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Abstract Facial attribute analysis has received con-

siderable attention when deep learning techniques made

remarkable breakthroughs in this field over the past few

years. Deep learning based facial attribute analysis con-

sists of two basic sub-issues: facial attribute estimation

(FAE), which recognizes whether facial attributes are

present in given images, and facial attribute manip-

ulation (FAM), which synthesizes or removes desired

facial attributes. In this paper, we provide a compre-

hensive survey of deep facial attribute analysis from

the perspectives of both estimation and manipulation.
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First, we summarize a general pipeline that deep facial

attribute analysis follows, which comprises two stages:

data preprocessing and model construction. Addition-

ally, we introduce the underlying theories of this two-

stage pipeline for both FAE and FAM. Second, the

datasets and performance metrics commonly used in

facial attribute analysis are presented. Third, we cre-

ate a taxonomy of state-of-the-art methods and review

deep FAE and FAM algorithms in detail. Furthermore,

several additional facial attribute related issues are in-

troduced, as well as relevant real-world applications.

Finally, we discuss possible challenges and promising

future research directions.

Keywords Deep Neural Networks · Deep Facial
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1 Introduction

Facial attributes represent intuitive semantic features

that describe human-understandable visual properties

of face images, such as smiling, eyeglasses, and mus-

tache. Therefore, as vital information of faces, facial

attributes have contributed to numerous real-world ap-

plications, e.g., face verification [57,3,103,131,11], face

recognition [43,100,42,106,88], face retrieval [66,80,23,

113], and face image synthesis [50,8,51,104,21]. Facial

attribute analysis, aiming to build a bridge between

human-understandable visual descriptions and abstract

feature representations required by real-world computer

vision tasks, has attracted increasing attention and has

become a hot research topic. Recently, the development

of deep learning techniques has made excellent progress

in learning abstract feature representations, leading to
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significant performance improvements of the current al-

gorithms in the field of deep facial attribute analysis.

Deep facial attribute analysis mainly consists of two

sub-issues: facial attribute estimation (FAE) and fa-

cial attribute manipulation (FAM). Given a face image,

FAE trains attribute classifiers to recognize whether a

specific facial attribute is present, and FAM modifies

face images to synthesize or remove desired attributes

by constructing generative models. We provide concise

illustrations of these two sub-issues in Fig. 1.

Deep FAE methods can generally be categorized

into two groups: part-based methods and holistic meth-

ods. Part-based FAE methods first locate the positions

of facial attributes and then extract features according

to the obtained localization cues for the subsequent at-

tribute prediction. According to the different schemes

for locating facial attributes, part-based methods can

be further classified into two subcategories: separate

auxiliary localization based methods and end-to-end

localization based methods. Specifically, separate aux-

iliary localization based FAE methods seek help from

existing part detectors or auxiliary localization algo-

rithms, e.g., facial key point detection [76,121] and se-

mantic segmentation [52,27]. Then, corresponding fea-

tures from different positions can be extracted for fur-

ther estimation. Note that the localization and the es-

timation are performed in a separate and independent

manner. On the contrary, end-to-end localization based

methods exploit the locations of attributes and pre-

dict their presence simultaneously in end-to-end frame-

works. In contrast to part-based methods, holistic meth-

ods focus more on learning attribute relationships and

estimating facial attributes in a unified framework with-

out any additional localization modules. By assigning

shared and specific attribute learning to different lay-

ers of networks, holistic methods model correlations and

distinctions among facial attributes to explore the com-

plementary information. During this process, holistic

FAE algorithms resort to additional prior or auxiliary

information, such as attribute grouping or identity in-

formation [9], to customize their network architectures.

Deep FAM methods are mainly constructed based

on generative models, of which generative adversarial

networks (GANs) [28,79,13] and variational autoen-

coders (VAEs) [54,50,51] serve as the backbones. Fur-

thermore, deep FAM algorithms can be divided into

two groups: model-based methods and extra condition-

based methods, where the main difference between them

is whether extra conditions are introduced. Model-based

methods construct a model without any extra condi-

tional inputs and learn a set of model parameters that

only correspond to one attribute during a single train-

ing process. Thus, when editing another attribute, an-

Bangs û

Black Hair   ü

Eyeglasses   ü

Blurry           û

Male            ü

No Beard     û

Smiling        ü

Mustache    û

Young          ü

(a) FAE

Synthesize

Bangs

Remove

Bangs

(b) FAM

Fig. 1: Illustrations of the two sub-issues in deep facial

attribute analysis, i.e., FAE and FAM ((a) comes from

CelebA dataset [70], and (b) comes from [124]).

other training process needs to be executed in the same

way. In this case, multiple attribute manipulations cor-

respond to multiple training processes, resulting in ex-

pensive computation costs. In contrast, extra condition-

based methods take extra attribute vectors or reference

images as input conditions, and they can alter multiple

attributes simultaneously by changing the correspond-

ing values of attribute vectors or taking multiple exem-

plars with distinct attributes as references. Specifically,

given an original image, an extra conditional attribute

vector, such as a one-hot vector indicating the pres-

ence of the attribute, is concatenated with the latent

original image codes. By comparison, extra conditional

reference exemplars exchange specific attributes with

the original image in the framework of image-to-image

translation. Note that these reference images do not

need to have the same identity as the original image.

Hence, rather than merely altering the values of at-

tribute vectors to edit facial attributes, attribute trans-

fer based on reference images can discover more spe-

cific details of references and yield more faithful facial

attribute images [136,124,75]. Due to more abundant

facial details and more photorealistic performance of

generated images, this type of method has attracted

much attention of current researchers.

In summary, we create a taxonomy of contemporary

deep facial attribute analysis algorithms in a tree dia-

gram in Fig. 2. Furthermore, aiming to summarize the

progress in deep facial attribute analysis, milestones of

both deep FAE and FAM methods are listed in Fig. 3

and Fig. 4, respectively.

As shown in Fig. 3, part-based FAE methods and

holistic FAE methods share two parallel routes. The

study of deep FAE can be traced back to the earliest

part-based work of Zhang et al. [130], who take the

whole person images as inputs. Then, LNet+ANet [70]

pushes deep FAE into an independent research branch,

where only face images are taken as inputs for merely

estimating face-related attributes. In addition, two large-

scale face datasets, i.e., CelebA and LFWA, with 40 la-
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Deep Facial Attribute Analysis

Facial Attribute Estimation Facial Attribute Manipulation

Part-based Methods Holistic Methods

Separate auxiliary 

localization

End-to-end

localization

Model-based Methods Extra condition-based Methods

Attribute vector 

condition

Reference exemplar

condition

Fig. 2: Tree diagram for diverse categories of deep facial attribute analysis algorithms.

Part-based Methods

PS-MCNN (Cao et al. (2018))

SSG+SSP (Kalayeh et al. (2017))

Holistic Methods

PANDA (Zhang et al. (2014)) LNet+ANet (Liu et al. (2015))

SPLITFACE(Mahbub et al. (2018))

MCNN+AUX (Hand et al. (2018))

MOON (Rudd et al. (2016))

2014 2015 2017 20182016

Large-scale Facial Attribute Datasets:

CelebA LFWA (40 attributes)

Fig. 3: The evolution of deep FAE methods (Best viewed by zooming in the electronic version).

beled attributes, are released to provide data support

for deep FAE methods. Then, part-based and holistic

methods share joint development and success but have

distinct directions and trends. Part-based methods ex-

tremely emphasize facial details for discovering local-

ization cues [52,76], whereas holistic methods incline

to employ attribute relationships to customize networks

for learning more discriminative features [91,37,9].

We outline the development of deep FAM methods

in Fig. 4. Note that, model-based methods and two

types of extra condition-based methods have their own

evolutionary processes, but all follow the advances in

GANs or VAEs. The earliest deep FAM work DIAT

[64], a model-based method, first attempts to utilize

simple GANs to generate facial attributes. Meanwhile,

conditional GAN [84] and VAE [125] dominate extra

condition-based FAM methods by taking attribute vec-

tors as conditions. Though extra attribute vector based

methods have the remarkable advantage of changing

multiple attributes simultaneously, they cannot guar-

antee that the remaining details that are irrelevant to

manipulated attributes keep unchanged. Model-based

methods can overcome this problem, but they cannot

manipulate multiple attributes in a single training pro-

cess. In light of these issues, methods conditioned on

reference exemplars come into researchers’ attention.

They can balance the change of multiple interested at-
tributes and the preservation of other irrelevant at-

tributes; meanwhile, generate more photorealistic facial

attribute images. Hence, exemplar-guided FAM meth-

ods are becoming a popular research trend. Although

a large number of methods achieve appealing perfor-

mance in deep FAE and FAM methods, there are still

several severe challenges for future deep facial attribute

analysis. Therefore, we summarize these urgent chal-

lenges and analyze possible opportunities in terms of

data, algorithms, and applications. The corresponding

overview is described in Fig. 5.

First, from the perspective of data, contemporary

deep FAE methods suffer from the problem of insuf-

ficient training data. The most commonly used two

datasets come from celebrities or news [70], where at-

tribute types, illumination, views, and poses, all have

significant differences from real-world data [35]. There-

fore, future deep FAE models would have high demands

for diverse data sources and excellent data quality (e.g.,
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Model-based 

Methods

2016 2017 2018

DIAT (Li et al. (2016))

Extra condition-based 

Methods

ResGAN (Shen et al. (2017))

Conditional GAN (Perarnau et al. (2016)) Conditional AAE (Zhang et al. (2017))

SG-GAN (Zhang et al. (2018))

StarGAN (Choi et al. (2018))

… 2017 2018

GeneGAN (Zhou et al.  (2017)) ELEGANT (Xiao et al. (2018))

Trend

Conditional VAE (Yan et al. (2016))

Fig. 4: The evolution of deep FAM methods (Best viewed by zooming in the electronic version).
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Data

Algorithms

Applications

FAE: 

• Insubstantial data sources and quality

• Imbalanced data distribution

FAM: 

• Dynamic video data collection

• Unified and standard data metrics

FAE:

Ø Part-based

• Multiple face related task integration 

• Location relationship construction

Ø Holistic

• Adaptive attribute relationship construction

FAM:

Ø Model-based

• Keep attribute-irrelevant details unchanged

Ø Extra condition-based

• Fidelity Improvement

• Continuous attribute manipulation

FAE:

• Attribute inconsistency

• Biometric verification

FAM:

• Face makeup and aging

• Higher-resolution manipulation

Fig. 5: Summary of challenges and opportunities in

deep facial attribute analysis.

video data [116,36]). Future facial attribute images need

to cover more real-world scenarios and wider-range at-

tribute types. In this way, models can better capture

representative features that conform to real-world data

distribution. In addition, imbalanced data distribution

of facial attribute images highlights in two aspects: the

attribute category imbalance over a single dataset and

the domain gaps between different training and testing

datasets. The former called class-imbalance issue makes

FAE models bias towards the majority samples and ig-

nore the minority ones, resulting in the degraded perfor-

mance in minority sample recognition. In contrast, the

latter called domain adaption issue, which has not been

fully explored in current deep FAE algorithms yet, is re-

lated to the generalization of models, especially when

testing over unseen data.

Regarding the data challenges and opportunities in

deep FAM, the rapid development of multimedia in the

era of big data has given rise to rich video data. How-

ever, tracking and annotating facial attributes in videos

is difficult because of spatial and temporal dynamics

[93]. Hence, video attribute manipulation is still a task

to be addressed due to the lack of available training

data. In addition, a large proportion of current algo-

rithms evaluate the quality of their generated facial at-

tribute images based on the visual fidelity [64,84,129,

124]. Because of the lack of established protocols and

standards, such measurements might have adverse ef-

fects on the performance evaluation of deep FAM meth-

ods. Therefore, it would be a thorny problem to seek

unified and standard data metric schemes that achieve

both qualitative and quantitative analyses.

Second, from the perspective of algorithms, deep

part-based FAE methods mainly focus on two aspects.

The first is to integrate multiple face-related tasks, such

as attribute estimation and face recognition, into a uni-

fied framework. In this way, the complementary infor-

mation among different tasks could be fully exploited to

improve all of them. For the second aspect, future part-

based FAE algorithms are expected to discover more re-

lationships among different attribute locations to han-

dle in-the-wild data with complex environmental vari-

ations. For deep holistic FAE algorithms, current algo-

rithms discover attribute relationships with the help of

the prior information, e.g., human-made facial attribute
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groups. Such artificial partitions would limit the gener-

alization ability of models. Hence, the critical challenge

that holistic FAE methods face is to design adaptive

attribute partition schemes for automatically exploring

attribute relationships during the training processes.

With regard to the algorithm challenges and op-

portunities in deep FAM, model-based methods have

a severe drawback: they cannot keep other attribute-

irrelevant details unchanged as supervised information

only comes from the target images with desired at-

tributes. In terms of extra condition-based FAM meth-

ods, on the one hand, attribute vector based algorithms

need to work harder to manipulate attributes contin-

uously, where interpolation schemes might be a solu-

tion worth considering. On the other hand, future ref-

erence exemplar-based algorithms are expected to gen-

erate more diverse attribute styles in more faithful and

photorealistic face images.

