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Abstract We present Open Images V4, a dataset of 9.2M
images with unified annotations for image classification, ob-
ject detection and visual relationship detection. The images
have a Creative Commons Attribution license that allows to
share and adapt the material, and they have been collected
from Flickr without a predefined list of class names or tags,
leading to natural class statistics and avoiding an initial de-
sign bias. Open Images V4 offers large scale across several
dimensions: 30.1M image-level labels for 19.8k concepts,
15.4M bounding boxes for 600 object classes, and 375k vi-
sual relationship annotations involving 57 classes. For ob-
ject detection in particular, we provide 15x more bounding
boxes than the next largest datasets (15.4M boxes on 1.9M
images). The images often show complex scenes with sev-
eral objects (8 annotated objects per image on average). We
annotated visual relationships between them, which support
visual relationship detection, an emerging task that requires
structured reasoning. We provide in-depth comprehensive
statistics about the dataset, we validate the quality of the
annotations, we study how the performance of several mod-
ern models evolves with increasing amounts of training data,
and we demonstrate two applications made possible by hav-
ing unified annotations of multiple types coexisting in the
same images. We hope that the scale, quality, and variety of
Open Images V4 will foster further research and innovation
even beyond the areas of image classification, object detec-
tion, and visual relationship detection.

Keywords Ground-truth dataset - Image classification -
Object detection - Visual relationship detection
1 Introduction

Deep learning is revolutionizing many areas of computer
vision. Since its explosive irruption in the ImageNet chal-

lenge (Russakovsky et al.l 2015) in 2012, performance of
models has been improving at an unparalleled speed. At the
core of their success, however, lies the need of gargantuan
amounts of annotated data to learn from. Larger and richer
annotated datasets are a boon for leading-edge research in
computer vision to enable the next generation of state-of-
the-art algorithms.

Data is playing an especially critical role in enabling
computers to interpret images as compositions of objects,
an achievement that humans can do effortlessly while it has
been elusive for machines so far. In particular, one would
like machines to automatically identify what objects are present
in the image (image classification), where are they precisely
located (object detection), and which of them are interacting
and how (visual relationship detection).

This paper presents the Open Images Dataset V4, which
contains images and ground-truth annotations for the three
tasks above (Figure [T)). Open Images V4 has several attrac-
tive characteristics, compared to previously available datasets
in these areas (Krizhevskyl 2009; |Fei-Fei et al.,[2006}; (Griffin
et al.,|2007;|Deng et al., 2009; Russakovsky et al., 2015 [Ev-
eringham et al.,|2012;|Gupta and Malik,[2015}; Krishna et al.,
2017). The images were collected from FliCklE] without a
predefined list of class names or tags, leading to natural class
statistics and avoiding the initial design bias on what should
be in the dataset. They were released by the authors under a
Creative Commons Attribution (CC-BY) license that allows
to share and adapt the material, even commercially; particu-
larly so for models trained on these data, since it makes them
more easily usable in any context. Also, we removed those
images that appear elsewhere in the internet to reduce bias
towards web image search engines, favoring complex im-
ages containing several objects. Complex images open the
door to visual relationship detection, an emerging topic at
the frontier of computer vision that requires structured rea-
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Image classification

Object detection

Visual relationship detection

Fig.1 Example annotations in Open Images for image classification, object detection, and visual relationship detection. For image classification,
positive labels (present in the image) are in green while negative labels (not present in the image) are in red. For visual relationship detection, the
box with a dashed contour groups the two objects that hold a certain visual relationship.

soning of the contents of an image. Section |2| further ex-
plains all the specifics about how we collected and annotated
Open Images.

To validate the quality of the annotations, in Section [4]
we study the geometric accuracy of the bounding boxes and
the recall of the image-level annotations by comparing them
to annotations done by two experts and by comparing the

Open Images V4 is large scale in terms of images (9,178,275), oators consistency. In Section [5] we analyze the per-
annotations (30,113,078 image-level labels, 15,440,132 bound- ¢ .- o of coveral modern models for image classifica-

ing boxes, 374,768 visual relationship triplets) and the num-
ber of visual concepts (classes) (19,794 for image-level la-
bels and 600 for bounding boxes). This makes it ideal for
pushing the limits of the data-hungry methods that domi-
nate the state of the art. For object detection in particular,
the scale of the annotations is unprecedented (15.4 million
bounding boxes for 600 categories on 1.9 million images).
The number of bounding boxes we provide is more than 15 x
greater than the next largest datasets (COCO and ImageNet).
Also, there are 8 annotated bounding boxes per image on
average, demonstrating the complexity of the images and
the richness of our annotations. We hope this will stimu-
late research into more sophisticated detection models that
will exceed current state-of-the-art performance and will en-
able assessing more precisely in which situations different
detectors work best. Section [3| provides an in-depth compre-
hensive set of statistics about Open Images V4 and compare
them to previous datasets. Finally, Open Images V4 goes
beyond previous datasets also in that it is unified: the anno-
tations for image classification, object detection, and visual
relationship detection all coexist in the same set of images.
This allows for cross-task training and analysis, potentially
supporting deeper insights about each of the three tasks, en-
abling tasks that require multiple annotation types, and stim-
ulating progress towards genuine scene understanding.

tion and object detection, studying how their performance
evolves with increasing amounts of training data, and we
also report several baselines for visual relationship detec-
tion. Finally, to demonstrate the value of having unified an-
notations, we report in Section [6] two experiments that are
made possible by them (fine-grained object detection with-
out fine-grained box labels, and zero-shot visual relationship
detection).

All the annotations, up-to-date news, box visualization
tools, etc. are available on the Open Images website: https
//g.co/dataset/openimages/. This is the first pa-
per about Open Images, there is no previous conference or
journal version.

2 Dataset Acquisition and Annotation

This section explains how we collected the images in the
Open Images Dataset (Sec. [2.1)), which classes we labeled

(Sec.[2.2)), and how we annotated (i) image-level labels (Sec.[2.3),

(i) bounding boxes (Sec. [2:4), and (iii) visual relationships

(Sec.[Z:3).


https://g.co/dataset/openimages/
https://g.co/dataset/openimages/
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2.1 Image Acquisition

Images are the foundation of any good vision dataset. The
Open Images Dataset differs in three key ways from most
other datasets. First, all images have Creative Commons At-
tribution (CC-BY) license and can therefore be more easily
used, with proper attribution (e.g. in commercial applica-
tions, or for crowdsourcing). Second, the images are col-
lected starting from Flickr and then removing images that
appear elsewhere on the internet. This removes simple im-
ages that appear in search engines such as Google Image
Search, and therefore the dataset contains a high proportion
of interesting, complex images with several objects. Third,
the images are not scraped based on a predefined list of class
names or tags, leading to natural class statistics and avoiding
the initial design bias on what should be in the dataset.

The ~9 million images in the Open Images Dataset were
collected using the following procedure:

1. Identify all Flickr images with CC-BY license. This was
done in November 2015.

2. Download the original Versiorﬂ of these images and gen-
erate a copy at two resolutions:

— 1600HQ: Images have at most 1,600 pixels on their
longest side and 1,200 pixels on their shortest. JPEG
quality of 90.

— 300K: Images have roughly 300,000 pixels. JPEG
quality of 72.

3. Extract relevant metadata of all images to give proper
attribution:

— OriginalURL: Flickr direct original image url.
OriginalLanding URL: Flickr image landing page.
License: Image license, a subtype of CC-BY.
Author: Flickr name of the author of the photo.
Title: Title given by the author in Flickr.

— AuthorProfileURL: Link to the Flickr author profile.
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Fig. 2 Most-frequent image-level classes. Word size is proportional
to the class counts in the train set.
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Fig. 3 Infrequent image-level classes. Word size is inversely propor-
tional to the class counts in the train set.

7. Recover the user-intended image orientation by compar-
ing each original downloaded image to one of the Flickr
resizes[]

8. Partition the images into train (9,011,219 images), vali-
dation (41,620) and test (125,436) splits (Tab.|2|).

— OriginalMDS5: MDS5 hash of the original JPEG-encoded 22 Classes

image.

4. Remove images containing inappropriate content (porn,
medical, violence, memes, etc.) using the safety filters
on Flickr and Google SafeSearch.

5. Remove near-duplicate images, based on low-level vi-
sual similarity.

6. Remove images that appear elsewhere on the internet.
This was done for two reasons: to prevent invalid CC-
BY attribution and to reduce bias towards web image
search engines.

2 In Flickr terms, images are served at different sizes (Thumbnail,
Large, Medium, etc.). The Original size is a pristine copy of the image
that was uploaded by the author.

The set of classes included in the Open Images Dataset is de-
rived from JFT, an internal dataset at Google with millions

of images and thousands of classes (Hinton et all, 2014
Chollet, 2017} [Sun et al.| 2017). We selected 19,794 classes

from JFT, spanning a very wide range of concepts, which
serve as the image-level classes in the Open Images Dataset:

Coarse-grained object classes (e.g. animal).

Scene classes (e.g. sunset and love).
Events (e.g. birthday).
Materials and attributes (e.g. leather and red).

3 More details at https:/storage.googleapis.com/openimages/web/2018-

05-17-rotation-information.html.

Fine-grained object classes (e.g. Pembroke welsh corgi).
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Fig. 4 Examples of image-level labels. Positive (green) and negative
(red) image-level labels.

An overview of the most frequent and infrequent classes is
shown in Figures[2]and 3]

Out of the image-level classes, we selected 600 object
classes we deemed important and with a clearly defined spa-
tial extent as boxable: these are classes for which we col-
lect bounding box annotations (Sec. 2.4). A broad range of
object classes are covered including animals, clothing, ve-
hicles, food, people, buildings, sports equipment, furniture,
and kitchenware. The boxable classes additionally form a
hierarchy, shown in Figure 5] Figure [I9]shows two example
images with a wide variety of boxable classes present.

2.3 Image-Level Labels

Manually labeling a large number of images with the pres-
ence or absence of 19,794 different classes is not feasible not
only because of the amount of time one would need, but also
because of the difficulty for a human to learn and remem-
ber that many classes. In order to overcome this, we apply
a computer-assisted protocol. We first apply an image clas-
sifier to generate candidate labels for all images (Sec. [2.3.1]
and[2.3.2)), and then ask humans to verify them (Sec. [2.3.3).

