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Abstract

Generative Adversarial Networks (GANs) can produce
images of remarkable complexity and realism but are gen-
erally structured to sample from a single latent source ig-
noring the explicit spatial interaction between multiple en-
tities that could be present in a scene. Capturing such com-
plex interactions between different objects in the world, in-
cluding their relative scaling, spatial layout, occlusion, or
viewpoint transformation is a challenging problem. In this
work, we propose a novel self-consistent Composition-by-
Decomposition (CoDe) network to compose a pair of ob-
jects. Given object images from two distinct distributions,
our model can generate a realistic composite image from
their joint distribution following the texture and shape of the
input objects. We evaluate our approach through qualitative
experiments and user evaluations. Our results indicate that
the learned model captures potential interactions between
the two object domains, and generates realistic composed
scenes at test time.

1. Introduction

Conditional Generative Adversarial Networks (cGANSs)
have emerged as a powerful method for generating im-
ages conditioned on a given input. The input cue could
be in the form of an image [10, 38, 17, 2, 30, 22], a text
phrase [34, 25, 24, 12] or a class label layout [20, 21, 1].
The goal in most of these GAN instantiations is to learn
a mapping that translates a given sample from the source
distribution to generate a sample from the output distribu-
tion. This primarily involves transforming either a single
object of interest (apples to oranges, horses to zebras, label
to image, etc.) or changing the style and texture of the input
image (day to night, etc.). However, these direct transfor-
mations do not capture the fact that a natural image is a 2D
projection of a composition of multiple objects interacting
in a 3D visual world. Here, we explore the role of compo-
sitionality in GAN frameworks and propose a new method
which learns a function that maps images of different ob-
jects sampled from their marginal distributions (e.g., chair

Figure 1. Binary Composition examples. Top Row: The first object
or the background image, Middle Row: The second object or the
foreground image, Bottom Row: The generated composite image.

and table) into a combined sample (table-chair) that cap-
tures the joint distribution of object pairs. In this paper, we
specifically focus on the composition of a pair of objects.

Modeling compositionality in natural images is a chal-
lenging problem due to the complex interactions among dif-
ferent objects with respect to relative scaling, spatial layout,
occlusion or viewpoint transformation. Recent work us-
ing spatial transformer networks [ 1] within a GAN frame-
work [16] decomposes this problem by operating in a ge-
ometric warp parameter space to find a geometric modifi-
cation for a foreground object. However, this approach is
only limited to a fixed background and does not consider
more complex interactions in the real world.

We consider the task of composing two input object im-
ages into a joint image that captures their realistic interac-
tions. For instance, given an image of a chair and an im-
age of a table, our formulation is able to generate an image
containing the same chair-table pair arranged in a realistic
manner. To the best of our knowledge, this is the first work
that addresses the problem of generating a composed image
from two given inputs using a GAN, trainable under paired



and unpaired scenarios. In an unpaired training setup, one
does not have access to the paired examples of the same
object instances with their combined compositional image.
For instance, to generate the joint image from the image of
a given table and a chair, we might not have any example
of that particular chair beside that particular table while we
might have images of other chairs and other tables together.

Our key insight is to leverage the idea that a success-
ful composite image of two objects should not only be
realistic in appearance but can also be decomposed back
into individual objects. Hence, we use decomposition as a
supervisory signal to train composition, thereby enforcing
a self-consistency constraint [38] through a composition-
by-decomposition (CoDe) network. Moreover, we use
this self-consistent CoDe network for an example-specific
meta-refinement (ESMR) approach at test time to generate
sharper and more accurate composite images: We fine-tune
the weights of the composition network on each given test
example by the self-supervision provided from the decom-
position network.

Through qualitative and quantitative experiments, we
evaluate our proposed Compositional-GAN approach in
two training scenarios: (a) paired: when we have ac-
cess to paired examples of individual object images with
their corresponding composed image, (b) unpaired: when
we have a dataset from the joint distribution without be-
ing paired with any of the images from the marginal
distributions. Our compositional GAN code and dataset
will be available at https://github.com/azadis/
CompositionalGAN.

2. Related Work

Generative adversarial networks (GANs) have been
used in a wide variety of settings including image gener-
ation [6, 33, 13] and representation learning [23, 26, 18, 4].
The loss function in GANs has been shown to be effective in
optimizing high quality images conditioned on an available
information. Conditional GANs [20] generate appealing
images in a variety of applications including image to im-
age translation both in the case of paired [10] and unpaired

data [38, 39], inpainting missing image regions [22, 32],
generating photorealistic images from labels [20, 21], and
solving for photo super-resolution [15, 14].