Finally, from the perspective of applications in deep

FAE, face images with different viewpoints might have

different attributes for the same person. It is possible

that an attribute shown on the front face is not em-

phasized on the profile. This is called attribute incon-

sistency issue. By filtering more confident images to

make the prediction [72], existing methods might ne-

glect rich information in multi-view face images. There-

fore, how to keep attributes from the same identity con-

sistent, while taking full advantage of information for

capturing features with multiple views are important

questions for the future. Second, biometric verification

[32,30,24,94,114] is a developing application for digi-

tal mobile devices to resist various attacks in the real

world. Compared with full-face based biometric verifi-

cation [24,30], facial attributes contain more detailed

characteristics and can better facilitate active authen-

tication. The main obstacles lie in the following two

aspects: the first is to introduce facial attributes into

the task of active authentication appropriately and ef-

ficiently [94], and the second is to explore the available

deep features and classifiers with the trade-off between

the verification accuracy and mobile performance.

Regarding the application challenges and opportu-

nities in deep FAM, facial makeup [65,10,7] and aging

[109,81,69] have become hot topics in computer vision.

The two tasks focus more on subtle facial details re-

lated to makeup and age attributes. Due to promis-

ing performance in mobile devices entertainment and

identity-relevant verification, they have turned into cru-

cial study branches independent of general deep FAM

methods, and have shown significant potentials to fa-

cilitate more practical applications [46,73,105]. In ad-

dition, contemporary deep FAM research only works

well with a limited range of resolutions and under lab-

oratory conditions. On the one hand, such a limitation

leads to more difficult high-resolution and low-quality

face image manipulation in real-world applications; on

the other hand, it provides an opportunity to integrate

face super-resolution into attribute manipulation [72,

20] in future research.

In addition, the relationships between deep FAE and

FAM might contribute to improving both tasks. On the

one hand, FAM is a vital scheme of data augmenta-

tion for FAE, where generated facial attribute images

can significantly increase the amount of data to further

relieve the overfitting issue. On the other hand, FAE

can be a significant quantitative performance evalua-

tion criterion for FAM, where the accuracy gap between

real images and generated images can reflect the per-

formance of deep FAM algorithms.

In this paper, we conduct an in-depth survey of fa-

cial attribute analysis based on deep learning, includ-

ing FAE and FAM. The primary goal is to provide an

overview of the two issues, and to highlight their re-

spective strengths and weaknesses to provide newcom-

ers prime skills. The remainder of this paper is orga-

nized as follows. In Section 2, we summarize a gen-

eral two-stage pipeline that deep facial attribute anal-

ysis follows, including data preprocessing and model

construction. The corresponding preliminary theories

are also introduced for both FAE and FAM. In Sec-

tion 3, we list commonly used publicly available facial

attribute datasets and metrics. Section 4 and Section 5

provide detailed overviews of state-of-the-art deep FAE

and FAM methods, as well as their advantages and dis-

advantages, respectively. Additional related issues, as

well as challenges and opportunities, are discussed in

Section 6 and Section 7, respectively. Finally, we con-
clude this paper in Section 8.

2 Facial Attribute Analysis Preliminaries

Deep facial attribute analysis follows a general pipeline

consisting of two stages: data preprocessing and model

construction, as shown in Fig. 6.

In this section, we first introduce two commonly

used data preprocessing strategies for both FAE and

FAM, including face detection and alignment, as well

as data augmentation. Second, we introduce the general

processes of model construction for deep FAE and FAM,

respectively. Specifically, we provide the basics about

feature extraction and attribute classification, which

are two crucial steps when designing deep FAE mod-

els. For deep FAM methods, we review the underlying

theories of backbone networks, i.e., VAEs and GANs,

as well as their corresponding conditional versions.
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Face Detection and Alignment Data Augmentation

Stage1: Data Preprocessing

Stage2: Model Construction

Facial Attribute Estimation Model Facial Attribute Manipulation Model

Conditional Generative Model

Edited Image

+

ConditionsInput Image

Attribute

Vectors
Reference 

exemplars

Image Translation Model

Target Image

Extra condition-based

Model-based

Input Image Edited Image

Input Image
FeaturesDeep Neural Network

…
Attribute

Classifiers

Bangs û

Black Hair    ü

Eyeglasses   ü

Blurry           û

…

Feature Extraction Attribute Classification

Fig. 6: Two-stage pipeline of deep facial attribute analysis (Face images above come from [63,31,44,70]).

2.1 Data Preprocessing

2.1.1 Face Detection and Alignment

Before the databases with more facial attribute anno-

tations were released, most of the attribute prediction

methods [130,55,26] took whole human images (faces

and torsos) as inputs. Only several well-marked facial

attributes could be estimated, i.e., smile, gender, and

has glasses. However, torso regions contain consider-

able face-irrelevant information, resulting in redundant

computations. Hence, face detection and alignment be-

come crucial steps to locate face areas for reducing the

adverse effects of facial attribute-irrelevant areas.

For face detection, Ranjan et al. [86] first recognize

the gender attribute with a HyperFace detector that

locates faces and landmarks, and then Günther et al.

[31] further extend this approach to predict 40 facial

attributes simultaneously with the same HyperFace de-

tector. In contrast, Kumar et al. [55] use a poselet part

detector [6] to detect different parts corresponding to

different poses, where the face is an important part of

the whole person image. Compared with the poselet de-

tector operated over conventional features, Gkioxari et

al. [26] propose a ‘deep’ version of the poselet, which

trains a sliding window detector operated on deep fea-

ture pyramids. Specifically, the deep poselet detector

divides the human body into three parts (head, torso,

and legs) and clusters fiducial key points of each part

into many different poselets. However, because all ex-

isting face detectors are used to find rough facial parts,

facial attributes in more subtle areas, such as eyebrows,

cannot be well predicted.

For facial alignment, well-aligned face databases with

fiducial key points could alleviate the adverse effects

of misalignment errors on both FAE and FAM when

more specific facial regions of attributes can be located

through these key points. The All-in-One Face algo-

rithm [87] can be utilized to obtain fiducial key points

and full faces. Based on this algorithm, Mahbub et al.

[76] divide a face into 14 segments related to different

facial regions, and solve the problem of the attribute

prediction in partial face images. Kumar et al. [55] ar-

tificially divide a face into 10 functional parts including

hair, forehead, eyebrows, eyes, nose, cheeks, upper lip,

mouth, and chin. These facial areas are wide and ro-

bust enough to address discrepancies among individual

faces, and the geometry characteristics shared by dif-

ferent faces can be well exploited.

Recently, researchers have tended to integrate face

detection and alignment into the training process of fa-

cial attribute analysis. He et al. [39] take face detection

as a special case of general semi-rigid object detection

and design joint network architectures to ensure the

performance improvement in both face detection and

attribute estimation. More importantly, this approach

can handle in-the-wild input images with complex il-

lumination and occlusions, and no extra cropping and

aligning operations are needed. Ding et al. [18] propose

a cascade network to locate face regions according to
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different attributes and perform FAE simultaneously

with no need to align faces [31]. Li et al. [63] design

an AFFAIR network for learning a hierarchy of spatial

transformations and predicting facial attributes with-

out landmarks. In summary, integrating face detection

and alignment into the network training process is be-

coming a beneficial research trend.

2.1.2 Data Augmentation

For most face processing tasks, data augmentation is

a vital strategy for solving the problems of insufficient

training data and overfitting in deep learning. Face at-

tribute analysis is not an exception. By imposing per-

turbations and distortions on the input images, data

can be extended to improve deep learning models.

Günther et al. [31] propose an alignment-Free fa-

cial attribute classification technique (AFFACT) with

data augmentation. More specifically, AFFACT lever-

ages shifts, rotations, and scales of images to make fa-

cial attribute feature extraction more reliable in the

training stage and the testing stage. In the training

stage, face images are first rotated, scaled, cropped,

and horizontally flipped with 50% probability with de-

fined coordinates. Then, a Gaussian filter is applied

to emulate smaller image resolutions and yield blurred

upscaled images. In the testing stage, AFFACT first

rescales the test images and then transforms these im-

ages into 10 crops, including a center one, four corners

of the original images, and their horizontally flipped

versions. Finally, AFFACT averages the scores from

the deep network per attribute over the ten crops to

make the final prediction. In addition to taking crops,

AFFACT also uses all combinations of shifts, scales,
and angles, as well as their mirrored versions. All these

data augmentation schemes contribute to the progres-

sive performance of deep FAE models.

2.2 Basis of FAE Model Construction

2.2.1 Feature Extraction

Deep convolutional neural networks (CNNs) play sig-

nificant roles in learning discriminative representations

and have achieved attractive performance in deep FAE.

In general, arbitrary classical CNN networks, such as

VGG [83] and ResNet [41], can be used to extract deep

facial attribute features. For example, Zhong et al. [134]

directly apply FaceNet and VGG-16 networks to cap-

ture attribute features of face images.

Considering that the features at different levels of

the network might have different effects on the perfor-

mance of deep FAE methods, Zhong et al. [135] take

mid-level CNN features as an alternative to high-level

features. The experiments demonstrate that even early

convolution layers achieve comparable performance in

most facial attributes with that of state-of-the-art meth-

ods, and mid-level representations can yield improved

results over high-level abstract features. The reason for

this superiority is that mid-level features can break

the bounds of the inter-connections between convolu-

tional and fully connected (FC) layers. Consequently,

the CNN model can accept arbitrary receptive sizes for

capturing rich information of face images.

In addition to using or combining classical deep net-

works, several methods design customized network ar-

chitectures for learning discriminative features. Lu et

al. [71] design an automatically constructed compact

multi-task architecture, which starts with a thin multi-

layer network and dynamically widens in a greedy man-

ner. Belghazi et al. [2] build a hierarchical generative

model and a corresponding inference model through the

adversarial learning paradigm.

2.2.2 Attribute Classification

Early methods learn feature representations with deep

networks but make the prediction with traditional clas-

sifiers, such as support vector machines (SVMs) [17,5],

decision trees [74], and k-nearest neighbor (kNN) classi-

fier [47,48]. For example, Kumar et al. [57] train multi-

ple SVMs [17] with radial basis function (RBF) kernels

to predict multiple attributes, where each SVM corre-

sponds to one facial attribute. Bourdev et al. [5] present

a feedforward classification system with linear SVMs

and classify attributes at the image patch level, the

whole image level, and the semantic relationship level.

Luo et al. [74] construct a sum-product decision tree

network to yield facial attribute region locations and

classification results simultaneously. Huang et al. [47,

48] adopt kNN algorithm to solve the class-imbalance

attribute estimation problem.

In terms of the classifiers based on deep learning,

several convolutional layers followed by FC layers con-

stitute a deep attribute classifier, which can be attached

to the end of deep feature extraction networks to make

the prediction. Then, the specific loss function is used

to measure the discrepancy between the outputs of FC

layers and the ground truths for reducing classification

errors. Below, we introduce two commonly used loss

functions for deep FAE models.

The most prevalent loss function is the sigmoid cross-

entropy loss, which makes a binary classification for

each attribute [37]. For example, Hand and Chellappa

[37] adopt the sigmoid cross-entropy loss to evaluate

its network output and calculate the scores of all fa-



8 Xin Zheng et al.

cial attribute. Besides, Rudd et al. [91] consider multi-

ple facial attribute classification as a regression issue to

minimize the mean squared error (MSE) loss, i.e., the

Euclidean loss, by mixing the errors of all attributes.

In this way, multiple attribute labels can be obtained

simultaneously via a single deep convolutional neural

network (DCNN). In contrast, Rozsa et al. [89] also

adopt the Euclidean loss but train a set of DCNNs,

where each network predicts a facial attribute. Despite

higher prediction accuracy that DCNNs achieve for fa-

cial attributes, they have the severe problem of high

computation and memory costs.

To explore the effects of different loss functions on

deep facial attribute classifiers, Günther et al. [31] test

and compare the Euclidean loss and the sigmoid cross-

entropy loss. The experiments over the same network

but different loss functions demonstrate that the two

loss functions are capable of achieving comparable per-

formance for attribute estimation. Therefore, future re-

searchers can choose either of these loss functions ac-

cording to their tasks with little performance change.

2.3 Basis of FAM Model Construction

2.3.1 Variational autoencoder

In general, a variational autoencoder (VAE) has two

components: the generator, which samples the variables

x parameterized by θ with given latent variables z, i.e.,

pθ(x|z); the encoder, which maps the variables x to the

latent variables z that approximate a prior p(z), i.e.,

qφ(z|x) parameterized by φ. The key of VAE is training

to maximize the variational lower bound LV AE [50]:

LV AE = Ez∼qφ(z|x) log pθ (x|z)−DKL (qφ (z|x) ||p (z)) ,

(1)

where DKL denotes Kullback-Leibler divergence.