For each image, this process results in several positive
(the class is present) and negative (the class is absent) la-
bels. The presence of any other label (which has not been
verified) is unknown. The negative labels are therefore valu-
able, as they enable to properly train discriminative classi-
fiers even in our incomplete annotation setting. We will in-
vestigate this further in Section [5.1] Examples of positive
and negative image-level labels are shown in Figure 4]

2.3.1 Candidate labels for test and validation

For test and validation we generate predictions for each of

model to the 300K resized images in the test and validation
splits. For each image, we retain all labels with a confidence
score above (0.5 as candidates. We then ask humans to verify
these candidate labels (Sec.[2.323).

2.3.2 Candidate labels for train

For the train split, we generate predictions by applying dozens
of image classifiers. To do this, we trained various image
classification models on the JFT dataset. The classification
models are Google-internal and use a variety of architec-
tures such as Inception and ResNet families. We applied all
models to each of the 300K resized images in the train split.
These model predictions were used to select candidate la-
bels to be verified by humans through stratified sampling, as
explained next.

For each model we take the predictions for each image
for all classes and distribute them in strata according to per-
centiles of their score. We then sample a certain amount of
images from each class and strata to verify. The rationale be-
hind this strategy is to have all ranges of classification scores
represented in the verified sample.

Formally, for each class ¢, image i is assigned to strata
according to the logit scores output by the classifier m as:

1
stratum(i, ¢;m) = llogit(i,c; m) - fJ (1)
w

where w is the stratum width, logit (¢, ¢; m) is the logit score
for class ¢ from model m applied to image 4, and | -] is the
floor operator (i.e. rounding down to the nearest integer).
Within each stratum, we sample k images to be verified.

Since we perform this process for multiple classification
models, the sampling of images within each stratum is not
done randomly, but by selecting the k£ images with lowest
image i(ﬂ This way, the overall process results in far fewer
than m- k verifications since there is high overlap of sampled
image ids between models. Moreover, it encourages verify-
ing multiple different classes on the same images: the low
image ids will have high probability to be sampled for many
classes, while high image ids will only be sampled for rare
classes with higher-confidence model predictions.

This sampling strategy yields a good variety of exam-
ples: high confidence strata lead to a mix of easy positives
and hard negatives, while low confidence strata lead to a mix
of hard positives and easy negatives. We repeated this pro-
cedure for dozens of classifier models m using w = 2 and
k =10

Additionally, to obtain denser annotations for the 600

the 19,794 classes using a google-internal variant of the Inceptionsoxable classes, we repeated the approach in Section 2.3.2]

V2-based image classifier (Szegedy et all [2016), which is
publicly available through the Google Cloud Vision APIL

This model is trained on the JFT dataset — an internal Google
dataset with more than 300 million images with noisy la-

bels (Hinton et al, 2014} [Chollet, 2017). We applied this

4 Tmage ids are generated based on hashes of the data so effectively
the sampling within a stratum is pseudo-random and deterministic.

5> Note that while in theory logit scores are unbounded, we rarely
observe values outside of [—8, 8] so the number of strata is bounded in
practice.
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Fig. 5 The boxable class hierarchy. Parent nodes represent more generic concepts than their children.

on the 1.74 million training images where we annotated bound- tors for such verification questions: a Google-internal pool

ing boxes (Sec. 2.4). This generates a denser set of candi-
date labels for the boxable classes, to which we want to give
stronger emphasis.

2.3.3 Human verification of candidate labels

We presented each candidate label with its corresponding
image to a human annotator, who verifies whether the class
is present in that image or not. We use two pools of annota-

and a crowdsource external pool. Annotators in the Google-
internal pool are trained and we can provide them with ex-
tensive guidance on how to interpret and verify the pres-
ence of classes in images. The latter are Internet users that
provide verifications through a crowdsourcing platform over
which we cannot provide such training.

For each verification task, we use majority voting over
multiple annotators. We varied the number of annotators de-
pending on the annotator pool and the difficulty of the class
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(which depends on how objective and clearly defined it is).
More precisely, we used the majority of 7 annotators for
crowdsource annotators. For the internal pool, we used 3
annotators for difficult classes (e.g. ginger beer) and 1
annotator for easy classes (including the boxable ones).

2.4 Bounding Boxes

We annotated bounding boxes for the 600 boxable object
classes (Sec.[2.2). In this section, we first describe the guide-
lines which we used to define what a good bounding box
is on an object (Sec. 2.4.T). Then we describe the two an-
notation techniques which we used (Secs. and [2.4.3),
followed by hierarchical de-duplication (Sec.[2:4.4), and at-
tribute annotation (Sec. 2.4.3).

2.4.1 What is a perfect bounding box?

As instruction, our annotators were given the following gen-

eral definition: Given a target class, a perfect box is the

smallest possible box that contains all visible parts of the

object (Figure [] left). While this definition seems simple

enough at first sight, there are quite a few class-dependent

corner cases such as: are straps part of a camera?, is wa-

ter part of a fountain?. Additionally, we found unexpected

cultural differences, such as a human hand including the

complete human arm in some parts of the world (Figure []

right). To ensure different annotators would consistently mark
the same spatial extent, we manually annotated a perfect

bounding box on two examples for each of the 600 object

classes. Additionally, for 20% of the classes we identified

common mistakes in pilot studies. Annotators always worked
on a single class at a time, and were shown the positive ex-

amples and common mistakes directly before starting each

annotation session (Figure[6). This helps achieving high qual-
ity and consistency.

Fig. 6 Example boxes shown to annotators. The left shows a perfect
box for fountain. The right shows a common mistake for human
hand, caused by cultural differences. Only examples of the target class
were shown before annotating that class.

Sometimes object instances are too close to each other
to put individual boxes on them. Therefore, we also allowed

annotators to draw one box around five or more heavily over-
lapping instances (Fig. [I6]right) and mark that box with the
GroupOf attribute (Sec.[2.4.3).

2.4.2 Extreme Clicking

We annotated 90% of all bounding boxes using extreme click-
ing, a fast box drawing technique introduced in (Papadopou-

2017). The traditional method of drawing a bound-
ing box 2012), used to annotate ILSVRC
sakovsky et all, [2013), involves clicking on imaginary cor-

ners of a tight box around the object. This is difficult as these
corners are often outside the actual object and several adjust-
ments are required to obtain a tight box. In extreme clicking,
annotators are asked to click on four physical points on the
object: the top, bottom, left- and right-most points. This task
is more natural and these points are easy to find.

Training annotators. We use Google-internal annotators for
drawing all boxes on the Open Images Dataset. We found it
crucial to train annotators using an automated process, in the
spirit of (Papadopoulos et all 2017). Our training consists
of two parts. Part one is meant to teach extreme clicking.
Here annotators draw boxes on 10 objects for each of the 20
PASCAL VOC classes (Everingham et al.,[2015)). After each
class we automatically provide feedback on which boxes
were correctly or incorrectly drawn and why, by showing
valid possible positions of the extreme points (Fig. [7). Part
two is a qualification task in which the annotators practice
both speed and accuracy. They are asked to draw 800 boxes
and pass if their intersection-over-union (IoU) with the ground
truth is higher than 0.84 and drawing time per box is 20 sec-
onds or less. This sets high-quality standards, as the human

expert agreement is 0.88 (Papadopoulos et al., 2017).

V|

Well done! 3} Elapsed time: 4.2 5 Incorrect :{ Elapsed time: 855

Fig. 7 Feedback during extreme clicking training. Left: the anno-
tator correctly annotated a box for bicycle. Right: the annotator in-
correctly annotated pe rson (wrong point shown in red). In both cases
we display the valid area for each extreme point.

Annotation time. On average over the complete dataset, it
took 7.4 seconds to draw a single bounding box. This is
much faster than the median time of 42 seconds reported

for ILSVRC (Russakovsky et al. 2015} [Su et all, [2012),
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broken down into 25.5 seconds for drawing a box, 9.0 sec-
onds for verifying its quality, and 7.8 seconds for checking
if other instances needed to be annotated in the same image.
Because of our automated training and qualification stages,
we found it unnecessary to verify whether a box was drawn
correctly (Sec. d.I] for a quality analysis). Furthermore, an-
notators were asked to draw boxes around all instances of a
single class in an image consecutively, removing the sepa-
rate task of checking if other instances needed to be anno-
tated. Finally, extreme clicking significantly reduced the box
drawing time itself from 25.5 to 7.4 seconds.

2.4.3 Box Verification Series

About 10% of the bounding boxes in the training set were
annotated using box verification series, in which annotators
verify bounding boxes produced automatically by a learning
algorithm (Papadopoulos et al., 2016). Given image-level la-
bels, this scheme iterates between retraining the detector, re-
localizing objects in the training images, and having human
annotators verify bounding boxes. The verification signal is
used in two ways. First, the detector is periodically retrained
using all bounding boxes accepted so far, making it stronger.
Second, the rejected bounding boxes are used to reduce the
search space of possible object locations in subsequent it-
erations. Since a rejected box has an IoU < ¢ with the true
bounding box, we can eliminate all candidate boxes with an
TIoU > ¢ with it (¢ is the acceptance threshold). This is guar-
anteed not to remove the correct box. This strategy is effec-
tive because it eliminates those areas of the search space that
matter: high scoring locations which are unlikely to contain
the object.

We adapted this general scheme to our operation in sev-
eral ways. We make up to four attempts to obtain a bound-
ing box for a specific class in an image. We set a higher
quality criterion: we instruct annotators to accept a box if its
IoU with an imaginary perfect box is greater than ¢ = 0.7
(instead of 0.5 in (Papadopoulos et all, 2016)). Addition-
ally, to more efficiently use annotation time we did not ver-
ify boxes with a confidence score lower than 0.01. As de-

tector we used Faster-RCNN 2015)) based on

Inception-ResNet (Szegedy et al.l [2017) using the imple-
mentation of (Huang et al} 2017). We train our initial detec-

tor using the weakly-supervised technique with knowledge
transfer described in (Uijlings et al.}[2018)). This uses image-
level labels on the Open Images Dataset and the ILSVRC
detection 2013 training set (Russakovsky et al.l 2013). We
retrained our detector several times during the annotation
process based on all boxes accepted until that point in time.
Interestingly, the final detector was truly stronger than the
initial one. The annotators accepted 48% of the boxes the
initial detector proposed (considering the highest-scored box
for an image, if its score is > 0.01). This increased to 70%

for the final detector. A typical box verification series is
shown in Figure[§]

Fig. 8 Example of a box verification series for guitar. The highest
scored guitar box is shown to the annotator, who rejects it. Then the
system proposes a second box, which the annotator rejects as well. Fi-
nally, the third proposed box is accepted and the process is completed.

