal on
Imaging Sciences 2(2), 438–469 (2009)

49. Muja, M., Lowe, D.G.: Scalable nearest neighbor algo-
rithms for high dimensional data. IEEE Transactions
on Pattern Analysis and Machine Intelligence 36 (2014).
URL https://www.cs.ubc.ca/research/flann/

50. Mukundan, A., Tolias, G., Chum, O.: Multiple-kernel
local-patch descriptor. In: British Machine Vision Con-
ference (BMVC) (2017)

51. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB:
an efficient alternative to SIFT or SURF. In: Proceed-
ings of the IEEE International Conference on Computer
Vision (ICCV), pp. 2564–2571 (2011)

52. Schönberger, J.L., Hardmeier, H., Sattler, T., Pollefeys,
M.: Comparative evaluation of hand-crafted and learned
local features. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2017)

53. Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua,
P., Moreno-Noguer, F.: Discriminative learning of deep
convolutional feature point descriptors. In: Proceedings
of the IEEE International Conference on Computer Vi-
sion (ICCV) (2015)

54. Snavely, N., Seitz, S., Szeliski, R.: Modeling the world
from internet photo collections. International Journal of
Computer Vision 80(2), 189–210 (2008)

55. Strecha, C., Bronstein, A., Bronstein, M., Fua, P.: LDA-
Hash: Improved matching with smaller descriptors. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence 34(1), 66–78 (2012)

56. Strecha, C., von Hansen, W., Gool, L.J.V., Fua, P.,
Thoennessen, U.: On benchmarking camera calibration
and multi-view stereo for high resolution imagery. In:
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2008)

57. Tian, Y., Fan, B., Wu, F.: L2-Net: deep learning of dis-
criminative patch descriptor in euclidean space. In: IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 6128–6136 (2017)

58. Tola, E., Lepetit, V., Fua, P.: Daisy: an efficient dense
descriptor applied to wide baseline stereo. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence
32(5), 815–830 (2010)

59. Treen, G., Whitehead, A.: Efficient SIFT matching from
keypoint descriptor properties. In: Proceedings of the
Workshop on Applications of Computer Vision (WACV),
pp. 1–7 (2009)

60. Trzcinski, T., Christoudias, M., Fua, P., Lepetit, V.:
Boosting binary keypoint descriptors. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2874–2881 (2013)

61. Trzcinski, T., Christoudias, M., Lepetit, V., Fua, P.:
Learning image descriptors with the boosting-trick. In:
Advances in neural information processing systems, pp.
269–277 (2012)

62. Tsai, C., Tsao, A., Wang, C.: Real-time feature descrip-
tor matching via a multi-resolution exhaustive search
method. Journal of Software 8(9), 2197–2201 (2013)

63. Tuytelaars, T., Schmid, C.: Vector quantizing feature
space with a regular lattice. In: Proceedings of the IEEE
International Conference on Computer Vision (ICCV)
(2007)

64. Vedaldi, A., Fulkerson, B.: VLFeat: An open and
portable library of computer vision algorithms.
http://www.vlfeat.org/ (2008)

65. Wang, Z., Fan, B., Wang, G., Wu, F.: Exploring local and
overall ordinal information for robust feature description.
IEEE Transactions on Pattern Analysis and Machine In-
telligence 38(11), 2198–2211 (2016)

66. Wei, X., Zhang, Y., Gong, Y., Zheng, N.: Kernelized
subspace pooling for deep local descriptors. In: IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR) (2018)

67. Winder, S., Hua, G., Brown, M.: Picking the best DAISY.
In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 178–185 (2009)

68. Yang, T., Lin, Y., Chuang, Y.: Accumulated stability
voting: A robust descriptor from descriptors of multi-
ple scales. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
327–335 (2016)

69. Yi, K., Verdie, Y., Fua, P., Lepetit, V.: Learning to as-
sign orientations to feature points. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1–8 (2016)

70. Zhang, J., Marsza lek, M., Lazebnik, S., Schmid, C.: Lo-
cal features and kernels for classification of texture and
object categories: A comprehensive study. International
Journal of Computer Vision 73(2), 213–238 (2007)

71. Zhang, W., Kosecka, J.: Generalized ransac framework
for relaxed correspondence problems. In: Third Interna-
tional Symposium on 3D Data Processing, Visualization,
and Transmission, pp. 854–860 (2006)

72. Ziegler, A., Christiansen, E., Kriegman, D., Belongie, S.:
Locally uniform comparison image descriptor. In: Ad-
vances in Neural Information Processing Systems (NIPS),
pp. 1–9 (2012)

