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Abstract This paper addresses the problem of infer-

ring unseen cross-modal image-to-image translations

between multiple modalities. We assume that only some

of the pairwise translations have been seen (i.e. trained)

and infer the remaining unseen translations (where

training pairs are not available). We propose mix and

match networks, an approach where multiple encoders

and decoders are aligned in such a way that the de-

sired translation can be obtained by simply cascading

the source encoder and the target decoder, even when

they have not interacted during the training stage (i.e.

unseen). The main challenge lies in the alignment of

the latent representations at the bottlenecks of encoder-

decoder pairs. We propose an architecture with sev-

eral tools to encourage alignment, including autoen-

coders and robust side information and latent consis-
tency losses. We show the benefits of our approach in

terms of effectiveness and scalability compared with

other pairwise image-to-image translation approaches.

We also propose zero-pair cross-modal image transla-

tion, a challenging setting where the objective is in-

ferring semantic segmentation from depth (and vice-

versa) without explicit segmentation-depth pairs, and

only from two (disjoint) segmentation-RGB and depth-

RGB training sets. We observe that a certain part of the

shared information between unseen modalities might

not be reachable, so we further propose a variant that

leverages pseudo-pairs which allows us to exploit this

shared information between the unseen modalities.
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1 Introduction

For many computer vision applications, the task is to

estimate a mapping between an input image and an out-

put image. This family of methods is often known as

image-to-image translations (image translations here-

inafter). They include transformations between differ-

ent modalities, such as from RGB to depth (Liu et al.,

2016), or domains, such as luminance to color im-

ages (Zhang et al., 2016), or editing operations such as

artistic style changes (Gatys et al., 2016). These map-

pings can also include other 2D representations such as

semantic segmentations (Long et al., 2015) or surface

normals (Eigen and Fergus, 2015). One drawback of the

initial research on image translations is that the meth-

ods required paired data to train the mapping between

the domains (Long et al., 2015; Eigen and Fergus, 2015;

Isola et al., 2017). Another class of algorithms, based

on cycle consistency, address the problem of mapping

between unpaired domains (Kim et al., 2017; Yi et al.,

2017; Zhu et al., 2017a). These methods are based on

the observation that translating from one domain to

another and translating back to the original domain

should result in recovering the original input image.

The discussed approaches consider translations be-

tween two domains which are either paired or unpaired.

However, for many real-world applications there ex-

ist both paired and unpaired domains simultaneously.

Consider the case of image translation between multi-

ple modalities, where for some of them we have access

to aligned data pairs but not for all modalities. The aim

would then be to exploit the knowledge from the paired

modalities to obtain an improved mapping for the un-

paired modalities. An example of such a translation set-

ting is the following: you have access to a set of RGB

images and their semantic segmentation, and a (differ-
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Fig. 1: Overview of mix and match networks

(M&MNets) and zero-pair translation. Two disjoint

datasets are used to train seen translations between

RGB and segmentation and between RGB and depth

(and vice versa). We want to infer the unseen depth-

to-segmentation translation (i.e. Zero-pair translation).

The M&MNets approach builds the unseen translator

by simply cascading the source encoder and target de-

coder (i.e. depth and segmentation, respectively). Best

viewed in color.

ent) set of RGB images and their corresponding depth

maps, but you are interested in obtaining a mapping

from depth to semantic segmentation (see Figure 1). We

call this the unseen translation because we do not have

pairs for this translation, and we refer to this setting as

zero-pair translation. Zero-pair translation is typically

desired when we extend an experimental setup with an

additional camera in another modality. We now would

like to immediately exploit this new sensor without the

cost of labelling new data. In this paper, we provide a

new approach to address the zero-pair translation prob-

lem.

We propose a new method, which we call mix and

match networks, which addresses the problem of learn-

ing a mapping between unpaired modalities by seeking

alignment between encoders and decoders via their la-

tent spaces1. The translation between unseen modali-

ties is performed by simply concatenating the source

modality encoder and the target modality decoder (see

Figure 1). The success of the method depends on the

alignment of the encoder and decoder for the un-

seen translation. We study several techniques that con-

tribute to achieve alignment, including the usage of au-

toencoders, latent space consistency losses and the us-

age of robust side information to guide the reconstruc-

tion of spatial structure.

1 The code is available online at
http://github.com/yaxingwang/Mix-and-match-networks.

We evaluate our approach in a challenging cross-

modal task, where we perform zero-pair depth to se-

mantic segmentation translation (or semantic segmen-

tation to depth translation), using only RGB-depth

and RGB-semantic segmentation pairs during training.

Furthermore, we show that the results can be further

improved by using pseudo-pairs between the unseen

modalities that allow the network to exploit unseen

shared information. We also show that our approach

can be used for cross-modal translation and with un-

paired data. In particular, we show that mix and match

networks scale better with the number of modalities,

since they are not required to learn all pairwise image

translation networks (i.e. they scale linearly instead of

quadratically).

This article is an extended version of a previous con-

ference publication (Wang et al., 2018b). We have in-

cluded more analysis and insight about how mix and

match networks exploit the information shared between

modalities, and propose an improved mix and match

networks framework with pseudo-pairs which allows

us to access previously unexploited shared informa-

tion between unseen modalities (see Section 5). This

was found to significantly improve performance. In ad-

dition, Wang et al. (2018b) only report results on a

synthetic dataset. Here we also provide results on real

images (SUN RGB-D dataset (Song et al., 2015)) and

four modalities (Freiburg Forest dataset (Valada et al.,

2016)). Furthermore, we have added more insights on

how the alignments between encoders and decoders

evolve during training.

2 Related work

In this section we discuss the literature of related re-

search areas.

2.1 Image-to-image translation

Paired translations Generic encoder-decoder ar-

chitectures have achieved impressive results in a wide

range of transformations between images. Isola et al.

(2017) proposed pix2pix, which is a conditional gen-

erative adversarial network (conditional GAN) (Good-

fellow et al., 2014; Mirza and Osindero, 2014) trained

with pairs of input and output images to learn a vari-

ety of image translations. Those translations include

cross-domain image translations such as colorization

and style transfer. Gonzalez-Garcia et al. (2018) dis-

entangle the information of the domains in the latent

space, which allows to do cross-domain retrieval as well

as perform one-to-many translations. The ability of
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(a) Paired translation (b) Unpaired translation (c) Unsupervised domain adapt. (d) Zero-pair translation

Fig. 2: cross-modal translation train and test settings: (a) paired translation, (b) unpaired translation, (c) un-

supervised domain adaptation for segmentation (two modalities and two domains in the RGB modality), (d)

zero-paired translation (three modalities). Best viewed in color.

GANs to generate realistic images also enables pix2pix

to address effectively challenging cross-modal transla-

tions, such as semantic segmentation to RGB image.

In this case, recent multi-scale architectures (Chen and

Koltun, 2017; Wang et al., 2018a) achieve better results

in higher resolution images.

Unpaired translations Various works extended im-

age translation to the case where no explicit input-

output image pairs are available (unpaired image trans-

lation), using the idea of cyclic consistency (Kim et al.,

2017; Yi et al., 2017; Zhu et al., 2017a; Lin et al., 2018)

or consistency between certain extracted features (Taig-

man et al., 2017). To avoid accidental artifacts and im-

prove learning, Mejjati et al. (2018) integrate an at-

tention mechanism to help translations focus on se-

mantically meaningful regions. Liu et al. (2017) show

that unsupervised mappings can be learned by impos-

ing a joint latent space between the encoder and the

decoder. Both TransGaGa (Wu et al., 2019) and TraV-

eLGAN (Amodio and Krishnaswamy, 2019) address the

issues of image translation across large geometry varia-

tions. The former disentangles image space in a Carte-

sian product of the appearance and the geometry latent

spaces, and the latter considers a Siamese network to

replace the cycle-consistency constraint.

In this work, we consider the case where paired data

is available between some modalities and not available

between others (i.e. zero-pair), and how the knowl-

edge can be transferred to those unseen translations.

Whereas previous work has focused on unpaired do-

mains of the same modality, we show results for un-

paired domains of different modalities.

Diversity in translations Given an input image (e.g.

an edge image or a grayscale image) there are often mul-

tiple possible solutions (e.g. different plausible coloriza-

tions). The paired translation framework was extended

to one-to-many translations in the work of Zhu et al.

(2017b). DRIT (Lee et al., 2018), MUNIT (Huang et al.,

2018) and Augmented CycleGAN (Almahairi et al.,

2018) can learn one-to-many translations in unpaired

settings. In general, disentangled representations allow

achieving diversity by keeping the content component

and sampling the style component of the latent repre-

sentation (Mathieu et al., 2016; Gonzalez-Garcia et al.,

2018; Lee et al., 2018). Cho et al. (2019) propose a novel

group-wise deep whitening-and-coloring method to im-

prove computational efficiency. Alharbi et al. (2019)

scale the latent filter to avoid a complicated network

framework to perform one-to-many translations.

Multi-domain translations We also consider the

case of multiple domains (and modalities). In concur-

rent work, Choi et al. (2018) also address scaling to

multiple domains by using a single encoder-decoder

model, which was previously explored by Perarnau

et al. (2016). Chen et al. (2019) effectively disentan-

gle the intermediate states between source and target

domains. Wang et al. (2019) perform diverse and scal-

able image transfer by a single model. These works fo-

cus on faces and changing relatively superficial and lo-

calized attributes such as make-up, hair color, gender,

etc., always within the RGB modality. In contrast, our

approach uses multiple cross-aligned modality-specific

encoders and decoders, which are necessary to address

the deeper structural changes required by our cross-

modal setting. Anoosheh et al. (2018) also use multiple

encoders-decoders but focus on the easier cross-domain

task of style transfer.

2.2 Semantic segmentation and depth estimation

Semantic image segmentation aims at assigning each

pixel to an object class. Long et al. (2015) propose fully

convolutional networks (FCN), following an encoder-

decoder structure. Since the FCN shows outstanding

performance, this paradigm has been adopted in many

current methods for semantic segmentation (Badri-

narayanan et al., 2015; Ronneberger et al., 2015; Yu

and Koltun, 2016; Chen et al., 2018; Zhao et al., 2017).
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Of particular interest is SegNet (Badrinarayanan et al.,

2015), which we adapt in our method. SegNet intro-

duces the use of pooling indices instead of copying en-

coder features (i.e. skip connections, as in U-Net (Ron-

neberger et al., 2015)). We also consider pooling indices

in our architecture for zero-pair image translation be-

cause we found them to be more robust and invariant

under unseen translations.