Training annotators. As for extreme clicking, we found it
crucial to train the annotators using an automated process.
We performed several training rounds where the annotators
verified 360 boxes on PASCAL VOC 2012. We automati-
cally generated these boxes and calculated their IoU with
respect to the ground truth. Ideally, the annotator should ac-
cept all boxes with IoU > 0.7 and reject the rest. In practice,

we ignored responses on borderline boxes with ToU € (0.6, 0.8),

as these are too difficult to verify. This helped relaxing the
annotators, who could then focus on the important intervals
of the ToU range ([0.0, 0.6] and [0.8, 1.0]). To make training
effective, after every 9 examples we provided feedback on
which boxes were correctly or incorrectly verified and why

(Figure[9).

This is clearly a correct box according to
our definition

You said No, but the correct answer is Yes.
The real overlap of this box is 0.96

Well done!
You said Yes, and your answer was correct
The real overlap of this box is 0.92.

Fig. 9 Example feedback during the training phase of box verifi-
cation series. The target class isbicycle.

Figure [T0] demonstrates the importance of training. It
plots the acceptance rate versus the IoU for the first (=e=)
and third (=e=])) training rounds, and compares it to the ideal
behavior (= = =). In the first round, performance was not great:
15% of boxes with almost no overlap with the object were
accepted, while only 95% of boxes with very high over-
lap were accepted (IoU € [0.8,0.9]). Additionally, relatively
poor poxes with IoU € [0.3, 0.6] were accepted 5% to 15%
of the time. In contrast, after three training rounds the accep-
tance rate of IoU € [0.3,0.6] was nicely below 4%, while
high overlap boxes (IoU € [0.8,0.9]) were accepted 98% of
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the time. 80% of the annotators were deemed qualified after
three rounds of training. The other 20% needed one extra
training round to reach good quality.

T T T
== First round

=e=— Third round
= = = Ideal behaviour

Acceptance rate

S~ kLo 9x o~

o

. = Iy I I
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ToU with ground truth

[P T T T T

N
0.1

Fig. 10 IoU versus acceptance rate for the box verification training
task. Overall, annotators do much better after three training rounds
with feedback.

Annotation time. After a short period of time where anno-
tators were getting used to the task, verifying a single box
took 3.5 seconds on average. By dividing the total number
of accepted boxes by the total time spent on verifying boxes
(including cases for which box verification series failed to
produce a box), we measured an average time of 8.5 sec-
onds per box produced. This is much faster than the orig-
inal annotation time for the ILSVRC boxes (25.5 seconds
for manually drawing it, plus additional time to verify it,

Sec.[2.4.2).

Historical process. We initially annotated 1.5 million boxes
in the training set with box verification series. Afterwards,

we co-invented extreme clicking (Papadopoulos et al., 2017).

Since extreme clicking takes about the same annotation time,
but it is easier to deploy and delivers more accurate boxes
(Sec. E]) we used it to annotate all remaining boxes (i.e.
13.1 million in the training set, and the whole validation and
test sets). Please note that in this second stage we asked an-
notators to draw all missing boxes for all available positive
image-level labels in all images. Hence, the final dataset has
a box on an object even if box verification series failed (i.e.
after 4 rejected boxes).

2.4.4 Hierarchical de-duplication

We annotated bounding boxes for each positively verified
image-level label. To prevent drawing two bounding boxes

on the same object with two labels (e.g. animal and zebra),

we performed hierarchical de-duplication. On the train set,
before the box annotation process started, we removed all
parents of another label already present in the set of image-
level labels for a particular image. For example, if an image
had labels animal, zebra, car; we annotated boxes for

zebra and car. On the validation and test splits we used
a stricter, and more expensive, protocol. We first asked an-
notators to draw all boxes for all available labels on the im-
age. Then we only removed a parent box (e.g. animal)if it
overlapped with a box of a child class (e.g. zebra) by loU
> 0.8.

2.4.5 Attributes

We asked annotators to mark the following attributes if ap-
plicable:

GroupOf: the box covers more than 5 instances of the same
class which heavily occlude each other.

Partially occluded: the object is occluded by an-
other object in the image.

Truncated: the object extends outside of the image.

Depiction: the object is a depiction such as a cartoon,
drawing, or statue.

Inside: the box captures the inside of an object (e.g. in-
side of an aeroplane ora car).
Additionally, we marked whether boxes were obtained
through box verification series (Sec. 2.4.3) or through
extreme clicking (Sec.[2.4.2).

Truncated and Occluded were also marked in PAS-
CAL (Everingham et al., 2015). The purpose of GroupOf
is similar to crowd in COCO (Lin et al., 2014), but its def-
inition is different. In COCO, after having individually seg-
mented 10-15 instances in an image, other instances in the
same image were grouped together in a single, possibly dis-
connected, crowd segment.

2.5 Visual relationships

The Open Images Dataset is rich in terms of the of num-
ber of classes and diversity of scenes, which motivated us
to annotate visual relationships. This will support research
in the emerging topics of visual relationship detection (Lu
et al.l 2016} [Krishna et al.l 2017} |Gupta and Malik, 2015}
Dai et al., 2017) and scene graphs (Zellers et al., 2018} Xu
et al.,[2017).

2.5.1 Selecting relationship triplets

We explain here how we selected a set of relationship triplets
to be annotated. Each triplet has the form of (classl,
relationship, class2), e.g. (woman, playing, guitar),
(bottle,on, table). The challenge of selecting triplets
lies in balancing several requirements: (i) selecting frequent-
enough relationships that can be found in real-world images,
(ii) generating enough data to be useful for developing fu-
ture models, and (iii) selecting non-trivial relationships that
cannot be inferred from pure co-occurrence (e.g. a car and
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awheel in the same image are almost always in a ‘part-of’
relationship).

To meet these requirements, we select pairs of classes
co-occurring sufficiently frequently on the train set, and are

We report the acceptance rates of the triplet verification
process in Table |1} These acceptance rates are rather low,
which shows that the selected relationships are hard to pre-
dict based just on co-occurrence and spatial proximity of

not connected by trivial relationships, e.g. (man, wears, shirt Jobjects. The acceptance rate and the total number of final

We also excluded all ‘part-of” relationships, e.g. (window,
part-of, building ). To make the task more interesting we
make sure several relationships can connect the same pair
of objects, so the task cannot be solved simply by detect-
ing a pair of objects: the correct relationship between them
must be recognized as well. Finally, we make sure relation-
ship triplets are well defined, i.e. if we select the triplet
(classl, relationship, class?2 ), then we do not include
triplet ( class?2, relationship, class1 ), which would make
it difficult to disambiguate these two triplets in evaluation. In
total, we selected 326 candidate triplets After annotation we
found that 287 of them have at least one instance in the train
split of Open Images (Tab.[I0).

Some examples of the selected relationships are: (man,
hits, tennis ball), (woman, holds, tennis ball),
(girl, on, horse), (boy, plays, drum), { dog, inside

annotations per relationship triplet is detailed in Figure [T1]
On average the annotators took 2.6 seconds to verify a single
candidate triplet.

at holds
58.9% 27.9%

under all

2.3%  28.2%

Acceptance rate

Table 1 Acceptance rates for the relationship annotation process.
Displaying the relationship with the highest acceptance rate (‘at’), the
one with the median acceptance rate (‘holds’), the one with the low-
est acceptance rate (‘under’), and the acceptance rate across all triplet
candidates.

Note that, due to the annotation process, for each pair
of positive image-level labels in an image, we annotate all
relationships between all objects with those labels. There-

of, car), (girl, interacts with, cat ), (man, wears, backpacfléﬁe, we can have multiple instances of the same relation-

(chair,at, table).

We also introduced further attributes in the dataset, which
we represent using the ‘is’ relationship for uniformity, e.g.
(chair, is, wooden ). In total we consider 5 attributes cor-
responding to different material properties (‘wooden’, ‘trans-
parent’, ‘plastic’, ‘made of textil’, ‘made of leather’) lead-
ing to 42 distinct ( object, is, attribute ) triplets (all of them
turned out to have instances in the train split after verifica-
tion process).

2.5.2 Annotation process

Several prior works tried different schemes for annotating
visual relationships. (Lu et al.| 2016) proposed a controlled
protocol, whereas (Krishna et al.;, 2017) gives the annotators
almost complete freedom. On Open Images we have col-
lected extensive bounding box annotations (Sec. @ SO wWe
leverage them in the visual relationship annotation process
as follows. For each image and relationship triplet ( class1,
relationship, class?2 ) we perform the following steps:

1. Select all pairs of object bounding boxes that can poten-
tially be connected in this relationship triplet. As a crite-
rion we require that their classes match those specified in
the triplet and that the two boxes overlap after enlarging
them by 20% (our relationships assume objects to have
physical contact in 3D space and consequently overlap
in their 2D projections).

2. Ask human annotators to verify that the two objects are
indeed connected by this relationship.

Note that two objects can be connected by several relation-
ships at the same time, since they are not mutually exclusive.

ship triplet in the same image, connecting different pairs of
objects (e.g. different men on playing different guitars, and
even different chairs at the same table, Fig. . Note, that
we excluded GroupOf objects from the annotation process.

0 @ Number of candidate triplet annotations
B®  Number of final triplet annotations

Number of annotations (log scale)

50 100 150 200 250 300 350
Relationship triplets (sorted by number of positive samples)

1 T T T T T T T

< e e
'S =y o0
T T T
I I I

Acceptance rate

e
o
T
I

0 1 1 1 1 1 | L
0 50 100 150 200 250 300 350

Relationship triplets (sorted by verification acceptance rate)

Fig. 11 Top: The number of candidate relationship triplet annotations
and the number of positively verified ones. The overlap between two
object bounding boxes does not guarantee that they are connected by a
particular relationship. Bottom: Acceptance rate per distinct relation-
ship triplet; note that triplets with acceptance rate 100% have no more
than 30 samples in the training split.
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3 Statistics

The Open Images Dataset consists of 9,178,275 images, split
into frain, validation, and test (Tab.[2).

Validation Test
41,620 125,436

Train

9,011,219

Images

Table 2 Split sizes.

As explained in Section [2] the images have been anno-
tated with image-level labels, bounding boxes, and visual re-
lationships, spanning different subsets of the whole dataset.
Below we give more detailed statistics about the span, com-
plexity, and sizes of the subsets of images annotated with
human-verified image-level labels (Sec.[3.1)), with bounding
boxes (Sec.[3.2)), and with visual relationships (Sec. [3.3).

