
Noname manuscript No.
(will be inserted by the editor)

Progressive DARTS: Bridging the Optimization Gap for NAS in the Wild

Xin Chen · Lingxi Xie · Jun Wu · Qi Tian

Received: date / Accepted: date

Abstract With the rapid development of neural architecture
search (NAS), researchers found powerful network architec-
tures for a wide range of vision tasks. However, it remains
unclear if the searched architecture can transfer across dif-
ferent types of tasks as manually designed ones did. This
paper puts forward this problem, referred to as NAS in the
wild, which explores the possibility of finding the optimal
architecture in a proxy dataset and then deploying it to mostly
unseen scenarios.

We instantiate this setting using a currently popular al-
gorithm named differentiable architecture search (DARTS),
which often suffers unsatisfying performance while being
transferred across different tasks. We argue that the accu-
racy drop originates from the formulation that uses a super-
network for search but a sub-network for re-training. The
different properties of these stages have resulted in a sig-
nificant optimization gap, and consequently, the architec-
tural parameters “over-fit” the super-network. To alleviate
the gap, we present a progressive method that gradually in-
creases the network depth during the search stage, which
leads to the Progressive DARTS (P-DARTS) algorithm. With
a reduced search cost (7 hours on a single GPU), P-DARTS
achieves improved performance on both the proxy dataset
(CIFAR10) and a few target problems (ImageNet classifi-
cation, COCO detection and three ReID benchmarks). Our
code is available at https://github.com/chenxin061/pdarts.

Keywords Neural Architecture Search · Optimization
Gap · Progressive DARTS

X. Chen and J. Wu
Tongji University
E-mail: {1410452, wujun}@tongji.edu.cn

L. Xie and Q. Tian
Huawei Noah’s Ark Lab
E-mail: 198808xc@gmail.com, tian.qi1@huawei.com

1 Introduction

Recently, the research progress of computer vision has been
largely boosted by deep learning (LeCun et al. 2015). The
core part of deep learning is to design and optimize deep
neural networks, for which a few popular models have been
manually designed and achieved state-of-the-art performance
at that time (Krizhevsky et al. 2012; Szegedy et al. 2015; He
et al. 2016; Zhang et al. 2018; Howard et al. 2017). However,
designing neural network architectures requires both exper-
tise and heavy computational resources. The appearance of
neural architecture search (NAS) has changed this situation,
which aims to discover powerful network architectures au-
tomatically and has achieved remarkable success in image
recognition (Zoph and Le 2017; Zoph et al. 2018; Liu et al.
2018a; Tan and Le 2019).

In the early age of NAS, researchers focused on heuris-
tic search methods, which sample architectures from a large
search space and perform individual evaluations. Such ap-
proaches, while being safe in finding powerful architectures,
require massive computational overheads (Zoph and Le 2017;
Real et al. 2018; Zoph et al. 2018). To alleviate this bur-
den, researchers have designed efficient approaches to reuse
computation in the searched architectures (Cai et al. 2018),
which was later developed into constructing a super-network
to cover the entire search space (Pham et al. 2018). Among
them, DARTS (Liu et al. 2019a) is an elegant solution that
relaxes the discrete search space into a continuous, differen-
tiable function. Thus, the search process requires optimizing
the super-network and can be finished within GPU-hours.

Despite the efficiency of super-network-based search meth-
ods, most of them suffer from the issue of instability, which
indicates that (i) the accuracy can be sensitive to random
initialization, and (ii) the searched architecture sometimes
incurs unsatisfying performance in other datasets or tasks.
While directly searching over the target problem is always a

ar
X

iv
:1

91
2.

10
95

2v
2 

 [
cs

.C
V

] 
 6

 J
an

 2
02

0



2 Xin Chen et al.

0

1

2

3

0

1

2

3

Proxy
Dataset

Search Space Searched
Architecture

Search
Algorithm

0

1

2 3

Transfer

0

1

2 3

Person Re-Identification

…

Object Detection

Target Tasks

(a) NAS in the Wild

Eval. Net.
DARTS

5
Cells

11
Cells

17
Cells

20 
CellsCell

Arch.

Search Net.
P-DARTS

2.50%
on C10

8
Cells

Cell
Architecture

20 
Cells
2.76%
on C10

(b) Our Solution: P-DARTS

Fig. 1: Left: the setting of NAS in the wild, which aims to transfer the optimal architecture found in the proxy dataset to
unknown scenarios. Right: our solution, P-DARTS (bottom), bridges the optimization gap between architecture search and
evaluation by gradually increasing the depth of the super-network. DARTS (top) is also placed here for comparison. Green
and blue indicate search and evaluation, respectively.

solution, we argue that studying this topic may unleash the
potentials of NAS. To this end, we formalize a setting named
NAS in the wild, illustrated in Figure 1, which advocates for
the searched architecture on any proxy dataset to be easily
deployed to different application scenarios.

We argue that the instability issue originates from that
the search stage fits the super-network on the proxy dataset,
but the re-training stage actually applies the optimal sub-
network to either the same dataset or a different task. Even
if the proxy dataset and the target dataset are the same, one
cannot expect the best super-network, after being pruned,
produces the best sub-network. This is called the optimiza-
tion gap. In this work, we explore a practical method to alle-
viate the gap, which involves gradually adjusting the super-
network so that its properties converge to the sub-network
by the end of the search process.

Our approach, named Progressive DARTS (P-DARTS),
is built on DARTS, a recently published method for differ-
entiable NAS. As shown in Figure 1(b), the search process
of P-DARTS is divided into multiple stages, and the depth
of the super-network gets increased at the end of each stage.
This brings two technical issues, and we provide solutions
accordingly. First, since heavier computational overheads
are required when searching with a deeper super-network,
we propose search space approximation, which reduces
the number of candidates (operations) when the network depth
is increased. Second, optimizing a deep super-network may
cause unstable gradients, and thus the search algorithm is
biased heavily towards skip-connect, a learning-free opera-
tor that often falls on a rapid direction of gradient decay.
Consequently, it reduces the learning ability of the found
architecture, for which we propose search space regulariza-
tion, which (i) introduces operation-level Dropout (Srivas-
tava et al. 2014) to alleviate the dominance of skip-connect

during training, and (ii) regularizes the appearance of skip-
connect when determining the final sub-network.

The effectiveness of P-DARTS is firstly verified on the
standard vision setting, i.e., searching and evaluating the ar-
chitecture on the CIFAR10 dataset. We achieve state-of-the-
art performance (a test error of 2.50%) on CIFAR10 with
3.4M parameters. In addition, we demonstrate the benefits
of search space approximation and regularization: the for-
mer reduces the search cost to 0.3 GPU-days on CIFAR10,
surpassing ENAS (Pham et al. 2018), an approach known for
search efficiency; the latter largely reduces the fluctuation
of individual search trials and thus improving its reliability.
Next, we investigate the application in the wild, in which
the searched architecture on CIFAR10 transfers well to CI-
FAR100 classification, ImageNet classification, COCO de-
tection, and three person re-identification (ReID) tasks, e.g.,
on ImageNet, it achieves top-1/5 errors of 24.4%/7.4%, re-
spectively, comparable to the state-of-the-art under the mo-
bile setting. Furthermore, architecture search is also performed
on ImageNet, and the discovered architecture shows supe-
rior performance.

The preliminary version of this work appeared as (Chen
et al. 2019). In this journal version, we extend the original
work by several aspects. First, we present the new setting of
NAS in the wild, which provides a benchmark for evaluating
the generalization ability of NAS approaches. Second, we
complement a few diagnostic experiments to further reveal
that bridging the optimization gap is helpful to accomplish
the goal of NAS in the wild. Third, we extend the search
method so that it can directly search on ImageNet and thus
produce more powerful architectures for large-scale image
recognition.

The remaining part of this paper is organized as follows.
Section 2 briefly introduces related work to our research.
Then, Section 3 illustrates the problem, NAS in the wild,



Progressive DARTS: Bridging the Optimization Gap for NAS in the Wild 3

and Section 4 elaborates the optimization gap and the P-
DARTS approach. After extensive experiments are shown
in Section 5, we conclude this work in Section 6.

2 Related Work

Image recognition is a fundamental task in computer vi-
sion. In recent years, with the development of deep learning,
CNNs have been dominating image recognition (Krizhevsky
et al. 2012; Simonyan and Zisserman 2015; He et al. 2016).
A few elaborately designed handcrafted architectures have
been proposed, including VGGNet (Simonyan and Zisser-
man 2015), ResNet (He et al. 2016), DenseNet (Huang et al.
2017), etc., all of which highlighted the importance of hu-
man experts in network design.