Depth estimation aims at estimating the depth

structure of an RGB image, usually represented as a

depth map encoding the distance of each pixel to the

camera. Most depth estimation methods are formalized

as regression problems, where the aim is to minimize

the mean squared error (MSE) with respect to a ground

truth depth map. In general, an encoder-decoder archi-

tecture is used, often incorporating multiscale networks

and skip connections (Liu et al., 2016; Wang et al., 2015;

Roy and Todorovic, 2016; Eigen and Fergus, 2015; Kim

et al., 2016; Kuznietsov et al., 2017; Laina et al., 2016).

Multi-modal encoder-decoders With the de-

velopment of multi-sensor cameras and datasets (Lai

et al., 2011; Silberman et al., 2012; Song et al., 2015),

encoder-decoder architectures have been adapted to

multi-modal inputs (Ngiam et al., 2011), where dif-

ferent modalities (e.g. RGB, depth, infrared, surface

normals) are encoded and combined prior to the de-

coding. The network is trained to perform tasks such

as multi-modal object recognition (Eitel et al., 2015;

Cheng et al., 2016; Song et al., 2015), scene recogni-

tion (Song et al., 2017, 2015), object detection (Gupta

et al., 2016) (with simple classifiers or regressors as de-

coders in these cases) and semantic segmentation (Sil-

berman et al., 2012; Kendall et al., 2018; Wang and

Neumann, 2018). Similarly, multi-task learning can be

applied to reconstruct multiple modalities (Eigen and

Fergus, 2015; Kendall et al., 2018). For instance Eigen

and Fergus (2015) estimate depth, surface normals and

semantic segmentation from a single RGB image, which

can be seen as cross-modal translation.

Training a multi-task multimodal encoder-decoder

network was recently studied by Kuga et al. (2017).

They use a joint latent representation space for the var-

ious modalities. In our work we consider the alignment

and transferability of pairwise image translations to un-

seen translations, rather than joint encoder-decoder ar-

chitectures. Another multimodal encoder-decoder net-

work was studied by Cadena et al. (2016). They show

that multi-modal autoencoders can address the depth

estimation and semantic segmentation tasks simultane-

ously, even in the absence of some of the input modali-

ties. All these works do not consider the zero-pair image

translation problem addressed in this paper.

2.3 Zero-shot recognition

In conventional supervised image recognition, the ob-

jective is to predict the class label that is provided dur-

ing training. However, this poses limitations in scalabil-

ity to new classes, since new training data and annota-

tions are required. In zero-shot learning (Lampert et al.,

2014; Fu et al., 2017; Xian et al., 2018a,b; Akata et al.,

2016), the objective is to predict an unknown class for

which there is no image available, but a description of

the class (i.e. class prototype) or any other source of se-

mantic similarity with seen classes. This description can

be a set of attributes (e.g. has wings, blue, four legs, in-

door) (Lampert et al., 2014; Jayaraman and Grauman,

2014), concept ontologies (Fergus et al., 2010; Rohrbach

et al., 2011) or textual descriptions (Reed et al., 2016).

In general, an intermediate semantic space is leveraged

as a bridge between the visual features from seen classes

and class description from unseen ones. In contrast to

zero-shot recognition, we focus on unseen translations

(unseen input-output pairs rather than simply unseen

class labels).

2.4 Zero-pair language translation

Evaluating models on unseen language pairs has been

studied recently in machine translation (Johnson et al.,

2016; Chen et al., 2017; Zheng et al., 2017; Firat et al.,

2016). Johnson et al. (2016) proposed a neural language

model that can translate between multiple languages,

even pairs of language where no explicit paired sen-

tences where provided2. In their method, the encoder,

decoder and attention are shared. In our method we

focus on images, which are essentially a radically dif-

ferent type of data, with two dimensional structure in

contrast to the sequential structure of language.

2.5 Domain adaptation

A related line of research is unsupervised domain adap-

tation. In that case the task is to transfer knowl-

edge from a supervised source domain to an unsu-

pervised target domain (see Figure 2c). This problem

has been addressed by finding domain invariant fea-

ture spaces (Gong et al., 2012; Ganin and Lempitsky,

2015; Tsai et al., 2018), using image translation mod-

els to map between source and target domain (Wu

2 Note that Johnson et al. (2016) refers to this as zero-shot
translation. In this paper we refer to this setting as zero-pair
to emphasize that what is unseen is paired data and avoid
ambiguities with traditional zero-shot recognition which typ-
ically refers to unseen samples.
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(a) All seen (b) Seen and unseen

Fig. 3: Multi-domain image translation using pairwise

translations: (a) all translations are seen during train-

ing, and (b) our setting: some translations are seen,

then test on unseen. Best viewed in color.

et al., 2018), and exploiting pseudo-labels (Saito et al.,

2017; Zou et al., 2018). Knowledge can also be trans-

ferred across modalities (Gupta et al., 2016; Castre-

jon et al., 2016; Hoffman et al., 2016b,a). For instance,

Gupta et al. (2016) use cross-modal distillation to learn

depth models for classification by distilling RGB fea-

tures (from pretrained model trained on a much larger

RGB dataset), through a large set of unlabeled RGB-D

pairs. Modality adaptation can also be achieved using

cross-modal translation(Xu et al., 2017; Zhang et al.,

2019).

When comparing this line of research with the set-

ting we consider in this paper (i.e. zero-pair translation)

there are some important differences. The unsupervised

domain adaptation setting (see Figure 2c) typically in-

volves two modalities (e.g. RGB and segmentation),

and two domains within the RGB modality (e.g. syn-

thetic and real). Paired data is available only for the

synthetic-segmentation while the synthetic-real trans-

lation is unpaired, and the unseen translation is real-

segmentation (with test paired data). In contrast, our

setting (see Figure 2d) is more challenging involving

three modalities, with one disjoint paired training set

for each seen translation. In comparison, using paired

data to tackle domain shift allows us to reach much

larger and challenging domain shifts and even modality

shifts, a setting which, to the best of our knowledge, is

not considered in the domain adaptation literature.

3 Multi-modal image translations

We consider the problem of image translation between

multiple modalities. In particular, a translation from

a source modality X (i) to a target modality X (j) is

a mapping Tij : x(i) 7→ x(j). This mapping is imple-

mented as an encoder-decoder chain x(j) = Tij
(
x(i)
)

=

gj
(
fi
(
x(i)
))

with source encoder fi and target decoder

(a) Cascade (b) Mix&match (c) Ideal

Fig. 4: Inferring unseen translations: (a) cascading

translators, (b) mix and match networks (M&MNets),

and (c) ideal case of encoders-decoders with aligned rep-

resentations. Best viewed in color.

gj . Translations between modalities connected during

training are all learned jointly, and in both directions.

Note that the encoder and decoder of translation Tij
are different from those of Tji. In order to perform any

arbitrary translation between modalities, all pairwise

translations must be trained (i.e. seen) during the train-

ing stage (see Figure 3a).

In this article we address the case where only a sub-

set of the translations are seen during training, while

the rest remain unseen (see Figure 3b). Our objective

is to be able to infer these unseen translations during

test time.

3.1 Inferring unseen translations

In the case where some of the translations are un-

seen during training, we could still try to infer them

by reusing the available networks. Here we discuss two

possible ways: cascading translators, which we use as

baseline, and the proposed mix and match networks ap-

proach.

Cascaded translators Assuming there is a path of

seen translations between the source modality and the

target modality via intermediate modalities (see Fig-

ure 3b), a possible solution is simply concatenating the

seen translators across this path. This will result in a

mapping from the source to the target modality by re-

constructing images in the intermediate modalities (see

Figure 4a). However, the success of this approach de-

pends on the effectiveness of the intermediate transla-

tors.

Unpaired translators An alternative is to frame

the problem as unpaired translation between the source

and target modalities and disregard the other modali-

ties, learning a translation using methods based on cy-

cle consistency (Zhu et al., 2017a; Kim et al., 2017; Yi

et al., 2017; Liu et al., 2017). This approach requires
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training an unpaired translator per unseen translation.

In general, unpaired translation can be effective when

the translation is within the same modality and involves

a relatively small shift between source and target do-

mains (e.g. body texture in horse-to-zebra), but strug-

gles in the more challenging case of cross-modal trans-

lations.

Mix and match networks (M&MNets) We pro-

pose to obtain the unseen translator by simply con-

catenating the encoder of the source modality and the

decoder of the target modality (see Figure 4b). The

problem is that these two networks have not directly

interacted during training, and therefore, for this ap-

proach to be successful, the two latent spaces must be

aligned.

3.2 Aligning for unseen translations

The key challenge in M&MNets is to ensure that the

latent representation from the encoders can be decoded

by all decoders, including those unseen (see Figure 4c).

In order to address this challenge, encoders and de-

coders must be aligned in their latent representations.

In addition, the encoder-decoder pair should be able to

preserve the spatial structure, even in unseen transla-

tions.

In the following we describe the different techniques

we use to enforce feature alignment between unseen

encoder-decoder pairs.

Shared encoders and decoders Sharing encoders

and decoders is a basic requirement to reuse latent rep-

resentations and reduce the number of networks.

Autoencoders We jointly train modality-specific au-

toencoders with the image translation networks. By

sharing the weights between the auto-encoders and

the image translation encoder-decoder pairs the latent

space is forced to align.

Robust side information In general, image trans-

lation tasks result in output images with similar spa-

tial structure as the input ones, such as scene layouts,

shapes and contours that are preserved across the trans-

lation. In fact, this spatial structure available in the

input image is critical to simplify the problem and

achieve good results, especially in cross-modal trans-

lations. Successful image translation methods often use

multi-scale intermediate representations from the en-

coder as side information to guide the decoder in the

upsampling process. Examples of side information are

skip connections (He et al., 2016; Ronneberger et al.,

2015) and pooling indices (Badrinarayanan et al., 2015;

Li et al., 2018). We exploit side information in cross-

modal translation (see discussion in Section 4.4).