Image composition is a challenging problem in com-
puter graphics where objects from different images are to be
overlaid in one single image. The appearance and geometric
differences between these objects are the obstacles that can
result in non-realistic composed images. [37] addressed the
composition problem by training a discriminator that could
distinguish realistic composite images from synthetic ones.
[29] developed an end-to-end deep CNN for image harmo-
nization to automatically capture the context and semantic
information of the composite image. This model outper-

formed its precedents [28, 3 1] which transferred statistics of
hand-crafted features to harmonize the foreground and the
background in the composite image. Recently, [16] used
spatial transformer networks as a generator by performing
geometric corrections to warp a masked object to adapt to a
fixed background image. Moreover, [!2] computed a scene
layout from given scene graphs which revealed explicit rea-
soning about relationships between objects and converted
the layout to an output image. In the image-conditional
composition problem which we address, each object should
be rotated, scaled, and translated while partially occluding
the other object to generate a realistic composite image.

3. Background: Conditional GAN

We briefly review the conditional Generative Adversarial
Networks before discussing our compositional setup. Given
a random noise vector z, GANs generate images c of a spe-
cific distribution using a generator G which is trained ad-
versarially with respect to a discriminator . While the
generator tries to produce realistic images, the discrimi-
nator opposes the generator by learning to distinguish be-
tween real and fake images. In conditional GAN models
(cGANSs), an auxiliary information z is fed into the model,
in the form of an image or a label, alongside the noise vec-
tor, i.e., {x, z} — c[7, 20]. The objective of cGANs would
be therefore an adversarial loss function formulated as

ECGAN(G, D) = ]E:r,cwpdam(az,c) [log D(Z‘, C)]
+  Epmppa(a),z~p. () [1 = log D(z, G(x, 2))], where
G, D minimize and maximize this objective, respectively.
The convergence of the above GAN objective and con-
sequently the quality of the generated images would be im-
proved if an L, loss penalizing deviation of the generated
images from their ground-truth is added. Thus, the genera-
tor’s objective function would be summarized as

G* = arg min max Lecan(G, D)

+ /\EIgCNPdmm(mA,C),ZNPz(Z)[HC - G(z, z)||1]

4. Compositional GAN

Conditional GANSs, discussed in Section 3, have been ap-
plied to several image translation problems such as day to
night, horse to zebra, and sketch to portraint [10, 38]. How-
ever, the composition problem is more challenging than
just translating images from one domain to another because
the model additionally needs to handle the relative scaling,
spatial layout, occlusion, and viewpoint transformation of
the individual objects to generate a realistic composite im-
age. Here, we propose Compositional GAN for generating
a composite image given two individual object images.

Let = be an image containing the first object, y be an im-
age of the second object and c be the image from their joint
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(a) Training Time: Decomposition As a Supervisory Signal

(b) Test Time: Decomposition for Example-Specific Meta Refinement

Figure 2. (a) The CoDe training network includes the composition network getting a self-consistent supervisory signal from the decom-
position network. This network is trained on all training images, (b) ESMR: At test time, the weights of the trained composition and
decomposition networks are fine-tuned given only one test example of X and one test example of Y. The decomposition network provides
the self-supervision required for updating the weights of the composition network at test time. The layers of the composition generator are

presented in pink and the decomposition generator in yellow.

distribution. During training, we are given datasets X =
{z1,---,zp} and Y = {y1,--- ,y,} from the marginal
distribution of the two objects, and C' = {¢1, - - , ¢, } from
their joint distribution containing both objects. We further
assume that the segmentation masks of objects are available
for both individual images in X, Y as well as the compos-
ite images in C'. Our proposed binary compositional GAN
model is conditioned on fwo input images (z,y) to gener-
ate an image from the target distribution pgy,(c). The goal
is to ensure that the generated composite image ¢ contains
the objects in x, y with the same color, texture, and struc-
ture while also looking realistic with respect to set C'. Note
that instead of learning a generative model of all possible
compositions, our aim is to learn a mode of the distribution.

Since the conditional GANs are not adequate for trans-
forming objects spatially, we explicitly model the scale and
shift transformations by translating the object images (x, y)
o (2T,yT) based on a relative Spatial Transformer Net-
work (STN) [!1]. Moreover, in specific domains where a
viewpoint transformation of the first object relative to the
second one is required, we propose a Relative Appearance
Flow Network (RAFN). Details of our relative STN and
RAFN are provided in Sections 5.1, 5.2.