3.1 Human-Verified Image-Level Labels

We assigned labels at the image level for 19,794 classes.
Each label can be positive (indicating the class is present in
the image) or negative (indicating the class is absent). Fig-
ure [] shows examples and Table [3] provides general statis-
tics.

Train  Validation Test

Images 5,655,108 41,620 125,436
Positive labels 13,444,569 365,772 1,105,052
per image 2.4 8.8 8.8
Negative labels 14,449,720 185,618 562,347
per image 2.6 4.5 4.5

Table 3 Human-verified image-level labels: Split sizes and their la-
bel count.

To further study how these labels are distributed, Fig-
ure [12] shows the percentage of images with a certain num-
ber of positive (solid line) and negative (dashed line) labels.
In the train split there are 2.4 positive labels per image on
average, while the validation and test splits have 8.8. This
discrepancy comes from the fact that we generated candi-
date labels in the validation and test splits more densely
(Sec. than in the train split (Sec. 2.3.2). Please also
note that the distribution of labels for validation and test are
the same, since the annotation strategies are the same for
both splits.

Some classes are more commonly captured in images
than others, and this is also reflected in the counts of anno-
tated labels for different classes. Figure [I3] shows the per-
centage of labels for the top 6,000 classes (sorted by de-
creasing frequency). As expected, the ~300 most frequent

40 T T T L S O O
=== Train (Positive labels)

= = = Train (Negative labels)
m— Validation (Positive labels)
= = = Validation (Negative labels)
= Test (Positive labels)

= = = Test (Negative labels)

-

)
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Percentage of images (%)
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Fig. 12 Human-verified image-level labels: Histogram of number of
labels per image.

classes cover the majority of the samples for all three splits
of the dataset.
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Fig. 13 Percentage of human-verified image-level labels for each
class. The horizontal axis represents the rank of each class when sorted
by frequency, the vertical axis is in logarithmic scale.

As mentioned in Section[2.3.3] label verification is done
by annotators from two different pools: internal and crowd-
sourced. Table[d]shows the number of human-verified labels
coming from each pool. We can see that in train, crowd-
sourced labels represent about 20% of all verified labels,
whereas for validation and test, they represent less than 1%.

Train  Validation Test
Internal annotators 22,351,016 547,291 1,655,384
Crowd-source annotators 5,543,273 4,099 12,015

Table 4 Internal versus crowd-source human-verified image-level
labels: Number of image-level labels (positive and negative) coming
from the two pools of human annotators.

3.2 Bounding Boxes

General statistics

We annotated bounding boxes around objects of 600 box-



The Open Images Dataset V4

able classes on the whole validation and test splits, and on a
subset of the train split (Tab. [3).

Train  Validation Test

Images 1,743,042 41,620 125,436
Boxes 14,610,229 204,621 625,282
per image 84 4.9 5.0

Table 5 Split sizes with annotated bounding boxes. For each split,
number of images and boxes (also normalized per image in italics).
These statistics are only over the 600 boxable classes.

Table[6]shows the number of classes, images and bound-
ing boxes in the Open Images Dataset compared to other
well-known datasets for object detection: COCO (Lin et al.
2014) (2017 version), PASCAL (Everingham et al., [2015)
(2012 version), and ILSVRC (Russakovsky et al.,2015) (2014
detection version). In this comparison we only consider im-
ages in Open Images with bounding boxes, not the full dataset.
As it is common practice, we ignore the objects marked
as difficult in PASCAL. As the table shows, Open Images
Dataset is much larger than previous datasets and offers 17x
more object bounding boxes than COCO. Moreover, it fea-
tures complex images with several objects annotated (about
the same as COCO on average).

PASCAL COCO ILSVRC-Det  Open Images

All Dense
Classes 20 80 200 200 600
Images 11,540 123,287 476,688 80,462 1,910,098
Boxes 27,450 886,284 534,309 186,463 15,440,132
Boxes/im. 2.4 7.2 1.1 2.3 8.1

Table 6 Global size comparison to other datasets. We take the
dataset splits with publicly available ground truth, thatis, train+val
in all cases except Open Images, where we also add the test set which
is publicly available. Please note that in ILSVRC train, only a subset of
~80,000 images are densely annotated with all 200 classes (~60,000
train and ~20,000 validation). The other images are more sparsely an-
notated, with mostly one class per image.

To further study how objects are distributed over the im-
ages, Figure [14] (left) counts the percentage of images with
a certain number of bounding boxes. We can observe that
COCO and Open Images are significantly less biased to-
wards single-object images. Figure [14] (right) displays the
number of images that contain at least a certain number of
bounding boxes. Open Images has significantly more im-
ages than the other datasets in the whole the range of num-
ber of boxes per image, and especially so at high values,
where it covers some regime unexplored before (more than
80 bounding boxes per image, up to 742).

Figure [T5] shows some images with a large number of
bounding boxes (348, 386, and 743, respectively). In many
of these cases, the GroupOf attribute could have been used

80 —— PASCAL
-  COCO
= ILSVRC
=== Open Images ||
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Number of objects per image Number of objects per image

Fig. 14 Number of objects per image. Percentage of images with
exactly a certain number of objects (left). Number of images with at
least a certain number of objects (right). Train set for all datasets.

to reduce the annotation time (e.g. the set of windows marked
as GroupOf on the right face of the center building). Hav-
ing some of these extreme cases exhaustively annotated, how-
ever, is also useful in practice.

Box attributes statistics

As explained in Section the bounding boxes in Open
Images are also labeled with five attributes. Table [/| shows
the frequency of these attributes in the annotated bounding
boxes.

Inside

0.24%

Truncated

25.09%

Occluded
66.06%

Attribute GroupOf

5.99%

Depiction

5.45%

Frequency

Table 7 Frequency of attributes: Percentage of boxes with the five
different attributes on Open Images train. As reference, the Crowd
attribute in COCO is present in 1.17% of their boxes.

Occluded and Truncated are the most common at-
tributes, with a considerable portion of the objects being
marked as such. GroupOf and Depiction are still used
in a significant proportion, whereas Inside is rare.

Figure[T6|displays two images containing boxes labeled
with each of the five available attributes. In the left image,
the building is viewed from inside, the person is occluded
by the stand, and the two busts are depictions of people. The
right image shows a group of flowers that is truncated by the
picture framing.

Box class statistics

Not all object classes are equally common and equally cap-
tured in pictures, so the classes in Open Images are not uni-
formly distributed in their number of instances and through
the images. We study both effects below.

Figure [T7] (=e=])) plots the the number of boxes anno-
tated for each class, sorted by increasing frequency. In order
to visually compare to the other datasets with fewer classes,
the horizontal axis is shown in logarithmic scale.
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Fig. 15 Examples of large number of annotated boxes: Images with 348, 386, and 743, respectively. GroupOf could have been used in many

of these cases, but nevertheless they still have interest in practice.
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Fig. 17 Number of boxes per class. The horizontal axis is the rank
of each class when sorted by the number of boxes, represented in loga-
rithmic scale for better readability. We also report the name of the most
common classes. Train set for all datasets.

Open Images is generally an order of magnitude larger
than the other datasets. There are 11 classes in Open Images
with more samples than the largest class in COCO. As a
particular example, the person class has 257,253 instances
in COCO, while Open Images has 3,505,362 instances of
the agglomeration of classes referring to person (person,
woman, man, girl, boyﬂ

At the other end of the spectrum, Open Images has 517
classes with more instances than the most infrequent class

6 These are really unique objects: Each object is annotated only with
its leafinost label, e.g. a man has a single box, it is not annotated as
person also.

Flower (Group)|
Truncated

in COCO (198 instances), and 417 classes in the case of
ILSVRC (502 instances).

Interactions between different object classes are also a
reflection of the richness of the visual world. Figure@ (left)
reports the percentage of images with boxes coming from a
varying number of distinct classes. We can see that Open Im-
ages and COCO have a much richer distribution of images
with co-occurring classes compared to ILSVRC and PAS-
CAL, which are more biased to a single class per image.
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Fig. 18 Number of distinct classes per image. Normalized (left) and
unnormalized (right) histogram of the number of distinct classes per
image. Train set for all datasets.

Figure @ (right) shows the unnormalized statistics (i.e.
with the number of images instead of the percentage). It
shows that Open Images has at least one order of magnitude
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more images than COCO at any point of the curve. As an ex-
ample, Open Images has about 1,000 images with 14 distinct
classes, while COCO has 20; ILSVRC has no image with
more than 11 classes, and PASCAL no more than 4. Fig-
ure [T9] displays two images with a large number of classes
annotated, to illustrate the variety and granularity that this
entails.

Fig. 19 Images with a large number of different classes annotated (11
on the left, 7 on the right).

As further analysis, we compute the class co-occurrence
matrix in Open Images and sort the pairs of classes in de-
creasing order. We observe the following patterns. The most
co-occurring pairs are human-related classes (Person, Man,

Woman) with their parts (Human face, Human arm, Human

hair, Human nose,etc.) or with accessories (Clothing,
Footwear, Glasses, etc.); and other types of objects and
their parts (Car-Wheel, House-Window). Other interest-
ing object pairs co-occurring in more than 100 images are
Drum-Guitar, Chair-Desk, Table-Drink, Person-
Book. Please note that objects co-occurring in an image
does not imply them being in any particular visual relation-
ship (analyzed in Sec. [3.3).

Box size statistics

Figure[20|displays the cumulative density function of the
bounding box sizes in Open Images, PASCAL, COCO, and
ILSVRC. The function represents the percentage of bound-
ing boxes (vertical axis) whose area is below a certain per-
centage of the image area (horizontal axis). As an example,
the green lines (—]) show that 43% of the bounding boxes
in Open Images occupy less than 1% of the image area.
Hence, the Open Images Dataset offers a real challenge for
object detection, supporting the development and evaluation
of future detection models and algorithms.

We compare to two uniform distribution baselines: boxes
with uniform area or with uniform side length
(i.e. the square root of their area is uniformly distributed).
Interestingly, ILSVRC closely follows the distribution of the
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Fig. 20 Annotated objects area: Cumulative distribution of the per-
centage of image area occupied by the annotated objects of PASCAL,
COCO, and Open Images; i.e. , percentage of instances whose area is
below a certain value. As a baseline, we plot the function correspond-
ing to boxes with uniformly distributed area and side length. We ignore
here boxes marked as crowd in COCO and marked as group in Open
Images. Train set for all datasets.

latter. In contrast, the other datasets have a greater propor-
tion of smaller objects: Open Images has a similar distribu-
tion to COCO, both having many more small objects than
PASCAL.