In the era of hand-designed architectures, the main roadmap
of architecture design resided in how to enlarge the depth
of CNNs efficiently. AlexNet (Krizhevsky et al. 2012) pro-
posed to use the ReLU activation function and Local Re-
sponse Normalization (LRN) to alleviate the gradient diffu-
sion and achieved the state-of-the-art performance on Im-
ageNet classification at that time. VGGNet (Simonyan and
Zisserman 2015) proposed to stack convolutions with identi-
cal small kernel size and initialize deeper networks with pre-
viously learned weights of a shallow work, which resulted in
a network of 19 layers. GoogLenet (Szegedy et al. 2015) in-
troduced to connect convolutions with different kernel sizes
in parallel, which led to a reduction of network parameters,
an increase of network depth, and a promotion on param-
eter utilization. In ResNet (He et al. 2016), the depth of
networks was further increased to 152 layers for ImageNet
and even 1,202 layers for CIFAR10, with the help of the
newly proposed skip connection and residual block. After
that, DenseNet (Huang et al. 2017) inserted skip connec-
tion between all layers in the building block to formulate
a densely connected CNN, which largely strengthened in-
formation propagation and feature reutilization. Apart from
this depth route, network width was also a critical aspect of
performance promotion. WRN (Zagoruyko and Komodakis
2016) explored the possibility of scaling up the network width
of ResNet and achieved brilliant results. PyramidNet (Han
et al. 2017) extended this idea to design a pyramid-like ResNet,
which further promoted the network capability.

This work is in the category of the emerging field of
neural architecture search, a process of automating archi-
tecture engineering technique (Elsken et al. 2018). In the
early 2000s, pioneer researchers attempted to generate better
topology automatically with evolutionary algorithms (Stan-
ley and Miikkulainen 2002). Early NAS works tried to search
for basic components and topology of neural networks to
construct a complete network (Baker et al. 2017; Suganuma
et al. 2017; Xie and Yuille 2017), while recent works fo-
cused on finding robust cells (Zoph et al. 2018; Real et al.

2018; Dong and Yang 2019). Among these works, heuris-
tic algorithms were widely adopted in the NAS pipeline.
Baker et al. (Baker et al. 2017) firstly applied reinforcement
learning (RL) to neural architecture search and adopted an
RNN-based controller to guide the sampling process for the
network configuration. (Xie and Yuille 2017) encoded the
architecture of a CNN into binary codes and used a general
evolutionary algorithm to evolve for a better global network
topology. Considering the weakness of the scalability of a
global network architecture, (Zoph and Le 2017) adopted
RL to search for the configuration of building blocks, which
are also referred to as cells. (Real et al. 2018) proposed to
regularize the standard evolutionary algorithm in the NAS
pipeline with aging evolution and, for the first time, sur-
passed the best manually designed architectures on image
recognition.

A critical drawback of the above approaches is the ex-
pensive search cost (3,150 GPU-days for EA-based Amoe-
baNet (Real et al. 2018) and 20,000 GPU-days for RL-based
NASNet (Zoph and Le 2017)), because their methods re-
quire to sample and evaluate numerous architectures by train-
ing them from scratch. There were two lines of solutions.
The first one involved reducing the search space (Zoph et al.
2018), and the second one optimized the exploration policy
(e.g., learning a surrogate model (Liu et al. 2018a)) in the
search space so that the search process becomes more effi-
cient.

Recently, search efficiency has become one of the main
concerns on NAS, and the search cost was reduced to a few
GPU-days with the help of weight sharing technique (Pham
et al. 2018; Liu et al. 2019a). In this pipeline, a super-network
that contains all candidate architectures in the search space
is trained, and sub-architectures are evaluated with shared
weights from the super-network. ENAS (Pham et al. 2018)
proposed to adopt a parameter sharing scheme among child
models to bypass the time-consuming process of candidate
architecture evaluation by training them from scratch, which
dramatically reduced the search cost to less than one GPU-
day. DARTS (Liu et al. 2019a) introduced a differentiable
NAS framework to relax the discrete search space into a
continuous one by weighting candidate operations with ar-
chitectural parameters, which achieved comparable perfor-
mance and remarkable efficiency improvement compared
to previous approaches. Following DARTS, GDAS (Dong
and Yang 2019) proposed to use the Gumbel-softmax sam-
pling trick to guide the sub-graph selection process. With
the BinaryConnect scheme, ProxylessNAS (Cai et al. 2019)
adopted the differentiable framework and proposed to search
architectures on the target task instead of adopting the con-
ventional proxy-based framework. A main drawback of DARTS-
based approaches is the instability issue caused by the opti-
mization gap depicted in Section 1. SNAS (Xie et al. 2019)
proposed to constrain the architecture parameters to be one-



4 Xin Chen et al.

hot to tackle the inconsistency in optimizing objectives be-
tween search and evaluation scenarios, which can be regarded
as an attempt of reducing the optimization gap. However,
SNAS reported only comparable classification performance
to DARTS on both proxy and target datasets.

3 Problem: NAS in the Wild

We investigate the setting of NAS in the Wild, which seeks
for a NAS algorithm that can search in a proxy dataset and
freely transfer to a wide range of target datasets or even other
types of recognition tasks. This is important for real-world
scenarios, as there may not be sufficient resources, in terms
of either data or computation, for a complete NAS process
to be executed.

Note that the community has witnessed a few recent works,
sometimes referred to as proxyless NAS (Cai et al. 2019),
in searching neural architectures on the target dataset di-
rectly. Our setting does not contradict these efforts, and we
argue that both settings have their own advantages. On the
one hand, searching on the target dataset directly enables
more accurate properties of the specified dataset to be cap-
tured and, most often, leads to improved performance on the
target dataset. On the other hand, we desire the ability of
directly transferring the searched architecture to other sce-
narios. This task not only makes it easier in application, and
also raises new challenges which we believe beneficial for
the research field of NAS.

The most significant difficulty brought by this setting is
the enlarged gap between the search stage and the evaluation
stage, which we will elaborate in detail in Section 4.2. In this
paper, we present a practical solution that largely shrinks
this gap and thus improves the ability of model transfer.

4 Method: Progressive DARTS

4.1 Preliminary: Differentiable Architecture Search

Our work is based on DARTS (Liu et al. 2019a), which
adopts a cell-based search framework that searches for ro-
bust architectures building blocks, i.e., cells, and then stacks
searched cells orderly for L times to construct the target net-
work. Thus, the search space is represented in the form of
cells. A cell is denoted as a directed acyclic graph (DAG) G
and composed of N nodes (vertexes) and their correspond-
ing edges. A node xi represents a feature layer, i.e., the out-
put of a specific operation. The first two nodes of a cell
are the input nodes, which come from the outputs of pre-
vious cells or stem convolutions located at the beginning of
the network. We denote the operation space as O, in which
each element represents a candidate operation (mathemat-
ical function) o(·). An intermediate node xj is connected

to all of its preceding nodes {x1, x2, ..., xj−1} with edge
E(i,j)(i < j), where operations from the operation space are
used to link the information flow between node xi and xj . To
relax the discrete search space to be continuous, operations
on each edge are weighted with a set of architectural param-
eters α(i,j), which is normalized with the Softmax function
and is thus formulated as:

fi,j(xi) =
∑
o∈Oi,j

exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)
o′ )

o(xi). (1)

All feature maps passed into the intermediate node xj are in-
tegrated together by summation, denoted as xj =

∑
i<j fi,j(xi).

The output node is defined as xN−1 = concat(x2, x3, · · · , xN−2),
where concat(·) concatenates all input signals in the chan-
nel dimension.

The architectural parameters in DARTS are jointly op-
timized with the network parameters, i.e., the convolutional
weights. The output architecture is generated by operation
pruning according to the learned architectural parameters,
with at most one non-zero operation on a specific edge and
two preserved edge for each intermediate node. For more
technical details, please refer to the original DARTS pa-
per (Liu et al. 2019a).

4.2 The Optimization Gap

The most significant drawback of DARTS, especially when
discussed in the scenario of NAS in the wild, lies in the gap
between search and evaluation. To be specific, in DARTS
as well as other super-network-based NAS approaches, the
search goal is to optimize the objective function with respect
to network parameters, ω, and the architectural parameters,
α, on the proxy dataset, DS. The overall objective can be
written as:

α? = argmin
α

{
min
ωS

LS(ωS, α;DS,CS)

}
, (2)

where CS denotes the network configuration for architecture
search. The output of the search process is an optimal sub-
network A generated according to the learned, optimal ar-
chitectural parameter, α?. At the evaluation phase, the des-
tination is to train the evaluation network constructed with
the searched architecture A on the target dataset DE for a
better performance, thus we have:

ω?E = argmin
ωE

LE(ωE;A,DE,CE), (3)

where ωE and CE denote the network parameters and con-
figuration at evaluation time, respectively.