4.1. Supervising composition by decomposition

The central idea of our approach is to supervise the com-
position of two images (7, yT) via a self-consistency loss
function ensuring that the generated composite image, ¢,
can further be decomposed back into the respective individ-
ual object images. The composition is performed using a
conditional GAN, (G, D.), that takes the two RGB images
(x™,yT) concatenated channel-wise as the input to generate
the corresponding composite output, ¢, with the two input
images appropriately composed. This generated image will
then be fed into a another conditional GAN, (Gec, Dec ), tO

be decomposed back into its constituent objects, (71, §7)
using a self-consistency L; loss function. The schematic of
our self-consistent Composition-by-Decomposition (CoDe)
network is illustrated in Figure 2-(a).

In addition to the decomposition network, the generated
composite image will be given to a mask prediction net-
work, GAZ, that predicts the probability of each pixel in
the composite image to belong to each of the input objects
or background. The argmax of these probabilities over ob-
ject ids results in the estimated masks of the two objects
as Mz and My. The two decomposition generators Ggec
and G share their weights in their encoder network but
are different in the decoder. A GAN loss with a gradi-
ent penalty [8] is applied on top of the generated images
¢, 2T, 9" to make them look realistic in addition to multiple
L loss functions penalizing deviation of the generated im-
ages from their ground-truth. Further details of our training

model are provided in Section 5.4.

Extension to Unpaired Data: We train our Compositional
GAN framework in two scenarios: (1) when inputs-output
are paired in the training set, i.e., each composite image
in C' has corresponding individual object images in X, Y,
and (2) when training data is unpaired, i.e., images in C'
do not correspond to images in X and Y. We convert the
unpaired data to a paired one by cutting out the respective
object segments from each composite image in C' to get the
corresponding paired individual object images. Although
these new object cutouts would be paired with the compos-
ite image, they are incomplete and not amodal because of
occlusion in the composite image. Hence, we synthesize the
missing part of these individual object cutouts using self-
supervised inpainting networks [22] which are trained on
object images from X and Y, described in Section 5.3.



4.2. Example-Specific Meta-Refinement (ESMR)

The compositional GAN model not only should learn to
compose two object with each other, but it also needs to pre-
serve the color, texture and other properties of the individ-
ual objects in the composite image. While our framework is
able to handle the former, it suffers at times to preserve color
and texture of held-out objects at test time. We propose
to handle this issue by performing per-example refinement
at test time. Since our training algorithm gets supervision
by decomposing the composite image back into individual
objects, we can use the same supervisory signal to refine
the generated composite image ¢ for unseen test examples
as well. Hence, we continue to optimize the network pa-
rameters using the decomposition of the generated image
back into the two test objects to remove artifacts and gener-
ate sharper results. This example-specific meta-refinement
(ESMR), depicted in Figure 2-(b), improves the quality of
the composite image at inference.

Given the segmentation masks of the input object im-
ages, we again ignore background for simplicity. We freeze
the weights of the relative STN, RAFN, and Gé\fc, while
only refining the weights of the CoDe layers. A GAN loss
is applied on the outputs of the generators given the real
samples from our training set. The objective function for

our ESMR approach would be thus summarized as
L@ = A" =2+ M, 06— M, 02T

+ 5" =y I+ 1My © &= My ©yTh)

+  [Lean(Ge, De) + Leoan(Gaec, Daec)]s
where 27,7 are the generated decomposed images, and
2T, yT are the transposed inputs. Here, the decomposition
and mask prediction networks reinforce each other in gen-
erating sharper outputs and predicting more accurate seg-
mentation masks. The mask prediction loss (i.e., second
and fourth L; loss terms) provides an extra supervision for
occlusion ordering of the two objects in the composite im-
age during meta-refinement optimization at inference. We
quantify it through an ablation study in Section 2.3 of the
Supplemental where eliminating the mask prediction net-
work results in an incorrect occlusion ordering. On the other
hand, ignoring the self-consistency L; loss from the decom-
position network (i.e., first and third loss terms) results in a
composite image with the object shapes deviated from their
corresponding inputs, as shown in the ablation study.

5. Implementation Details

In this section, we provide more details on the compo-
nents of our training network including the relative STN,
RAFN, inpainting, and our full end-to-end model.