For the conditional version of VAE, given the at-

tribute vector y and latent representation z, it aims to

build a model pθ(x|y, z) for generating images x that

contain desired attributes, taking y and z as condi-

tional variables. This image generation task follows a

two-step process: the first step is randomly sampling

the latent variables z from the prior distribution p(z),

and the second step is generating an image according to

the given conditional variables. Hence, the variational

lower bound of conditional VAE can be written as [125]

LCV AE = Ez∼qφ(z|x,y) log pθ (x|y, z)
−DKL (qφ (z|x, y) ||p (z)) ,

(2)

where qφ(z|x, y) is the true posterior from the encoder.

2.3.2 Generative adversarial network

A generative adversarial network (GAN) consists of two

parts: the generator G and the discriminator D, where

G attempts to synthesize data from a random vector

z obeying a prior noise distribution z ∼ p (z), and D

attempts to discriminate whether data is from the re-

alistic data distribution or from G. Given data x ∼
pdata(x), G and D are trained in an adversarial manner

with a min-max game as [28]

min
G

max
D
LGAN = Ex∼pdata(x) log (D (x))

+ Ez∼p(z) log (1−D (G (z))) .
(3)

The conditional version of GAN is more frequently

used by feeding the attribute vector y into both G and

D in different ways. Specifically, the attribute vector

y is concatenated with the prior input noise p(z) in

the generator. Meanwhile, it is taken as an input along

with x into a discriminative function. Therefore, the

min-max game of conditional GAN is denoted as [79]

min
G

max
D
LCGAN = Ex∼pdata(x) log (D (x|y))

+ Ez∼p(z) log (1−D (G (z|y))) .
(4)

3 Facial Attribute Analysis Datasets and

Metrics

3.1 Facial Attribute Analysis Datasets

We present an overview of publicly available facial at-

tribute analysis datasets for both FAE and FAM, in-

cluding data sources, sample sizes, and test protocols.

More details of these datasets are listed in Table 1.

FaceTracer dataset is an extensive collection of

real-world face images collected from the internet. There

are 15,000 faces with fiducial key points and 10 groups

of attributes, where 7 groups of facial attributes are

composed of 19 attribute values, and the remaining 3

groups denote the quality of images and the environ-

ment. This dataset provides the URLs of each image

for considering privacy and copyright issues. In addi-

tion, FaceTracer takes 80% of the labeled data as train-

ing data, and the remaining 20% as testing data with

5-fold cross-validation.

The Labeled Faces in the Wild (LFW) dataset

consists of 13,233 images of cropped, centered frontal

faces derived from T. Berg et al. [78]. This dataset is col-

lected from 5,749 people using online news sources, and

there are 1,680 people that have two or more images.

Kumar et al. [57] first collect 65 attribute labels through

Amazon Mechanical Turk (AMT) [1] and then expand

to 73 attributes [56]. We denote them as LFW-65 and
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Table 1: An overview of facial attribute datasets. (Tra: Train, Tet: Test)

Dataset Resources
Identities/
Samples

Number of
attributes

Protocol

FaceTracer [55]1 Internet 15,000 / 15,000 10
Tra: 80%
Tet: 20%

5-fold cross-validation

LFW [49]2 Names and Faces [78] 5,749 / 13,233 65/73
Tra: 50% (6,263)
Tet: 50% (6,970)

LFWA [70]2 LFW 5,749 / 13,233 40
Tra: 50%(6,263)
Tet: 50%(6,970)

PubFig [57]3 Internet 200 / 58,797 73
Tra: 60 ids
Tet: 140 ids

CelebA [70]4 Celeb-Faces 10,177 / 202,599 40
Tra: 8000 ids (160,000)
Tet: 1000 ids (20,000)

Berkeley Human Attributes [5]5
H3D [6]

PASCAL VOC 2010 [116]
- / 8,053 9

Tra: 2,003
Tet: 4,022
Val: 2,010

Attributes 25K [130] Facebook 24,963 / 24,963 8
Tra: 8,737 ids
Tet: 7,489 ids
Val: 8,437 ids

Ego-Humans [116] Videos - / 2,714 17
Tra: 80%
Tet: 20%

UMA-ADE [35]6 Image Research - / 2,800 40 All used for test

YouTube Faces Dataset [120] 7

(with attribute labels)[36]
Videos

from YouTube
1,595 / 3,425 40

10-fold
cross-validation

LFW-73 in Table 2. Liu et al. [70] extract 40 attribute

labels automatically by binarizing corresponding values

of labels in LFW dataset, instead of labeling by manual.

Moreover, they annotate 5 fiducial key points, leading

to LFWA dataset, which is partitioned into half for

training (6,263 images) and the remains for testing.

PubFig dataset is a large, real-world face dataset

containing 58,797 images of 200 people collected from

the internet under uncontrolled situations. Thus, this

dataset covers considerable variations in poses, lights,

expressions, and scenes. PubFig dataset labels 73 facial

attributes, as many as LFW-73, but it includes fewer

individuals. Besides, this dataset divides the develop-

ment set and the evaluation set, containing 60 identity

images and 140 identities, respectively.

Celeb-Faces Attributes (CelebA) dataset is

constructed by labeling images selected from Celeb-

Faces [108], which is a large-scale face attribute dataset

covering large pose variations and background clutter.

1 www.cs.columbia.edu/CAVE/databases/facetracer/
2 http://vis-www.cs.umass.edu/lfw/
3 http://www.cs.columbia.edu/CAVE/databases/pubfig/

download/
4 http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
5 https://www2.eecs.berkeley.edu/Research/Projects/

CS/vision/shape/poselets/
6 https://www.cs.umd.edu/~emhand/research.html
7 https://www.cs.tau.ac.il/~wolf/ytfaces/

There are 10,177 identities, 202,599 face images with

5 landmark locations, and 40 binary attribute annota-

tions per image. In the experiment, CelebA is parti-

tioned into three parts: images of the first 8,000 iden-

tities (with 160,000 images) for training, images of an-

other 1,000 identities (with 20,000 images) for valida-

tion and the remains for testing.

Berkeley Human Attributes dataset is collected

from H3D [6] dataset and PASCAL VOC 2010 [116]

training and validation datasets, containing 8,053 im-

ages centered on full bodies of persons. There are wide

variations in poses, viewpoints, and occlusions. Thus,

many existing methods that work on front faces do not

perform well on this dataset. AMT is also used to pro-

vide labels for all 9 attributes by 5 independent annota-

tors. The dataset partitions 2,003 images for training,

2,010 for validation and 4,022 for testing.

Attribute 25K dataset is collected from Face-

book, which contains 24,963 people split into 8,737 train-

ing, 8,737 validation and 7,489 test examples. Since the

images have large variations in viewpoints, poses and

occlusions, not every attribute can be inferred from ev-

ery image. For instance, we cannot label the wearing hat

attribute when the head of the person is not visible.

Ego-Humans dataset draws images from videos

that track casual walkers with the OpenCV frontal face

detector and facial landmark tracking in New York City

over two months. What makes it different from other

www.cs.columbia.edu/CAVE/databases/facetracer/
http://vis-www.cs.umass.edu/lfw/
http://www.cs.columbia.edu/CAVE/databases/pubfig/download/
http://www.cs.columbia.edu/CAVE/databases/pubfig/download/
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/poselets/
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/poselets/
https://www.cs.umd.edu/~emhand/research.html
https://www.cs.tau.ac.il/~wolf/ytfaces/
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datasets is that it covers the location and weather in-

formation through clustering GPS coordinates. More-

over, nearly five million face pairs along with their same

or not same labels are extracted under the constraints

of temporal information and geolocations. Wang et al.

[116] manually annotate 2,714 images with 17 facial at-

tributes randomly selected from these five million im-

ages. For the testing protocol, 80% images are selected

randomly for training and the remaining for testing.

University of Maryland Attribute Evaluation

Dataset (UMA-AED) comes from image searches

taking 40 attributes as search terms and the HyperFace

as face detector [86]. UMD-AED serves as an evalua-

tion dataset and contributes to class-imbalance learn-

ing in deep facial attribute estimation. It is composed

of 2,800 face images labeled with a subset of 40 at-

tributes from CelebA and LFWA. Each attribute has

50 positive and 50 negative samples, which means that

not every attribute is tagged in each image. In addi-

tion, compared with CelebA containing mostly frontal,

high-quality, and posed images, UMD-AED comprises a

large number of variations, e.g., distinct image quality,

varying lights and poses, wide age ranges, and differ-

ent skin tones. UMD-AED offers a much more unbi-

ased metric for real-world data, and it can be used to

evaluate whether the attribute estimation models have

learned discriminative feature representations.

YouTube Faces Dataset (with attribute la-

bels) Original YouTube Faces Dataset contains 3,245

videos from 1,595 celebrities with 620,000 frame images

[120] for face verification. Hand et al. [36] further ex-

tend it for the video-based facial attribute prediction

issue. They label 40 attributes from CelebA in the first

of four frames from every video, where the remaining

three frames without attribute labels come from one

third, two-thirds, and the last of the way per video, re-

spectively. As a result, this dataset makes it possible

for exploring deep FAE methods merely with weakly

labels. Ten-fold cross-validation is adopted for the pro-

tocol. Then, all the testing experiments need to be con-

ducted on the labeled frames of the testing splits with

the average of all 10 splits.

To provide a more comprehensive overview of all

existing attribute labels, we list all the labels in LFW

dataset with the maximum number of attributes in Ta-

ble 2. Different facial attribute datasets contain differ-

ent subsets of these attribute annotations for deep FAE

and FAM. Note that in Table 2, ‘Common’ denotes the

attributes shared by all variants of LFW, a total of 34

categories. CelebA and LFWA have more 6 attributes

than ‘Common’ has and share a total of 40 common

attributes. Besides, these 6 attributes, together with

the underlined flushed face and brown eyes, are added

to LFW-65 to constitute LFW-73. To date, the most

popular and commonly used datasets in both FAE and

FAM are CelebA and LFW (LFWA).

3.2 Facial Attribute Analysis Metrics

3.2.1 Facial Attribute Estimation Metrics

Below, we list the frequently used metrics for FAE algo-

rithms and provide detailed descriptions of these met-

rics in terms of definitions and formulas.

– Accuracy and Error Rate (Acc and ER)

The classification accuracy and the error rate are

the most commonly used measures for evaluating clas-

sification tasks. Facial attribute estimation is not an

exception, and its accuracy can be defined as [91]

Accuracy = ((tp + tn) / (Np +Nn)) . (5)

where Np and Nn denote the numbers of positive and

negative samples, respectively, and tp and tp denote the

numbers of true positives and true negatives [47]. Mean-

while, the error rate can be defined as

Error Rate = 1−Accuracy. (6)

– Balanced Accuracy and Error Rate (BAcc

and BER)

When dealing with class-imbalance data, the tradi-

tional classification accuracy is not befitting due to the

bias of the majority class. Hence, a balanced classifica-
tion accuracy is defined as [91]

Balanced Accuracy =
1

2
(tp/Np + tn/Nn) . (7)

Similarly, the balanced error rate can be defined as

Balanced Error Rate = 1−Balanced Accuracy. When

addressing the imbalance issue from the perspective of

source and target distributions [91], the balanced error

rate is defined as

Balanced Error Rate∗ =
(
T+ (tp/Np) + T− (tn/Nn)

)
,

(8)

where T+ and T− denote the target domain distribu-

tions of positive and negative examples, respectively.

The superscript ∗ is used to indicate the balanced ver-

sion of error rate. Besides, more details of the class-

imbalance issue are introduced in Section 6.1.

– mean Average Precision (mAP)
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Table 2: An overview of facial attributes

Dataset Attributes

LFW

Common

Arched Eyebrows Attractive Bags under eyes Bald Bangs Big nose Black hair

Blond hair Blurry Brown hair Bushy eyebrows Chubby Double chin Eyeglasses

Goatee Gray hair High cheekbones Male Mouth slightly open Mustache Narrow eyes

No beard Oval face Pale skin Pointy nose Receding hairline Rosy cheeks Sideburns

Smiling Straight hair Wavy hair Wearing hat Wearing lipstick Young

LFW-73

LFWA/CelebA Big lips Heavy makeup Wearing earrings Wearing necklace Wearing necktie 5’o clock shadow

LFW-65

Asian Baby Black Child Color photo Curly hair Environment

Eyes open Flash Frowning Fully visible forehead Harsh lighting Indian Middle aged

Mouth wide open Mouth closed No eyewear Obstructed forehead Posed photo Round jaw Round face

Semi obscured forehead Senior Shiny skin Soft lighting Square face Strong nose mouth lines Sunglasses

Teeth not visible Teeth visible White (Flushed face Brown eyes)

As there is more than one label in multi-label image

classification, the mean Average Precision (mAP) be-

comes a prevalent metric [126,85], which computes the

average of the precision−recall curve from the recall 0

to recall 1. Moreover, mAP is the mean of Average Pre-

cision (AP) for a set of categories, while AP is the more

general version that combines the recall and precision

to yield prediction results for a single class.

3.2.2 Facial Attribute Manipulation Metrics

There are two types of measurements in deep FAM:

qualitative metrics and quantitative metrics, where the

former evaluates the performance of generated images

through statistical surveys, and the latter measures the

preservation degree of the face detail related informa-

tion after attribute manipulation. We provide more de-

tailed descriptions of these two types of metrics below.