Progressive DARTS: Bridging the Optimization Gap for NAS in the Wild 5

0

1

2

3

(a) Initial Stage (b) Intermediate Stages (c) Final Stage

0

1

0.21

0.26

0.32

0.18
0.03 (DEL)

0

1

2

3

0

1

0.42

0.38

0.14 (DEL)

0.06 (DEL)

0

1

2

3

0

1

0.17
(DEL)

0.83

Normal
Cell

Image

Reduction 
Cell

Normal
Cell

Reduction 
Cell

Normal
Cell

Softmax

5×

5×

5×

Normal
Cell

Reduction
Cell

Normal
Cell

Reduction
Cell

Normal
Cell

3×

3×

3×

Image

Softmax

Normal
Cell

Reduction
Cell

Normal
Cell

Reduction
Cell

Normal
Cell

1×

1×

1×

Image

Softmax

Fig. 2: The overall pipeline of P-DARTS (best viewed in color). For simplicity, only one intermediate stage is shown, and
only the normal cells are displayed. The depth of the super-network increases from 5 at the initial stage to 11 and 17 at
the intermediate and final stages, while the number of candidate operations (shown in connections with different colors) is
shrunk from 5 to 4 and 2 accordingly. The lowest-scored ones at the previous stage are dropped (the scores are shown next
to each connection). We obtain the final architecture by considering the final scores and possibly additional rules.

There are severe mismatch problems that happen to the
DARTS framework between search and evaluation scenar-
ios (mismatch between CS and CE) in network shape, hyper-
parameters, training policies, etc.. We summarize these prob-
lems into the optimization gap between training the super-
network and applying the sub-network to the target network.
For example, a typical optimization gap comes from the in-
consistency of the operation pruning process, since the ob-
jective of the super-network is to jointly optimize network
weights ωS of all candidate operations and the architectural
parameters α, while the objective of training the target net-
work is only to optimize the network weights ωE of a few se-
lected operations. These mismatches result in dramatic per-
formance deterioration when the discovered architectures are
applied to real-world applications. In particular, the differ-
ence between the proxy and target dataset and/or task can
even enlarge the optimization gap, and thus cause difficul-
ties of applying the searched architecture in the wild.

4.3 Progressive Search to Bridge the Depth Gap

Among the optimization gaps, that caused by different net-
work depths is one of the main sources of performance de-
terioration. We propose to alleviate it by progressively in-
creasing the search depth, which is built upon our search
space approximation scheme. Besides, the mismatch on net-
work width, i.e., the number of channels of feature maps, is
also an essential factor associated with performance when

searching architectures on large and complex datasets, and
we tackle it by progressively increasing search width.

To be specific, the architecture search process of DARTS
is performed on a super-network with 8 cells, and the dis-
covered architecture is evaluated on a network with either
20 cells (on CIFAR10) or 14 cells (on ImageNet). There
is a considerable difference between the behavior of shal-
low and deep networks (Ioffe and Szegedy 2015; Srivastava
et al. 2015; He et al. 2016), which implies that the architec-
tures we discovered in the search process are not necessar-
ily the optimal one for evaluation. We name this the depth
gap between search and evaluation. To verify it, we executed
the search process of DARTS for multiple times and found
that the normal cells of discovered architectures tend to keep
shallow connections instead of deep ones, i.e., the search al-
gorithm prefers to preserve those edges connected to the in-
put nodes instead of cascading between intermediate nodes.
This is because shallow networks often enjoy faster gradi-
ent descent during the search process. However, such prop-
erty contradicts the common sense that deeper networks tend
to perform better (Simonyan and Zisserman 2015; Szegedy
et al. 2015; He et al. 2016; Huang et al. 2017). Therefore,
we propose to bridge the depth gap with the strategy that
progressively increases the network depth during the search
process, so that at the end of the search, the depth of the
super-network is sufficiently close to the network configu-
ration used in the evaluation. Here we adopt a progressive
manner, instead of directly increasing the search depth to



6 Xin Chen et al.

the target level, because we expect to search in shallow net-
works to reduce the search space with respect to candidate
operations, so as to alleviate the risk of search in deep net-
works. The effectiveness of this progressive strategy will be
verified in Section 5.2.1.

The difficulty comes from two aspects. First, the compu-
tational overhead increases linearly with the search depth,
which brings issues in both time expenses and computa-
tional overheads. In particular, in DARTS, GPU memory
usage is proportional to the depth of the super-network. The
limited GPU memory forms a major obstacle, and the most
straightforward solution is to trim the channels number in
each operation – DARTS (Liu et al. 2019a) tried it but re-
ported a slight performance deterioration, because it enlarged
the mismatch on network width, another aspect of the opti-
mization gap. To address this problem, we propose a search
space approximation scheme to progressively reduce the
number of candidate operations at the end of each stage ac-
cording to the architectural parameters, the scores of op-
erations in the previous stage as the criterion of selection.
Details of search space approximation are presented in Sec-
tion 4.3.1.

Second, we find that when searching on a deeper super-
network, the differentiable approaches tend to bias towards
the skip-connect operation, because it accelerates forward
and backward propagation and often leads to the fastest route
of gradient descent. However, this operation is parameter-
free, which implies a relatively weak ability to learn visual
representations. To this end, we propose another scheme named
search space regularization, which adds an operation-level
Dropout (Srivastava et al. 2014) to prevent the architecture
from “over-fitting” and restricts the number of preserved
skip-connects for further stability. Details of search space
regularization are presented in Section 4.3.2.

4.3.1 Search Space Approximation

A toy example is presented in Figure 2 to demonstrate the
idea of search space approximation. The entire search pro-
cess is split into multiple stages, including an initial stage,
one or a few intermediate stages, and a final stage. For each
stage, Sk, the super-network is constructed with Lk cells
and the operation space consists ofOk candidate operations,
i.e., |Ok(i,j)| = Ok.

According to our motivation, the super-network of the
initial stage is relatively shallow, but the operation space is
large (O1

(i,j) ≡ O). After each stage, Sk−1, the architectural
parameters αk−1 are optimized and the scores of the can-
didate operations on each edge are ranked according to the
learned αk−1. We increase the depth of the super-network
by stacking more cells, i.e., Lk > Lk−1, and approximate
the operation space according to the ranking scores in the
meantime. As a consequence, the new operation set on each

edge Ok(i,j) has a smaller size than Ok−1(i,j), or equivalently,
Ok < Ok−1. The criterion of approximation is to drop a
part of less important operations on each edge, which are
specified to be those assigned with a lower weight during
the previous stage, Sk−1. As shown in Table 2, this strategy
is memory-efficient, which enables the deployment of our
approach on regular GPUs, e.g., with a memory of 16GB.

The growth of architecture depth continues until it is
sufficiently close to that used in the evaluation. After the
last search stage, the final cell topology (bold lines in Fig-
ure 2(c)) is derived according to the learned architecture
parameters αK . Following DARTS, for each intermediate
node, we keep two individual edges whose largest non-zero
weights are top-ranked and preserve the most important op-
eration on each retained edge.

4.3.2 Search Space Regularization

At the start of each stage, Sk, we train the (modified) ar-
chitecture from scratch, i.e., all network weights and archi-
tectural parameters are re-initialized randomly, because sev-
eral candidates have been abandoned on each edge1. How-
ever, training a deeper network is harder than training a shal-
low one (Srivastava et al. 2015). In our particular setting,
we observe that information prefers to flow through skip-
connect instead of convolution or pooling, which is arguably
due to the fact that skip-connect often leads to rapid gradi-
ent descent, especially on small proxy datasets (CIFAR10
or CIFAR100) which are relatively easy to fit. The gradi-
ent of a skip-connect operation with respect to the input
is always 1.0, while that of convolutions is much smaller
(
[
10−3, 10−2

]
according to our statistics). Another impor-

tant reason is that, during the start of training, weights in
convolutions are less meaningful, which results in unstable
outputs compared to skip-connect which is weight-free, and
such outputs are not likely to have high weights in classifi-
cation. Both reasons make skip-connect accumulate weights
much more rapidly than other operations. Consequently, the
search process tends to generate architectures with many
skip-connect operations, which limits the number of learn-
able parameters and thus produces an unsatisfying perfor-
mance at the evaluation stage. This is essentially a kind of
over-fitting.

We address this problem by search space regularization,
which consists of two parts. First, we insert operation-level

1 We also tried to start with architectural parameters learned from
the previous stage, Sk−1, and adjust them according to Eq. 1 to ensure
that the weights of preserved operations should still sum to one. This
strategy reported slightly lower accuracy. Actually, we find that only
an average of 5.3 (out of 14 normal edges) most significant operations
in S1 continue to have the largest weight in S2, and the number is
only slightly increased to 6.7 from S2 to S3 – this is to say, deeper
architectures may have altered preferences.



Progressive DARTS: Bridging the Optimization Gap for NAS in the Wild 7

Dropout (Srivastava et al. 2014) after each skip-connect op-
eration to partially “cut off” the straightforward path through
skip-connect, and facilitate the algorithm to explore other
operations. However, if we constantly block the path through
skip-connect, the algorithm will unfairly drop them by as-
signing lower weights to them, which is harmful to the fi-
nal performance. To address this contradiction, we gradually
decay the Dropout rate during the training process in each
search stage Thus the straightforward path through skip-connect
is blocked at the beginning and treated equally afterward
when parameters of other operations are well learned, leav-
ing the algorithm itself to make the decision.