5.1. Relative spatial transformer network

Given the segmentation masks of the objects for images
in sets X,Y, and C, we crop and scale all input objects to
be at the center of the image in all training images. To rela-
tively translate the center-oriented input objects, (x, y), to an
appropriate spatial layout, we train our variant of the spatial
transformer network (STN) [1 1]. This Relative STN simul-
taneously takes the rwo RGB images concatenated channel-
wise and translates them relatively to each other to (27, y7')
based on their spatial relation encoded in the training com-
posite images. !

5.2. Relative Appearance Flow Network (RAFN)

In specific domains where the relative viewpoint of the
objects should be changed accordingly to generate a nat-
ural composite image, we introduce our relative appear-
ance flow network orthogonal to our main CoDe pipeline.
Irrespective of the paired or unpaired training data, we
propose a relative encoder-decoder appearance flow net-
work, Grapn, based on the AFN model introduced in [36].
The AFN model of [36] uses an explicit rotating angle
parameter for synthesizing images in their target view.
However, our RAFN model synthesizes a new viewpoint
of the first object, x, given the viewpoint of the sec-
ond one, y, encoded in its binary mask. Our RAFN
is trained on a set of images in X with arbitrary az-
imuth angles o € {—180°,—170°,---,180°} along with
their target images with arbitrary new azimuth angles 6 €
{-180°,—170°,--- ,180°} and a set of foreground masks
of images in Y in the same target viewpoints. The architec-
ture of our RAFN is illustrated in the Appendix, and its loss
function is formulated as

L(Grarn) = L1, (Grarn) + Apcr (GRAm)
E(a ) [z — Graen (M2, 27) 1] (1)
+  AE.[Mlog M + (1 — M) log(1 — M)

Here, Grapn is the encoder-decoder network predicting
the appearance flow vectors, which after a bilinear sam-
pling step generates the synthesized view. Also, G{lpy
is an encoder-decoder mask prediction network sharing the
weights of its encoder with Grapn, While its decoder is de-
signed for predicting the foreground masks of the synthe-
sized images. Moreover, x is the ground-truth image for
the first object in the target viewpoint while =" indicates
the input image in an arbitrary view. The predicted fore-
ground mask of RAFN is represneted by M. e while M,
Még are the ground-truth segmentation masks for objects in
x,y, respectively'.

I'The architecture of this network is illustrated in the Appendix.
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Figure 3. Schematic of our binary compositional GAN model at training and test times: (a) Our training model includes the inpainting
networks (for unpaired data), RAFN (for paired data), the relative STN model, and the CoDe and mask prediction networks. X and Y
stand for the respective object segments of real composite images in an unpaired training setup. X, indicates the input image in an arbitrary
viewpoint different from its corresponding composite image, and Y.k is the binary segmentation mask of the object images in Y encoding
the target viewpoint, (b) A toy example of a real composite image and its segmentation masks, (c) We convert an unpaired training data
to a paired setup by inpainting the object segment cutouts of the real composite image. The inpainted segments and their cropped variants
at the center of the image are then used for training STN, (d) At test time, we fine-tune the weights of the CoDe network given only one
test example from the X domain and one test example from the Y domain. The weights of the mask prediction network and STN are not
updated on test examples. Each of the above modules is represented by a different color, and repeating the same module in different parts
of this diagram is for the illustration purpose.

5.3. Inpainting network region. Now given the masked image and the original im-
age x, we train a conditional GAN, (G, DY), to fill in the
masked regions of the image. Here, we use the segmenta-
tion masks of object images in Y as the binary masks for
zeroing out the pixel values of images in X partially. An-
other cGAN network, (GY, DY), would be trained similarly
to fill in the masked regions of images in Y. The loss func-

tion for each inpainting network would be:
L(Gy) = L1, (Gf) + ALcgan(Gr, D) ()

As discussed in Section 4.1, when a paired training data
is not available, we provide inputs-output pairs by inpaint-
ing the object segment cutouts of each real composite im-
age. We train a self-supervised inpainting network [22], Gf,
for each input domain to generate complete objects from the
respective object segments of the composite image in C'. A
toy example is depicted in Figure 3-(c). Using inpainted
segments instead of the occluded ones to be paired with the
real composite image in C reinforces the CoDe model in
learning object occlusions and spatial layouts more accu-

In short, starting from the two inpainting networks
trained on two sets X and Y, we convert the unpaired data

rately, as shown in Figure 4.

To train the inpainting network for domain X in a self-
supervised manner, we apply a random binary mask on each
image x to zero out the pixel values inside the applied mask

to a paired setup by generating complete objects from the
object cutouts of images in C'. This allows training our
model with an unpaired training data similar to the paired
case. This conversion is summarized in Figure 3-(a, c).