– Qualitative Metrics

Statistical survey is the most intuitive way to

qualitatively evaluate the quality of generated images

in most generative tasks. By establishing specific rules

in advance, subjects vote for generated images with ap-

pealing visual fidelity, and then, researchers draw con-

clusions according to the statistical analysis of votes.

For example, Choi et al. [16] quantitatively evaluate

the performance of generated images in a survey for-

mat via AMT [1]. Given an input image, the workers

are required to select the best generated images accord-

ing to instructions based on perceptual realism, quality

of manipulation in attributes, and preservation of orig-

inal identities. Each worker is asked a set number of

questions for validating human effort.

Zhang et al. [133] conduct a statistical survey that

asks volunteers to choose the better result from their

proposed CAAE or existing works. Sun et al. [107] in-

struct volunteers to rank several deep FAM approaches

based on perceptual realism, quality of transferred at-

tributes, and preservation of personal features. Then,

they calculate the average rank (between 1 and 7) of

each approach. Lample et al. [59] perform a quantita-

tive evaluation on two different aspects: the naturalness

measuring the quality of generated images, and the ac-

curacy measuring the degree of swapping an attribute

reflected in the generation.

– Quantitative Metrics

Distribution difference measure calculates the

differences between real images and generated face im-

ages. Xiao et al. [124] achieve this goal by the Fréchet

inception distance [45] (FID) with the means and co-

variance matrices of two distributions before and af-

ter editing facial attributes. Wang et al. [117] compute

the peak signal to noise ratio (PSNR) to measure the

pixel-level differences. They also calculate the structure

similarity index (SSIM) and its multi-scale version MS-

SSIM [118] to estimate the structure distortion and the

identity distance. All these measurements contribute

to evaluating the high-level similarity of two face im-

ages. In addition, He et al. [44] use an Inception-ResNet

[110] to train a face recognizer for measuring the iden-

tity preservation ability with rank-1 recognition accu-

racy. Therefore, face identity preservation is becoming a

promising metric because it can indicate whether mod-

els have excellent performance in preserving facial de-

tails outside of manipulated attributes.

Facial landmark detection gain uses the accu-

racy gain of landmark detection before and after at-

tribute editing to evaluate the quality of synthesized im-

ages. For example, He et al. [38] adopt an ERT method

[53], which is a landmark detection algorithm trained on

300-W dataset [92]. During testing, they divide the test

sets into three components: the first containing images

with the positive attribute labels, the second containing

images with the negative labels, and the last containing

the manipulated images from the first part. Then, the

average normalized distance error is computed to evalu-

ate the discrepancy of landmarks between the generated

images and the ground truths.
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Fig. 7: The illustration of deep part-based FAE methods (Images are from [18]).

Facial attribute estimation constructs additional

attribute prediction networks to measure the perfor-

mance of FAM according to the classification accuracy.

Perarnau et al. [84] first design an Anet to predict fa-

cial attributes on the manipulated face images. If the

outputs of the Anet are closer to the desired attribute

labels, the generator can be considered to have satisfac-

tory generation performance. Larsen et al. [60] train a

regressor attribute prediction network to calculate the

attribute similarity between the conditional attributes

and generated attributes. Note that FAE models used

for the evaluation are independent of FAM’s training

processes, which means that they have to be trained

well in advance and have base accuracy performance

over all facial attributes.

4 State-of-the-art Facial Attribute Estimation

Methods

Generally, state-of-the-art deep FAE methods can be

divided into two main categories: part-based methods

and holistic methods. In this section, we provide de-

tailed introductions to these two types of methods in

terms of algorithms, performance, as well as their re-

spective advantages and disadvantages. The overview

is provided in Table 3.

4.1 Part-based Deep FAE Methods

As shown in Fig 7, part-based deep FAE methods first

locate the areas where facial attributes exist through

localization mechanisms. Then, features corresponding

to different attributes on each highlighted position can

be extracted and further predicted with multiple at-

tribute classifiers. Hence, the key of part-based meth-

ods lies in the localization mechanism. In light of this

point, part-based deep FAE methods can be further

divided into two subgroups: separate auxiliary localiza-

tion based methods and end-to-end localization based

methods. Corresponding details are provided as follows.

4.1.1 Separate Auxiliary Localization based Methods

Since facial attributes describe subtle details of face

representations based on human vision, locating the

positions of facial attributes enforces subsequent fea-

ture extractors and attribute classifiers to focus more on

attribute-relevant regions. The most intuitive approach

is to take existing face part detectors as auxiliaries.

Poselet [6,5] is a valid part detector that describes

a part of the human pose under a given viewpoint. Be-

cause these parts include evidences from different areas

of the body at different scales, complementary infor-

mation can be learned to benefit attribute prediction.

Typically, given a whole person image, poselet detec-

tor [130] is first used to decompose an image into sev-

eral image patches, named poselets, under various view-

points and poses. Then, a PANDA network is proposed

to train a set of CNNs for each poselet and the whole

image. Then, the features from all these poselets are

concatenated to yield final feature representations. Fi-

nally, PANDA branches out multiple binary classifiers

where each recognizes an attribute by the binary clas-

sification. Based on PANDA, Gkioxari et al. [26] intro-

duce a deep version of the Poselet detector and build

a feature pyramid, where each level computes a predic-

tion score for the corresponding attribute.

However, the poselet detector only discovers coarse

body parts and cannot explore subtle local details of

face images. Considering that the probability of an at-

tribute appearing in a face image is not uniformed in the

spatial domain, Kalayeh et al. [52] propose employing

semantic segmentation as a separate auxiliary localiza-

tion scheme. They exploit the location cues obtained

by semantic segmentation to guide the attention of at-

tribute prediction to the naturally occurring areas of at-

tributes. Specifically, a semantic segmentation network

is first designed in an encoder-decoder paradigm and

trained over Helen face dataset [61]. During this pro-

cess, the semantic face parsing [102,73] is performed as

an additional task to learn detailed pixel-level location
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information. After discovering the location cues, the se-

mantic segmentation based pooling (SSP) and gating

(SSG) mechanisms are presented to integrate the lo-

cation information into the attribute estimation. SSP

decomposes the activations of the last convolutional

layer into different semantic regions and then aggre-

gates those regions that only reside in the same area.

Meanwhile, SSG gates the output activations between

the convolutional layers and the batch normalization

(BN) operation to control the activations of neurons

from different semantic regions.

In contrast, Mahbub et al. [76] utilize key points

to segment faces into several image patches, which is a

more straightforward way compared with semantic seg-

mentation. Then, these segments are fed into a set of fa-

cial segment networks to extract corresponding feature

representations and learn prediction scores, where the

whole face image is fed into a full-face network. A global

predictor network fuses the features from these seg-

ments, and two committee machines merge their scores

for the final prediction.

Compared with the above methods that search for

location clues of attributes directly, He et al. [40] resort

to synthesized abstraction facial images that contain lo-

cal facial parts and texture information to achieve the

same goal indirectly. A designed GAN is used to gener-

ate facial abstraction images before inputting them into

a dual-path facial attribute recognition network, where

the real original images are together fed into this recog-

nition network. The dual-path network propagates the

feature maps from the abstraction sub-network to the

real original image sub-network and concatenates the

two types of features for the final prediction. Despite

the abundant location and textual information that is

contained in generated facial abstraction images, the

quality of these images may have a significant impact

on performance, especially when some attribute related

information is lost in image abstraction.

Note that all the separated auxiliary localization

based deep FAE methods share a common drawback:

relying too much on accurate facial landmark localiza-

tion, face detection, facial semantic segmentation, face

parsing, and facial partition schemes. If these localiza-

tion strategies are imprecise or landmark annotations

are unavailable, the performance of the subsequent at-

tribute estimation task would be significantly affected.

4.1.2 End-to-end Localization based Methods

Compared with the separate auxiliary localization based

methods that locate attribute regions and make the at-

tribute prediction separately and independently, end-

to-end localization based methods jointly exploit lo-

cation cues where facial attributes appear and predict

their presence in a unified framework.

Liu et al. [70] first propose a cascaded deep learning

framework for joint face localization and attribute pre-

diction. Specifically, the cascaded CNN is made up of an

LNet and an ANet, where the LNet locates the entire

face region and the ANet extracts the high-level face

representation from the located area. LNet is first pre-

trained by classifying massive general object categories

to ensure excellent generalization capability, and then

it is fine-tuned using the image-level attribute tags of

training images to learn features for face localization in

a weakly supervised manner. Note that the main differ-

ence between LNet and separated auxiliary localization

based methods is LNet does not require face bound-

ing boxes or landmark annotations. Meanwhile, ANet

is first pretrained by classifying massive face identities

to handle the complex variations in unconstrained face

images, and then it is fine-tuned to extract discrim-

inative facial attribute representations. Furthermore,

rather than extracting features patch-by-patch, ANet

introduces an interweaved operation with locally shared

filters to extract multiple feature vectors in a one-pass

feed-forward process. Finally, SVMs are trained over

these features to estimate attribute values per attribute,

and the terminal prediction is made by averaging all

these values for addressing the small misalignment of

face localization. The cascaded LNet and ANet frame-

work shows the benefit of pretraining with massive ob-

ject categories and massive identities in enhancing the

feature representation learning. With such customized

pretraining schemes and cascaded network architecture,

this method exhibits outstanding robustness to back-

grounds and face variations.

However, coarse entire face regions discovered by

LNet cannot be used to explore more local attribute

details. Hence, Ding et al. [18] propose a cascade net-

work to jointly locate facial attribute-relevant regions

and perform attribute classification. Specifically, they

first design a face region localization network (FRL)

that builds a branch for each attribute to automati-

cally detect a corresponding relevant region. Then, the

following parts and whole (PaW) attribute classifica-

tion network selectively leverages information from all

the attribute-relevant regions for the final estimation.

Moreover, in terms of the attribute classification, Ding

et al. define two FC layers: the region switch layer

(RSL) and the attribute relation layer (ARL). The for-

mer selects the relevant prediction sub-network and the

latter models attribute relationships. In summary, the

cascaded FRL and PaW model not only discovers se-

mantic attribute regions but also explores rich relation-

ships among facial attributes. Besides, since this model
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automatically detects face regions, it can achieve out-

standing performance on unaligned datasets without

any pre-alignment step.

Note that FRL-PaW method learns a location for

each attribute, which makes the training process redun-

dant and time-consuming. This is because several facial

attributes generally exist in the same area. However, to

the best of our knowledge, there is currently no specific

solution for tackling this issue. We expect that future

research would reduce computation costs; meanwhile,

make the prediction according to attribute locations as

accurately as possible.

In summary, part-based deep FAE methods first lo-

cate the positions where facial attributes appear. Two

strategies can be adopted: separate auxiliary localiza-

tion and end-to-end localization. The former leverages

existing part detectors or auxiliary localization-related

algorithms, and the latter jointly exploits the locations

in which facial attributes exist and predicts their pres-

ences. Compared with the separate auxiliary localiza-

tion based methods operating separately and indepen-

dently, end-to-end localization based methods locate

and predict in a unified framework. After obtaining

the location clues, features corresponding to certain at-

tribute areas can be extracted and further be fed into

attribute classifiers to make the estimation. Recently,

researchers are currently more inclined to shift their

focus on holistic FAE algorithms when the part-based

counterparts are generally distracted and affected by

attribute localization mechanisms.

4.2 Holistic Deep FAE Methods

In contrast to part-based FAE approaches that detect

and utilize facial components, holistic deep FAE meth-

ods focus more on exploring the attribute relationships

and extracting features from entire face images rather

than facial parts. A schematic diagram of holistic FAE

models is provided in Fig. 8.

As shown in Fig. 8, the key to modeling attribute

relationships is learning common features at low-level

shared layers and capturing attribute-specific features

at high-level separated layers. Each separated layer cor-

responds to an attribute group. In general, these at-

tribute groups are obtained manually according to se-

mantics or attribute locations. By assigning different

shared layers and attribute-specific layers, complemen-

tary information among multiple attributes can be dis-

covered such that more discriminative features can be

learned for the following attribute classifiers.

In general, there are two crucial issues that holis-

tic deep FAE methods need to address when design-

ing network architectures: (1) how to properly assign

shared information and attribute-specific information

at different layers of networks, and (2) how to explore

relationships among facial attributes for learning more

discriminative features. Taking these two problems as

the main focus, we provide a brief review of holistic

FAE methods in the following parts.

To the best of our knowledge, MOON [91] is one

of the earliest holistic FAE methods with the multi-

task framework. It has a mixed objective optimization

network that learns multiple attribute labels simulta-

neously via a single DCNN. MOON takes deep FAE as

a regression problem for the first time and adopts a 16-

layer VGG network as the backbone network, in which

abstract high-level features are shared before the last

FC layer. Multiple prediction scores are calculated with

the MSE loss to reduce the regression error. Similarly,

Zhong et al. [135] replace the high-level CNN features

in MOON with mid-level features to identify the best

representation for each attribute.