Despite the use of operation-level Dropout, we still ob-
serve that skip-connect, as a special kind of operation, has
a significant impact on recognition accuracy at the evalua-
tion stage. Empirically, we perform 3 individual search pro-
cesses on CIFAR10 with identical search setting, but find
that the number of preserved skip-connects in the normal
cell, after the final stage, varies from 2 to 4. In the mean-
time, the recognition performance at the evaluation stage is
also highly correlated to this number, as we observed before.
This motivates us to design the second regularization rule,
architecture refinement, which simply restricts the number
of preserved skip-connect operations of the final architec-
ture to be a constant M . This is done with an iterative pro-
cess, which starts with constructing a cell topology using the
standard rule described by DARTS. If the number of skip-
connects is not exactlyM , we search for theM skip-connect
operations with the largest architecture weights in this cell
topology and set the weights of others to 0, then redo cell
construction with modified architectural parameters.

We emphasize that the second regularization technique
must be applied on top of the first one, otherwise, in the situ-
ations without operation-level Dropout, the search process is
producing low-quality architectural weights, based on which
we could not build up a powerful architecture even with a
fixed number of skip-connects.

4.4 Relationship to Prior Work

Though having a similar name, Progressive NAS or PNAS (Liu
et al. 2018a) was driven by a different motivation. PNAS ex-
plored the search space progressively by searching for oper-
ations node-by-node within each cell. Our approach shares
a similar progressive search manner – we perform the search
at the cell level to enlarge the architecture depth, while PNAS
did it at the operation level (within a cell) to reduce the num-
ber of architectures to evaluate.

There exist other efforts in alleviating the optimization
gap between search and evaluation. For example, SNAS (Xie
et al. 2019) aimed at eliminating the bias between the search
and evaluation objectives of differentiable NAS approaches

by forcing the architecture weights on each edge to be one-
hot. Our work is also able to get rid of the bias, which we
achieve by enlarging the architecture depth during the search
stage.

Another example of bridging the optimization gap is Prox-
ylessNAS (Cai et al. 2019), which introduced a differen-
tiable NAS scheme to directly learn architectures on the tar-
get task (and hardware) without a proxy dataset. It achieved
high memory efficiency by applying binary masks to can-
didate operations and forcing only one path in the over-
parameterized network to be activated and loaded into GPU.
Different from it, our approach tackles the memory over-
head by search space approximation. Besides, Proxyless-
NAS searched for global topology instead of cell topology,
which requires strong priors on the target task as well as the
search space, while P-DARTS does not need such priors.
Our approach is much faster than ProxylessNAS (0.3 GPU-
days vs. 4.0 GPU-days on CIFAR10 and 2.0 GPU-days vs.
8.3 GPU-days on ImageNet).

Last but not least, we believe that the phenomenon that
the skip-connect operation emerges may be caused by the
mathematical mechanism that DARTS was built upon. Some
recent work (Bi et al. 2019) pointed out issues in optimiza-
tion, and we look forward to exploring the relationship be-
tween these issues and the optimization gap.

5 Experiments

5.1 The CIFAR10 and CIFAR100 Datasets

Following standard vision setting, we search and evaluate ar-
chitectures on the CIFAR10 (Krizhevsky and Hinton 2009)
dataset. To further demonstrate the capability of our pro-
posed method, we also execute architecture search on CI-
FAR100.

Each of CIFAR10 and CIFAR100 has 50K/10K train-
ing/testing images with a fixed spatial resolution of 32× 32,
which are distributed over 10/100 classes. In the architec-
ture search scenario, the training set is randomly split into
two equal subsets, one for learning network parameters (e.g.,
convolutional weights) and the other for tuning the architec-
tural parameters (i.e., operation weights). In the evaluation
scenario, standard training/testing split is applied.

5.1.1 Architecture Search

The whole search process is split into 3 stages. The search
space and network configuration are identical to DARTS at
the initial stage (stage 1) except that only 5 cells are stacked
in the search network for acceleration (we tried the original
setting with 8 cells and obtained similar results). The num-
ber of stacked cells increases from 5 to 11 for the interme-
diate stage (stage 2) and 17 for the final stage (stage 3). The



8 Xin Chen et al.

Table 1: Comparison with state-of-the-art architectures on CIFAR10 and CIFAR100. † indicates that this result is obtained by
transferring the corresponding architecture to CIFAR100. ‡ We ran the publicly available code with necessary modifications
to fit PyTorch 1.0, and a single run took about 0.5 GPU-days for the first order and 2 GPU-days for the second order,
respectively.

Architecture Test Err. (%) Params Search Cost Search Method
C10 C100 (M) (GPU-days)

DenseNet-BC (Huang et al. 2017) 3.46 17.18 25.6 - manual

NASNet-A + cutout (Zoph et al. 2018) 2.65 - 3.3 1,800 RL
AmoebaNet-A + cutout (Real et al. 2018) 3.34 - 3.2 3,150 evolution
AmoebaNet-B + cutout (Real et al. 2018) 2.55 - 2.8 3,150 evolution
Hireachical Evolution (Liu et al. 2018b) 3.75 - 15.7 300 evolution
PNAS (Liu et al. 2018a) 3.41 - 3.2 225 SMBO
ENAS + cutout (Pham et al. 2018) 2.89 - 4.6 0.5 RL

DARTS (first order) + cutout (Liu et al. 2019a) 3.00 17.76† 3.3 1.5‡ gradient-based
DARTS (second order) + cutout (Liu et al. 2019a) 2.76 17.54† 3.3 4.0‡ gradient-based
SNAS + mild constraint + cutout (Xie et al. 2019) 2.98 - 2.9 1.5 gradient-based
SNAS + moderate constraint + cutout (Xie et al. 2019) 2.85 - 2.8 1.5 gradient-based
SNAS + aggressive constraint + cutout (Xie et al. 2019) 3.10 - 2.3 1.5 gradient-based
ProxylessNAS (Cai et al. 2019) + cutout 2.08 - 5.7 4.0 gradient-based

P-DARTS (searched on CIFAR10) + cutout 2.50 17.20 3.4 0.3 gradient-based
P-DARTS (searched on CIFAR100) + cutout 2.62 15.92 3.6 0.3 gradient-based
P-DARTS (searched on CIFAR10, large) + cutout 2.25 15.27 10.5 0.3 gradient-based
P-DARTS (searched on CIFAR100, large) + cutout 2.43 14.64 11.0 0.3 gradient-based

numbers of operations preserved on each edge of the super-
network are 8, 5, and 3 for stage 1, 2, and 3, respectively.

The Dropout probability on skip-connect is decayed ex-
ponentially and the initial values for the reported results are
set to be 0.0, 0.4, 0.7 on CIFAR10 for stage 1, 2 and 3,
respectively, and 0.1, 0.2, 0.3 for CIFAR100. For a proper
tradeoff between classification accuracy and computational
overhead, the final discovered cells are restricted to keep
at most 2 skip-connects, which guarantees a fair compari-
son with DARTS and other state-of-the-art approaches. For
each stage, the super-network is trained for 25 epochs with
a batch size of 96, where only network parameters are tuned
in the first 10 epochs while both network and architectural
parameters are jointly optimized in the rest 15 epochs. An
Adam optimizer with learning rate η = 0.0006, weight de-
cay 0.001 and momentum β = (0.5, 0.999) is adopted for
architectural parameters. The limitation of GPU memory is
the main concern when we determine hyper-parameters re-
lated to GPU memory size, e.g., the batch size. The first-
order optimization scheme of DARTS is leveraged to learn
the architectural parameters in consideration of acceleration,
thus the architectural parameters and network parameters
are optimized in an alternative manner.

The architecture search process on CIFAR10 and CI-
FAR100 is performed on a single Nvidia Tesla P100, which
takes around 7 hours, resulting in a search cost of 0.3 GPU-
days. When we change the GPU device to an Nvidia Tesla

V100 (16GB), the search cost is reduced to 0.2 GPU-days
(around 4.5 hours).

Architectures discovered by P-DARTS on CIFAR10 tend
to preserve more deep connections than the one discovered
by DARTS, as shown in Figure 3(c) and Figure 3(d). More-
over, the deep connections in the architecture discovered by
P-DARTS are deeper than that in DARTS, which means that
the longest path in the cell cascades more levels in depth. In
other words, there are more serial layers in the cell instead
of parallel ones, making the target network further deeper
and achieving better classification performance.

Notably, our method also allows architecture search on
CIFAR100 while prior approaches mostly failed. The evalu-
ation results in Table 1 show that the discovered architecture
on CIFAR100 outperforms those architectures transferred
from CIFAR10. We tried to perform architecture search on
CIFAR100 with DARTS using the code released by the au-
thors but get architectures full of skip-connects, which re-
sults in much worse classification performance.

5.1.2 Architecture Evaluation

Following the convention(Liu et al. 2019a), an evaluation
network stacked with 20 cells and 36 initial channels is trained
from scratch for 600 epochs with a batch size of 128. Ad-
ditional regularization methods are also applied including
Cutout regularization (DeVries and Taylor 2017; Zhong et al.