5.4. Full model

An schematic of our full network, G, is represented in
Figure 3 and the objective function is composed of:

e Pixel-reconstruction Li-loss functions on the outputs
of the composition generator, decomposition genera-
tor, and the relative STN model:

ELl (Gc) IE(z,y,c) “|C - é” }
Lr,(Gec) Ezy) [”(xT = Gee(€) 1 ]
L, (STN) E (o, [II(=, )—( yOIl,

where (z7,yT) = STN(z,y) and ¢ = G ( Ty,
Moreover, (z¢, y©) are the ground-truth transposed in-
put objects corresponding to the composite image, c,
in the paired scenario (or equivalently, the inpainted
object segments of ¢ in the unpaired case). Also,
L1, (Gaec) indicates the self-consistency constraint pe-
nalizing deviation of decomposed images from their
corresponding inputs,

e A cross-entropy mask prediction loss as Lcg(GAL) to
assign a label to each pixel of the generated composite
image, ¢, corresponding with the {z,y, background}
classes,

e Conditional GAN loss functions for both the composi-
tion and decomposition networks:

ﬁcGAN(GC7 DC) = ]E(T y,c) [log D ( T Tv C)]
+ ]E(w,y) |:1 —lOgDC(CC ayT7é)]7

£cGAN(GdeCa Ddec) = E(my) [IOg Ddec(éa xc)
+10g Daec(é,y°)] 4+ E(z,y) [(1 — log Daec(¢, 7))
+(1 — log Dyce(,57))].

We also added the gradient penalty introduced by [&] to
improve the convergence of the GAN loss functions. In
summary, the objective for the full end-to-end model is

L(G) = ML, (Ge) + L, (Gaee) + L1, (STN)]
+ XaLep(GHL)
+  A3[Legan(Ge, De) 4 Legan(Gees Daec))
6. Experiments

In this section, we study the performance of our compo-
sitional GAN model in both the paired and unpaired training
regimes through multiple qualitative and quantitative exper-
iments on synthetic and real data sets. We will present:
(1) images generated directly from the composition net-
work, ¢, before and after the ESMR step, (2) images gen-
erated directly based on the predicted segmentation masks
as ¢y = Mm oz + My ® yT. In all of our experiments, the
training hyper-parameters are A\; = 100, Ay = 50, A3 =1,
and the inference A = 100. Furthermore, similar to [10],

we ignore random noise as the input to the generator, and
dropout is the only source of randomness in the network.

6.1. Synthetic data sets

In this section, we use the Shapenet dataset [3] and study
two composition tasks: (1) a chair next to a table, (2) a bot-
tle in a basket. On the chair-table data set, we deal with
all four composition challenges, i.e., spatial layout, relative
scaling, occlusion, and viewpoint transformation. In the
basket-bottle experiment, the main challenge is to predict
the correct occluding pixels as well as the relative scaling
of the two objects.

Composing a chair with a table: We manually made
a collection of 1K composite images from Shapenet chairs
and tables to use as the real joint set, C, in the paired and
unpaired training schemes. Chairs and tables in the input-
output sets can pose in random azimuth angles in the range
[—180°,180°] at steps of 10°. As discussed in section 5.2,
given the segmentation mask of an arbitrary table in a ran-
dom viewpoint and an input chair, our relative appearance
flow network synthesizes the chair in the viewpoint consis-
tent with the table. The synthesized test chairs as XRAFN
are presented in the third row of Figure 4-a.

Composing a bottle with a basket: We manually com-
posed Shapenet bottles with baskets to prepare a training set
of 100 joint examples and trained the model both with and
without the paired data.

6.1.1 Ablation study and baselines

To study the role of different components of our network,
we visualize the predicted outputs at different steps in Fig-
ure 4. Trained with either paired or unpaired data, we il-
lustrate output of the generator before and after the ESMR
step discussed in section 4.2, as ¢*°™ and &, respec-
tively. The ESMR step sharpens the synthesized images at
test time and removes the artifacts generated by the model.
Given generated images after being refined and their seg-
mentation masks predicted by our pre-trained mask decom-
position network, we also represent outputs as the direct
summation of the segments, éif‘“. Our results from the
model trained with unpaired data are comparable with those
from paired data. Moreover, we depict the performance
of the model without our inpainting network in the eighth
row, where occlusions are not correct in multiple examples.
More test examples are presented in the Appendix.