In contrast to splitting networks at the last FC layer,

the multi-task deep CNN (MCNN) [37] branches out to

multiple groups at the mid-level convolutional layers for

modeling the attribute correlations. Specifically, based

on the assumption that many attributes are strongly

correlated, MCNN divides all 40 attributes into 9 groups

according to semantics, i.e., gender, nose, mouth, eyes,

face, around head, facial hair, cheeks, and fat. For ex-

ample, big nose and pointy nose are grouped into the

‘nose’ category, and big lips, lipstick, mouth slightly open

and smiling are clustered into the ‘mouth’ category.

Therefore, each group consists of similar attributes and

learns high-level features independently. At the first

two convolutional layers of MCNN, features are shared

by all attributes. Then, MCNN branches out several

forks corresponding to different attribute groups. That

means each attribute group occupies a fork. At the

end of the network, an FC layer is added to create

a two-layer auxiliary network (AUX) to facilitate at-

tribute relationships. AUX receives the scores from the

trained MCNN and yields the final prediction results.

Hence, MCNN-AUX models facial attribute relation-

ships in three ways: (1) sharing the lowest layers for

all attributes, (2) assigning the higher layers for spa-

tially related attributes, and (3) discovering score-level

relationships with the AUX network.

However, MCNN has a significant limitation: shared

information at low-level layers may vanish after network

splitting. One solution to overcome this limitation is

jointly learning shared and attribute-specific features

at the same level rather than in order of precedence.

Therefore, Cao et al. [9] design a partially shared

structure based on MCNN, i.e., PS-MCNN. It divides

all 40 attributes into 4 groups according to attribute
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Fig. 8: The illustration of deep holistic FAE methods (Face image comes from [18]).

positions, i.e., upper group, middle group, lower group,

and whole image group. Note that the entire partition

process is performed by hand, and this artificial group-

ing strategy can be regarded as the prior information

based on human knowledge. The partially shared struc-

ture connects four attribute-specific networks (TSNets)

corresponding to four different groups of attributes and

one shared network (SNet) sharing features among all

the attributes. Specifically, each TSNet learns features

for a specific group of attributes. Meantime, SNet shares

informative features with each task. In terms of the con-

nection mode between the SNet and the TSNets, each

layer of SNet receives additional inputs from the pre-

vious layers of TSNet. Then, features from SNet are

fed into the next layers of shared and attribute-specific

networks. At a certain level of PS-MCNN, both task-

specific features and shared features are captured in

different branches. In addition, shared features at a spe-

cific layer are closely related to the features of all of its

previous layers. This connection mechanism contributes

to informatively shared feature representations.

Apart from attribute correlations, Han et al. [34]

introduce the concept of attribute heterogeneity. They

note that individual attributes could be heterogeneous

concerning data type and scale, as well as semantic

meaning. In terms of data type and scale, attributes

can be grouped into ordinal vs. nominal attributes. For

instance, if attributes age and hair length are ordinal,

then attributes gender and race are nominal. Note that

the main difference between ordinal and nominal at-

tributes is ordinal attributes have an explicit ordering

of their variables, whereas nominal attributes gener-

ally have two or more classes and there is no intrin-

sic ordering among the categories. In terms of seman-

tic meaning, attributes such as age, gender, and race

are used to describe the characteristics of the whole

face, and pointy nose and big lips are mainly used to

describe the local characteristics of facial components.

Therefore, these two categories of attributes are het-

erogeneous and can be grouped into holistic vs. local

attributes for the prediction of different parts of a face

image. Therefore, taking both the attribute correlation

and heterogeneity into consideration, Han et al. de-

sign a deep multi-task learning (DMTL) CNN to learn

shared features of all attributes and category-specific

features of heterogeneous attributes. The shared feature

learning naturally exploits the relationship among at-

tributes to yield discriminative feature representations,

whereas the category-specific feature learning aims to

fine-tune the shared features towards the optimal esti-

mation of each heterogeneous attribute category.

Note that existing multi-task learning methods make

no distinction between low-level and mid-level features

for different attributes. This is unreasonable because

features at different levels of the network may have dif-

ferent relationships. Besides, the above methods share

features across tasks and split layers that encode attribute-

specific features by hand-designed network architectures.

Such a manual exploration in the space of possible multi-

task deep architectures is tedious and error-prone be-

cause possible spaces might be combinatorially large.

In light of this issue, Lu et al. [71] present the au-

tomatic design of compact multi-task deep learning ar-

chitectures, with no need to artificially discover pos-

sible multi-task architectures. The proposed network

learns shared features in a fully adaptive way, where

the core idea is incrementally widening the current de-

sign in a layer-wise manner. During the training pro-

cess, the adaptive network starts with a thin multi-

layer network (VGG16) and dynamically widens via a

top-down layer-wise model widening strategy [115]. It

decides with whom each task shares features in each

layer, yielding corresponding branches in this layer. Fi-

nally, the number of branches at the last layer of the

model is equal to that of the attribute categories to be

predicted. Consequently, this training scheme considers

both task correlations and the complexity of the model

for facilitating task grouping decisions at each layer of
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Table 3: State-of-the-art Deep Facial Attribute Estimation Approaches.

Approaches Algorithms Network Architectures
Datasets

Metrics and Performance

PART-BASED METHODS

PANDA [130](CVPR2014)

Using Part-based Pose Aligned Networks

for learning features related to poses and

Linear SVM classifiers for attribute estimation

PANDA

Berkeley Human Attributes Dataset (mAP:78.98%)

Attribute 25K Datasets (mAP:70.74%)

LFW-gender (mAP:99.54%)

Gkioxari et al. [26](ICCV2015)

Using a deep version of poselets

and capturing parts of the human body

for tasks of action and attribute classification

A 5-layer CNN feature pyramid

and a pyramid of part scores
Berkeley Human Attributes Dataset (mAP:89.5%)

LNet+ANet [70](ICCV2015)
Cascading LNet CNN for localization

and ANet for feature extraction
LNet+ANet

CelebA (Acc:87%)

LFWA (Acc:84%)

Off-the-shelf CNN [134](ICB2016)
Training off-the-shelf architectures for

face recognition to construct facial representations
Off-the-shelf

CelebA (Acc:86.6%)

LFWA (Acc:84.7%)

Singh et al. [101](ECCV2016)

Using Spatial Transformer Network (STN) and

Ranker Network (RN) to jointly learn features,

localization and ranker of attributes

STN and RN LFW-10attr (Rank Accuracy:86.91%)

SSP+SSG [52](CVPR2017)

Using semantic segmentation guiding the attention

of the attribute prediction to the regions

where different attributes naturally show up

Semantic Segmentation based

Pooling (SSP) and Gating (SSG)

CelebA (ER:8.20%)

(mAP:81.45%)

(BAcc:88.24%)

FRL-PaW [18](AAAI2018)

Simultaneously learning to localize face regions

specific to attributes and performs attribute classification

without alignment in a cascade network

Facial region localization (FRL) network

Parts and Whole (PaW) classification network
Unaligned CelebA (Acc:91.23%)

SPLITFACE [76](IEEE TAC2018)
Using facial segmentation for attribute

detection in partially occluded faces

Segmentwise, Partial,Localized

Inference in Training Facial Attribute

Classification Ensembles (SPLITFACE) Network

CelebA (Acc:90.61%)

FMTNet [139](PR2018)
Constructing three sub-networks

for attribute transfer learning

the Face detection Network (FNet)

the Multi-label learning Network (MNet)

the Transfer learning Network (TNet)

CelebA (Acc:91.66%)

LFWA (Acc:84.34%)

He et al. [40](IJCAI2018)
Generating abstraction images by GAN as

complementary features and used for facial parts localization

GAN and a dual-path facial

attribute recognition network

CelebA (Acc:91.81%)

LFWA (Acc:85.2%)

AFFAIR [63](IEEE TIP2018)
Learning a hierarchy of spatial transformations for

facial attribute prediction with no landmark

lAndmark Free Face AttrIbute

pRediction (AFFAIR) Network

CelebA (mAP:79.63%/Acc:91.45%)

LFWA (mAP:83.01%/Acc:86.13%)

MTFL (Acc:86.55%)

HOLISTIC METHODS

Wang et al. [116](CVPR2016)
Employing a Siamese structure,

embedding location and weather contextual information
Siamese

CelebA (Acc:88%)

LFWA (Acc:87%)

Ego-Humans Dataset(Acc:87%)

MOON [91](ICCV2016)
Treating attribute classification as a

regression task and solving domain adaptive problem

Mixed-Objective Optimization Network

(MOON, VGG16)

CelebA(ER:9.06%)

CelebAB (BER:13.67%)

LMLE [47](CVPR2016)
Using a Large Margin Local Embedding (LMLE) Method for

large-scale imbalanced facial attribute classification
VGG-6 Quintuplet CNN CelebA(BAcc:84.25%)

Zhong et al. [135](ICIP2016)
Studying the effect of mid-level

CNN features for attribute prediction
FaceNet NN.1 [96]

CelebA (Acc:89.8%)

LFWA (Acc:85.9%)

CRL [19](ICCV2017)

Combining batch-wise incremental hard mining

for class-imbalance learning with the

Class Rectification Loss (CRL) regularizing algorithm

5-layer DeepID2 [108] CNN CelebA(BAcc:86%)

AFFACT [31](IJCB2017) Introducing the Alignment-Free Facial Attribute Classification Technique AFFACT Network (ResNet) CelebA (ER:8.03%)

MCNN+AUX [37](AAAI2017)

Considering attribute relationships

and constructing a Multi-task deep CNN (MCNN)

with an Auxiliary Network (AUX) for performance improvement

MCNN+AUX
CelebA (Acc:91.22%)

LFWA (Acc:86.31%)

DMTL [34](IEEE TPAMI2017)
Introducing Deep multi-task feature learning (DMTL) for

joint estimation of multiple heterogeneous attributes
DMTL (AlexNet)

CelebA (Acc:93%)

LFWA (Acc:86%)

Lu et al.[71](CVPR2017) Automatically designing compact multi-task deep network Automatic top-down layer-wise widening

CelebA

(Acc:91.02%)

(Top-10 Recall:71.38%)

AttCNN [35](AAAI2018)
Selectively learning with domain adaptive batch resample

methods for multi-label attribute prediction
AttCNN Network

CelebA (Acc:85.05%)

LFWA (Acc:73.03%)

UMD-AED (Acc:71.11%)

R-Codean [97](PRLetters2018)

Incorporating a Cosine similarity based

loss function into the Euclidean distance

for constructing an R-Codean autoencoder

Residual Codean Autoencoder
CelebA (Acc:90.14%)

LFWA (Acc:84.90%)

PS-MCNN [9](CVPR2018)

Considering the identity information and

attribute relationships simultaneously and constructing

a Partially Shared Multi-task Convolutional Neural Network

PS-MCNN
CelebA (ER:7.02%)

LFWA (ER:12.64%)

the network. Therefore, the fully-adaptive network al-

lows us to estimate multiple facial attributes in a dy-

namic branching procedure through its self-constructed

architecture and feature sharing strategy.

To summarize, holistic methods take the entire face

images as inputs and mainly work on exploring at-

tribute relationships. Many methods design various net-

work architectures to model the correlations among dif-

ferent attributes. The key to this idea is learning shared

features at low-level layers and attribute-specific fea-

tures at high-level layers. Thus, holistic FAE methods

need to address two main problems: one is assigning dif-

ferent layers for learning corresponding features with

different characteristics, and another is learning more

discriminative features though discovering attribute re-

lationships under customized networks. What can be
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observed from contemporary research is that attribute

grouping by hand has become a prevalent scheme in

holistic FAE. We expect that an automatic attribute

grouping strategy would attract more attention in fu-

ture work, and it should adaptively learn proper group

partition criteria and adjust them according to models’

performance during the training.

5 State-of-the-art Facial Attribute

Manipulation Methods

In this section, we provide an overview of model-based

FAM methods and extra condition-based FAM methods

in terms of algorithms, network architectures, advan-

tages and disadvantages. The summary of this overview

is provided in Table 4.

5.1 Model-based Deep FAM Methods

Model-based methods map an image in the source do-

main to the target domain and then distinguish the gen-

erated target distribution with the real target distribu-

tion under the constraint of an adversarial loss. There-

fore, model-based methods are greatly task-specific and

have excellent performance in yielding photorealistic fa-

cial attribute images.

Li et al. [64] first propose a DIAT model following

the standard paradigm of model-based methods. DIAT

takes unedited images as inputs to generate target facial

images with an adversarial loss and an identity loss.

The first loss ensures to obtain desired attributes, and

the second encourages the generated images to have the

same or similar identity as the input images. Zhu et al.

[137] add an inverse mapping from the target domain

to the source domain based on DIAT and propose a

CycleGAN, where the two mappings are coupled with

a cycle consistency loss. This design is based on the

intuition that if we translate from one domain to the

other and back again, we should arrive where we start.

Based on CycleGAN, Liu et al. [68] propose a UNIT

model that maps the pair of corresponding images in

the source and the target domains to the same latent

representation in a shared latent space. Each branch

from one of the domains to the latent space performs

an analogous CycleGAN operation.