Progressive DARTS: Bridging the Optimization Gap for NAS in the Wild 9

c_{k-1}

c_{k-2}

2

3

0 1sep_conv_3×3

sep_conv_3×3

dil_conv_3×3

sep_conv_3×3

sep_conv_3×3

dil_conv_5×5

skip_connect

skip_connect

c_{k}

(a) Stage 1, CIFAR10 Test Err. 2.90%

c_{k-2}

c_{k-1} 0

skip_connect
1

2

3

sep_conv_3×3

sep_conv_3×3

sep_conv_5×5

dil_conv_5×5

sep_conv_3×3

skip_connect dil_conv_5×5
c_{k}

(b) Stage 2, CIFAR10 Test Err. 2.82%

c_{k-1}

c_{k-2}

3

c_{k}2

0

1

sep_conv_3×3

dil_conv_3×3

dil_conv_3×3

sep_conv_5×5

skip_connect

skip_connect
sep_conv_3×3

sep_conv_3×3

(c) Stage 3, CIFAR10 Test Err. 2.58%

c_{k-1}

c_{k-2}

2

1

0 3sep_conv_3×3

sep_conv_3×3

sep_conv_3×3

sep_conv_3×3

skip_connect

sep_conv_3×3

skip_connect

dil_conv_3×3

c_{k}

(d) DARTS V2, CIFAR10 Test Err. 2.83%

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 4 5

# 
ed

ge
s

3
# levels

DARTS P-DARTS

(e) Statistics on connection levels

Fig. 3: Left and middle: normal cells discovered by different search stages of P-DARTS and the second-order DARTS
(DARTS V2). The depths of search networks are 5, 11 and 17 cells for stage 1, 2 and 3 of P-DARTS and 8 for DARTS V2.
When the depth of the search network increases, more deep connections are preserved. Note that the operation on edge E(0,1)

of stage 1 is a parameter-free skip connect, thus it is strictly not a deep connection. Right: number of edges with different
connection levels in the discovered architectures of DARTS and P-DARTS. More deep connections with higher connection
levels are preserved in architectures discovered by P-DARTS, while only one exists in the architecture searched by DARTS.

2017) of length 16, drop-path (Larsson et al. 2017) of prob-
ability 0.3 and auxiliary towers (Szegedy et al. 2015) of
weight 0.4. A standard SGD optimizer with a momentum
of 0.9, a weight decay of 0.0003 for CIFAR10 and 0.0005

for CIFAR100 is adopted to optimize the network parame-
ters. The cosine annealing scheme is applied to decay the
learning rate from 0.025 to 0. To explore the potential of
the searched architectures, we further increase the number
of initial channels from 36 to 64, which is denoted as the
large setting.

Evaluation results and comparison with state-of-the-art
approaches are summarized in Table 1. As demonstrated
in Table 1, P-DARTS achieves a 2.50% test error on CI-
FAR10 with a search cost of only 0.3 GPU-days. To obtain
a similar performance, AmoebaNet (Real et al. 2018) spent
thousands of GPU-hours, which is four orders of magnitude
more computational resources. Our P-DARTS also outper-
forms DARTS and SNAS by a large margin with compara-
ble parameter count. Notably, architectures discovered by P-
DARTS outperform ENAS, the previously most efficient ap-
proach, in both classification performance and search cost,
with fewer parameters.

The architectures discovered both DARTS and P-DARTS
on CIFAR10 are transferred to CIFAR100 to test the trans-
ferability between similar datasets. Obvious superiority of
P-DARTS is observed in terms of classification accuracy. As
mentioned previously, P-DARTS is able to support architec-
ture search on other proxy datasets such as CIFAR100. For
a fair comparison, we tried to perform architecture search
on CIFAR100 with the publicly available code of DARTS
but resulted in architectures full of skip-connect operations.

The discovered architecture on CIFAR100 significantly out-
performs those architectures transferred from CIFAR10. An
interesting point is that the directly searched architectures
perform better when evaluated on the search dataset than
those transferred ones for both CIFAR10 and CIFAR100.
Such a phenomenon provides a proof of the existence of
dataset bias in NAS.

5.2 Diagnostic Experiments

Before continuing to ImageNet search and in-the-wild eval-
uation experiments, we conduct diagnostic studies to better
understand the properties of P-DARTS.

5.2.1 Comparison on the Depth of Search Networks

Since the search process of P-DARTS is divided into multi-
ple stages, we perform a case study to extract architectures
from each search stage with the same rule to validate the use-
fulness of bridging the depth gap. Architectures from each
stage are evaluated to demonstrate their capability for im-
age classification. The topology of discovered architectures
(only normal cells are shown) and their corresponding clas-
sification performance are summarized in Figure 3. To show
the difference in the topology of cells searched with differ-
ent depth, we add the architecture discovered by second-
order DARTS (DARTS V2, 8 cells in the search network)
for comparison.

The lowest test error is achieved by the architecture ob-
tained from the final search stage (stage 3), which validates
the effectiveness of shrinking the depth gap. From Figure 3



10 Xin Chen et al.

we can observe that these discovered architectures share some
common edges, for example sep conv 3×3 at edge E(ck−2,2)

for all stage of P-DARTS and at edge E(ck−1,0) for stage 2,
3 of P-DARTS and DARTS V2. These common edges serve
as a solid proof that operations with high importance are
preserved by the search space approximation scheme. Dif-
ferences also exist between these discovered architectures,
which we believe is the key factor that affects the capability
of these architectures. Architectures generated by shallow
search networks tend to keep shallow connections, while
with deeper search networks, the discovered architectures
prefer to pick some preceding intermediate nodes as input,
resulting in cells with deep connections. This is because it is
harder to optimize a deep search network, so the algorithm
has to explore more paths to find the optimum, which results
in more complex and powerful architectures.

Additionally, we perform quantitative analysis on the dis-
covered architectures by P-DARTS of three individual runs
and summarize the average levels of their connections in
Figure 3(e). For comparison, we also add the architecture
found by the second-order DARTS into this analysis. While
the preserved edges of DARTS are almost all shallow (7 over
8 of level 1 and level 2), P-DARTS tends to keep more deep
edges.

5.2.2 Effectiveness of Search Space Approximation

The search process takes∼ 7 hours on a single Nvidia Tesla
P100 GPU with 16GB memory to produce the final architec-
tures. We monitor the GPU memory usage of the architec-
ture search process for 3 individual runs and collect the peak
value to verify the effectiveness of the search space approx-
imation scheme, which is shown in Table 2. The memory
usage is stably under the limit of the adopted GPU, and out
of memory error barely occurs, showing the validity of the
search space approximation scheme on memory efficiency.

We perform experiments to demonstrate the effective-
ness of the search space approximation scheme on improv-
ing classification accuracy. Only the final stage of the search
process is executed on two different search spaces with iden-
tical settings. The first search space is progressively approx-
imated from previous search stages, and the other is ran-
domly sampled from the full search space. To eliminate the
influence of randomness, we repeat the whole process for
the randomly sampled one for 3 times with different seeds
and pick the best one. The lowest test error for the ran-
domly sampled search space is 3.43%, which is much higher
than 2.58%, the one obtained with the approximated search
space. Moreover, we performed an additional experiment
with a fixed depth (8 cells) and shrunk sets of operations
(8 → 5 → 3, as used in the paper), which results in a test
error of 2.70%, significantly lower than the 3.00% test error

Table 2: Peak GPU memory usage at different stages during
three individual runs. The memory limit is 16GB.

Run No. Mem. Usage (GB)

Stage 1 Stage 2 Stage 3

1 9.8 14.0 14.2
2 9.8 14.4 14.5
3 9.8 14.2 14.3

obtained by the first-order DARTS. Such results reveal the
necessity of the search space approximation scheme.

5.2.3 Effectiveness of Search Space Regularization

We perform experiments to validate the effectiveness of search
space regularization, i.e., operation-level Dropout, and ar-
chitecture refinement.
Effectiveness of operation-level Dropout. Firstly, experi-
ments are conducted to test the influence of the operation-
level Dropout scheme. Two sets of initial Dropout rates are
adopted, i.e., 0.0, 0.0, 0.0 (without Dropout) and 0.0, 0.3,
0.6 (with Dropout) for stage 1, 2 and 3, respectively. To
eliminate the potential influence of the number of skip-connects,
the comparison is made across multiple values of M .

Test errors for architectures discovered without Dropout
are 2.93%, 3.28% and 3.51% for M = 2, 3 and 4, respec-
tively. When operation-level Dropout is applied, the corre-
sponding test errors are 2.69%, 2.84% and 2.97%, signifi-
cantly outperforming those without Dropout. According to
the experimental results, all 8 preserved operations in the
normal cell of the architecture discovered without Dropout
are skip-connects before architecture refinement, while the
number is 4 for the architecture discovered with Dropout.
The diminishing on the number of skip-connect operations
verifies the effectiveness of search space regularization on
stabilizing the search process.
Effectiveness of architecture refinement. During experi-
ments, we observe strong coincidence between the classi-
fication accuracy of architectures and the number of skip-
connect operations in them. We perform a quantitative ex-
periment to analyze it. Architecture refinement is applied to
the same search process to produce multiple architectures
where the number of preserved skip-connect operations in
the normal cell varies from 0 to 4.