Latent space consistency (only in paired set-

tings) When paired data between some modalities

is available, we can enforce consistency in the latent

representations of each direction of the translations.

Taigman et al. (2017) use L2 distance between a la-

tent representation and the reconstructed after another

decoding and encoding cycle. Here we enforce the repre-

sentations fi
(
x(i)
)

and fj
(
x(j)

)
of two paired samples(

x(i), x(j)
)
, to be aligned, since both images represent

the same content (just in two different modalities). This

is done by introducing a latent space consistency loss

which is defined as
∥∥fi (x(i))− fj (x(j))∥∥2. We exploit

this constraint in zero-pair image translation (see Sec-

tion 4).

Adding noise to latent space The latent space

consistency we apply is based on reducing the differ-

ence between the fi
(
x(i)
)

and fj
(
x(j)

)
. The network

can minimize this loss by aligning the representations

of fi
(
x(i)
)

and fj
(
x(j)

)
, but it could also minimize it

by just reducing the signal
∥∥fi (x(i))∥∥ and

∥∥fj (x(j))∥∥.

This would reduce the latent space consistency loss but

not improve the alignment. Adding noise to the output

of each encoder prevents this problem, since reducing

the signal would then hurt the translation and auto-

encoder losses. In practice, we found that adding noise

helps to train the networks and improves the results

during test.

3.3 Scalable image translation with M&MNets

As the number of modalities increases, the number

of pairwise translations grows quadratically. Training

encoder-decoder pairs for all pairwise translations in

N modalities would require N × (N − 1)/2 encoders

and N × (N − 1)/2 decoders (see Figure 3a). One of

the advantages of M&MNets is their better scalability,

since many of those translations can be inferred with-

out explicitly training them (see Figure 3b). It requires

that each encoder and decoder should be involved in at

least one translation pair during training in order to be

aligned with the others, thereby reducing complexity

from quadratic to linear with the number of modalities

(i.e. N encoders and N decoders).

3.4 Translating domains instead of modalities

Although we described the proposed framework for

cross-modal translation, the same framework can be

easily adapted to cross-domain image translation. In

that case, the modality is the same (typically RGB)

and the translation is arguably less complex since the
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network does not need to learn to change the modal-

ity, just the domain. It can be learned sometimes with

unpaired data (e.g. style transfer, face attributes and

expressions).

Here we use cross-domain image translation to illus-

trate the scalability of M&MNets. The datasets (color

and artworks) and the network architectures are pro-

vided in Appendix B. Figure 5 shows two examples in-

volving multi-domain unpaired image translation. Fig-

ure 5a-b shows an image recoloring application with

eleven domains (N = 11). Images are objects in the

colored objects dataset (Yu et al., 2018), where we use

colors as domains. A naive solution is training all pair-

wise recoloring combinations with CycleGANs, which

requires training a total of N (N − 1) /2 = 55 encoders

(and decoders). In contrast, M&MNets only require to

train eleven encoders and eleven decoders, while still

successfully addressing the recoloring task. In partic-

ular, all translations from or to the blue domain are

trained, while the remaining translations not involv-

ing blue are unseen. The input images (framed in red)

and the resulting seen translations (framed in blue) are

shown in Figure 5a. The additional images in Figure 5b

correspond to the remaining unseen translations.

We also illustrate M&MNets in a style transfer set-

ting with five domains. They include photo (used as

anchor domain) and four artistic styles with data from

Zhu et al. (2017a)). M&MNets can reasonably infer

unseen translations between styles (see Figure 5d) us-

ing only five encoders and five decoders (for a total of

twenty possible translations). Note that the purpose of

these examples is to illustrate the scalability aspect of

M&MNets in multiple domains, not to compete with

state-of-the-art recoloring or style transfer methods.

4 Zero-pair cross-modal translation

Well aligned M&MNets can be applied to a variety of

problems. Here, we apply them to a challenging set-

ting we call zero-pair cross-modal translation, which in-

volves three modalities3. Note that cross-modal trans-

lations usually require modality-specific architectures

and losses.

4.1 Problem definition

We consider the problem of jointly learning two seen

cross-modal translations: RGB-to-segmentation trans-

lation y = TRS (x) (and x = TSR (y)) and RGB-to-

3 For simplicity, we will refer to the output semantic seg-
mentation maps and depth as modalities rather than tasks,
as done in some works.

depth translation z = TRD (x) (and x = TDR (z)) and

evaluating on the unseen depth-to-segmentation trans-

formations y = TDS (z) and z = TSD (y) (see Fig-

ures 1 and 2c). In contrast to the conventional unpaired

translation setting, here seen translations have paired

data (cross-modal translation is difficult to learn with-

out paired samples). In particular, we consider the case

where the former translations are learned from a seman-

tic segmentation dataset DRS with pairs (x, y) ∈ DRS

of RGB images and segmentation maps, and the sec-

ond from a disjoint RGB-D dataset DRD with pairs

of RGB and depth images (x, z) ∈ DRD. Therefore no

pairs with matching depth images and segmentation

maps are available to the system. The system is evalu-

ated on a third dataset DDS with paired depth images

and segmentation maps.

4.2 Mix and match networks architecture

The overview of the framework is shown in Fig-

ure 6. As basic building blocks we use three modality-

specific encoders fR (x), fD (z) and fS (y) (RGB, depth

and semantic segmentation, respectively), and the cor-

responding three modality-specific decoders gR (h),

gD (h) and gS (h), where h is the latent representation

in the shared space. The required translations are im-

plemented as y = TRS (x) = gS (fR (x)), z = TRD (x) =

gD (fR (x)) and y = TDS (z) = gS (fD (z)).

Encoder and decoder weights are shared across the

different translations involving same modalities (same

color in Figure 6). To enforce better alignment be-

tween encoders and decoders of the same modality, we

also include self-translations using the corresponding

three autoencoders TRR(x) = gR (fR (x)), TDD(y) =

gD (fD (y)) and TSS(z) = gS (fS (z)).

We base our encoders and decoders on the SegNet

architecture (Badrinarayanan et al., 2015). The encoder

of SegNet itself is based on the 13 convolutional lay-

ers of the VGG-16 architecture (Simonyan and Zisser-

man, 2015). The decoder mirrors the encoder archi-

tecture with 13 deconvolutional layers. Weights in en-

coders and decoders are randomly initialized following

a standard Gaussian distribution except for the RGB

encoder which is pretrained on ImageNet (Deng et al.,

2009).

As in SegNet, pooling indices at each downsam-

pling layer of the encoder are provided to the corre-

sponding upsampling layer of the (seen or unseen) de-

coder4. These pooling indices seem to be relatively sim-

4 The RGB decoder does not use pooling indices, since in
our experiments we observed undesired grid-like artifacts in
the RGB output when we use them.
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(a) Input+seen (b) Input+seen+unseen (c) Input+seen (d) Input+seen+unseen

Fig. 5: Two examples of scalable inference of multi-domain translations with M&MNets. Color transfer (a-b):

only transformations from blue or to blue (anchor domain) are seen. Style transfer (c-d): trained on four styles

+ photo (anchor) with data from Zhu et al. (2017a). From left to right: photo, Monet, van Gogh, Ukiyo-e and

Cezanne. Input images are highlighted in red and seen translations in blue. Best viewed in color.

ilar across the three modalities and effective to trans-

fer spatial structure information that help to obtain

better depth and segmentation boundaries in higher

resolutions. Thus, they provide relatively modality-

independent side information. We also experimented

with skip connections and no side information at all.

4.3 Loss functions

As we mentioned before, for a correct cross-alignment

between encoders and decoders, training is critical for

zero-pair translation. The final loss combines a number

of modality-specific losses for both cross-modal transla-

tion and self-translation (i.e. autoencoders) and align-

ment constraints in the latent space

L = λRLRGB + λSLSEG + λDLDEPTH + λALLAT

where λR, λS , λD and λA are weights which balance

the losses.

RGB We use a combination of pixelwise L2 distance

and adversarial loss LRGB = λL2LL2 + LGAN . L2 dis-

tance is used to compare the ground truth RGB image

and the output RGB image of the translation from a

corresponding depth or segmentation image. It is also

used in the RGB autoencoder

LL2 = E(x,y)∼DRS
[‖TSR (y)− x‖2] (1)

+ E(x,z)∼DRD
[‖TDR (z)− x‖2] (2)

+ Ex∼DRS

⋃
DRD

[‖TRR (x)− x‖2] (3)

In addition, we also include the least squares adversarial

loss (Mao et al., 2016; Isola et al., 2017) on the output

of the RGB decoder

LGAN = Ex∼DRS

⋃
DRD

[
(C (x)− 1)

2
]
+Ex̂∼p̂(x)

[
(C (x̂))

2
]

where p̂(x) is the resulting distribution of the combined

images x̂ generated by x̂ = TSR (y), x̂ = TDR (z) and

x̂ = TRR (x). Note that the RGB autoencoder and the

discriminator C (x) are both trained with the combined

RGB data X .

Depth For depth we use the Berhu loss (Laina et al.,

2016) in both RGB-to-depth translation and in the

depth autoencoder

LDEPTH = E(x,z)∼DRD
[B (TRD (x)− z)] (4)

+ E(x,z)∼DRD
[B (TDD (z)− z)] (5)

where B (z) is the average Berhu loss, which is given by

B (z′ − z) =

{
|(z′ − z)| |z′ − z| 6 c
(z′−z)

2
+c2

2c |z′ − z| > c
(6)

where z′ = TRD (x), and c = 1
5maxi (|z′i − zi|), where i

indexes the pixels of each image.