However, all of the above methods directly operate

on the entire face image. That means when a certain

attribute is edited, the other relevant attributes may

also be changed uncontrollably.

Therefore, to modify attribute-specific face areas

and keep the other parts unchanged, Shen et al. [98]

present learning residual images, which are defined as

the difference between images before and after attribute

manipulation. In this way, face attributes can be ef-

ficiently manipulated with modest pixel modification

over the attribute-specific regions. They design a Res-

GAN consisting of two image transformation networks

and a discriminative network to learn residual repre-

sentations of desired attributes. Specifically, two image

transformation networks, denoted as G0 and G1, first

take two images with opposite attributes as inputs in

turn and then perform the inverse attribute manipu-

lation operation for outputting residual images. Sub-

sequently, the obtained residual images are added to

the original input images, yielding the final outputs

with manipulated attributes. In the end, all these im-

ages, i.e., the two original input images and the two

images from the transformation networks, are fed into

the discriminative network, which classifies these im-

ages into three categories: images generated from the

two transformation networks, original images with pos-

itive attribute labels, and original images with negative

attribute labels. Note that G0 and G1 constitute a dual

learning cycle. Given an image with a negative attribute

label, G0 synthesizes the desired attribute, and G1 re-

moves the corresponding attribute that is generated by

G1. Then, G1’s output is expected to have the same

attribute label as the original given image. The experi-

ments demonstrate that such a dual learning process is

beneficial for the generation of high-quality images, and

residual images could enforce the attribute manipula-

tion process to focus on the local areas where attributes

show up. Therefore, ResGAN is able to generate attrac-

tive images especially on local facial attributes.

However, model-based methods can only edit an at-

tribute during a training process with a set of corre-

sponding model parameters. The whole manipulation

is only supervised by discriminating real or generated

images with the adversarial loss. That means when mul-

tiple attributes need to be changed, multiple training

processes are inevitable, resulting in significant time

consumption and computation costs.

In contrast, manipulating facial attributes with ex-

tra conditions is a more prevalent approach since mul-

tiple attributes can be edited through a single train-

ing process. Hence, extra condition-based methods at-

tract more attention from researchers, where extra at-

tribute vectors and reference exemplars are taken as

input conditions. Specifically, attribute vectors can be

concatenated with the latent image codes to control fa-

cial attributes, whereas reference exemplars exchange

specific attributes with the to-be-manipulated images

in the image-to-image translation framework. More de-

tails about the extra condition-based deep FAM meth-

ods are introduced below.
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Table 4: State-of-the-art Facial Attribute Manipulation Approaches.

Approaches Algorithms
Network

Architectures
Datasets

MODEL-BASED METHODS

DIAT [64] (arxiv1610)
Transferring input images to each reference attribute label while keeping the same

or similar identity for Identity-Aware Transfer (DIAT) of facial attributes
GAN CelebA

InfoGAN [13] (NIPS2016)
Maximizing mutual information for interpretable representations

and discovering visual concepts of facial attributes
GAN CelebA

UNIT [68] (NIPS2017)
Proposing an UNsupervised Image-to-Image Translation (UNIT)

framework under a shared-latent assumption
GAN+VAE CelebA

Residual Image [98] (CVPR2017)
Learning residual images to avoid

entire face operation with redundant irrelevant information
GAN CelebA

Wang et al. [117] (WACV2018)
Combining a perceptual content loss and two adversarial losses to guarantee

the global consistency for producing more realistic images
GAN

CelebA

LFW

SG-GAN [128] (ACMMM2018)
Constructing a sparsely grouped generative adversarial networks (SG-GAN)

in the sparsely grouped datasets where most training data is mixed and a few are labelled
GAN CelebA

EXTRA CONDITION-BASED METHODS

Conditioned on attribute vectors

VAE/GAN [60] (ICML2016)
Using learned feature representations in the GAN discriminator as basis

for the VAE reconstruction objective
GAN+VAE LFW

CVAE [125] (ECCV2016)
Learning a layered foreground-background generative

conditional variational auto-encoder for complex images
VAE LFW

IcGAN [84] (NIPSW2016) Combining an encoder with a cGAN for obtaining Invertible cGAN (IcGAN) GAN+VAE CelebA

Fader Network [59] (NIPS2017)
Disentangling the salient information of face images and the values of attributes

directly in the latent space for modifying facial attributes continuously
AE CelebA

cCycleGAN [72] (ECCV2018)
Extending the cycleGAN [137]conditioned on facial

attributes with the cycle consistency loss
GAN CelebA

StarGAN [16] (CVPR2018) Constructing a StarGAN for multiple domain image-to-image translations GAN CelebA

CRGAN [62] (Springer JCST2018)
Introducing recycle reconstruction loss to maintain personal facial identity

and directly learning facial transformation with attribute annotations
GAN CelebA

SaGAN [127] (ECCV2018)
Introducing a spatial attention mechanism for

only modifying the attribute-specific region and keep the remains unchanged
GAN

CelebA

LFW

Conditioned on reference exemplars

Gene-GAN [136] (BMVC2017)
Recombing the latent representation information of two

paired attribute images for swapping specific attributes
GAN CelebA

DNA-GAN [123] (ICLRW2018)
Learning disentangled representations from multi-attribute images

by annihilating and swapping operations to achieve the attribute manipulation
GAN CelebA

ELEGANT [124] (ECCV2018)
Exchanging Latent Encoding with GAN for Transferring Multiple Face Attributes (ELEGANT)

and doing image generation by exemplars as well as producing high-quality generated images
GAN+VAE CelebA

EGSC-IT [75] (ICLR2019)
Constructing an exemplar guided semantically consistent image-to-image translation (EGSC-IT) network

to control the translation process under exemplar images in the target domain.
GAN+VAE CelebA

5.2 Extra Condition-based Deep FAM Methods

Deep FAM methods conditioned on extra attribute vec-

tors alter desired attributes with given conditional at-

tribute vectors, such as one-hot vectors indicating the

presence of corresponding facial attributes. During the

training process, the conditional vectors are concate-

nated with the to-be-manipulated images in latent en-

coding spaces. Moreover, conditional generative frame-

works dominate the model construction of deep FAM.

Various efforts have been made to edit facial attributes

based on autoencoders (AEs), VAEs, and GANs.

Zhang et al. [133] propose a conditional adversarial

autoencoder (CAAE) for age progression and regres-

sion. CAAE first maps a face image to a latent vector

through an encoder. Then, the obtained latent vector

concatenated with an age label vector is fed into a gen-

erator for learning a face manifold. The age label con-

dition controls altering the age. Meanwhile, the latent

vector ensures that the personalized face features are

preserved. Yan et al. [125] introduce a conditional vari-

ational autoencoder (CVAE) to generate images from

visual attributes. CVAE disentangles an image into the

foreground and the background parts, where each part

is combined with the defined attribute vector. Conse-

quently, the quality of generated complex images can be

significantly improved when the foreground areas at-

tract more attention. Perarnau et al. [84] propose an
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invertible conditional GAN (IcGAN) to edit multiple

facial attributes with determined specific representa-

tions of generated images. Given an input image, Ic-

GAN first learns a representation consisting of a latent

variable and a conditional vector via an encoder. Then,

IcGAN modifies the latent variable and conditional vec-

tor to regenerate the original input image through the

conditional GAN [79]. In this way, by changing the en-

coded conditional vector, IcGAN can achieve arbitrary

attribute manipulation.

Apart from autoencoders, VAEs, GANs, and their

variants, Larsen et al. [60] combine the VAE and the

GAN into a unified generative model, VAE/GAN. In

this model, the GAN discriminator learns feature rep-

resentations taken as the basis of the VAE reconstruc-

tion objective, which means that the VAE decoder and

the GAN generator are collapsed into one by sharing

parameters and joint training. Hence, this model con-

sists of three parts: the encoder, the decoder, and the

discriminator. By concatenating attribute vectors with

features from these three components, VAE/GAN per-

forms better than either plain VAEs or GANs.

Recently, taking the multiple attribute manipula-

tion as a domain transfer task, Choi et al. [16] propose

a StarGAN to learn mappings among multiple domains

with only a single generator and a discriminator trained

from all domains. Each domain corresponds to an at-

tribute and the domain information can be denoted by

one-hot vectors. Specifically, the discriminator first dis-

tinguishes the real and the fake images and classifies

the real images to their corresponding domains. Then,

the generator is trained to translate an input image

into an output image conditioned on a target domain

label vector, which is generated randomly. As a result,

the generator is capable of translating the input image

flexibly. In summary, StarGAN takes the domain labels

as extra supervision conditions. This operation makes

it possible to incorporate multiple datasets containing

different types of labels simultaneously.

However, all the above methods edit multiple facial

attributes simultaneously by discretely changing multi-

ple values of attribute vectors. None of them can alter

facial attributes continuously.

In light of this, Lample et al. [59] present a Fader

network using continuous attribute values to modify at-

tributes through sliding knobs, like faders on a mixing

console. For example, one can gradually change the val-

ues of gender to control the transition process from man

to woman. Fader network is composed of three com-

ponents: an encoder, a decoder, and a discriminator.

With an image-attribute pair as the input, Fader net-

work first maps the image to the latent representation

by its encoder and predicts the attribute vector by its

discriminator. Then, the decoder reconstructs the im-

age through the learned latent representation and the

attribute vector. During testing, the discriminator is

discarded, and different images with various attributes

can be generated with different attribute values.

Note that all the above methods edit attributes over

the whole face images. Hence, attribute-irrelevant de-

tails might also be changed. To address this issue, Zhang

et al. [127] introduce the spatial attention mechanism

into GANs to locate attribute-relevant areas and pro-

pose a SaGAN for manipulating facial attributes more

precisely. SaGAN follows the standard adversarial learn-

ing paradigm, where a generator and a discriminator

play a min-max game. To keep attribute-irrelevant re-

gions unchanged, SaGAN’s generator consists of an at-

tribute manipulation network (AMN) and a spatial at-

tention network (SAN). Given a face image, SAN learns

a spatial attention mask where attribute-relevant re-

gions have non-zero attention values. In this way, the

region where the desired attribute appears can be lo-

cated. Then, AMN takes the face image and the at-

tribute vector as inputs, yielding an image with the

desired attribute in the specific region located by SAN.

Rather than taking the attribute vectors as extra

conditions, deep FAM methods conditioned on refer-

ence exemplars consider exchanging specific attributes

with the to-be-manipulated images in the image-to-

image translation framework. Note that these reference

images do not need to have the same identity as the

original to-be-manipulate images, and all the generated

attributes are present in the real world. In this way,

more specific details that appear in the reference im-

ages can be explored to generate more realistic images.

Zhou et al. [136] first design a GeneGAN to achieve

the basic reference exemplar-based facial attribute ma-

nipulation. Given an image, it is encoded into two com-

plement codes: attribute-specific codes and attribute-

irrelevant codes. By exchanging the attribute-specific

codes and preserving the attribute-irrelevant codes, de-

sired attributes can be transferred from the reference

exemplar image to the to-be-manipulated image.

Considering that GeneGAN only transfers one at-

tribute in a single manipulation process, Xiao et al.

[124] construct an ELEGANT model to exchange latent

encodings for transferring multiple facial attributes by

exemplars. Specifically, since all the attributes are en-

coded in the latent space in a disentangled manner, one

can exchange the specific part of encodings and ma-

nipulate several attributes simultaneously. Besides, the

residual image learning and the multi-scale discrimina-

tors for adversarial training enable the proposed model

to generate high-quality images with more delicate de-

tails and fewer artifacts. At the beginning of training,
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ELEGANT receives two sets of training images as in-

puts, i.e., a positive set and a negative set, which do

not need to be paired. Second, an encoder is utilized to

obtain the latent encodings of both positive and neg-

ative images. Then, if the i-th attribute is required to

be transferred, the only step is to exchange the i-th el-

ement in the latent encodings of positive and negative

images. Once the encoding step is finished, ELEGANT

constructs an image generator that consists of a decoder

and the encoder from the previous step to decode re-

combined latent encodings into images. Finally, two dis-

criminators with identical network structures work at

different scales to obtain manipulated attribute images.

6 Additional Related Issues

6.1 Imbalance Learning in Facial Attribute Analysis

Face attribute data exhibits an imbalanced distribution

in terms of different categories. It is normally called the

class-imbalance issue, which means in a dataset, some of

the facial attribute classes have a much higher number

of samples than others, corresponding to the majority

class and minority class [33], respectively. For example,

the largest imbalance ratio between the minority and

majority attributes in CelebA dataset is 1:43. Learning

from such imbalanced facial attribute labels can lead to

biased classifiers, which tend to favor the majority and

fail to discriminate the features learned from the mi-

nority. Even in the extreme case, the learned classifiers

can hardly identify the minority samples.

One typical scheme to solve this problem is using

an assumed balanced target distribution to guide the

imbalanced source distribution by weighting objective

functions. MOON [91] weights the back-propagation er-

ror in a cost-sensitive way. A probability is assigned to

each class by counting the relative numbers of posi-

tive and negative samples for both source and target

domains. Then, these probabilities could be used as

weights to incorporate the distribution discrepancy into

the loss function.