The test errors are positively correlated to the number
of skip-connects except for M = 0, i.e, 2.78%, 2.68%,
2.69%, 2.84% and 2.97% for M = 0 to 4, while the pa-
rameters count is inversely proportional to the skip-connect
count, i.e., 4.1M, 3.7M, 3.3M, 3.0M and 2.7M, respectively.
The reason lies in that, with a fixed number of operations in
a cell, the eliminated parameter-free skip-connects are re-



Progressive DARTS: Bridging the Optimization Gap for NAS in the Wild 11

Table 3: Comparison with state-of-the-art architectures on ImageNet (mobile setting). †: the top-1 test error is 25.4% when
the learning rate decay schedule is cosine annealing.

Architecture Test Err. (%) Params ×+ Search Cost Search Method
top-1 top-5 (M) (M) (GPU-days)

Inception V1 (Szegedy et al. 2015) 30.2 10.1 6.6 1,448 - manual
MobileNet (Howard et al. 2017) 29.4 10.5 4.2 569 - manual
ShuffleNet V1 2× (Zhang et al. 2018) 26.4 10.2 ∼5 524 - manual
ShuffleNet V2 2× (Ma et al. 2018) 25.1 - ∼5 591 - manual

NASNet-A (Zoph et al. 2018) 26.0 8.4 5.3 564 1,800 RL
NASNet-B (Zoph et al. 2018) 27.2 8.7 5.3 488 1,800 RL
NASNet-C (Zoph et al. 2018) 27.5 9.0 4.9 558 1,800 RL
AmoebaNet-A (Real et al. 2018) 25.5 8.0 5.1 555 3,150 evolution
AmoebaNet-B (Real et al. 2018) 26.0 8.5 5.3 555 3,150 evolution
AmoebaNet-C (Real et al. 2018) 24.3 7.6 6.4 570 3,150 evolution
PNAS (Liu et al. 2018a) 25.8 8.1 5.1 588 225 SMBO
MnasNet-92 (Tan et al. 2019) 25.2 8.0 4.4 388 - RL

DARTS (second order) (Liu et al. 2019a) 26.7† 8.7 4.7 574 4.0 gradient-based
SNAS (mild constraint) (Xie et al. 2019) 27.3 9.2 4.3 522 1.5 gradient-based
PC-DARTS (searched on CIFAR10) (Xu et al. 2019) 25.1 7.8 5.3 586 0.1 gradient-based
PC-DARTS (searched on ImageNet) (Xu et al. 2019) 24.2 7.3 5.3 597 3.8 gradient-based
ProxylessNAS (GPU) (Cai et al. 2019) 24.9 7.5 7.1 465 8.3 gradient-based

P-DARTS (searched on CIFAR10) 24.4 7.4 4.9 557 0.3 gradient-based
P-DARTS (searched on ImageNet) 24.1 7.3 5.4 597 2.0 gradient-based

placed by operations with trainable parameters, e.g., con-
volution, resulting in more complex and powerful architec-
tures.

The above observation inspired us to propose the second
search space regularization scheme, architecture refinement,
whose capability is validated by the following experiments.
We run another 3 architecture search experiments, all with
initial Dropout rates of 0.0, 0.3, and 0.6 for stage 1, 2, and
3, respectively. Before architecture refinement, the test error
is 2.79 ± 0.16% and the discovered architectures are with
2, 3 and 4 skip-connects in normal cells. After architecture
refinement, all three searched architectures are with 2 skip-
connects in normal cells, resulting in a diminished test error
of 2.65± 0.05%. The reduction of the average test error and
standard deviation reveals the improvement of the stability
for the search process.

Applying search space regularization to DARTS. We ap-
ply our proposed search space regularization scheme to the
original first-order DARTS, and the test error on CIFAR10
is reduced to 2.78%, significantly lower than the original
3.00% but still considerably higher than P-DARTS (2.50%).
This reveals that the proposed regularization scheme is also
effective in searching for relatively shallower architectures,
yet another source of improvement comes from increasing
search depth. The positive results indicate that the proposed
search space regularization can also be plugged into other
DARTS-based approaches.

5.2.4 Discussion: Other Optimization Gaps

Apart from depth gap that we have addressed in this pa-
per, other aspects of the optimization gap can also affect
the search process of super-network-based NAS approaches.
Here, we briefly discuss two aspects of them.
The width gap. One of the straightforward option comes
from the width of the network. Note that during the search
stage on CIFAR, the base channel number is set to be 16,
while that is enlarged as 48 when the searched architecture
is transferred to ImageNet (see the experimental settings in
the following section). This also claims a significant opti-
mization gap.

Therefore, it is natural to progressively increase the net-
work width during the search stage, just like what we have
done for the network depth. However, we find that the per-
formance gain brought by this strategy is limited. Digging
into the searched architecture, we find that when an increased
network width is used, the search algorithm tends to find ar-
chitectures with small (3 × 3) convolutional kernels, while
the original version tends to find architectures with a consid-
erable portion of big (5×5) kernels. Consequently, the com-
parison between these two options is not fair on CIFAR10,
as the original (not progressively widened) version often has
a larger number of parameters. This also delivers an impor-
tant message: the value of shrinking the optimization gap
will be enlightened in a relatively “fair” (Chu et al. 2019)
search environment.



12 Xin Chen et al.

The gap brought by other hyper-parameters. In the search
setting of DARTS, all the affine parameters of batch normal-
ization are discarded because the architectural parameters
are dynamically learned across the whole search process,
and the affine parameters will rescale the output of each op-
eration according to incorrect statistics. On the contrary, the
affine option of batch normalization is switched on to re-
cover the data distribution during the evaluation scenario,
which forms another aspect of the optimization gap. How-
ever, this gap is hard to address because a bunch of addi-
tional issues may arise if we switch it on.

Furthermore, the data augmentation gap, including the
inconsistent settings Cutout is another inconsistency between
search and evaluation. There also may exist other aspects
of the optimization gap, e.g., Dropout, auxiliary loss tower,
etc.. (Bi et al. 2019) briefly discussed some aspects of the
above-mentioned ones, while the influence of these options
was not clearly stated. In fact, a different setting on these as-
pects may cause other additional problems to disrupt qual-
itative and quantitative analysis on them. Additionally, the
fluctuation on small scale datasets like CIFAR10 may also
cause dramatic impacts on the analysis, while the computa-
tional burden obstructs the analysis on large-scale datasets.

5.3 The ImageNet Dataset

We also search architectures directly on ImageNet to vali-
date the applicability of our search algorithm to large-scale
datasets. Experiments are performed on ILSVRC2012 (Rus-
sakovsky et al. 2015), a subset of ImageNet (Deng et al.
2009) which contains 1,000 object categories and 1.28M
training and 50K validation images. Following the conven-
tions (Zoph et al. 2018; Liu et al. 2019a; Wu et al. 2019),
we randomly sample a 100-class subset of the training im-
ages for architecture search. Similar to CIFAR10, all images
and standard dataset partition are adopted during architec-
ture evaluation.

5.3.1 Architecture Search

We use a similar configuration to the one used on CIFAR10
except for some minor changes. We set the numbers of cells
to be 5, 8 and 11 and adjust the dropout rate to 0.0, 0.3, 0.6.
Meanwhile, we increase the number of initial channels from
16 to 28, and 40 for stage 1, 2, and 3, respectively.

Architecture search on ImageNet is executed with 8 Nvidia
Tesla V100, which takes around 6 hours, thus a search cost
of 2 GPU-days. The search cost of P-DARTS on ImageNet
is even smaller than PC-DARTS(Xu et al. 2019), a memory-
efficient differentiable approach proposed recently, which
demonstrates the efficiency of our proposed search space ap-
proximation scheme.

During the search process, the “over-fitting” phenomenon
is largely alleviated and the number of skip-connect opera-
tion is well controlled. This comes from two aspects. On the
one hand, gradients assigned to skip-connects is successfully
suppressed by the first search space regularization method,
i.e., adding operation level dropout on skip-connect opera-
tions. On the other hand, the variety and complexity of Im-
ageNet make it more difficult to fit with those parameter-
free operations than CIFAR10 and CIFAR100, forcing the
network to train those operations with learnable parameters.
Moreover, the discovered architecture is also with plenty of
deep connections, even deeper than those in the one searched
on CIFAR10. Such a character guarantees a favorable clas-
sification performance. We have also attempted to search
architectures without progressively increasing the network
width, but the discovered architectures resulted in worse clas-
sification performance, which demonstrates the usefulness
of the progressive width scheme.

5.3.2 Architecture Evaluation

The transferability to large-scale recognition datasets of ar-
chitecture discovered on CIFAR10 is firstly tested on The
ILSVRC2012. Concurrently, the capability of the architec-
ture directly searched on ImageNet is also evaluated. We ap-
ply the mobile setting for the evaluation scenario where the
input image size is 224 × 224, and the number of multi-
add operations is restricted to be less than 600M. A network
configuration identical to DARTS is adopted, i.e., an evalu-
ation network of 14 cells and 48 initial channels. We train
each network from scratch for 250 epochs with batch size
1,024 on 8 Nvidia Tesla V100 GPUs, which takes about 3
days with our PyTorch (Paszke et al. 2019) implementation.
The network parameters are optimized using an SGD opti-
mizer with an initial learning rate of 0.5 (decayed linearly
after each epoch), a momentum of 0.9, and a weight de-
cay of 3 × 10−5. Additional enhancements, including label
smoothing (Szegedy et al. 2016) and auxiliary loss tower,
are applied during training. Since large batch size and learn-
ing rate are adopted, we apply learning rate warmup (Goyal
et al. 2017) for the first 5 epochs.