Semantic segmentation For segmentation we use

the average cross-entropy loss CE (ŷ, y) in both RGB-

to-segmentation translation and the segmentation au-

toencoder

LSEM = E(x,y)∼DRS
[CE (TRS (x) , y)] (7)

+ E(x,y)∼DRS
[CE (TSS (y) , y)] . (8)

Latent space consistency We enforce latent rep-

resentations to remain close, independently of the en-

coder that generated them. In our case we have two

latent space consistency losses

LLAT = LLAT1 + LLAT2 (9)

LLAT1 = E(x,y)∼DRS
[‖fR (x)− fS (y)‖2] (10)

LLAT2 = E(x,z)∼DRD
[‖fR (x)− fD (z)‖2] (11)
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Fig. 6: Zero-pair cross-modal and multi-modalimage translation with M&MNets. Two disjoint sets DRS and

DRD are seen during training, containing (RGB,depth) pairs and (RGB,segmentation) pairs, respectively. The

system is tested on the unseen translation depth-to-segmentation (zero-pair) and (RGB+depth)-to-segmentation

(multimodal), using a third unseen set DDS . Encoders and decoders with the same color share weights. Note that

we do not apply pooling indices for RGB decoders. Best viewed in color.

4.4 The role of side information

Spatial side information plays an important role in im-

age translation, especially in cross-modal translation

(e.g. semantic segmentation). Reconstructing images

requires reconstructing spatial details. Side information

from a particular encoder layer can provide helpful hints

to the decoder about how to reconstruct the spatial

structure at a specific scale and level of abstraction.

Skip connections Perhaps the most common type

of side information connecting encoders and decoders

comes in the form of skip connections, where the fea-

ture from a particular layer is copied and concatenated

with another feature further in the processing chain. U-

Net (Ronneberger et al., 2015) introduced a widely used

architecture in image segmentation and image transla-

tion where convolutional layers in encoder and decoder

are mirrored and the feature of a particular encoding

layer is concatenated with the feature with the corre-

sponding layer at the decoder. It is important to observe

that skip connections make the decoder heavily con-

dition on the particular features of the encoder. This

is not a problem in general because translations are

usually seen during training and therefore latent rep-

resentations are aligned. However, in our setting with

unseen translations that conditioning is simply catas-

trophic, because the target decoder is only aware of the

features in encoders from modalities seen during train-

ing. Otherwise, as in the case of an unseen encoder, the

result is largely unpredictable.

Pooling indices The SegNet architecture (Badri-

narayanan et al., 2015) includes unpooling layers that

leverage pooling indices from the mirror layers of the

encoder. Pooling indices capture the locations of the

maximum values in the input feature map of a max

pooling layer. These locations are then used to guide

the corresponding unpooling operation in the decoder,

helping to preserve finer details. Note that pooling in-

dices are more compact descriptors than encoder fea-

tures from skip connections, and since the unpooling

operation is not learned, pooling indices are less de-

pendent on the particular encoder and therefore more

robust for unseen translations.
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5 Shared information between unseen

modalities

5.1 Shared and modality-specific information

The information conveyed by the latent representation

is key to perform image translation. Encoders extract

this information from the input image and decoders use

it to reconstruct the output image. In general, this la-

tent representation can contain information shared be-

tween the source and target modalities, and information

specific to each modality. In a setting where the same

latent representation is used across multiple encoders

and decoders, the latent representation must capture

information about all input and output modalities.

We can represent modalities as circles, whose inter-

sections represent shared information between them.

Figure 7a represents the particular case of zero-pair

cross-modal translation with three modalities (de-

scribed in the previous section). Note that transla-

tors and autoencoders force the latent representation

to capture both shared and modality-specific informa-

tion. However, the better the information shared be-

tween modalities is captured in the latent representa-

tion, the more effective cross-modal translations are.

The framework described in Section 4.2 enables the

inference of unseen translations via the anchor modality

RGB, whose encoder and decoder are shared across the

two seen translations. That is the only component that

indirectly enforces alignment of depth and segmenta-

tion encoders and decoders. Therefore, the latent infor-

mation used in the unseen translation is the one shared

by the three modalities.

In contrast, the information shared between depth

and segmentation that is not shared with RGB (the

dashed region in Figure 7a) is not exploited during

training by depth and segmentation encoders and de-

coders, because it is of no use to solve any of the seen

translations. This makes inferred translations less ef-

fective because depth and segmentation encoders are

ignoring potentially useful information that could im-

prove translation to segmentation and depth, respec-

tively. In this section, we propose an extension of our

basic framework that aims at explicitly enforcing align-

ment between unseen modalities in order to exploit all

shared information between unseen modalities (see the

highlighted region in Figure 7b). Since no training pairs

between those modalities are available, that alignment

requires to be between unpaired samples.

(a) Seen shared information (b) Seen+unseen shared in-
formation

(c) Color opponents example

Fig. 7: Specific and shared information: (a) basic mix

and match nets (see Fig 6) ignore depth-segmentation

shared information, (b) extended mix and match net

exploiting depth-segmentation shared information (un-

paired information in our case), and (c) illustration us-

ing color opponents (trained on (Θ1,Θ2) and (Θ1,Θ3),

and evaluated on unseen translation (Θ2,Θ3)). Best

viewed in color.

Fig. 8: Pseudo-pairs pipeline on the unseen translation.

This pipeline is combined with the basic cross-modal

M&MNets of Fig 6.

5.2 Exploiting shared information between unseen

modalities

We adapt the idea of pseudo-labels, used previously

in unsupervised domain adaptation (Saito et al., 2017;

Zou et al., 2018), to our zero-pair cross-modal setting.

The main idea is that we would also like to train di-

rectly the encoder-decoder between the unseen modal-



Mix and match networks: cross-modal alignment for zero-pair image-to-image translation 11

ities. However, since we have no paired data between

these modalities, we propose to use pseudo-pairs.

In our specific zero-pair cross-modal setting, recall

we use x, y, and z to respectively indicate data from

the the RGB, semantic segmentation and depth modal-

ity. We use the encoder-decoder networks between the

seen modalities to form the pseudo-pairs (TRD(x), y)

and (TRS(x), z). Now we can also train encoders and

decoders between the unseen modalities depth and seg-

mentation (see Figure 8) using the following loss:

LPP = E(x,y)∼DRS
[B (TRD (x)− TSD (y))] (12)

+ E(x,z)∼DRD
[CE (TRS (x) , TDS (z))] (13)

where B is the average Berhu loss (Laina et al., 2016),

and CE is the cross-entropy loss. The direct training of

the encoder-decoder between the unseen modality al-

lows us to exploit correlation between features in these

modalities for which no evidence exists in the RGB

modality (dashed region in Figure 7a). In practice we

first train the network without the pseudo-labels. Af-

ter convergence we add LPP and train further with all

losses until final convergence.

Note that this additional term encourages the

segmentation-to-depth and depth-to-segmentation

translators to exploit this shared information between

the unseen modalities, including the previously ignored

one, in order to improve the translation to match the

one obtained from RGB. The latter is more accurate

since it has been trained with paired samples. A

problem with this approach is that this new loss can

harm the training of seen translations from RGB, since

pseudo-labels are less reliable than true labels. For this

reason we do not update the weights of the translators

involving RGB with the pseudo-pairs (this is indicated

with the red line in Figure 8).

5.3 Pseudo-pair example

To illustrate the potential of pseudo-pairs we consider

a cross-domain image translation example where the

not-used part between the unpaired domains (striped

region in Figure 7) is expected to be substantial. We

consider the task of estimating an RGB image from a

single channel. In particular, we consider the following

three domains5

Θ1 = R−G
Θ2 = G−B
Θ3 = (R,G,B)

(14)

5 We choose the opponent channels because they are less
correlated than the R, G and B channels (Geusebroek et al.,
2001).

Type Method Accuracy (%)

Seen
Paired

M&MNets Θ1 → Θ3 75.0

Unseen
Zero-pair

M&MNets Θ2 → Θ3 36.5
M&MNets+PP Θ2 → Θ3 57.5

Seen/unseen
Multi-modal

M&MNets (Θ1, Θ2)→ Θ3 77.5
M&MNets + PP (Θ1, Θ2)→ Θ3 80.5

Table 1: Flower classification accuracy obtained on Θ3

computed for various image translation models. The im-

portance of pseudo-pairs can be clearly seen.

where Θ1 and Θ2 are scalar images and Θ3 is a three

channel RGB image (see Figure 7c). Both domains Θ1

and Θ2 contain relevant and complementary informa-

tion on estimating the RGB image.

For this experiment we use the ten most frequent

classes of the Flower dataset (Nilsback and Zisserman,

2008) which are passionflower, petunia, rose, wallflower,

watercress, waterlily, cyclamen, foxglove, frangipani, hi-

biscus. For training we have pairs (Θ1, Θ2) and (Θ1,

Θ3) of non-overlapping images. For test we use a sepa-

rate test set. To evaluate the quality of the computed

RGB images, we apply a flower classification algorithm

on them and report the classification accuracy (See Ap-

pendix C).

The results are presented in Table 1. In the first

two rows the result of M&MNets with and without

pseudo-pairs are compared. The usage of pseudo-pairs

results in a huge absolute performance gain of 21%.

This shows that, for domains which have considerable

amounts of complementary information, pseudo-pairs

can significantly improve performance. In the next two

rows, we have also included the multi-modal results.

In this case the pseudo-pairs double the performance

gain with respect to the paired domain (last row) from

77.5− 75 = 2.5% to 80.5− 75 = 5.5%.

The qualitative results are provided in Figure 9. The

results show the effectiveness of the pseudo-pairs. The

method without the pseudo-pairs can only exploit in-

formation which is shared between the three domains.

The domain Θ1 contains information about the red-

green color axes, and the mix and match nets (without

pseudo-pairs) approach does partially manage to recon-

struct that part (see first row Figure 9). However, Θ1

has no access to the blue-yellow information which is

encoded in the Θ2. Adding the pseudo-pairs allows to

exploit this information and the reconstructed RGB im-

ages are closer to the ground truth image (see second

and third row Figure 9).
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Fig. 9: Visualization of RGB image estimation in

Flowers dataset. (a) input image from Θ2 (via seen

translation), (b) zero pair translation without pseudo-

pairs (Wang et al., 2018b), (c) zero pair with the

pseudo-pairs (PP), (d) ground truth.

6 Experiments

In this section we demonstrate the effectiveness of

M&MNets and their variants to address unseen transla-

tions in the challenging cross-modal translation setting

involving the modalities RGB, depth and segmentation.

6.1 Datasets and experimental settings

We use two RGB-D datasets annotated with segmen-

tation maps, one with synthetic images and the other

with real captured images. A third dataset also includes

near infrared (NIR) as a fourth modality.