Box center statistics

As another way to measure the complexity and diversity of
the boxes, Figure 21] shows the distributions of object cen-
terﬂ in normalized image coordinates for Open Images and
other related datasets. The Open Images train set, which
contains most of the data, shows a rich and diverse distribu-
tion of a complexity in a similar ballpark to that of COCO.
Instead, PASCAL and ILSVRC exhibit a simpler, more cen-
tered distribution. This confirms what we observed when
considering the number of objects per image (Fig. [T4) and
their area distribution (Fig. 20).

Validation and test V5

The number of boxes per image (Tab.[3) in Open Images V4
is significantly higher in the train split than in validation and
test. In the next version of Open Images (V5) we increased
the density of boxes for validation and test to be closer to
that of train (Tab.[g).

Train  Validation Test

Boxes V4 14,610,229 204,621 625,282
per image 8.4 4.9 5.0
Boxes V5 14,610,229 303,980 937,327
per image 8.4 7.3 7.5

Table 8 Number of boxes for Open Images Dataset V4 versus V5.

7 We thank Ross Girshick for suggesting this type of visualization.
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Open Images (train V5=V4)
1.4M images

Open Images (val+test V5)
0.17M images

- . »

COCO 2017 (train+val)
0.12M images

PASCAL 2012 (train+val) ILSVRC-DET 2014 (train+val)
0.0IM images 0.35M images

Fig. 21 Distribution of object centers for various splits of Open Im-
ages and other related datasets.

Fig. 21| shows the distributions of object centers. While
the smaller val and test splits are still simpler than train, they
are considerably richer than ILSVRC and also slightly better
than PASCAL.

3.3 Visual Relationships

The Open Images Dataset was annotated in a very controlled
manner. First, we produced image-level labels verified by
human annotators. Afterwards, we annotated bounding boxes
on all instances of each positive image-level label for 600
classes. Now we expanded the annotations beyond object
bounding boxes: we precisely defined a set of relationships
between objects and then verified their presence for each
pair of annotated objects in the dataset (Sec. [2.5). In the end
of the process we obtained 375k annotations of 329 distinct
relationship triplets, involving 57 different object classes.
Figure 22] shows example annotations and Table [J] contains
datasets statistics per split (train, validation, test).

Train Val Test
374,768 3,991 12,314

Number of VRD annotations

Table 9 Number of annotated visual relationship instances for the
train, validation and test splits of Open Imagesﬂ

On the other end of the annotation spectrum is data col-
lection as proposed by the creators of Visual Genome (VG)
and Visual Relationship Detection (VRD) datasets (Krishna
et al., 2017 [Lu et al.| 2016). Their focus was on obtaining

as much variety of relationships as possible by asking an-
notators to give a free-form region description, and annotate
objects and relationships based on those descriptions. The
annotations from several annotators were then merged and
combined using various language and quality models.

The difference in the two approaches naturally leads to
difference in the properties of the two datasets: while VG
and VRD contain higher variety of relationship prepositions
and object classes (Tab.[I0) they also have some shortcom-
ings. First, previous work shows that many of those are rather
obvious, i.e. {window,onbuilding) (Zellers et al.;,2018).
Table [IT] compares the top-10 most frequent relationship
triplets in all three datasets: in both VG and VRD the most

frequent relationships can be predicted from object co-occurrence

and spatial proximity, while Open Images is more challeng-
ing in this respect. Second, as follows from the free-form an-
notation process and lack of precise predefinitions, the anno-
tations on VG and VRD contain multiple relationships with
the same semantic meaning: for example, the difference be-
tween relationships ‘near’ and ‘next to’ is not clear. This
leads to annotation noise as multiple instances of conceptu-
ally the same relationship have different labels. Since Open
Images annotations were collected in a very controlled set-
ting this kind of noise is much lower. Finally, in VG and
VRD annotations within an image are sometimes incom-
plete (e.g. if there are two chairs at a table in the same im-
age, only one of them might be annotated). Instead, thanks
to the controlled annotation process for image-level labels,
boxes, and relationships, in Open Images for each image it
is possible to know exactly if two objects are connected by
a certain relationship or not. This makes Open Images better
suited for evaluating the performance of visual relationship
detection models, and also facilitates negative samples min-
ing during training.

As one can expect from object class distribution on Open
Images, the distribution of the number of relationship anno-
tations among triplets is highly imbalanced (Fig.[23)). Hence,
the Open Images dataset includes both rare and very fre-
quent relationship triplets. This suggests that to be able to
effectively detect triplets that have very small number of an-
notations, it will not be enough to train a monolithic detec-
tor for each triplet. We expect that a successful detector will
have to be compositional.

Figures [24] and 25| provide a comparison between the
number of annotations in Open Images vs in VG/VRD for
the semantic triplets they have in common (considering only
two-object relationships, not attributes). As the plots shows,
the Open Images Dataset has more annotations for several
triplets than VG/VRD, which shows it can complement ther |
Moreover, Open Images contains new relationship triplets

9 Visual relationships of validation and test sets are annotated using
the boxes of V5 release since increased density of V5 allowed much
denser relationships annotations.

10 To find the triplets in common between two datasets we matched
the class names based on Lexicographical comparison and aggregated
annotations in VG based on relationship; since VG contains somewhat
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Fig. 22 Examples of positively verified relationships. Note how we annotated all instances of a relationship triplet (e.g. multiple ( man, holds,
microphone ) in the same image).
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Fig. 23 Number of annotations per triplet on Open Images (two-object
relationships only, without attributes).

than are not in VG at all, e.g. (man, play, flute), (dog,
inside of, car ), (woman, holds, rugby ball).

In summary, Open Images visual relationship annota-
tions are not as diverse as in VG and VRD, but are better
defined, avoid obvious relationships, have less annotation
noise, and are more completely annotated. Moreover, Open
Images offers some complementary annotations to VG/VRD,
both by the number of samples for some the triplets they
have in common, and by some entirely new triplets.

inconsistent relationship names, we use loose string matching to match
relationships
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Fig. 24 Comparison of the number of triplet annotations on Open
Images dataset vs. Visual Genome dataset for 195 triplets found in
common (two-object relationships only, without attributes).

4 Quality
4.1 Quality of bounding boxes

We performed an extensive analysis of the quality of bound-
ing box annotations. We had a human expert examine 100
images for each of the first 150 boxable classes sorted by
alphabetical order, containing a total of more than 26,000
boxes. We measured the quality of both the boxes and their
attributes.

Results for box quality are shown in Table[T2] Both pre-
cision and recall are very high at 97.7% and 98.2%, re-
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‘ Num. classes (/ num. attributes)

Num. distinct triplets ~ Num. annotations

Visual Relationship Detection (Lu et al., 2016) ‘ 100 6,672 30,355
Visual Genome (Krishna et al.,|2017) 67,123 /4,279 727,635 2,578,118
two-object relationships 65,398 675,378 2,316,104
attributes 7,100/ 4,279 52,257 262,014
Open Images 5715 329 374,768
two-object relationships 57 287 180,626
attributes 23/5 42 194,142

Table 10 Comparison with the existing visual relationship detection datasets.
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Fig. 25 Comparison of the number of triplet annotations on the
Open Images Dataset versus the VRD dataset for 62 triplets found in
common (two-object relationships only, without attributes).

VRD dataset Visual Genome Open Images

person wear shirt
person wear pants
person next to person
person wear jacket
person wear hat
person wear glasses
person has shirt
person behind person
person wear shoes
shirt on person

chair at table
man at table
woman at table
man on chair
woman on chair
chair at desk
man holds guitar
man plays guitar
chair at coffee table
girl at table

window on building
clouds in sky
man wearing shirt
cloud in sky
sign on pole
man wearing hat
leaves on tree
man wearing pants
man has hair
building has window

Table 11 Top-10 most frequent relationships in the VRD, Visual
Genome and Open Images datasets. Note that some of the Open Im-
ages relations are not mutually exclusive (e.g. “man holds guitar” and
“man plays guitar”). In these cases, we have annotated all relationships
that occur in each particular sample (see Section [2.5.2).

spectively. The missing precision is mostly caused by boxes
which are geometrically imprecise (1.1%), and boxes with
wrong semantic class labels (1.1%). Imprecise boxes are
quite evenly spread over classes. However, while half of the
classes have fewer than 1% semantic errors, other (often
rare) classes have more (Fig. 26). Most notably, the three
most problematic classes are bidet (86% errors, confused
with toilets), cello (55% errors, confused with violins),
and coffee table (35% errors, confused with other kinds

of tables). The first two mistakes are caused by cultural dif-
ferences. coffee table is an ambiguous class.

precision recall
97.7% 98.2%
imprecise ~ wrong class  multiple objects
1.1% 1.1% 0.1%

Table 12 Analysis of box quality. Conditioned on a given class label
for an image, we report precision and recall. We break down preci-
sion errors into three different types: an geometrically imprecise box, a
box with the wrong class label, and a box which unjustifiably captures
multiple objects.
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Fig. 26 Percentage of boxes which have a semantic error for each
of the 150 examined classes. Every fifth class name is displayed on the
horizontal axis. Moreover, we provide the names of the 9 classes with
the highest percentage of errors directly on the curve.

Table [13] shows results for attribute quality. Precision
and recall are in the high nineties for most attributes. Espe-
cially the Occluded and Truncated attributes are very
accurately annotated. For Depiction, recall is 92%. For
Inside, precision is 67%, which is mostly caused by sev-
eral Bell peppers incorrectly having this attribute when
it was inside a container such as a shopping cart. However,
the Inside attribute is extremely rare (0.4% of all boxes)
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and only relevant for a few classes. The most frequent such
class is Building, for which precision and recall are good
(100% and 83%, respectively).

Attribute Precision  Recall
GroupOf 94.2% 95.3%
Occluded 98.6% 98.4%
Truncated 99.7% 97.0%
Depiction 96.7% 92.2%
Inside 66.7% 90.3%

Table 13 Precision and recall for attributes, with the error rates
specified per attribute type.

4.2 Geometric agreement of bounding boxes

Another way to measure the quality of bounding boxes is to
draw them twice by different annotators, and then measur-
ing their geometric agreement. We did that for both Extreme

Clicking (Sec.[2:4.2) and Box Verification Series (Sec.[2.4.3).