Evaluation results and comparison with state-of-the-art
approaches are summarized in Table 3. The architecture trans-
ferred from CIFAR10 outperforms DARTS, PC-DARTS and
SNAS by a large margin in terms of classification perfor-
mance, which demonstrates superior transfer capability of
the discovered architectures. Notably, architectures discov-
ered by P-DARTS on CIFAR10 and CIFAR100 achieve lower
test error than MnasNet (Tan et al. 2019) and Proxyless-
NAS (Cai et al. 2019), whose search space is carefully de-
signed for ImageNet. The architecture directly searched on
ImageNet achieves superior performance compared to those



Progressive DARTS: Bridging the Optimization Gap for NAS in the Wild 13

Table 4: Detection results on the MS-COCO dataset (test-dev). † denotes the results in this line are from (Duan et al. 2019).
The displayed FLOPs only includes the computations in the network backbone.

Network Input Size Backbone ×+ AP AP50 AP75 APS APM APL

SSD300 (Liu et al. 2016) 300×300 VGG-16 31.4B 23.2 41.2 23.4 5.3 23.2 39.6
SSD512 (Liu et al. 2016) 512×512 VGG-16 80.4B 26.8 46.5 27.8 9.0 28.9 41.9
SSD513 (Liu et al. 2016)† 513×513 ResNet-101 43.4B 31.2 50.4 33.3 10.2 34.5 49.8

SSDLiteV1 (Howard et al. 2017) 320×320 MobileNetV1 1.2B 22.2 - - - - -
SSDLiteV2 (Sandler et al. 2018) 320×320 MobileNetV2 0.7B 22.1 - - - - -
SSDLiteV3 (Tan et al. 2019) 320×320 MnasNet-A1 0.6B 23.0 - - 3.6 20.5 43.2

SSD320 (Liu et al. 2016) 320×320 DARTS 1.1B 27.3 45.0 28.3 7.6 30.2 46.0
SSD320 (Liu et al. 2016) 320×320 P-DARTS (CIFAR10) 1.1B 28.9 46.8 30.2 7.3 32.2 48.2
SSD320 (Liu et al. 2016) 320×320 P-DARTS (ImageNet) 1.2B 29.9 47.8 31.5 9.0 33.2 50.0
SSD512 (Liu et al. 2016) 512×512 DARTS 2.9B 31.8 50.3 33.8 11.7 37.1 49.7
SSD512 (Liu et al. 2016) 512×512 P-DARTS (CIFAR10) 2.9B 33.6 52.8 35.6 13.3 39.7 51.1
SSD512 (Liu et al. 2016) 512×512 P-DARTS (ImageNet) 3.1B 34.1 52.9 36.3 14.3 40.0 52.1

transferred ones and is comparable to the state-of-the-art
directly-searched models in the DARTS-based search space.

5.4 Evaluation in the Wild

To further test the transferability of the discovered architec-
tures to scenarios in the wild, we embed our discovered ar-
chitectures as backbones into two other vision tasks, i.e., ob-
ject detection and person re-identification. On both tasks, we
have observed superior performance compared to both base-
line methods and the DARTS backbone, which reveals that
the desirable characters obtained on image recognition by
P-DARTS can be well transferred to scenarios in the wild.

5.4.1 Transferring to Object Detection

Object detection is also a fundamental task in the vision
community and also an important task of the scenario in the
wild (Liu et al. 2019b). We plug the discovered architec-
tures and corresponding weights pre-trained on ImageNet
into Single-Shot Detectors (SSD) (Liu et al. 2016), a popu-
lar light-weight object detection framework. The capability
of our backbones is tested on the benchmark dataset MS-
COCO (Lin et al. 2014), which contains 80 object categories
and more than 1.5M object instances. We train the pipeline
with the “trainval35K” set, i.e., a combination of the 80k
training and 35k validation images. The performance is tested
on the test-dev set.

Results are summarized in Table 4. Equipped with the
P-DARTS backbone searched on CIFAR10, the P-DARTS-
SSD320 achieves an superior AP of 28.9% with only 1.1B
FLOPs, which is 5.7% higher in AP with 29× fewer FLOPs
than SSD300, and even 2.1% higher in AP with 73× fewer
FLOPS than the SSD512. With similar FLOPs, P-DARTS-
SSD320 outperforms the DARTS-SSD320 by 1.6% in AP.
Compared to those light-weight backbones, i.e., backbones

belong to the MobileNet family, our P-DARTS-SSD320 en-
joys a superior AP by a large margin, while with an accept-
able amount of extra FLOPs than these light-weight back-
bones. With larger input image size, the P-DARTS-SSD512

surpasses the SSD513 by an AP of 2.4%, while the FLOPs
count of the P-DARTS backbone is 14× smaller than their
ResNet-101 backbone. The results with the backbone searched
by P-DARTS on ImageNet are further impressive, which
achieves an AP of 29.9% with the backbone searched on
CIFAR10 for P-DARTS-SSD320, and 34.1% for P-DARTS-
SSD512. All the above results indicate that the discovered
architectures by P-DARTS are well transferred to object de-
tection and produce superior performance.

5.4.2 Transferring to Person Re-Identification

Person re-identification is an important practical vision task
and has been attracting more attention from both academia
and industry (Wang et al. 2018; Li et al. 2018) because of its
broad applications in surveillance and security. Apart from
those task-specific modules, the backbone architecture is a
critical factor for performance promotion. We replace the
previous backbones with our P-DARTS architectures (searched
on both CIFAR10 and ImageNet) and test the transferability
on three benchmark datasets, i.e., Market-1501 (Zheng et al.
2015), DukeMTMC-reID (Zheng et al. 2017) and MSMT17 (Wei
et al. 2018). Experiments are executed with the pipeline of
Part-based Convolutional Baseline (PCB) (Sun et al. 2018),
and all backbones are pre-trained on ImageNet. We set the
numbers of parts to be 1, 3, and 6 to make an exhaustive
comparison.

Results are summarized in Table 5. The P-DARTS back-
bones outperform the ResNet-50 backbone by a large mar-
gin with fewer FLOPs and a smaller feature dimensional-
ity. With a similar backbone size, P-DARTS (CIFAR10) sur-
passes DARTS on all three datasets with different part num-



14 Xin Chen et al.

Table 5: Results of person re-identification on Market-1501, DukeMCMT-reID and MSMT17. The displayed FLOPs only
includes the computations in the network backbone.

Backbone # Parts Feat. Dim ×+ Market-1501 DukeMCMT-reID MSMT17

(M) Rank-1 mAP Rank-1 mAP Rank-1 mAP

ResNet-50 1 2,048 4120 87.86 72.8 71.99 57.21 48.33 24.62
DARTS 1 768 573 91.90 79.3 82.09 66.74 61.50 37.93
P-DARTS (CIFAR10) 1 768 556 92.99 81.37 83.75 68.71 68.98 41.99
P-DARTS (ImageNet) 1 768 596 92.01 78.41 83.55 67.84 66.70 39.64

ResNet-50 3 2,048 4120 92.81 80.34 84.61 71.51 71.64 46.23
DARTS 3 768 573 94.18 83.63 86.22 74.68 77.37 53.02
P-DARTS (CIFAR10) 3 768 556 94.59 84.78 87.25 75.53 79.52 55.98
P-DARTS (ImageNet) 3 768 596 93.67 83.85 89.98 75.27 77.19 53.37

ResNet-50 6 2,048 4120 93.08 81.02 86.13 74.03 71.12 46.00
DARTS 6 768 573 93.40 83.23 86.35 74.22 77.14 53.84
P-DARTS (CIFAR10) 6 768 556 93.61 83.37 87.25 74.6 79.24 56.41
P-DARTS (ImageNet) 6 768 596 92.99 82.98 86.71 73.96 76.75 53.62

bers, suggesting a superior transferability of our searched
architecture. However, with the P-DARTS (ImageNet) back-
bone, the performance is only comparable to the DARTS
backbone and worse than the P-DARTS (CIFAR10) back-
bone.

It is worth noting that the preferences to CIFAR-searched
and ImageNet-searched backbones are different between ob-
ject detection and person re-identification tasks. This is due
to the domain gap between the architecture search task and
the target tasks. While the original images used in ImageNet
classification and COCO object detection are similarly with
high resolution and data distribution, images used in ReID
are in worse condition, which is more similar to the situation
in CIFAR10. We showcase in Figure 4 samples from Ima-
geNet, COCO, CIFAR10, and Market-1501, where the do-
main gap between them can be visually observed. A notable
phenomenon is that with the ResNet-50 backbone, perfor-
mance keeps rising when increasing the part number, while
the best performance is reached to the peak when the part
number is 3 with both DARTS and P-DARTS backbones.
This is arguably because of the larger feature dimensionality
adopted in ResNet-50 backbone, which also implies the po-
tential of further performance promotion on P-DARTS back-
bones with a larger feature dimensionality and part number.