In addition, to make sure that our network does not mem-
orize its training samples and can be generalized for each
new input test example, we find the nearest neighbor com-
posite example in the training set based on the features of
its constituent objects extracted from a pre-trained VGG19
network [27]. The nearest neighbor examples for each test
case are shown in the fourth row of Figure 4.
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Figure 4. Test results on (a) the chair-table and (b) the basket-bottle composition tasks trained with either paired or unpaired data. “NN”
stands for the nearest neighbor image in the paired training set, and “Nolnpaint” shows the results of the unpaired model without the
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show outputs of the generator before and after ESMR, respectively.

Also, ¢ represents summation of masked transposed inputs after the ESMR step.

In the Appendix, we repeat the experiments with each
component of the model removed at a time to study their
effect on the final composite image. Moreover, we show the
poor performance of two baseline models (CycleGAN [38]
and Pix2Pix [10]) in the challenging composition task of
two input domains in addition to a few failure cases of our
model for both paired and unpaired scenarios.

6.1.2 User evaluations

We have conducted an Amazon Mechanical Turk (AMT)
evaluation [35] to compare the performance of our algo-
rithm in different scenarios including training with and
without paired data and before and after ESMR. Results
from 60 evaluators are summarized in Table 1, revealing

Table 1. AMT user evaluation comparing components of our
model on the synthetic datasets. 2nd column: number of test im-
ages, 3rd column: % preferences to after vs. before refinement,
4th column: % preferences to paired training vs. unpaired.

Inputs # test  after-vs-before paired-vs-
images refinement unpaired

Chair-Table 90 71.3% 57%

Basket-Bottle 45 64.2% 57%

that even without paired examples during training, our pro-
posed model performs comparably well. In addition, the
benefit of the ESMR module in generating higher-quality
images is clear from the table.
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Figure 5. (a) Test examples for the face-sunglasses composition task. Top two rows: input sunglasses and face images, 3rd and 4th rows:
the output of our compositional GAN for the paired and unpaired models, respectively, Last row: images generated by the ST-GAN [16]
model, (b) Test examples for the street scene-car composition task. Top two rows: input cars and street scenes, 3rd and 4th rows: the

output of our compositional GAN after the meta-refinement approach. Here,

~after

&1 shows the output of the composition generator and &

represents the summation of the masked transposed inputs, Last row: images generated by ST-GAN.

6.2. Real data sets

In this section, we use two real datasets to show our
model performs equally well when one object is fixed and
the other one is relatively scaled and linearly transformed to
generate a composed image: (1) a pair of sunglasses to be
aligned with a face, (2) a car to be added to a street scene.
The problem here is thus similar to the case studies of ST-
GAN [16] with a background and foreground object.

Composing a face with sunglasses: Here, we used the
CelebA dataset [19] and cropped the images to 128 x 128
pixels. We hand-crafted 180 composite images of celebrity
faces from the training split aligned with sunglasses down-
loaded from the web. In the unpaired scenario, the training
set of individual faces in X contains 6K images from the
CelebA training split, distinct from the faces in our com-
posite set. Our ST-GAN baseline [16] is trained with 10K
celebrity faces of the celebA dataset with eyeglasses.

Composing a street scene with a car: We used the
Cityscapes dataset [5] and extracted two sets of non-
overlapping street scenes from the training set to be used
as domains X and C' in our compositional setup. In addi-
tion, we extracted a set of car images for domain Y using
the instance segmentation masks available in the Cityscapes
dataset and scaled them to be in a fixed size range. For the
scenes collected as our real composite images in set C, we
use the available segmentation mask of one of the cars in
the scene as the mask of the foreground object. We manu-
ally filter the real samples that do not include any cars larger
than a specific dimension. We also flip images in all three
sets for data augmentation. Overall, we have 500 compos-
ite images in set C, 1100 cars images in set Y, and 1500
street scenes in set X, all down-scaled to 128 x 256 pixels.
To train the ST-GAN model as a baseline, we used 1600
Cityscapes street scenes as the real composite images.

Table 2. AMT user evaluation comparing our model with ST-GAN
on the real datasets. 2nd column: number of test images, 3rd and
4th columns: % preferences respectively to paired and upaired
training vs. ST-GAN.

Inputs # test  paired-vs- unpaired-vs-
images ST-GAN ST-GAN

Face-Sunglasses 75 84% 73%

Street Scene-Car 80 - 61%

6.2.1 Qualitative analysis and baselines

In Figure 5, we compare the performance of our model with
ST-GAN [16], which assumes images of faces (or street
scenes) as a fixed background and warps the glasses (or the
cars) in a geometric warp parameter space. Our results in
the paired and unpaired cases, shown in Figure 5, look more
realistic in terms of the scale and location of the foreground
object. More examples are presented in the Appendix. In
the street scene-car composition, we do not have any paired
data and can only evaluate the unpaired model.