Extreme clicking. We randomly selected 50,000 boxes pro-
duced with extreme clicking, and had annotators redraw the
box (without seeing the original box). We then measured hu-
man agreement as the average intersection-over-union (IoU)
between the original box and the redrawn box on the same
object. We found this to be 0.87, which is very close to the
human agreement of 0.88 IoU on PASCAL (Everingham
et al., 2015) reported by (Papadopoulos et al., 2017). The
slight difference is mainly caused by objects being gener-
ally smaller in Open Images (Fig. 20).

Box Verification Series. For the boxes produced with box
verification series, we had 1% re-annotated using extreme
clicking (again without showing the original box). We then
measured IoU between the original boxes and the newly
manually drawn boxes. We found this to be 0.77 on average.
As expected, this is higher than the threshold of IoU> 0.7
for which we trained the annotators, and lower than the ex-
treme clicking agreement of 0.87. We underline that 0.77 is
widely considered as a good geometric accuracy (e.g. the
COCO Challenge calls IoU > 0.75 a “strict” evaluation cri-
terion). To give a better feeling of the average quality of
these boxes, Fig. [27] shows two examples where a drawn
box and box produced by box verification series have IToU=
0.77.

Detectors: extreme clicking vs box verification series. The
extreme clicking boxes are more accurate than those pro-
duced by box verification series. But how does this influence
contemporary object detection models? To answer this ques-
tion, we make use of the 1% of re-annotated data from box

Fig. 27 Two examples of matching boxes with JoU = 0.77, the av-
erage agreement between verified and drawn boxes. Verified boxes are
in green, drawn boxes are in red. As these example shows, the verified
boxes cover the object very well, but not perfectly.

verification series. This means that for the exact same object
instances, we have both verified boxes and manually drawn
boxes. We train a Faster-RCNN (Ren et al.l 2015) model
based on Inception-ResNet-V2 (Szegedy et al. 2017) on
each set and measure performance on the Open Images test
split. We measure performance using the Open Images Chal-
lenge metric mAPo; (Sec.[5.2.1), which is a modified ver-
sion of mean Average Precision commonly used for object
detection (Everingham et al.,[2010). Interestingly, we found
that the difference in detection performance was smaller than
0.001 mAPy;. We conclude that boxes produced by box
verification series make perfectly useful training data for
contemporary detectors, as they lead to the same perfor-
mance as training from manually drawn boxes.

4.3 Recall of boxable image-level labels

As described in Sec. [2.3] we obtained image-level labels by
verifying candidate labels produced automatically by a clas-
sifier. Here we estimate the general recall of this process
for the 600 boxable classes. We randomly sampled 100 im-
ages and inspected each image independently by two human
experts to identify all instances of boxable classes which
were not annotated. This was done by displaying each im-
age with all existing box annotations overlaid. For each non-
boxed object, the expert typed multiple free-form words,
each of which was mapped to the closest five Open Images
boxable classes through Word2Vec (Mikolov et al., [2013)).
Based on these, the expert then decided whether the ob-
ject indeed belonged to a boxable class, and recorded it as a
missing object. Additionally, the object could be marked as
‘difficult’ according to the PASCAL standards (Everingham
et al., 2010), i.e. very small, severely occluded or severely
truncated. Afterwards, we took the set union of all labels of
all missing objects recorded by the two experts. We removed
existing image-level labels from this set, to cover for the rare
case when an object instance was not boxed even though its
image-level label was available (high recall in Tab.[I2). This
results in the final set of classes present in the image but for
which we do not have an image-level label.
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When considering really all objects, the recall of image-
level labels is 43% in Open Images. When disregarding ‘dif-
ficult’ objects, the recall is 59%. While this is lower than
the estimated recall of 83% reported for COCO (Lin et al.
2014), Open Images contains 7.5x more classes, making it
much harder to annotate completely. Importantly, this lack
of complete annotation is partially compensated by having
explicit negative image labels. These enable proper train-
ing of discriminative models. Finally, we stress that for each
positive image-level label we annotated bounding boxes for
all instances of that class in the image. Along that dimen-
sion, the dataset is fully annotated (98.2% recall, Tab. .

5 Performance of baseline models

In this section we provide experiments to quantify the per-

formance of baseline models for image classification (Sec.[5.T))

and object detection (Sec.[5.2) on the Open Images Dataset.

5.1 Image Classification

Image classification has fostered some of the most relevant
advances in computer vision in the last decade, bringing new
techniques whose impact has reached well beyond the task
itself (Krizhevsky et al.| 2012} [Szegedy et al., 2015} [Ioffe
and Szegedy, 2015} He et al.| [2016; |Szegedy et al., 2017).
Here we train an image classification model with Inception-
ResnetV2 (Szegedy et al.,[2017), a widely used high capac-
ity network, and we empirically measure:

— The impact of the number of human-verified labels on
the quality of a classifier.

— The impact of using negative human-verified labels.

— Classification performance when restricted to boxable
classes only.

Training

For our experiments we use the model described in Sec-
tion to produce machine-generated labels on the train
split. We consider each label predicted with confidence score
above 0.5 as positive. This way we have two sets of labels
for the train split: these machine-generated labels, and the
human-verified labels as discussed in Section 2.3.3]

In these experiments we consider only classes with at
least 100 positive human-verified examples in the train split
(7,186 classes).

We first pre-train the network from scratch using the
machine-generated labels. We then fine-tune it with a mix
of 90% human-verified labels and 10% machine-generated
labels.

Evaluation

For each class we calculate Average Precision on the test set,
for the 4,728 classes that are both in the trainable label set
and have > 0 samples in the test set. During evaluation we
take into account that the ground-truth annotations are not
exhaustive (Sec.[2.3)), and do not penalize the model for pre-
dicting classes for which we do not have human verification
on the test set. This metric is discussed in detail for Open
Images in (Veit et al., 2017).

Number of human-verified labels

To measure the impact of the human-verified labels we re-
peat the fine-tuning stage described above to build classifica-
tion models using a varying fraction of the human-verified
labels. In all case we start from the model pre-trained on
machine-generated labels on the entire train split. We then
fine-tune on human-verified labels from random subsets of
the train split containing 1%, 10%, 25%, 50%, 75%, and
100% of all images.

As shown in Fig. mAP increases as we increase the
amount of human-verified labels, demonstrating that they di-
rectly improve model performance. The absolute number of
human-verified labels can be calculated using the values in
Table[3l

Impact of negative labels

To measure the impact of negative image-level labels we re-
peat the above experiment but train from positive labels only
(Fig. 28). For this we train our classification model while
ignoring human-verified negative labels in the loss. Instead,
we use as implicit negatives all labels that are not human-
verified as positive (including candidate labels generated by
the image classifier, and all other labels that are missed by it,
Sec.[2.3). We observe that, as saturation starts to occur when
using a large number of positive labels, negative labels start
to improve the model significantly. Hence, this experiment
shows the value of explicit, human-verified negative labels.

Boxable classes

We also report mAP for the 600 boxable classes (using the
same models as before). As shown in Fig. 28] mAP for these
boxable classes is generally higher than mAP for all classes.
Boxable classes are generally easier for classification tasks,
as they are all concrete objects defined clearly by their vi-
sual properties (as opposed to some of the classes in the
wider 19,794 set, e.g. love and birthday). Also, they are
mostly basic-level categories, whereas the wider set contains
many fine-grained classes which are harder to distinguish
(e.g. breeds of dogs). As before, we observe that a larger
number of human-verified labels translates to a higher value
of mAP.
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Fig. 28 Classifier performance versus amount of human-verified
labels in terms of the percentage of all available labels.

5.2 Object detection

The advent of object detection came in the form classifiers
applied densely to windows sliding over the image (e.g. based
on boosting (Viola and Jones| 2001alb) or Deformable Part
Models (Felzenszwalb et al.,[2010a.b)). To reduce the search
space, the concept of “object proposals” (Alexe et al.,[2010]
2012} [Uijlings et al.l |2013)) was then introduced, which en-
able to work on just a few thousand windows instead of a
dense grid.

R-CNN (Girshick et al.l |2014) brought the advances in
image classification using deep learning to object detection

using a two-stage approach: classify object proposal boxes (Ui-

jlings et al.l 2013)) into any of the classes of interest. This
approach evolved into Fast R-CNN (Girshick, [2015) and
Faster R-CNN (Ren et al., 2015)), which generates the pro-
posals with a deep network too. Faster R-CNN stills provide
very competitive results today in terms of accuracy.

More recently, single-shot detectors were presented to
bypass the computational bottleneck of object proposals by
regressing object locations directly from a predefined set of
anchor boxes (e.g. SSD (Liu et al., 2016) and YOLO (Red-
mon et al., [2016; [Redmon and Farhadil 2017)). This typi-
cally results in simpler models that are easier to train end-
to-end.

In this section we evaluate the performance of two mod-
ern object detectors on Open Images (the two-stage Faster-
RCNN (Ren et al.,|2015)) and the single-shot SSD (Liu et al.}
2016)). We start by defining an evaluation metric that takes
into account the characteristics of Open Images in Sec.[5.2.1]
Then we detail our evaluation setup and report results ex-
ploring various model architectures and training set sizes in

Section[5.2.2]

5.2.1 Evaluation metric

The standard metric used for object detection evaluation is
PASCAL VOC 2012 mean average precision (mAP) (Ev-
eringham et al., 2012). However, this metric does not take

into account several important aspects of the Open Images
Dataset: non-exhaustive image-level labeling, presence of
class hierarchy and group-of boxes. We therefore propose
several modifications to PASCAL VOC 2012 mAP, which
are discussed in detail below.

Non-exhaustive image-level labeling. Each image is anno-
tated with a this is not the spirit of the point we are making,
it is a boundary case; and anyway sets can be empty! set
of positive image-level labels, indicating certain classes are
present, and negative labels, indicating certain classes are
absent. All other classes are unannotated. Further, for each
positive image-level label, every instance of that object class
is annotated with a ground-truth bounding box. For fair eval-
uation we ignore all detections of unannotated classes. A
detection of a class with a negative label is counted as false
positive. A detection of a class with a positive label is evalu-
ated as true positive or false positive depending on its over-
lap with the ground-truth bounding boxes (as in PASCAL
VOC 2012). For a detection to be evaluated as true posi-
tive, its intersection-over-union with a ground-truth bound-
ing box should be greater than 0.5.