6 Conclusions

In this work, we propose a progressive version of differen-
tiable architecture search to bridge the optimization gap be-
tween search and evaluation scenarios for NAS in the wild.
The core idea, based on that optimization gap is caused by
the difference between the policies of search and evalua-
tion, is to gradually increase the depth of the super-network

(a) ImageNet (b) MS-COCO

(c) CIFAR10 (d) Market-1501

Fig. 4: Samples from ImageNet, MS-COCO, CIFAR10 and
Market-1501. Please zoom in to see clearer.

during the search process. To alleviate the issues of com-
putational overhead and instability, we design two practical
techniques to approximate and regularize the search process,
respectively. Our approach reports superior performance in
both proxy datasets (CIFAR and ImageNet) and target datasets
(object detection and person re-identification added) with
significantly reduced search overheads.



Progressive DARTS: Bridging the Optimization Gap for NAS in the Wild 15

Our research puts forward the optimization gap in super-
network-based NAS and highlights the significance of the
consistency between search and evaluation scenarios. To solve
it in terms of network depth and width, the P-DARTS algo-
rithm paves a new way by approximating the search space.
We expect that our initial work serves as a modest spur to
induce more researchers to contribute their ideas to further
alleviate the optimization gap and design effective and gen-
eralized NAS algorithms.

Acknowledgement

We thank Chen Wei, Jian Zhang, Kaiwen Duan, Longhui
Wei, Tianyu Zhang, Yuhui Xu and Zhengsu Chen for their
valuable suggestions.

References

Baker B, Gupta O, Naik N, Raskar R (2017) Designing neural network
architectures using reinforcement learning. In: ICLR

Bi K, Hu C, Xie L, Chen X, Wei L, Tian Q (2019) Stabilizing darts
with amended gradient estimation on architectural parameters.
arXiv:1910.11831

Cai H, Chen T, Zhang W, Yu Y, Wang J (2018) Efficient architecture
search by network transformation. In: AAAI

Cai H, Zhu L, Han S (2019) ProxylessNAS: Direct neural architecture
search on target task and hardware. In: ICLR

Chen X, Xie L, Wu J, Tian Q (2019) Progressive differentiable archi-
tecture search: Bridging the depth gap between search and evalua-
tion. In: ICCV

Chu X, Zhang B, Xu R, Li J (2019) Fairnas: Rethinking eval-
uation fairness of weight sharing neural architecture search.
arXiv:1907.01845

Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) ImageNet:
A large-scale hierarchical image database. In: CVPR

DeVries T, Taylor GW (2017) Improved regularization of convolu-
tional neural networks with cutout. arXiv:1708.04552

Dong X, Yang Y (2019) Searching for a robust neural architecture in
four gpu hours. In: CVPR

Duan K, Bai S, Xie L, Qi H, Huang Q, Tian Q (2019) Centernet: Key-
point triplets for object detection. In: ICCV

Elsken T, Metzen JH, Hutter F (2018) Neural architecture search: A
survey. arXiv:1808.05377

Goyal P, Dollár P, Girshick R, Noordhuis P, Wesolowski L, Kyrola A,
Tulloch A, Jia Y, He K (2017) Accurate, large minibatch SGD:
Training ImageNet in 1 hour. arXiv:1706.02677

Han D, Kim J, Kim J (2017) Deep pyramidal residual networks. In:
CVPR

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image
recognition. In: CVPR

Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T,
Andreetto M, Adam H (2017) MobileNets: Efficient convolutional
neural networks for mobile vision applications. arXiv:1704.04861

Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely
connected convolutional networks. In: CVPR

Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In: ICML

Krizhevsky A, Hinton G (2009) Learning multiple layers of features
from tiny images. Tech. rep., Citeseer

Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification
with deep convolutional neural networks. In: NIPS

Larsson G, Maire M, Shakhnarovich G (2017) FractalNet: Ultra-deep
neural networks without residuals. In: ICLR

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature
521(7553):436–444

Li J, Ma AJ, Yuen PC (2018) Semi-supervised region metric learning
for person re-identification. IJCV 126(8):855–874

Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár
P, Zitnick CL (2014) Microsoft coco: Common objects in context.
In: ECCV

Liu C, Zoph B, Neumann M, Shlens J, Hua W, Li LJ, Fei-Fei L, Yuille
A, Huang J, Murphy K (2018a) Progressive neural architecture
search. In: ECCV

Liu H, Simonyan K, Vinyals O, Fernando C, Kavukcuoglu K (2018b)
Hierarchical representations for efficient architecture search. In:
ICLR

Liu H, Simonyan K, Yang Y (2019a) DARTS: Differentiable architec-
ture search. In: ICLR

Liu L, Ouyang W, Wang X, Fieguth P, Chen J, Liu X, Pietikäinen
M (2019b) Deep learning for generic object detection: A survey.
IJCV

Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC
(2016) Ssd: Single shot multibox detector. In: ECCV

Ma N, Zhang X, Zheng HT, Sun J (2018) ShuffleNet V2: Practical
guidelines for efficient cnn architecture design. In: ECCV

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen
T, Lin Z, Gimelshein N, Antiga L, et al. (2019) Pytorch: An imper-
ative style, high-performance deep learning library. In: NeurIPS

Pham H, Guan MY, Zoph B, Le QV, Dean J (2018) Efficient neural
architecture search via parameter sharing. In: ICML

Real E, Aggarwal A, Huang Y, Le QV (2018) Regularized evolution
for image classifier architecture search. arXiv:1802.01548

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z,
Karpathy A, Khosla A, Bernstein M, et al. (2015) ImageNet large
scale visual recognition challenge. IJCV 115(3):211–252

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In: CVPR

Simonyan K, Zisserman A (2015) Very deep convolutional networks
for large-scale image recognition. In: ICLR

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R
(2014) Dropout: A simple way to prevent neural networks from
overfitting. JMLR 15(1):1929–1958

Srivastava RK, Greff K, Schmidhuber J (2015) Training very deep net-
works. In: NIPS

Stanley KO, Miikkulainen R (2002) Evolving neural networks through
augmenting topologies. Evolutionary Computation 10(2):99–127

Suganuma M, Shirakawa S, Nagao T (2017) A genetic programming
approach to designing convolutional neural network architectures.
In: GECCO

Sun Y, Zheng L, Yang Y, Tian Q, Wang S (2018) Beyond part models:
Person retrieval with refined part pooling (and a strong convolu-
tional baseline). In: ECCV

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D,
Vanhoucke V, Rabinovich A (2015) Going deeper with convolu-
tions. In: CVPR

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking
the inception architecture for computer vision. In: CVPR

Tan M, Le Q (2019) Efficientnet: Rethinking model scaling for convo-
lutional neural networks. In: ICML

Tan M, Chen B, Pang R, Vasudevan V, Sandler M, Howard A, Le
QV (2019) Mnasnet: Platform-aware neural architecture search for
mobile. In: CVPR

Wang H, Zhu X, Gong S, Xiang T (2018) Person re-identification in
identity regression space. IJCV 126(12):1288–1310

Wei L, Zhang S, Gao W, Tian Q (2018) Person transfer gan to bridge
domain gap for person re-identification. In: CVPR



16 Xin Chen et al.

Wu B, Dai X, Zhang P, Wang Y, Sun F, Wu Y, Tian Y, Vajda P, Jia Y,
Keutzer K (2019) Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search. In: CVPR

Xie L, Yuille A (2017) Genetic CNN. In: ICCV
Xie S, Zheng H, Liu C, Lin L (2019) SNAS: Stochastic neural archi-

tecture search. In: ICLR
Xu Y, Xie L, Zhang X, Chen X, Qi GJ, Tian Q, Xiong H (2019) Pc-

darts: Partial channel connections for memory-efficient differen-
tiable architecture search. arXiv:1907.05737

Zagoruyko S, Komodakis N (2016) Wide residual networks.
arXiv:1605.07146

Zhang X, Zhou X, Lin M, Sun J (2018) ShuffleNet: An extremely effi-
cient convolutional neural network for mobile devices. In: CVPR

Zheng L, Shen L, Tian L, Wang S, Wang J, Tian Q (2015) Scalable
person re-identification: A benchmark. In: ICCV

Zheng Z, Zheng L, Yang Y (2017) Unlabeled samples generated by gan
improve the person re-identification baseline in vitro. In: ICCV

Zhong Z, Zheng L, Kang G, Li S, Yang Y (2017) Random erasing data
augmentation. arXiv:1708.04896

Zoph B, Le QV (2017) Neural architecture search with reinforcement
learning. In: ICLR

Zoph B, Vasudevan V, Shlens J, Le QV (2018) Learning transferable
architectures for scalable image recognition. In: CVPR