6.2.2 User evaluations

To confirm our qualitative observations, we asked 60 eval-
uators to score our model predictions versus ST-GAN, with
the results summarized in Table 2. This experiment con-
firms the superiority of our network to the state-of-the-art
model in composing a background image with a foreground.

7. Conclusion and Future Work

In this paper, we proposed a novel Compositional GAN
model addressing the problem of object composition in con-
ditional image generation. Our model captures the relative
affine and viewpoint transformations needed to be applied
to each input object (in addition to the pixels occlusion or-



dering) to generate a realistic joint image. We use a decom-
position network as a supervisory signal to improve the task
of composition both at training and test times. We evaluated
our compositional GAN through multiple qualitative exper-
iments and user evaluations for two cases of paired versus
unpaired training data on synthetic and real data sets. In
the future, we plan to extend this work toward modeling
photometric effects (e.g., lighting) in addition to generating
images composed of multiple (more than two) and/or non-
rigid objects.
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Appendix
A. Model Architecture

In this section, we explain the architecture of our rela-
tive appearance flow network and the relative spatial trans-
former networks in more details.

A.1. Relative Appearance Flow Network (RAFN)

Our relative appearance flow network (RAFN) trans-
forms the viewpoint of one object given that of the other
object encoded in its binary mask, orthogonal to our main
CoDe pipeline. Independent of having access to the paired
or unpaired compositional data sets, we need a data set con-
taining different viewpoints of the two objects to supervise
this network, as discussed in the paper. The architecture
of this network is illustrated in Figure 6. RAFN is com-
posed of an encoder-decoder set of convolutional layers to
predict the appearance flow vectors, which after a bilinear
sampling generate the synthesized view of one of the ob-
jects consistent with the viewpoint of the other masked in-
put. Another decoder following the same encoder network
predicts the foreground mask of the synthesized image, the
last row of layers in Figure 6 [36]. All convolutional layers
are followed by batch normalization [9] and a ReLU acti-
vation layer except for the last convolutional layer in each
decoder. In the flow decoder, the output is fed into a Tanh
layer while in the mask prediction decoder, the last convo-
lutional layer is followed by a Sigmoid to be in the range
[0, 1].

A.2. Relative spatial transformer network

The diagram of our relative spatial transformer network
is represented in Figure 7. The two input images (e.g., chair
and table) are concatenated channel-wise and fed into a lo-
calization network [1 1] to generate two sets of parameters,
01, 05, for the affine transformations to be applied on each
object, respectively. This single network is simultaneously
trained on the two images to transform each object to its
corresponding transposed target. In this figure, the orange
feature maps are the outputs of the conv2d layer (repre-
sented along with their corresponding number of channels
and dimensions), and the yellow maps are the outputs of the
max-pool2d followed by a ReLU. The blue layers also
represent fully connected layers.

B. Additional Results

Here, we present additional test examples in different
compositional domains as well as an ablation study to clar-
ify the role of different components in our proposed model.
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Figure 6. Relative Appearance Flow Network: Input is an image of a chair with three RGB channels concatenated channel-wise with the
table foreground mask. Output is the appearance flow for synthesizing a new viewpoint of the chair. All layers are convolutional.
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Figure 7. Relative Spatial Transformer Network: First input with three RGB channels (e.g., image of a chair) concatenated channel-wise
with the second RGB image (e.g., image of a table). The network generates two transformed images each with three RGB channels.

B.1. Composing a chair with a table

On the challenging problem of composing a chair with
a table, we illustrate more test examples in Figure 8 and a
few failure test examples in Figure 9 for both paired and
unpaired training models. Here, the viewpoint and linear
transformations in addition to the pixel occlusion ordering
should be performed properly to generate a realistic image.

B.2. Composing a bottle with a basket

In the bottle-basket composition, the main challenging
problem is the relative scaling of the objects besides their
partial occlusions. In Figure 10, we visualize more test ex-
amples and study the performance of our model before and
after the ESMR step for both paired and unpaired scenarios.
The third column of this figure represents the nearest neigh-
bor training example found for each new input pair, (X,Y"),

in terms of their features extracted from the last layer of
a pre-trained VGG19 network [27]. Moreover, the sev-
enth column shows outputs of the network trained with un-
paired data when the inpainting component is removed dur-
ing training. These examples confirm the necessity of the
inpainting network while training our compositional GAN
model with unpaired data.