SceneNet RGB-D The SceneNet RGB-D

dataset (McCormac et al., 2017) consists of 16865 syn-

thesized training videos and 1000 test videos. Each of

them contains 300 frames representing the same scene

in a multi-modal triplet (RGB, depth and segmenta-

tion), with a size of 320x240 pixels. We collected 150K

triplets for our training set, 10K triplets for our valida-

tion set and 10K triplets for our test set. The triplets

are sampled uniformly from the first frame to the last

frame every 30 frames. The triplets for the validation

set are collected from the remaining training videos and

the test set is taken from the test dataset.

In order to evaluate zero-pair translation, we di-

vided the training set (and validation set) into two

equal non-overlapping splits from different videos (to

avoid covering the same scenes). We discard depth im-

ages in one set and segmentation maps in the other,

thus creating two disjoint training sets with paired in-

stances, DRS and DRD respectively, to train our model.

SUN RGB-D The SUN RGBD dataset (Song et al.,

2015) contains 10335 real RGB-D images of room

scenes. Each RGB image has a corresponding depth and

segmentation map. We collected two sets: 10K triplets

for the training set and 335 triplets for test set. For the

training set, we split it into two disjoint subsets, one

containing (RGB, segmentation) pairs, and the other

containing (RGB, depth) pairs, each of them consisting

of 5K pairs.

Freiburg Forest The Freiburg Forest dataset (Val-

ada et al., 2016) consists of images of 1024×768. We

crop images (RGB, depth, NIR and semantic segmen-

tation) to 256×256. We consider five different semantic

classes: Sky, Trail, Grass, Vegetation and Obstacle. Note

we combine the tree and vegatation into an single class

(Vegetation) as suggested in (Valada et al., 2016). We

use the training and test datasets splits provided by the

authors.

Network training We use Adam (Kingma and Ba,

2014) with a batch size of 6, using a learning rate of

0.0002. We set λR = 1, λS = 100, λD = 10, λA = 1,

λL2 = 1. We initially train the mix and match frame-

work without autoencoders, without latent consistency

losses, and without adding noise during the first 200K

iterations. Then we freeze the RGB encoder, add the

autoencoders, latent consistency losses and noise to the

latent space, and for the following 200K iterations we

use λR = 10, λA = 10, λL2 = 100. We found that

the network converges faster using a larger λA for the

second stage. The noise is sampled from a Gaussian

distribution with zero mean and a standard deviation

of 0.5. For the variant with pseudo-pairs, in a third

stage we include the pseudo-pair pipeline and the cor-

responding loss and train for another additional 100K

iterations, using λPP = 100 and learning rate 0.00002.

We experimentally found that the above setting also

achieves outstanding performance on the Freiburg For-

est dataset. The network information is displayed in

Appendix A.

Evaluation metrics Following common practice, for

the segmentation modality we compute the intersection

over union (IoU) and per-class average (mIoU), and

the global scores, which gives the percentage of cor-

rectly classified pixels. For the depth modality we also

include quantitative evaluation, following the standard
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error metrics for depth estimation (Eigen and Fergus,

2015):

δ < =
1

|y|
∑
yi∈y

[δ(yi, y
′
i) < ν]

RMSE (linear) =

√
1

|y|
∑
yi∈y
‖yi − y′i‖

2

RMSE (log) =

√
1

|y|
∑
yi∈y
‖log yi − log y′i‖

2

(15)

where y and y′ are the predicted and ground truth

depth images, δ(u, v) = max(u
v ,

v
u ) and [P ] is the Iver-

son bracket which is 1 when P is true and 0 otherwise.

6.2 Experiments on SceneNet RGB-D

6.2.1 Ablation study

We first performed an ablation study on the impact of

several design elements on the overall performance of

the system. We use a smaller subset of SceneNet RGB-

D based on 51K triplets from the first 1000 videos (se-

lecting 50 frames from the first 1000 videos for training,

and the first frame from another 1000 videos for test).

Side information We first evaluate the usage of

side information from the encoder to guide the upsam-

pling process in the decoder. We consider three variants:

no side information, skip connections (Ronneberger

et al., 2015) and pooling indices (Badrinarayanan et al.,

2015). The results in Table 2 show that skip connections

obtain worse results than no side information at all.

This is caused by the fact that side information makes

the decoder(s) conditioned on the seen encoder(s). This

is problematic for unseen translations because the fea-

tures passed through skip connections are different from

those seen by the decoder during training, resulting in a

drop in performance. In contrast, pooling indices pro-

vide a significant boost over no side information. Al-

though the decoder is still conditioned to the particular

seen encoders, pooling indices seem to provide helpful

spatial hints to recover finer details, while being more

invariant to the particular input-output combination,

and even generalizing to unseen ones.

Figure 10 illustrates the differences between these

three variants in depth-to-segmentation translation.

Without side information the network is able to re-

construct a coarse segmentation, but without further

guidance it is not able to refine it properly. Skip con-

nections completely confuse the decoder by providing

unseen encoding features. Pooling indices are able to

Side information Pretrained mIoU Global
- N 29.8% 61.6%

Skip connections N 12.7% 50.1%
Pooling indices N 43.2% 73.5%
Pooling indices Y 46.7% 78.4%

Table 2: Influence of side information and RGB encoder

pretraining on the final results. The task is zero-shot

depth-to-semantic segmentation in SceneNet RGB-D

(51K).

Fig. 10: Role of side information in unseen depth-to-

segmentation translation in SceneNet RGB-D.

provide helpful hints about spatial structure that al-

lows the unseen decoder to recover finer segmentation

maps.

RGB pretraining We also compare training the

RGB encoder from scratch and initializing with pre-

trained weights from ImageNet. Table 2 shows an ad-

ditional gain of around 4% in mIoU when using the

pretrained weights.

Given these results we perform all the remaining ex-

periments initializing the RGB encoder with pretrained

weights and use pooling indices as side information.

Latent space consistency, noise and autoen-

coders We evaluate these three factors in Table 3.

The results show that latent space consistency and the

usage of autoencoders lead to significant performance

gains; for both, the performance (in mIoU) is more

than doubled. Adding noise to the output of the en-

coder results in a small performance gain. The results

in Table 3 do not apply pooling indices for the RGB

decoder (as also shown in Fig. 6). When we add pool-

ing indices to our approach without pseudo-pairs, re-

sults drop from 46.7% to 42.4% in mIoU. This could

be because we focus on unseen translations to depth or

segmentation modalities, which do not include recon-
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AutoEnc Latent Noise PP mIoU Global
N N N N 6.48% 15.7%
Y N N N 20.3% 49.4%
Y Y N N 45.8% 76.9%
Y Y Y N 46.7% 78.4%
Y Y Y Y 49.2% 80.5%

Table 3: Impact of several components (autoencoder,

latent space consistency loss, noise and pseudo-pairs)

in the performance. The task is zero-pair depth-to-

segmentation in SceneNet RGB-D (51K). PP: pseudo-

pairs.

structing the RGB modality. We believe that forcing

the RGB decoder to use pooling indices to reconstruct

RGB images lowers the efficiency of the latent repre-

sentation to reconstruct depth or segmentation. Hence,

we sacrifice some of the performance translating to the

RGB modality to improve the results for depth and se-

mantic segmentation.

Pseudo-pairs We also evaluate the impact of us-

ing pseudo-pairs to exploit shared information between

unseen modalities. Table 3 shows a significant gain of

almost 3% in mIoU and a more moderate gain in global

accuracy.

In the following sections we use the SceneNet RGB-

D dataset with 170K triplets.

6.2.2 Monitoring alignment

The main challenge for M&MNets is to align the differ-

ent modality-specific bottleneck features, in particular

for unseen translations. We measure the alignment be-

tween the features extracted from the triplets in the test
set DDS . For each triplet (x, y, z) (i.e. RGB, segmen-

tation and depth images) we extract the correspond-

ing triplet of latent features (fR (x) , fS (y) , fD (z)) and

measure their average pairwise cross-modal alignment.

The alignment between RGB and segmentation features

is measured using the following alignment factor

AFRS = E(x,y)∼DRS

[
fR (x)

ᵀ
fS (y)

‖fR (x)‖ ‖fS (y)‖

]
(16)

The other alignment factors AFRD and AFDS between

RGB and depth features and between depth and seg-

mentation features are defined analogously. Figure 11

shows the evolution of this alignment during training

and across the different stages. The three curves follow

a similar trend, with the alignment increasing in the

first iterations of each stage and then stabilizing. The

beginning of stage two shows a dramatic increase in

the alignment, with a more moderate increase at stage

three. These results are consistent with those of the

ablation study of the previous section, showing that

Fig. 11: Monitoring alignment between latent features

on SceneNet RGB-D.

better alignment typically leads to better results in un-

seen translations. Overall, they show that latent space

consistency, autoencoders, pseudo-pairs and pooling in-

dices contribute to the effectiveness of M&MNets to ad-

dress unseen image translation in the zero-pair setting.

6.2.3 Comparison with other models

In this section we compare M&MNets, and its variant

with pseudo-pairs with several baselines:

– CycleGAN. We adapt CycleGAN (Zhu et al.,

2017a) to learn a mapping from depth to semantic

segmentation (and vice versa) in a purely unpaired

setting. In contrast to M&MNets, this method only

leverages depth and semantic segmentation, ignor-

ing the available RGB data and the corresponding

pairs (as shown in Figure 2a).

– 2×pix2pix. We adapt pix2pix (Isola et al., 2017)

to learn two cross-modal translations from paired

data (i.e. D → R and R → S). The architecture

uses skip connections (which are effective in this

case since both translations are seen) and the cor-

responding modality-specific losses. We adapt the

code from (Isola et al., 2017). In contrast to ours, it

requires explicit decoding to RGB, which may de-

grade the quality of the prediction.

– StarGAN. We consider two adaptations of the

StarGAN (Choi et al., 2018). Both versions share

the same network architecture for all modalities ex-

cept for the first layer of the encoder and the last

layer of of decoder which are modality-specific lay-

ers. This is required since modalities vary in the

number of channels. The first version, called Star-

GAN(unpaired), uses the losses originally proposed

in (Choi et al., 2018). We also implement a version

which exploits the paired data, which we call Star-
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GAN(paired). For this version, we removed the cycle

consistency (which is not required for paired modal-

ities). We found this to slightly improve results.