However, MOON overlooks the label imbalance over

each batch, which means that the batch-wise training

scheme of deep networks is not fully utilized. In light

of this, AttCNN [35] proposes a selective learning al-

gorithm to address the distribution discrepancy at the

batch level. If the original batch in the source domain

has more positive samples and fewer negative samples

than the target distribution, the selective learning al-

gorithm resamples a random subset from the positive

instances. Meanwhile, it proportionally weights the neg-

ative counterparts to match the target distribution. By

aligning the distributions between the source and target

domains in each batch, AttCNN yields the state-of-the-

art class-imbalance attribute prediction performance.

In addition, another more frequently used scheme

for class-imbalance learning is data resampling for deep

FAE methods. Huang et al. [47] adopt the resampling

strategy, namely large margin local embedding (LMLE),

and formulate a quintuple sampling term associated

with the triple-header loss. LMLE enforces the preser-

vation of locality across clusters and the discrimination

between classes. Then, a fast cluster-wise kNN algo-

rithm is executed, followed by a local large margin deci-

sion. In this way, LMLE learns embedded features that

are discriminative enough without any possible local

class imbalance. On this basis, Huang et al. further pro-

pose a rectified version of LMLE [48], i.e., cluster-based

large margin local embedding (CLMLE). CLMLE de-

signs a loss to preserve the inter-cluster margins both

within and between classes. In contrast to LMLE en-

forcing the Euclidean distance on a hypersphere mani-

fold, CLMLE adopts angular margins enforced between

the involved cluster distributions and uses spherical k-

means for obtaining K clusters with the same size,

which contributes to better performance.

On the other hand, Dong et al. [19] take an online

regularization strategy to address the facial attribute

based class-imbalance issue. In detail, they exploit a

batch-wise incremental hard mining on minority at-

tribute classes, and formulate a class rectification loss

(CRL) based on the mined minority examples. For the

hard mining strategy, researchers first provide the pro-

files of hard positives and hard negatives for the mi-

nority. Then, according to the predefined profiles and

model, they select K hard positives (or hard negatives)

as the bottom-K (or top-K ) scores on the minority class

for a specific attribute. This process is executed at the

batch level and incrementally over subsequent batches.

Such batch-wise incremental hard mining guarantees

CRL strong class-imbalance learning ability and satis-

factory attribute estimation performance.

6.2 Relative Attribute Ranking in Facial Attribute

Analysis

Relative attribute learning aims to formulate functions

to rank the relative strength of attributes [12], which

can be widely applied in object detection [22], fine-

grained visual comparison [99], and facial attribute es-

timation [63]. The general insight in this line of work

is learning global image representations in a unified

framework [58,82] or capturing part-based representa-

tions via pretrained part detectors [5,95,130] . However,

the former ignores the localizations of attributes, and

the latter ignores the correlations among attributes.
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Consequently, both the two might collapse the perfor-

mance of relative attribute ranking.

Xiao et al. [122] first propose automatically discov-

ering the spatial extent of relevant attributes by estab-

lishing a set of visual chains indicating the local and

transitive connections. In this way, the locations of at-

tributes can be learned automatically in an end-to-end

way. Although no pretrained detectors are used, the

optimization pipeline still contains several independent

modules, resulting in a suboptimal solution.

To tackle this issue, Singh et al. [101] construct an

end-to-end deep CNN for simultaneously learning fea-

tures, localizations, and ranks of facial attributes with

weakly supervised pair-wise images. Specifically, given

pairs of training images ordered according to the rel-

ative strength of an attribute, two Siamese networks

receive these images, where each takes one of a pair

as input and builds a single branch. Each branch con-

tains two components: the spatial transformer network

(STN), which generates image transformation param-

eters for localizing the most relevant regions, and the

ranker network (RN), which outputs the predicted at-

tribute scores. The qualitative experiment results over

LFW-10 dataset show excellent performance in attribute

region localization and ranking accuracy.

To model the pair-wise relationships between im-

ages for multiple attributes, Meng et al. [77] construct

a graph model, where each node represents an image

and edges indicate the relationships between images

and attributes, as well as between images and images.

The overall framework consists of two components: the

CNN for extracting primary features of the node im-

ages, and the graph neural network (GNN) for learning

the features of edges and following updates. Thus, the

relationships among all the images are modeled by an

fully-connected graph over the learned CNN features.

Then, a gated recurrent unit (GRU) takes the node and

its corresponding information as inputs and outputs the

updated node. As a result, the correlations among at-

tributes can be learned by using information from the

neighbors of the node, as well as by updating its state

based on the previous state.

6.3 Adversarial Robustness in Facial Attribute

Analysis

Adversarial images, which are generated from the net-

work topology, training process, and hyperparameter

variation by adding slight artificial perturbations, can

be used as inputs of deep facial attribute analysis mod-

els. By classifying the original inputs correctly and mis-

classifying the adversarial inputs, the robustness of mod-

els can be improved. Szegedy et al. [111] first propose

that neural networks can be induced to misclassify an

image by carefully chosen perturbations that are imper-

ceptible to human. Following this work, the study of ad-

versarial images is entering the horizons of researchers.

Rozsa et al. [90] induce small artificial perturbations

on existing misclassified inputs to correct the results

of attribute classification. Specifically, the adversarial

images are generated over a random subset of CelebA

dataset via the fast flipping attribute (FFA) technique.

FFA algorithm leverages the back-propagation of the

Euclidean loss to generate adversarial images. During

this process, it flips the binary decision of the deep net-

work without ground-truth labels. Through the robust-

ness analysis, FFA has better performance in generat-

ing more adversarial examples than the existing fast

gradient sign (FGS) method [29] on the designed sepa-

rate attribute networks [89]. Moreover, FFA algorithm

is extended to an iterative version, namely iterative

FFA, to ensure the use for multi-objective networks,

e.g., MOON [91]. The experiments demonstrate that

the quality of adversarial examples of iterative FFA

is more satisfactory than its base version, and itera-

tive FFA can flip attribute prediction results more fre-

quently. Despite the promising performance of these

two types of FFAs, several attributes still could not be

flipped over on separately trained deep models.

In addition, attribute anonymity, which conceals spe-

cific facial attributes that an individual does not want

to share, is another adversarial robustness related task.

When hiding corresponding attributes, the remaining

attributes should be maintained, and the visual quality

of images should not be damaged. Chhabra et al. [15]

achieve this basic target by adding adversarial pertur-

bations to an attribute preservation set and an attribute

suppression set. Consequently, the prediction of a spe-

cific attribute from the true category can be classified

into a different target category.

In summary, the study of adversarial robustness con-

tributes to improving the representational stability of

current deep FAE algorithms. Additionally, due to the

attack of adversarial examples, the robustness of deep

facial attribute analysis models is moving towards a

promising direction.

7 Challenges and Opportunities

Despite the promising performance of many algorithms

in deep facial attribute analysis, there are still several

challenging issues that deserve more attention. On the

other hand, these challenges also bring hopeful oppor-

tunities for the development of this field. Therefore, in

this section, we discuss challenges and future opportuni-
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ties for both deep FAE and FAM, from the perspectives

of databases, algorithms, and real-world applications.

7.1 Discussion of Facial Attribute Estimation

7.1.1 Data

The development of deep neural networks makes FAE

a data-driven task. That means large numbers of sam-

ples are required for training deep models to capture

attribute-relevant facial details. However, contemporary

studies suffer from insufficient training data. In this

case, deep neural networks would easily fit the data

characteristics contained only in a small number of im-

ages and have degraded performance. In the following,

taking two commonly used datasets as examples (i.e.,

CelebA and LFWA), we analyze the data challenges

that exist in current facial attribute databases from the

perspectives of data sources, data quality, and imbal-

anced data, respectively.

First, from the perspective of data sources, CelebA

collects face data and attribute labels from the celebri-

ties, and the samples of LFWA come from online news.

There is no doubt that these databases are inherently

biased and do not match the general data distributions

in the real world. For example, the bald attribute cor-

responds to a small number of samples in CelebA, but

in the real world, it is a common attribute among or-

dinary people. Hence, more complementary facial at-

tribute datasets that cover more real-world scenarios

and a wider range of facial attributes need to be con-

structed in the future. An earlier work [116] has made

an attempt to extract images from the real-world out-

door videos, i.e., Ego-Humans dataset. However, it con-

tains more pedestrian attributes, and only several fa-

cial attributes are predicted. Nevertheless, we believe

that this dataset provides an inspired idea for collect-

ing more facial attribute-relevant images from videos in

real-world scenes [119].

Furthermore, Hand et al. [36] have made the first at-

tempt to estimate facial attributes in videos. They use

weakly labeled data in YouTube Faces Dataset (with

attribute labels) to keep attribute prediction consistent

and accurate in videos, by imposing a temporal co-

herence constraint and a motion-attention mechanism.

The temporal coherence constraint ensures the response

invariability between video frames by transferring re-

sponses from labeled frames to unlabeled ones. Mean-

while, the motion-attention mechanism enforces their

model to focus on face parts through exploring the mo-

tion relationship between labeled and unlabeled frames.

On the one hand, this research significantly highlights

the importance of temporal and motion factors when

designing video-based deep FAE models. On the other

hand, it also expresses the expectation for labeling new

video datasets with facial attributes in future study.

Second, from the perspective of data quality, most

faces in CelebA and LFWA are frontal and aligned im-

ages with high quality [35]. However, real-world data

always have low-quality, partially visible images with

various illumination and poses. Thus, attribute predic-

tion models trained on these images could hardly learn

representative features of real-world data. Therefore,

we expect that more adequate real-world training data

would come out to strengthen the estimation abilities

of future attribute classifiers.

Finally, for CelebA, LFWA, or real-world face im-

ages, imbalanced data would induce attribute estima-

tion models to pay more attention to learning the fea-

tures of majority samples. Consequently, learned bi-

ased attribute classifiers could not identify the minori-

ties in some extreme cases. Although many efforts have

been made to solve this class-imbalance learning issue

from the perspective of algorithms, as mentioned in Sec-

tion 6.1, data support is still an urgent need.

Besides, the test datasets (i.e., target domains), may

have different distributions from the training datasets

(i.e., source domains). It is generally called domain adap-

tion issue, which can be taken as a distribution imbal-

ance. That means once the source data have a particu-

lar property, the given target domain would not always

follow the same pattern. Therefore, such a discrepancy

between data distributions would negatively impact the

generalization ability over unseen test data and lead to

significant performance deterioration.

Therefore, on the one hand, we anticipate that more

available facial attribute images can be released to cap-
ture discriminative features of majority and minority

samples equally well in terms of class-imbalance data.

On the other hand, more algorithms are expected to

be developed to solve the domain adaption issue in at-

tribute estimation.

7.1.2 Algorithms

As mentioned before, part-based deep FAE methods

and holistic deep FAE methods develop in parallel. The

former pays more attention to locating attributes, and

the latter concentrates more on modeling attribute rela-

tionships. Below, we provide the main challenges from

the perspective of algorithms and analyze the future

trends for both types of methods.

For the part-based methods, earlier methods draw

support from existing part detectors to discover facial

components. However, these detected parts of faces are

coarse and attribute-independent. They only distinguish
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the whole face from the other face-irrelevant parts, such

as the background in an image. Considering that exist-

ing detectors are not customized for deep FAE, some

researchers begin to seek help from other face-related

auxiliary tasks, which focus more on facial details rather

than the whole face. There are also some studies that

utilize labeled key points to partition facial regions.

However, well-labeled facial images are not always avail-

able in real-world applications, and the performance of

auxiliary tasks would limit the accuracy of the down-

stream classification task.

We believe that an end-to-end strategy would domi-

nate future part-based deep FAE algorithms, where the

attribute-relevant regions and the corresponding pre-

diction can be yielded in a unified framework [25]. Ding

et al. [18] have attempted to tackle this issue, but learn-

ing a region for each attribute is cumbrous and compu-

tationally expensive. This is because several attributes

might appear in the same region of a face.

In addition, part-based methods show great supe-

riority when dealing with data under in-the-wild envi-

ronmental conditions, such as illumination variations,

occlusions, and non-frontal faces. Through learning the

locations of different attributes, part-based methods in-

tegrate the information from non-occluded areas to pre-

dict attributes in occluded areas. Mahbub et al. [76]

address this issue by partitioning facial parts manu-

ally according to key points. However, such annota-

tions are not always available. Attempting to integrate

these non-occluded areas adaptively is becoming a fu-

ture trend. Besides, Mahbub et al. [76] test their model’s

attribute estimation performance on partial faces by

adding occlusions artificially over original databases,

but this operation is not normative for the test pro-

tocol. Therefore, the lack of data under the in-the-wild

conditions is still a challenge for training deep FAE net-

works in the wild environment.