Class hierarchy. Open Images bounding box annotations are
created according to a hierarchy of classes (Section [2.4.4).
For a leaf class in the hierarchy, AP is computed as nor-
mally in PASCAL VOC 2012 (e.g. ‘Football Helmet’). In
order to be consistent with the meaning of a non-leaf class,
its AP is computed involving all its ground-truth object in-
stances and all instances of its subclasses. For example, the
class Helmet has two subclasses (Football Helmet
and Bicycle Helmet). These subclasses in fact also be-
long to Helmet. Hence, APyeiner is computed by con-
sidering that the total set of positive He lmet instances are
the union of all objects annotated as Helmet, Football
Helmet,and Bicycle Helmet inthe ground-truth. Asa
consequence, an object detection model should to produce a
detection for each of the relevant classes, even if each detec-
tion corresponds to the same object instance. For example,
if there is an instance of Football Helmet in an image,
the model need to output detections for both Football
Helmet and for Helmet in order to reach 100% recall
(see the semantic hierarchy visualization in Fig[5). If only
adetection with Football Helmet is produced, one true
positive is scored for Football Helmet butthe Helmet
instance will not be detected (false negative).

Group-of boxes. A group-of box is a single box containing
several object instances in a group (i.e. more than 5 instances
which are occluding each other and are physically touching).
The exact location of a single object inside the group is un-
known.
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We explore two ways to handle group-of boxes. These
can be explained in a unified manner, differing in the value
of a parameter weight w € {0, 1}. If at least one detection is
inside a group-of box, then a single true positive with weight
w is scored. Otherwise, the group-of box is counted as a
single false negative with the same weight w. A detection
is inside a group-of box if the area of intersection of the
detection and the box divided by the area of the detection is
greater than 0.5. Multiple correct detections inside the same
group-of box still count as a single true positive.

When w = 0 group-of boxes act like ignore regions: the
detector is not required to detect them, and if it does output
detections inside them, they are ignored. Instead, when w =
1 the detector is required to output at least one detection
inside a group-of box. In our final evaluation metric, we use
w=1.

Effects. To evaluate the effect of proposed customized eval-
uation metric we show results on the Faster-RCNN detec-

tor (Ren et al.,2015) with Inception-ResNetV?2 backbone (Szeg

et al.l 2017) using various versions of the metric. The de-
tails of training are given in the following Section[5.2.2] As
Figure 29 shows, the biggest difference is caused by ignor-
ing detections of unannotated classes, and thus taking into
account the non-exhaustiveness of the annotations. Without
this, correct detections of objects from unannotated classes
would be wrongly counted as false negatives.

I ® non-exh., hier., group-of w = 1
0 8 non-exh., hier., group-of w = 0
In  non-exh., group-of w = 1
s} group-of w =1

In

group-of w = 0

mAPo  value depending on components

Fig. 29 Effect of the components of the Open Images metric. The
full metric (non-exh., hier., group-of w = 1) and the effect of its com-
ponents: non-exhaustive labeling, presence of hierarchy, group-of box
weight w. The black bar represents a metric very close to the standard
PASCAL VOC 2012 mAP (with the only addition of ignoring detec-
tions inside a group-of box).

5.2.2 Performance evaluation

We evaluate two modern object detection models with dif-
ferent capacities. The first model is Faster-RCNN (Ren et al.}
2015)) with an Inception-ResNetV2 backbone, which per-
forms feature extraction (Szegedy et al.,|2017). The second

model is SSD (Liu et al.l [2016) with MobileNetV?2 (Sandler
et al.| [2018)) feature extractor with depth multiplier 1.0 and
input image size 300 x 300 pixels. We report in Table[T4]the
number of parameters and inference speed for each detec-
tion model.

Detector Number of parameters  Inference time (s)

63.947.366 0.455
14.439.167 0.024

Faster-RCNN with Inception-ResNetV2
SSD with MobileNetV2, dm=1.0

Table 14 Detector capacity: number of parameters and inference
speed measured on a Titan X Pascal GPU.

We consider four increasingly large subsets of the Open
Images train set, containing 10k, 100k, 1M and 14.6M bound-
ing boxes. We train both detectors on exactly the same sub-
sets and test on the publicly released Open Images test set.
All feature extractors are pre-trained on ILSVRC-2012 (Rus-
sakovsky et al., 2015)) for image classification until conver-

e . . .
Lé’yence. Then, the models are trained for object detection on

Open Images for 8M-20M steps until convergence on 8-
24 NVidia GPUs (Tesla P100, Tesla V100). For the Faster-
RCNN architecture we use momentum optimizer (Qian,|1999),
while for the SSD architecture we used RMS-prop All hy-
perparameters are kept fixed across all training sets.

Figure[30]reports the results for each combination of de-
teciton model and training subset size. Generally, the per-
formance of all detectors continuously improves as we add
more training data. Faster-RCNN with InceptionV2 improve
all the way to using all 14.6M boxes, showing that the very
large amount of training data offered by Open Images is in-
deed very useful. The smaller SSD with MobileNetV2 de-
tector saturates at 1M training boxes. This suggests that for
smaller models Open Images provides more than enough
training data to reach their performance limits.

o

=—e— FasterRCNN with Inception-ResNetV2
—e—  SSD with MobileNetV2, dm=1.0
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Fig. 30 Detector performance vs training set size.
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5.3 Visual relationship detection

Many works have been proposed to tackle the visual rela-
tionship detection task in a fully supervised scenario (Lu
et al.|[2016; [Liang et al.,|[2017;Dai et al., |2017;|Zhang et al.}
2017aj[Li et al.l[2017), in a weakly supervised setting (Peyre
et al.l |2017; |[Zhang et al., 2017b)), or focusing on human-
object relations (Gupta et al., [2009; |Yao and Fei-Fei, [2010;
Prest et al., 2012). Recently, high-performing models based
on deep convolutional neural networks are dominating the
field (Gupta and Malikl 2015; |Gkioxari et al., 2018} (Gao
et al., 2018} [Kolesnikov et al., 2018)).

In this section we evaluate two frequency baselines (Zellers

et al., 2018)) as well as a state-of-the-art visual relationship
detection model (Kolesnikov et al., 2018)).

Tasks and evaluation. Traditionally, three main tasks were
considered in the visual relationship detection community:
relationship detection, phrase detection and preposition de-
tection (Lu et al 2016). The first task is the most challeng-
ing one, while the other tasks are a relaxation of it. The
performance of visual relationship detection models is of-
ten measured either as Recall@50, @100, etc (Lu et al.,
2016), or using mean average precision (mAP) as for ob-
ject detection (Gupta and Malikl |2015)). However, until re-
cently VRD datasets did not provide exhaustive annotations
(except human-centric datasets (Gupta and Malik} [2015))).
Unfortunately this makes the mAP metric deliver an overly
pessimistic assessment, since correct model predictions are
sometimes scored as false positives due to missing annota-
tions. Open Images provides image-level labels that indicate
if a given object class was annotated in an image (either as
present or absent, Sec. @ If a class was annotated, then
all its object instances are annotated with bounding boxes,
and also all its occurrences in visual relationship triplets are
also exhaustively annotated. Hence, mAP can be computed
in similar manner as object detection mAP, while ignoring
predictions on images where annotation are not present ac-
cording to the image-level labels (Section[5.2.1)). Thus, there
is no risk of incorrectly over-counting false-positives.

In the next paragraphs we provide performance evalua-
tion of several baselines using two metrics:

— mAP for the visual relationship detection task only (tak-
ing into account image-level labels to not penalize cor-
rect predictions if ground-truth annotations are missing).

— the Open Images Challenge metri which is a weighted
average of three metrics: mAP for relationship detection,
mAP for phrase detection, and Recall@50.

Frequency baselines. We compute two frequency baselines
inspired by (Zellers et al.,[2018). As in (Zellers et al.,[2018)),

1 https://storage.googleapis.com/openimages/web/evaluation.html

we name them FREQ and FREQ-OVERLAP. Let S indicate
the subject, O the object and P the relationship preposition
connecting two objects. We first model the probability dis-
tribution p(.S, P, O|I) that a triplet (S, P, O) is a correct vi-
sual relationship in the input image I, using the chain rule
of probability. The joint probability distribution can be de-
composed into:

p(S, P,O[I) = p(S|I) - p(P|O, S, 1) - p(O|S, 1) @)

In the simplest case p(P|O, S, I) can be computed from the
training set distribution as the prior probability to have a cer-
tain relationship given a bounding box from a subject .S and
object O, without looking at the image, i.e. p(P|O, S,I) =
p(P|O, S). For the FREQ baseline it is computed using all
pairs of boxes in the train set. FREQ-OVERLAP instead is
computed using only overlapping pairs of boxes. Further, as-

suming the presence of O is independent of S, then p(O|S, I) =

p(O[I).
To compute the p(O|I) and p(S|I) factors we use the
FasterRCNN with Inception-ResNetV2 object detection model

from Section[5.2] and RetinaNet (Lin et al., 2017) with ResNet50

that serves as a base model for BAR-CNN. After the set of
detections is produced, we derive the final score for each
pair of detections according to Eq. (Z) and using the prior
(FREQ baseline). For the FREQ-OVERLAP baseline, only
overlapping pairs of boxes are scored using the correspond-
ing prior. In a summary, these baselines use an actual object
detector applied to the input image to determine the location
of the subject and object boxes, but then determines their re-
lationship based purely on prior probabilities, as learned on
the training set.

BAR-CNN baseline. The BAR-CNN model (Kolesnikov et al.}
2018)) is a conceptually simple model that first predicts all
potential subjects in an image and then uses an attention
mechanism to attend to each subject in turn and predict all
objects connected with it by a relationship. This model is
shown to deliver state-of-the-art results despite its simplic-
ity. We train BAR-CNN with ResNet50 backbone and fo-
cal loss (Lin et al.l 2017) on the training set with bounding
boxes of and then fine-tune it for the visual relationship de-
tection task using visual relationship annotations. In contrast
to the frequency baselines, BAR-CNN considers the input
image also for predicting the relationship, and detects the
object conditioned on the subject.

5.3.1 Performance evaluation

The evaluation results are presented in Table[I5] The FREQ
and FREQ-OVERLAP baselines score relatively low on the
task, even when based on a strong object detector. This in-
dicates that visual relationship detection requires more than
simply object detection plus relationship priors. BAR-CNN
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instead performs much better than the frequency baselines.
That indicates that there is a lot of extra visual information
needed to correctly identify visual relationships on an im-
age. The result of BAR-CNN can be regarded as a reference
for further improvements on the Open Images dataset.