– D → R → S is similar to 2×pix2pix but with the

architecture used in M&MNets. We train a transla-

tion model from depth to RGB and from RGB to

segmentation, and obtain the transformation depth-

to-segmentation by concatenating them. Note that

it also requires translating to intermediate RGB im-

ages.

– S → R→ D is analogous to the previous baseline.

– M&MNets is the original mix and match net-

works (Wang et al., 2018b).

– M&MNets+PP is the variant of M&MNets using

pseudo-pairs.

– Oracle is the upper bound obtained by training a

translation fully supervised with paired data.

Table 4 shows results for the different methods for

depth-to-segmentation translation. CycleGAN is not

able to learn a good mapping, showing the difficulty of

unpaired translation to solve this complex cross-modal

task. 2×pix2pix manages to improve the results by re-

sorting to the anchor modality RGB, although still not

satisfactory since this sequence of translations does not

enforce explicit alignment between depth and segmen-

tation, and the first translation network may also dis-

card information not relevant for the RGB task, but

necessary for reconstructing the segmentation image

(like in the Chinese whispers/telephone game). Also,

both results for StarGAN show that this approach is

unable to learn a good mapping between the unseen

modalities.

M&MNets evaluated on (D → R → S) achieve

a similar result as CycleGAN, but significantly worse

than 2×pix2pix. However, when we run our architec-

ture with skip connections we obtain results similar to

2×pix2pix. Note that in this setting translations only

involve seen encoders and decoders, so skip connections

function well. The direct combination (D → S) with

M&MNets outperforms all baselines significantly. The

performance more than doubles in terms of mIoU. Re-

sults improve another 5% in mIoU when adding the

pseudo-pairs during training.

Figure 12 shows a representative example of the

differences between the evaluated methods. CycleGAN

fails to recover any meaningful segmentation of the

scene, revealing the difficulty to learn cross-modal

translations without paired data. 2×pix2pix manages

to recover the layout and coarse segmentation, but fails

to segment medium and small size objects. M&MNets

are able to obtain finer and more accurate segmenta-

tions.

Fig. 12: Zero-pair depth-to-segmentation translation on

SceneNet RGB-D.

Fig. 13: Zero-pair and multimodal segmentation-to-

depth on SceneNet RGB-D.

Table 5 shows results when we test in the oppo-

site direction from semantic segmentation to depth.

The conclusions are similar as in previous experiment:

M&MNets outperform both baseline methods on all five

evaluation metrics. Figure 13 illustrates this case, show-

ing how pooling indices are also key to obtain good

depth images, compared with no side information at

all. The variant with pseudo-pairs obtains the best re-

sults.

6.2.4 Multi-modal translation

Since features from different modalities are aligned,

we can also use M&MNets for multi-modal transla-

tion. For instance, in the previous multi-modal setting,
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Baselines
CycleGAN SC CE 2.79 0.00 16.9 6.81 4.48 0.92 7.43 0.57 9.48 0.92 0.31 17.4 15.1 6.34 14.2
2×pix2pix SC CE 34.6 1.88 70.9 20.9 63.6 17.6 14.1 0.03 38.4 10.0 4.33 67.7 20.5 25.4 57.6

StarGAN(unpaired) PI CE 6.71 1.42 17.6 6.21 13.2 1.25 8.51 0.52 12.8 3.24 4.28 9.52 8.57 7.21 10.7
StarGAN(paired) PI CE 9.70 2.56 18.4 5.70 15.7 0.41 9.20 1.56 14.2 5.02 3.56 14.7 11.4 8.62 14.1

M&MNets D → R→ S PI CE 0.02 0.00 8.76 0.10 2.91 2.06 1.65 0.19 0.02 0.28 0.02 58.2 3.30 5.96 32.3
M&MNets D → R→ S SC CE 25.4 0.26 82.7 0.44 56.6 6.30 23.6 5.42 0.54 21.9 10.0 68.6 19.6 24.7 59.7

Zero-pair
M&MNets D → S PI CE 50.8 18.9 89.8 31.6 88.7 48.3 44.9 62.1 17.8 49.9 51.9 86.2 79.2 55.4 80.4

M&MNets+PP D → S PI CE 52.1 29.0 88.6 32.7 86.9 66.9 48.4 76.6 25.1 45.5 58.8 88.5 82.0 60.1 82.2
Multi-modal

M&MNets (R,D)→ S PI CE 49.9 25.5 88.2 31.8 86.8 56.0 45.4 70.5 17.4 46.2 57.3 87.9 79.8 57.1 81.2
M&MNets+PP (R,D)→ S PI CE 53.3 35.7 89.9 37.0 88.6 59.3 55.8 76.9 25.7 46.6 69.6 89.5 80.0 62.2 83.5

Oracle
D → S PI CE 53.7 31.0 89.1 31.4 88.2 66.8 52.7 78.4 25.7 47.4 59.3 89.7 82.2 61.2 83.4

(R,D)→ S PI CE 58.4 40.8 91.3 41.6 90.7 61.5 57.6 80.9 36.8 51.6 72.6 88.4 83.1 65.7 84.0

Table 4: Zero-pair depth-to-segmentation translation on SceneNet RGB-D. SC: skip connections, PI: pooling

indexes, CE: cross-entropy, PP: pseudo-pairs. x

Method
δ < RMSE RMSE

1.25 1.252 1.253 (lin) (log)
Baselines
CycleGAN 0.05 0.12 0.20 4.63 1.98
2×pix2pix 0.14 0.31 0.46 3.14 1.28

StarGAN(unpaired) 0.05 0.14 0.23 4.60 1.96
StarGAN(paired) 0.07 0.15 0.26 4.58 1.94

M&MNets S → R→ D 0.15 0.30 0.44 3.24 1.24
Zero-pair

M&MNets S → D 0.33 0.42 0.59 2.80 0.67
M&MNets+PP S → D 0.42 0.61 0.79 2.24 0.60

Multi-modal
M&MNets (R,S)→ D 0.36 0.48 0.65 2.48 0.64

M&MNets+PP (R,S)→ D 0.47 0.69 0.81 1.98 0.49
Oracle
S → D 0.49 0.72 0.85 1.94 0.43

(R,S)→ D 0.51 0.76 0.90 1.79 0.29

Table 5: Zero-pair segmentation-to-depth on SceneNet

RGB-D.

given the RGB and depth images of the same scene

we can translate to segmentation. We simply combine

both modality-specific latent features x and z using a

weighted average y = (1− α)x+ αz, where α controls

the weight of each modality. We set α = 0.2 and use

the pooling indices from the RGB encoder (instead of

those from depth encoder). The resulting feature y is

then decoded using the segmentation decoder. We pro-

ceed analogously to translation from RGB and segmen-

tation to depth. The results in Table 4 and Table 5 show

that this multi-modal combination further improves the

performance of zero-pair translation, as the example in

Figure 13 illustrates.

6.3 Experiments on SUN RGB-D

The previous results were obtained on the SceneNet

RGB-D dataset which consists of synthetic images.

Here we also show that M&MNets can be effective for

the more challenging dataset SUN RGB-D, which in-

volves real images and more limited data. The results in

Table 6 and Table 7 show that M&MNets consistently

outperform the other baselines in both unseen trans-

lation directions, with the new variant with pseudo-

pairs obtaining the best performance. Similarly, multi-

modal translation further improves the performance.

Figures 15 and 16 illustrate how the proposed meth-

ods can reconstruct more reliably the target modality,

especially the finer details.

The results also show that the depth cue is insuf-

ficient to detect some of the classes such as Book and

TV. The oracle results show that this is also the case

when you have access to depth-semantic segmentation

pairs. The results also show that our multi-modal re-

sults are biased towards RGB: this is reflected in the

bad results which are obtained for the class bed which

is well detected in the depth modality but not in the

RGB modality, and also not by our multi-modal sys-

tem. Examples of these cases are provided in Fig. 14.

6.4 Experiments on four modalities

As an example of zero-pair translation for an applica-

tion with more than three modalities we perform ex-

periments on the Freiburg Forest dataset which con-

tains the RGB, depth, NIR and semantic segmentation
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Baselines
CycleGAN SC CE 0.00 0.00 0.00 17.9 46.9 1.67 4.59 0.00 0.00 18.9 0.00 29.6 25.4 11.1 26.3
2×pix2pix SC CE 3.88 0.00 12.4 29.6 57.1 17.2 13.0 35.4 8.07 35.1 0.00 47.0 7.73 20.5 38.6

StarGAN(unpaired) PI CE 0.00 0.00 2.45 15.8 33.6 5.73 6.28 0.57 0.00 6.25 0.00 28.4 26.9 9.69 20.6
StarGAN(paired) PI CE 0.00 0.00 2.01 20.2 38.9 4.12 5.78 0.31 0.00 7.30 0.00 31.5 30.7 10.8 23.8

M&MNets D → R→ S PI CE 0.00 0.00 0.00 17.0 39.4 0.52 0.01 0.00 0.01 12.2 0.00 31.0 5.19 8.12 22.8
M&MNets D → R→ S SC CE 39.9 0.25 15.2 37.6 58.0 19.0 11.7 2.45 4.82 36.9 0.00 46.8 12.3 21.9 40.6

Zero-pair
M&MNets D → S PI CE 28.4 2.90 22.6 41.9 71.6 14.1 25.1 17.8 11.8 49.7 0.08 64.2 15.5 28.1 51.8

M&MNets+PP D → S PI CE 29.8 4.52 28.5 44.1 73.3 17.2 27.5 20.1 9.81 53.4 0.14 67.5 17.9 30.2 54.2
Multi-modal

M&MNets (R,D)→ S PI CE 0.00 16.6 21.4 56.0 72.1 24.2 28.3 38.1 21.7 57.0 64.6 68.0 43.7 39.4 58.8
M&MNets+PP (R,D)→ S PI CE 0.10 19.3 25.5 54.6 74.6 25.6 30.1 42.4 21.0 58.1 65.2 69.0 49.7 41.1 59.8

Oracle
D → S PI CE 32.6 8.01 36.5 56.8 84.7 20.4 31.4 19.7 8.75 61.7 1.60 72.1 21.2 35.1 62.3

(R,D)→ S PI CE 0.13 21.2 26.4 56.2 78.9 26.9 35.2 44.4 23.2 60.2 67.3 71.2 52.3 43.3 62.5

Table 6: Zero-pair depth-to-semantic segmentation on SUN RGB-D. SC: skip connections, PI: pooling indexes,

CE: cross-entropy, PP: pseudo-pairs.