B.3. Ablation study

We repeat the experiments on composing a bottle with
a basket, with each component of the model removed at
a time, to study their effect on the final composite image.
Qualitative results are illustrated in Figure 11. The first
and second columns show bottle and basket images concate-
nated channel-wise as the input of the network. Following
columns are:
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Figure 8. Test results on the chair-table composition task trained with either paired or unpaired data. “NN” stands for the nearest neighbor
image in the paired training set, and “Nolnpaint” shows the results of the unpaired model without the inpainting network. In both paired
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Figure 9. Failure test cases for both the paired and unpaired models
on the chair-table composition task.

- third column: no pixel reconstruction loss on the compos-
ite image results in the wrong color and faulty occlusion,

- fourth column: no cross-entropy mask loss in training re-
sults in faded bottles,

- fifth column: no GAN loss in training and inference gen-
erates outputs with a different color and lower quality than
the input image,

- sixth column: no decomposition generator (Gge.) and self-
consistent cycle results in partially missed bottles,

- seventh, eighth columns represent full model in paired and
unpaired scenarios, respectively.

~after

show outputs of the generator before and after the ESMR approach, respectively. Also, ¢5 ' represents

B.4. Other baselines:

Our model is designed for the challenging composition
problem that requires learning the spatial layout, relative
scaling, occlusion, and viewpoint of the two object im-
ages to generate a realistic composite image. However,
the conditional GAN models such as CycleGAN [38] and
Pix2Pix [10] address the image translation problem from
one domain to another by only changing the appearance of
the input image. Here, we compare our model with these
two networks in the basket-bottle composition task, where
the mean scaling and translating parameters of our train-
ing set are used to place each bottle and basket together to
have an input with three RGB channels, illustrated in the
ninth column in Figure 11. We train a ResNet generator
on our paired training data with an adversarial loss added
with an L regularizer. Since the structure of the input im-
age is different from its corresponding ground-truth image,
due to different object scalings and layouts, ResNet model
works better than a U-Net but still generates unrealistic im-
ages, presented in the tenth column in Figure 11. We follow
the same approach for the unpaired data and the CycleGAN
model with the results in the eleventh column in Figure 11.
Our qualitative results confirm the difficulty of learning the
transformation between samples from the input distribution
and the real composite domain for the Pix2Pix or Cycle-
GAN networks.

B.5. Composing a face with sunglasses

Adding a pair of sunglasses to an arbitrary face image
requires a proper linear transformation of the sunglasses to
align well with the face. We illustrate several test exam-
ples of this composition problem in Figure 12 including the
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Figure 10. More test results on the basket-bottle composition task trained with either paired or unpaired data. “NN” stands for the nearest
neighbor image in the paired training set, and “Nolnpaint” shows the results of the unpaired model without the inpainting network. In both
paired and unpaired cases, ™™ and & show outputs of the generator before and after the ESMR approach, respectively. Also, &
represents summation of masked transposed inputs after ESMR.
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Figure 11. (a) Ablation Study: Output of our model without the component specified on top of each column. Input is the channel-wise
concatenation of the bottle and basket shown in the first two columns, (b) Baselines: As the input (9th column), each bottle is added to the
basket after being scaled and translated with constant parameters. Pix2Pix and CycleGAN outputs are shown on the right.
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results of both paired and unpaired training scenarios in the
third and fourth columns, respectively. Besides, the last col-
umn of each composition example represents the outputs of
the ST-GAN model [16].

B.6. Composing a street scene with a car

In this section, we illustrate more examples on the com-
position of the street scenes from the Cityscapes dataset
with arbitrary center-aligned cars. This composition re-
quires an appropriate affine transformation to be applied
to the cars and make them aligned with the street scene.

We compare our results with ST-GAN [16] and provide the
nearest neighbor training image to each composite test ex-
ample in terms of their VGG-19 features.
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Figure 12. Test examples for the face-sunglasses composition task. First two columns show the input sunglasses and face images, 3rd
and 4th columns show the output of our compositional GAN for the paired and unpaired models, respectively. Last column shows images
generated by the ST-GAN [16] model.
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Figure 13. Test examples for the street scenes-cars composition task. First two columns show the input car and street images, 3rd and
4th columns show the output of our compositional generator before and after the inference meta-refinement step, respectively. The 5th
column shows our model’s output by directly adding the masked inputs. The 6th and 7th columns correspond with images generated by
the ST-GAN [16] model and the nearest neighbor training images.