Baseline mAP score
FREQ 5.36 18.93
FREQ-OVERLAP 8.19 21.47
FREQ (RetinaNet+ResNet50) 5.68 19.01
FREQ-OVERLAP (RetinaNet+ResNet50) 8.12 21.02
BAR-CNN (RetinaNet+ResNet50) 14.63  27.60

Table 15 VRD baselines: performance of the VRD models on the test
set of Open Images.

6 The Power of a Unified Dataset

Unification is one of the distinguishing factors of the Open
Images dataset, in that the annotations for image classifica-
tion, object detection, and visual relationship detection all
coexist on the same images. In this section we present two
experiments that take advantage of the different types of an-
notations present in the same images.

6.1 Fine-grained object detection by combining
image-level labels and object bounding boxes

The Open Images dataset contains 19,794 classes annotated
at the image-level and 600 classes annotated at the box-
level. Bounding boxes provide more precise spatial localiza-
tion but image-level labels are often semantically more fine-
grained and specific. Since all classes in Open Images are
part of a unified semantic hierarchy, we can find the image-
level classes that are more specific (children) than a cer-
tain bounding-box class (parent). As an example, there are
image-level classes such as Volkswagen or Labrador
that are more specific than the bounding-box classes Car or
Dog, respectively. The experiment in this section shows how

we can create a fine-grained object detector (e.g. Volkswagen

or Labrador) by combining the two types of annotations.

Creating fine-grained detection data. Given a bounding-box
class c1s, we denote the set of all image-level classes more
specific than c1s as C(cls) . We then look for images where
there are boxes of class c1s and image-level labels of any
classof C(cls) . Inthose images which have only one bound-
ing box of class cls, we transfer the more fine-grained la-
bels C(cls) toit. This transfer is safe, as there is only one
possible object in that image.

We looked for bounding box classes with a significant
number of more specific image-level classes and selected
the following four to experiment with: Car, Flower, Cat,
and Dog. We use the procedure above to create fine-grained
box labels for these four classes. Statistics are presented in
Table [T6 Finally, we use stratified sampling to divide our
data into 90% training images and 10% test images.

Experimental setup. We evaluate on fine-grained classes which
have at least 4 training samples and at least 1 test sample. We
train a single Faster-RCNN detector (Ren et al., 2015) with
an Inception-ResNetV2 backbone (Szegedy et al.|[2017) (like
in Sec.[5.2.2) on the fine-grained classes. We apply this de-
tector on the test set and report the Average Precision at IoU
> 0.5, averaged over the fine-grained classes within each
general class (mAP over Car, Cat, Dog, Flower).

We also report the performance of three baselines, all
based on the same Faster-RCNN architecture as above but
trained on the four general classes (Car, Cat,Dog, Flower).
The first baseline assigns each detection of a general class
to one of its subclasses sampled uniformly at random. The
second baseline instead assigns each general detection to
its the most frequent subclass. Finally, the third baseline
assigns each general detection to a random subclass sam-
pled according to their prior probabilities (as observed on
the training set). Note that our second and third baselines
require statistics of the subclasses, which are not available
when considering only the box-level classes.

Results. Results are presented in Table While all base-
lines yield poor results below < 0.05 mAP, our method de-
livers decent fine-grained detectors, with mAP ranging from
0.231 over the 61 subclasses of Cat, to 0.594 over the 102
subclasses of Flower. Interestingly, for several subclasses
we have very good results suggesting that these classes are
very distinctive, e.g. Ferrari (0.638 mAP), Land Rover
(0.620 mAP), and Schnauzer (0.542 mAP). Several ex-
ample detections are shown in Figure[3T} These results demon-
strate that the unified annotations of Open Images enable to
train object detectors for fine-grained classes despite having
only bounding box annotations for their parent class.

6.2 Zero-shot visual relationship detection by combining
object bounding boxes and visual relationships

In the classical zero-shot Visual Relationship Detection (VRD)
task, the zero-shot triplets consist only of new combinations
of classes appearing in other annotated relationships (Lu
et al., 2016; Liang et all [2018), e.g. detecting (Cat, un-
der, Table ) when the training set contains { Cat, behind,
Door ) and (Person, under, Table ). We propose to de-
tect relationships also for new classes that are not present
in any relationship annotations, by leveraging the bounding
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Bounding-box  Number of Number of Examples of frequent and infrequent subclasses C(cls)

class cls subclasses samples  (number of samples in parentheses)

Car 62 4254 Ford (354), Chevrolet (223),...,Frazer Nash (2),Riley Motor (1)

Cat 77 1340 Arabian Mau (62), American Wirehair (56),...,Donskoy (1),Minskin (1)

Dog 39 4405 Terrier (245),Pinscher (166),...,Malshi (2), Beaglier (1)

Flower 218 2541 Orchids (119), Buttercups (114),..., Tidy tips (1), Aechmea ‘Blue Tango’ (1)

Table 16 Statistics of the more specific classes for Car, Flower, Cat, and Dog. In all cases we report the total number of samples over the

training and test sets.

General class cls

Num. of fine-grained
classes (> 5 samples)

Prior-based random
sub-class (mAP)

Most common
sub-class (mAP)

Uniform random
sub-class (mAP)

Image label transfer
(ours) (mAP)

Car 57 0.008 0.002 0.011 0.287
Cat 61 0.010 0.002 0.041 0.231
Dog 33 0.018 0.011 0.010 0.272
Flower 102 0.002 0.000 0.009 0.594

Table 17 Results on fine-grained detection over subclasses of Car, Flower, Cat, and Dog.

Fig. 31 Example output of our fine-grained detectors. Note that our detector correctly identifies the individual car brands even in race cars whose
appearance has been heavily modified (e.g. two bottom left examples).

box annotations that co-exists in the same images as rela-
tionship annotations. This showcases the benefits of the uni-
fied annotations in Open Images. In particular, we combine
training data for related triplets that have the same subject
and relationship with bounding boxes for a new object, e.g.
detecting ( Cat, under, Car ) when we only have ( Cat, un-
der, Table ) annotated as relationship and Car as bounding
boxes. Analogously, we also introduce new subjects.

Specifically, we select new classes that are among the
600 with boxes in Open Images and do not have relation-
ship annotations, and use them as our zero-shot classes. For
evaluation purposes, we annotated the additional visual re-
lationships for the new classes on the test split. We then fil-

tered the set of new zero-shot classes as those that are fre-
quent enough (there are at least 10 instances of visual re-
lationships in the test split that contain that class). Over-
all, we obtain 194 new triplets with a relationship prepo-
sition existing in the training split, where either subject or
object are from the set of the new zero-shot classes. As a re-
sult, we have 5,983 new zero-shot triplet annotations on the
test split, covering 48 new zero-shot classes, from which we
have 284k annotated bounding boxes in the training split.
Table [T9] shows examples of the new object classes and the
relationship triplets they are involved with.

We train the BAR-CNN model (Kolesnikov et al.l 2018)

using the annotated visual relationships on the training set
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Metric R@50 (all triplets) R@100 (all triplets) R@50 (zero-shot) R@100 (zero-shot)
Relationship detection 40.61 40.93 7.68 7.70
Phrase detection 43.65 43.86 10.98 11.08

Table 18 Zero-shot visual relationship detection results. We evaluate a single model trained on the existing VRD annotations and box annota-
tions. We report performance on all test set annotations including supervised and zero-shot triplets, as well as the performance on zero-shot-only

triplets in terms of recall for relationship and predicate detection (Cu et al} 2016).

ETNT

n{anz bed.

b |

Fig. 32 Example zero-shot detections on the Open Images test set. Yellow boxes denote the subjects and blue boxes denote the objects and

relationships. For these examples, object classes are zero-shot.

Relationship Zero-shot triplets
plays (26) (Girl, plays, Cello), (Man, plays, Saxophone) , ...
holds (70) (Man, holds, Bicycle wheel ), (Boy, holds, Skateboard), ...
wears (76) (Woman, wears, Scarf ), (Man, wears, Glasses ), ...,
(Girl, wears, Necklace )

on (10) ('spoon, on, Cutting board), (Dog, on, Dog bed), ...
inside of (7) (Woman, inside of, Gol£ cart ), (Girl, inside of, Bus), ...

(Boy, at,Billiard Table), (Girl,at,Billiard Table),
at(4) (Woman, at, Billiard Table), (Man, at, Billiard Table)
under (1) (Cat, under, Coffee Table)

Table 19 Examples of zero-shot relationship triplets, involving the
new classes in bold. In parentheses, the total number of zero-shot
triplets for each relationship.

inside of Bed|

Fig. 33 Interesting wrong predictions of the zero-shot model. Left
image: BAR-CNN detects the subject and relationship preposition cor-
rectly but the object label is incorrect (Boat is a zero-shot class).
Right image: BAR-CNN only detects the subject correctly but both
the relationship and the object are very close in meaning to what is
shown in the image.

and the additional set of 48 classes for which only box an-
notations are available. During training, BAR-CNN accepts
two types of samples: train samples with a single subject
class label and train samples with object and relationship
class labels. A combination of classification and box regres-
sion loss is optimized, as described in 2017). In
BAR-CNN, a sigmoid cross-entropy loss is used to handle
multi-class samples with object and relationship class labels.

Since for the zero-shot object samples the relationship class
labels are not available, we mask out the sigmoid loss com-
ponents for the object samples without relationship class la-
bels (those are samples derived from box annotations).

Table[I§]presents our quantitative evaluation. The results
show that the highly challenging setting of zero-shot VRD
can be tackled to a reasonable degree but the gap to the su-
pervised results is still very large, indicating potential for
further exploration of the task with help of the unified anno-
tations of Open Images. Figure [32]shows some examples of
BAR-CNN zero-shot predictions and Figure [33]shows inter-
esting prediction examples: incorrectly detected object class
and incorrectly detected relationship (according to defined
triplets); note that in both cases general semantics is pre-
served.

7 Conclusions

This paper presented Open Images V4, a collection of 9.2
million images annotated with unified ground-truth for im-
age classification, object detection, and visual relationship
detection. We explained how the data was collected and an-
notated, we presented comprehensive dataset statistics, we
evaluated its quality, and we reported the performance of
several modern models for image classification and object
detection. We hope that the scale, quality, and variety of
Open Images V4 will foster further research and innovation
even beyond the areas of image classification, object detec-
tion, and visual relationship detection.
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