Fig. 14: Failure cases of the proposed framework on

SUN RGB-D. See text for discussion.

Method
δ < RMSE RMSE

1.25 1.252 1.253 (lin) (log)
Baselines
CycleGAN 0.06 0.13 0.24 4.80 1.57
2×pix2pix 0.13 0.34 0.59 3.80 1.30

StarGAN(unpaired) 0.06 0.12 0.22 5.04 1.59
StarGAN(paired) 0.07 0.15 0.27 4.60 1.55

M&MNets S → R→ D 0.12 0.35 0.62 3.90 1.36
Zero-pair

M&MNets S → D 0.45 0.66 0.78 1.75 0.53
M&MNets+PP S → D 0.49 0.77 0.90 1.42 0.37

Multi-modal
M&MNets (R,S)→ D 0.53 0.80 0.92 1.63 0.35

M&MNets+PP (R,S)→ D 0.56 0.83 0.93 1.33 0.34
Oracle
S → D 0.61 0.88 0.97 1.20 0.30

(R,S)→ D 0.64 0.92 0.98 0.98 0.27

Table 7: Zero-pair semantic segmentation-to-depth on

SUN RGB-D.

modalities. For the training we use the settings used in

the previous experiments, and add a Berhu loss (see

Eq. 5) for NIR in this experiment.

Fig. 15: Example of zero-pair depth-to-segmentation

on SUN RGB-D.

In the provided dataset all modalities are recorded

for all scenes, however we consider that we have pairs

for RGB and semantic segmentation, and we have a

non-overlapping dataset of triplets for RGB, Depth,

and NIR (see Figure 17). This scenario could be con-

sidered realistic. It reflects a situation where initially

the robot only has an RGB camera, and labellers have

provided semantic segmentation maps for these images.

Then two additional sensors are added later to the

robot, but no segmentation maps are available for this

newly obtained multi-modal data.

As we can see in Table 8, our method achieves the

best scores. In the case of zero-pair setting (M&MNets

D → S, M&MNets N → S, M&MNets+PP D → S
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Fig. 16: Example of zero-pair segmentation-to-depth

on SUN RGB-D.

Fig. 17: Cross-modal translations in the Freiburg Forest

dataset experiment: (a) training, (b) test (zero-shot)

and (c) test (multimodal). We show only translations

to semantic segmentation for simplicity.

and M&MNets+PP N → S) the results obtain a large

gap when compared to the baselines, clearly demon-

strating the superiority of our method. For example, for

N → S we obtain an increase of 22% over 2×pix2pix.

The multi-modal results show that adding more modal-

ities further increases results. Mainly, the performance

on the category obstacle increases. Figure 18 shows rep-

resentative examples of the different methods. The con-

clusions are similar to previous experiments: we effec-

tively conduct cross-modal translation with zero-pair

data and pseudo-labeling further improves the results.

7 Conclusions

We have introduced mix and match networks as a

framework to perform image translations between un-

seen modalities by leveraging the knowledge learned

from seen translations with explicit training data. The

key challenge lies in aligning the latent representations

in the bottlenecks in such a way that any encoder-

decoder combination is able to perform effectively

its corresponding translation. M&MNets have advan-

tages in terms of scalability since only seen transla-

tions need to be trained. We also introduced zero-pair

cross-modal translation, a challenging scenario involv-

ing three modalities and paired seen and unseen trans-

lations. In order to effectively address this problem,

we described several tools to enforce the alignment of

latent representations, including autoencoders, latent

consistency losses, and robust side information. In par-

ticular, our results show that side information is critical

to perform satisfactory cross-modal translations, but

conventional side information such as skip connections

may not work properly with unseen translations. We

found that pooling indices are more robust and invari-

ant, and provide helpful hints to guide the reconstruc-

tion of spatial structure.

We also analyzed a specific limitation of the original

M&MNets (Wang et al., 2018b) in the zero-pair setting,

which is that a significant part of the shared features

between unseen modalities is not exploited. We pro-

posed a variant that generates pseudo-pairs to enforce

the networks to use more information between unseen

modalities, even when that information is not shared by

seen translations. The effectiveness of M&MNets with

pseudo-pairs has been evaluated in several multi-modal

datasets.

A potential limitation of our system is that we work

with separate encoder and decoders for each modal-

ity. Some recent cross-domain image translators such

as StarGAN (Choi et al., 2018) and SDIT (Wang et al.,

2019) use a single shared encoder and a single shared

decoder. In that spirit, it could be possible to have par-

tially shared encoders and decoders between different

modalities. However, modality-specific layers would be

still required in more challenging cross-modal transla-

tion.
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A Appendix: Network architecture on RGB-D

or RGB-D-NIR dataset

Table 9 shows the architecture (convolutional and pooling
layers) of the encoders used in the cross-modal experiment.
Tables 10 and 11 show the corresponding decoders. Table 12
shows the discriminator used for RGB. Every convolutional
layer of the encoders, decoders and the discriminator is fol-
lowed by a batch normalization layer and a ReLU layer
(LeakyReLU for the discriminator). The only exception is
the RGB encoder, which is initialized with weights from the
VGG16 model pretrained on imageNet (Simonyan and Zisser-
man, 2015) and does not use batch normalization. The used
abbreviations are shown in Table 16.
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Layer Input →Output Kernel, stride
conv1 (RGB) [6,256,256,3] → [6,256,256,64] [3,3], 1
conv1 (Depth) [6, 256, 256, 1]→ [6, 256, 256, 64] [3,3], 1
conv1 (NIR) [6, 256, 256, 1]→ [6, 256, 256, 64] [3,3], 1

conv1 (Segm.) [6,256,256,14] → [6,256,256,64] [3,3], 1
conv2 [6,256,256,64] → [6,256,256,64] [3,3], 1

pool2 (max) [6,256,256,64] → [6,128,128,64]+indices2 [2,2], 2
conv3 [6,128,128,64] → [6,128,128,128] [3,3], 1
conv4 [6,128,128,128] → [6,128,128,128] [3,3], 1

pool4 (max) [6,128,128,128] → [6,64,64,128]+indices4 [2,2], 2
conv5 [6,64,64,128] → [6,64,64,256] [3,3], 1
conv6 [6,64,64,256] → [6,64,64,256] [3,3], 1
conv7 [6,64,64,256] → [6,64,64,256] [3,3], 1

pool7 (max) [6,64,64,256] → [6,32,32,256]+indices7 [2,2], 2
conv8 [6,32,32,256] → [6,32,32,512] [3,3], 1
conv9 [6,32,32,512] → [6,32,32,512] [3,3], 1
con10 [6,32,32,512] → [6,32,32,512] [3,3], 1

pool10 (max) [6,32,32,512] → [6,16,16,512]+indices10 [2,2], 2
conv11 [6,16,16,512] → [6,16,16,512] [3,3], 1
conv12 [6,16,16,512] → [6,16,16,512] [3,3], 1
conv13 [6,16,16,512] → [6,16,16,512] [3,3], 1
relu13 [6,16,16,512] → [6,16,16,512] -, -

pool13 (max) [6,16,16,512] → [6,8,8,512]+indices13 [2,2], 2

Table 9: The architecture of the encoder of RGB, depth,

NIR and semantic segmentation.

B Appendix: Network architecture on the color

dataset and the artworks dataset

We use several datasets to verify the generality of our method,
including object (Color) and scenes (Artworks).

Color dataset (Yu et al., 2018). We consider the ob-
ject dataset for color which is collected by Yu et al. (2018),
which includes 11 color labels, each category containing 1000
images. We resize all images to 128× 128.

Artworks (Zhu et al., 2017a). We also illustrate
M&MNet in an artwork setting. This includes real images
(photo) and four artistic styles (Monet, van Gogh, Ukiyo-e
and Cezanne). The the set contains 3000 (photo), 800 (Ukiyo-
e), 500 (van Gogh), 600 (Cezanne) and 1200 (Monet) images.
All images are resized to 256× 256.

We consider Adam (Kingma and Ba, 2014) with a batch
size of 4, using a learning rate of 0.0002. The network is ini-
tialized using a Gaussian distribution with zero mean and
a standard deviation of 0.5. We only use adversarial loss to
train our model.

Tables 13-15 show the architectures of the encoder, im-
age decoder and discriminator used in the cross-modal ex-
periment. The following tables only show the image size of
128 × 128, while for artworks dataset it is same architec-
ture except for image resolution. The used abbreviations are
shown in Table 16.

C Appendix: Network architecture for the

Flower dataset

Flower dataset (Nilsback and Zisserman, 2008). The Flower
dataset consists of 102 categories. We consider 10 cate-
gories(passionflower, petunia, rose, wallflower, watercress,
waterlily, cyclamen, foxglove, frangipani, hibiscus). Each cat-
egory includes between 100 and 258 images. we resize the
image to 128× 128.