For holistic methods, state-of-the-art approaches de-

sign networks with different architectures for sharing

common features and learning attribute-specific features

at different layers. However, these methods define at-

tribute relationships to design networks by grouping

attributes manually, which can be taken as extra prior

information. Since different individuals might give dif-

ferent attribute partitions according to locations or se-

mantics, it is difficult to determine that which facial

attribute groups are suitable and optimal. Therefore,

how to discover attribute relationships adaptively in

the training process, without given prior information

artificially, should be the focus of future works.

In addition, facial attributes have been taken as aux-

iliary and complementary information for many face-

related tasks, such as face recognition [57,91,112], face

detection [86], and facial landmark localization [139].

Kumar et al. [57] first introduce the concept of ‘at-

tribute’ to facilitate face verification by compact vi-

sual descriptions and low-level attribute features. In

contrast, Rudd et al. [91] utilize the mixed objective

optimization network with the Euclidean loss to learn

deep attribute features for promoting facial verification.

Experiments illustrate that despite only 40 attributes

being used, the work of Rudd et al. [91] still performs

better than that of Kumar et al. [57], which extracts

features of 73 facial attributes.

Apart from employing features learned by attribute

prediction to assist face recognition, joint and incor-

porative learning of facial attribute relevant tasks can

further enhance their respective robustness and perfor-

mance by discovering complementary information. For

example, considering the inherent dependencies of face-

related tasks, Zhuang et al. [138] design a cascaded

CNN for simultaneously learning face detection, facial

landmark localization, and facial attribute estimation

under a multi-task framework to improve the perfor-

mance of each task. They further attempt to perform

joint face recognition and facial attribute estimation

when taking the relationship between identities and at-

tributes into account. Therefore, it is reasonable to be-

lieve that the combination of different face-related tasks

is becoming a promising research direction due to the

complementary relationships among them.

7.1.3 Applications

Various viewpoints of the same person are difficult chal-

lenges for maintaining the identity-attribute consistency

in deep FAE methods. On the one hand, such view-

point diversification helps to learn richer features from

the same person. On the other hand, images of differ-

ent viewpoints might differ in attributes even from the

same identity. For example, the side face images might

yield different prediction results with the front face im-

ages for the high cheekbones, as the side face images do

not emphasize this attribute.

Therefore, attribute inconsistency becomes a severe

problem in various viewpoints for the same identity. Lu

et al. [72] propose a probabilistic confidence criterion to

address this inconsistency issue. Specifically, this crite-

rion first extracts the most confident face image for each

subject, and then it chooses the result corresponding to

the highest confidence as the final prediction of each at-

tribute concerning each subject. However, filtering the

most confident image via relevant criteria might not be

the most optimal strategy, because the features from all

images with different views are not taken full advantage

of in making the favorable estimation.
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Nowadays, digital mobile devices contain consider-

able amounts of valuable personal information, such as

bank accounts and private emails [94]. These personal

details make these devices the targets of various at-

tacks. Hence, biological characteristics, such as finger-

prints and irises [114], have been widely used as device

passwords for further protecting the privacy informa-

tion of users. This technique is called biometric verifi-

cation. Recently, an increasing number of biometric ver-

ification based algorithms have emerged as a solution

for continuous authentication on mobile devices. Many

researchers have committed to designing active authen-

tication algorithms based on face biometrics. For exam-

ple, studies in [24,30,32] detect faces through camera

sensor images and further extract low-level features for

the authentication of smartphone users.

Considering that facial attributes contain more de-

tailed characteristics than the full face, we believe that

facial attributes would bring new opportunities for bio-

metric identification in real-world applications. Saman-

gouei et al. [94] have attempted the active authentica-

tion of mobile devices by facial attributes. A set of bi-

nary attribute classifiers are trained to estimate whether

attributes are present in images of the current user in

a mobile device. Consequently, the authentication can

be implemented by comparing the recognized attributes

with the originally enrolled attributes.

However, Samangouei et al. [94] extract traditional

features, such as the LBP feature, which are not task-

specific for attribute estimation and less discriminative

than deep features. To some extent, these traditional

features and SVM classifiers balances the verification

accuracy and mobile performance, whereas other meth-

ods with satisfactory performance might have tremen-

dous computation or memory costs.

Therefore, future challenges mainly lie in two as-

pects. The first is to better apply facial attributes for

mobile device authentication. The second is exploring

more discriminative deep features and classifiers under

the constraints of the trade-off between verification ac-

curacy and mobile performance. Nevertheless, we ex-

pect that facial attributes would contribute to further

advance the progress of biometric verification on digital

mobile devices.

7.2 Discussion of Facial Attribute Manipulation

7.2.1 Data

In this section, we start with the problems of current

FAM databases and analyze the challenges and the op-

portunities related to data sources. Then, we express an

expectation for the video data type, as we have done

in the discussion of facial attribute prediction. Finally,

taking the performance metrics into account, we believe

that future deep FAM methods need to establish a uni-

fied standard for evaluating their experiment results.

First, in terms of data sources, note that almost all

deep FAM algorithms are trained over CelebA database,

while very few of them also use LFW dataset. The data

sources are extremely inadequate, and facial attributes

that can be manipulated are considerably limited. For

40 annotated attributes, only several notable attributes

(e.g., hair colors [62], glasses [13], and smiling [124])

can achieve satisfactory performance. Such limitation

could cause a degradation in performance when manip-

ulating various attribute types. Therefore, we expect

that more high-quality facial attribute databases could

be released and that more kinds of facial attributes

could be manipulated in the future.

Second, from the perspective of the data type, FAM

on the video data still has not been studied. Manipu-

lating video facial attributes requires models to yield

lifelike details. When faces change with the frames of

videos, models can still locate the to-be-manipulated

areas precisely and keep the consistency of attribute

manipulation for the same identity. Nevertheless, this

task is valuable in many entertainment situations in

the real world, such as beauty makeup videos. The hair

colors in the videos might be varied according to users’

preference. However, to date, there is no available large-

scale video data for training video-based attribute ma-

nipulation models. The possible reasons might be that

it is difficult to track and annotate facial attributes in

large-scale videos due to spatial and temporal dynamics

[93], and the quality of video data could have significant

effects on such a synthesis task. We expect that the fo-

cus will be shifted to collect and annotate video data

with facial attributes for promoting the video-based

deep FAM task further.

Finally, from the perspective of performance met-

rics, as mentioned in Section 3, contemporary research

either evaluates generated images by statistical surveys

or seeks help from other face-related tasks, such as at-

tribute estimation and landmark detection. Unified and

standard metric systems have not yet formed in terms

of qualitative and quantitative analyses. We expect that

the metrics of deep FAM methods could be well devel-

oped and establish a relatively unified rule in the future.

7.2.2 Algorithms

State-of-the-art deep FAM methods can be grouped

into two categories: model-based methods and extra

condition-based methods. Model-based methods tackle

an attribute domain transfer issue and use the adver-
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sarial loss to supervise the process of image generation.

Extra condition-based methods alter desired attributes

with given conditional attributes concatenated with to-

be-manipulated images in encoding spaces. The main

difference between the two types of methods is whether

extra conditions are required.

Model-based methods take no extra conditions as

inputs, and one trained model only changes one cor-

responding attribute. This strategy is task-specific and

helps to generate more photorealistic images, but it is

difficult to guarantee attribute-irrelevant details are un-

changed due to its operation based on the whole image

directly. Few methods focus on this issue, except for

ResGAN proposed by Shen et al. [98]. However, Res-

GAN generates residual images for locating attribute-

relevant regions under the sparsity constraint. Such a

constraint relies heavily on control parameters but not

attributes themselves. Hence, how to design networks to

synthesize desired photorealistic attributes, as well as

keep other attribute-irrelevant details unchanged, is a

significant challenge in the future. In addition, as multi-

domain transfer has become a hot research topic [67,

132], we expect that these novel domain transfer algo-

rithms would migrate to deep FAM methods for yield-

ing more appealing performance.

Extra condition-based methods take attribute vec-

tors or reference exemplars as conditions. These algo-

rithms edit facial attributes by changing values of at-

tribute vectors or latent codes of reference exemplars.

One advantage of this strategy is multiple attributes

can be manipulated simultaneously by altering multiple

corresponding values of conditions. However, the con-

comitant disadvantage is also inevitable. That is, these

methods cannot change attributes continuously since

the values of attribute vectors are edited discretely. We

believe that this shortcoming can be solved by inter-

polation schemes [4] or semantic component decompo-

sition [14] in the future. In addition, as mentioned be-

fore, reference exemplar based algorithms are becom-

ing a promising research direction. More specific details

that appear in reference images can be explored to gen-

erate more photorealistic images compared with merely

altering attribute vectors manually.

7.2.3 Applications

Face makeup [65,10,7] and face aging [109,81,69] are

two hot topics in deep FAM related applications. They

have played important roles in mobile device entertain-

ment (e.g., beauty cameras) and identity-relevant face

verification. Compared with general FAM, they focus

more on more subtle face attribute details. For face

makeup, it concentrates more on makeup related at-

tributes, such as the types of eyeshadows and the colors

of lipsticks. The focus of studies lies on facial makeup

transfer and removal [10,7], where makeup transfer aims

to map one makeup style to another for generating dif-

ferent makeup styles [65], and makeup removal per-

forms an opposite process which cleans off the exist-

ing makeup and provides support to makeup-invariant

face verification [7]. In terms of face aging, it renders

face images with a wide range of ages and keeps iden-

tity information insusceptible. Hence, this task can not

only be applied to digital entertainment but also pro-

vide support to social safety, such as fugitive researches

and cross-age identity verification. The most crucial is-

sue in face aging is that there are no sufficient paired

images for the same person at different ages [69]. Re-

cently, the development of deep learning has lead face

makeup and face aging to promising results, and they

have become important research branches independent

of general deep FAM methods. We expect the develop-

ment of these two branches would bring out a hopeful

prospect of future real-world applications.

Besides, resolution limitation is another tough chal-

lenge in real-world facial manipulation. Existing meth-

ods only work well with a limited range of resolutions

and under lab conditions. This limitation encourages

combining face super-resolution with deep FAM algo-

rithms. For example, Lu et al. [72] propose a condi-

tional version of CycleGAN [137] to generate face im-

ages under the guidance of attributes for face super-

resolution. Specifically, conditional CycleGAN takes a

pair of low/high-resolution faces and an attribute vector

extracted from the high-resolution one as inputs. Con-

ditioned on attributes of the original high-resolution

image, this model learns to generate a high-resolution

version of the original low-resolution image. Moreover,

Dorta et al. [20] apply smooth warp fields to GANs

for manipulating face images with very high resolutions

through a deep network at a lower resolution. All these

schemes inspire researchers to integrate state-of-the-art

face super-resolution methods into attribute manipula-

tion for achieving a win-win situation.

7.3 Relationships between FAE and FAM

In this section, we introduce the relationships between

deep FAE and FAM. We believe the discussion about

how the two tasks assist each other would guide future

research to improve both algorithms.

For deep FAE, deep FAM can be taken as a vital

scheme of data augmentation, where generated facial

attribute images can significantly increase the amount

of data used for training deep neural networks. Suffi-

cient training data can reduce the risk of overfitting and
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further improve the prediction accuracy. Future works

should work harder on improving the quality of gener-

ated images and synthesizing as many facial attribute

details as possible. In this way, generated images would

better support the training of deep FAE models.

For deep FAM, the result of attribute estimation

can be a significant quantitative performance evalua-

tion criterion. The deep FAE network used for evalua-

tion has to be well trained on real images in advance

and has to provide an accuracy baseline for all real fa-

cial attributes. Then, it works on the generated facial

attribute images and yields another prediction accuracy

over manipulated attributes. As a result, the accuracy

gap between real images and generated images can re-

flect the performance of deep FAM algorithms.

Despite the mutual assistance builds a bridge be-

tween deep FAE and deep FAM methods, there are still

some issues that need to be addressed for the two tasks.

First, generated facial attribute images may not contain

too much delicate facial information. In other words,

there is still a gap between real and augmented gen-

erated images, which might damage the performance

of attribute estimation. Hence, how to close this gap

can be an essential future research direction for data

augmentation in deep facial attribute analysis. Second,

the performance of attribute estimation directly affects

the evaluation results of facial attribute manipulation.

Therefore, how to balance the metric with the pre-

diction performance is another challenge. We expect

that deep FAE methods and deep FAM methods can

strengthen their cooperation to significantly improve

each others’ performance in the future.

8 Conclusion

As one type of important semantic features describing

the visual properties of face images, facial attributes

have received considerable attention in the field of com-

puter vision. The analyses targeting facial attributes,

including facial attribute estimation (FAE) and facial

attribute manipulation (FAM), have improved the per-

formance of many real-world applications. This paper

provides a comprehensive review of recent advances in

both deep learning based FAE and FAM. The com-

monly used databases and metrics are summarized, and

the taxonomies of state-of-the-art methods over both

two issues have been created, together with their advan-

tages and disadvantages. In addition, future challenges

and opportunities are highlighted in terms of data, al-

gorithms, and applications, respectively. We are looking

forward to further studies that address these challenges

and take these opportunities to promote the develop-

ment of deep face attribute analysis.
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