Similarly, we optimize our model by means of using
Adam (Kingma and Ba, 2014), the batch size of 4 and a
learning rate of 0.0002. We initialize hyperparameters using

layer Input →Output Kernel, stride
unpool1 indices13 + [6,8,8,512] → [6, 16, 16, 512] [2, 2], 2
conv1 [6,16,16,512] → [6, 16, 16, 512] [3,3], 1
BN1 [6,16,16,512] → [6, 16, 16, 512] -, -
relu1 [6,16,16,512] → [6, 16, 16, 512] -, -
conv2 [6,16,16,512] → [6, 16, 16, 512] [3,3], 1
BN2 [6,16,16,512] → [6, 16, 16, 512] -, -
relu2 [6,16,16,512] → [6, 16, 16, 512] -, -
conv3 [6,16,16,512] → [6, 16, 16, 512] [3,3], 1
BN3 [6,16,16,512] → [6, 16, 16, 512] -, -
relu3 [6,16,16,512] → [6, 16, 16, 512] -, -

unpool4 indices10 + [6,16,16,512] → [6, 32, 32, 512] [2, 2], 2
conv4 [6,32,32,512] → [6, 32, 32, 512] [3,3], 1
BN4 [6,32,32,512] → [6, 32, 32, 512] -, -
relu4 [6,32,32,512] → [6, 32, 32, 512] -, -
conv5 [6,32,32,512] → [6, 32, 32, 512] [3,3], 1
BN5 [6,32,32,512] → [6, 32, 32, 512] -, -
relu5 [6,32,32,512] → [6, 32, 32, 512] -, -
conv6 [6,32,32,512] → [6, 32, 32, 256] [3,3], 1
BN6 [6,32,32,512] → [6, 32, 32, 512] -, -
relu6 [6,32,32,512] → [6, 32, 32, 512] -, -

unpool7 indices7 + [6,32,32,256] → [6, 64, 64, 256] [2, 2], 2
conv7 [6,64,64,256] → [6, 64, 64, 256] [3,3], 1
BN7 [6,64,64,256] → [6, 64, 64, 256] -, -
relu7 [6,64,64,256] → [6, 64, 64, 256] -, -
conv8 [6,64,64,256]→ [6, 64, 64, 256] [3,3], 1
BN8 [6,64,64,256] → [6, 64, 64, 256] -, -
relu8 [6,64,64,256] → [6, 64, 64, 256] -, -
conv9 [6,64,64,256]→ [6, 64, 64, 128] [3,3], 1
BN9 [6,64,64,256] → [6, 64, 64, 256] -, -
relu9 [6,64,64,256] → [6, 64, 64, 256] -, -

unpool10 indices4 + [6,64,64,128] → [6, 128, 128, 128] [2, 2], 2
conv10 [6,128,128,128] → [6, 128, 128, 128] [3,3], 1
BN10 [6,128,128,128] → [6, 128, 128, 128] -, -
relu10 [6,128,128,128] → [6, 128, 128, 128] -, -
conv11 [6,128,128,128] → [6, 128, 128, 64] [3,3], 1
BN11 [6,128,128,128] → [6, 128, 128, 128] -, -
relu11 [6,128,128,128] → [6, 128, 128, 128] -, -

unpool12 indices2 + [6,128,128,64] → [6, 256, 256, 64] [2, 2], 2
conv12 [6,256,256,64] → [6, 256, 256, 64] [3,3], 1

conv13 (Depth) [6,256,256,64] → [6, 256, 256, 1] [3,3], 1
conv13 (NIR) [6,256,256,64] → [6, 256, 256, 5] [3,3], 1

conv13 (Segm.) [6,256,256,64] → [6, 256, 256, 14] [3,3], 1

Table 10: The architecture of the decoder of depth, NIR

and semantic segmentation.

layer Input →Output Kernel, stride
conv1 [6,8,8,512] → [6, 16, 16, 512] [3, 3], 1
BN1 [6,16,16,512]→ [6, 16, 16, 512] -, -
relu1 [6,16,16,512]→ [6, 16, 16, 512] -, -
conv2 [6,16,16,512] → [6, 32, 32, 256] [3, 3], 1
BN2 [6,32,32,256]→ [6, 32, 32, 256] -, -
relu2 [6,32,32,256]→ [6, 32, 32, 256] -, -
conv3 [6,32,32,256] → [6, 64, 64, 128] [3, 3], 1
BN3 [6,64,64,128]→ [6, 64, 64, 128] -, -
relu3 [6,64,64,128]→ [6, 64, 64, 128] -, -
conv4 [6,64,64,128] → [6, 128, 128, 64] [3, 3], 1
BN4 [6,128,128,64]→ [6, 128, 128, 64] -, -
relu4 [6,128,128,64]→ [6, 128, 128, 64] -, -
conv5 [6,128,128,64]→ [6, 256, 256, 3] [3, 3], 1

Table 11: The architecture of the decoder of RGB

a Gaussian distribution with zero mean and a standard devi-
ation of 0.5. We use adversarial loss and L2 to train Θ3, and
only L2 for Θ1 and Θ2.

Tables 17 and 18 detail the architecture of the encoder
and decoder, respectively, of the two single channel modalities
Θ1 and Θ2. The encoder and decoder for the third modality
Θ3 are analogous, just adapted to three input and output
channels, respectively. For Θ3 we also use the discriminator
detailed in Table 15.
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layer Input →Output Kernel, stride
deconv1 [6, 256, 256, 3]→ [6, 128, 128, 64] [5, 5], 2
lrelu1 [6, 128, 128, 64]→ [6, 128, 128, 64] -, -

deconv2 [6, 128, 128, 64]→ [6, 64, 64, 128] [5, 5], 2
lrelu2 [6, 64, 64, 128]→ [6, 64, 64, 128] -, -

deconv3 [6, 64, 64, 128]→ [6, 32, 32, 256] [5,5], 2
lrelu3 [6, 32, 32, 256]→ [6, 32, 32, 256] -, -

deconv4 [6, 32, 32, 256]→ [6, 16, 16, 512] [5,5], 2

Table 12: RGB discriminator.

Layer Input →Output Kernel, stride, pad
conv1 [4,128, 128,3] → [4,128, 128, 64] [7,7], 1, 3
IN1 [4,128, 128, 64] → [4,128, 128, 64] -, -, -

pool1 (max) [4,128, 128, 64] →[4,64, 64, 64]+indices1 [2,2], 2, -
conv2 [4,64, 64,64] → [4,64, 64,128] [7,7], 1, 3
IN2 [4,64, 64,128] → [4,64, 64,128] -, -, -

pool2 (max) [4,64, 64,128] →[4,32, 32,128]+indices2 [2,2], 2, -
conv3 [4,32, 32,128] → [4,32, 32,256] [7,7], 1, 3
IN3 [4,32, 32,256] → [4,32, 32,256] -, -, -

pool3 (max) [4,32, 32,256] → [4,16, 16,256]+indices3 [2,2], 2, -
RB(IN)4-9 [4,16, 16,256] → [4,16, 16,256] [7,7], 1, 3

Table 13: The architecture of the encoder for 128× 128

input.

Layer Input →Output Kernel, stride, pad
RB(IN)1-6 [4,16, 16,256] → [4,16, 16,256] [7,7], 1, 3

unpool1 indices3 + [4,16, 16,256] → [4,32, 32,256] [2, 2], 2, -
conv1 [4,32, 32,256] → [4,32, 32,128] [7,7], 1, 3
IN1 [4,32, 32,128] → [4,32, 32,128] -, -, -

unpool2 indices2 + [4,32, 32,128] → [4, 64, 64,128] [2, 2], 2, -
conv2 [4, 64, 64,128] → [4, 64, 64,64] [7,7], 1, 3
IN2 [4, 64, 64,64]→ [4, 64, 64,64] -, -, -

unpool3 indices1 + [4, 64, 64,64] → [4, 128, 128,64] [2, 2], 2, -
conv3 [4, 128, 128,64] → [4, 128, 128,3] [7,7], 1, 3

Table 14: The architecture of the decoder for 128× 128

output.

Layer Input →Output Kernel, stride, pad
conv1 [4,128, 128,3] → [4,64, 64,64] [4,4], 2, 1
lrelu1 [4,64, 64,64] → [4,64, 64,64] -, -, -
conv2 [4,64, 64,64] → [4,32, 32,128] [4,4], 2, 1
lrelu2 [4,32, 32,128] → [4,32, 32,128] -, -, -
conv3 [4,32, 32,128] → [4,16, 16,256] [4,4], 2, 1
lrelu3 [4,16, 16,256] → [4,16, 16,256] -, -, -
conv4 [4,16, 16,256] → [4,8, 8,512] [4,4], 2, 1
lrelu4 [4,8, 8,512] →[4,8, 8,512] -, -, -
conv5 [4,8, 8,512] →[4,8, 8,1] [1,1], 1, 0

Table 15: Architecture for the discriminator Loss spec-

ification for 128× 128 input.

Abbreviation Name
pool pooling layer

unpool unpooling layer
lrelu leaky relu layer
conv convolutional layer
linear fully connection layer
BN batch normalization layer
IN instance normalization layer

RB(IN) residual block layer using instance normalization

Table 16: Abbreviations used in other tables.

Layer Input →Output Kernel, stride, pad
conv1 [4,128, 128,1] → [4,128, 128, 64] [7,7], 1, 3
IN1 [4,128, 128, 64] → [4,128, 128, 64] -, -, -

pool1 (max) [4,128, 128, 64] →[4,64, 64, 64]+indices1 [2,2], 2, -
conv2 [4,64, 64,64] → [4,64, 64,128] [7,7], 1, 3
IN2 [4,64, 64,128] → [4,64, 64,128] -, -, -

pool2 (max) [4,64, 64,128] →[4,32, 32,128]+indices2 [2,2], 2, -
conv3 [4,32, 32,128] → [4,32, 32,256] [7,7], 1, 3
IN3 [4,32, 32,256] → [4,32, 32,256] -, -, -

pool3 (max) [4,32, 32,256] → [4,16, 16,256]+indices3 [2,2], 2, -
RB(IN)4-9 [4,16, 16,256] → [4,16, 16,256] [7,7], 1, 3

Table 17: The architecture of the encoder of Θ1 and Θ2.

Layer Input →Output Kernel, stride, pad
RB(IN)1-6 [4,16, 16,256] → [4,16, 16,256] [7,7], 1, 3

unpool1 indices3 + [4,16, 16,256] → [4,32, 32,256] [2, 2], 2, -
conv1 [4,32, 32,256] → [4,32, 32,128] [7,7], 1, 3
IN1 [4,32, 32,128] → [4,32, 32,128] -, -, -

unpool2 indices2 + [4,32, 32,128] → [4, 64, 64,128] [2, 2], 2, -
conv2 [4, 64, 64,128] → [4, 64, 64,64] [7,7], 1, 3
IN2 [4, 64, 64,64]→ [4, 64, 64,64] -, -, -

unpool3 indices1 + [4, 64, 64,64] → [4, 128, 128,64] [2, 2], 2, -
conv3 [4, 128, 128,64] → [4, 128, 128,1] [7,7], 1, 3

Table 18: The architecture of the decoder for Θ1 and

Θ2.
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