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Abstract In this paper, we study two challenging and

less-touched problems in single image dehazing, namely,

how to make deep learning achieve image dehazing with-

out training on the ground-truth clean image (unsu-

pervised) and a image collection (untrained). An unsu-

pervised neural network will avoid the intensive labor

collection of hazy-clean image pairs, and an untrained

model is a “real” single image dehazing approach which

could remove haze based on only the observed hazy im-

age itself and no extra images is used. Motivated by the

layer disentanglement idea, we propose a novel method,

called you only look yourself (YOLY) which could be

one of the first unsupervised and untrained neural net-

works for image dehazing. In brief, YOLY employs three

jointly subnetworks to separate the observed hazy im-

age into several latent layers, i.e., scene radiance layer,
transmission map layer, and atmospheric light layer.

After that, these three layers are further composed to

the hazy image in a self-supervised manner. Thanks

to the unsupervised and untrained characteristics of

YOLY, our method bypasses the conventional training
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paradigm of deep models on hazy-clean pairs or a large

scale dataset, thus avoids the labor-intensive data col-

lection and the domain shift issue. Besides, our method

also provides an effective learning-based haze transfer

solution thanks to its layer disentanglement mechanism.

Extensive experiments show the promising performance

of our method in image dehazing compared with 14

methods on four databases.

Keywords Single Image Dehazing · Unsupervised

Learning · Untrained Neural Network

1 Introduction

Haze is a typical atmospheric phenomenon which oc-

curs when the dust, smoke and other particles accu-
mulate in relatively dry air. These particles absorb and

scatter the light greatly, thus attenuating the scene ra-

diance reflected from scene point and confuse it with

the scattering light. Haze will lead to a decrease in visi-

bility of the scene point and the images captured under

this weather condition will become poor in contrast and

lose the visual details. Many vision tasks such as ob-

ject detection would suffer from performance degrada-

tion due to these terrible hazy images. Therefore, image

dehazing, as a preprocessing step and visual enhance-

ment technology, has been extensively researched and

achieves remarkable performance (Cai et al., 2016; Li

et al., 2017, 2015; Sakaridis et al., 2018a,b; Tan, 2008;

Zhang and Patel, 2018; Zhu et al., 2018).

In recent, many researchers have shifted their fo-

cus to remove haze from a single image which is more

promising but more challenging in practice since with-

out any extra information beyond the observed image

itself. A variety of methods have been proposed (Chen

et al., 2016; He et al., 2009; Tarel and Hautiere, 2009;
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(a) (b) (c) (d)

Fig. 1 A visual illustration of the proposed YOLY. a) a
real world hazy image; b) the clean image recovered by De-
hazeNet; c) the clean image recovered by YOLY; (d) the
transmission map estimated by YOLY. Note that DehazeNet
is pretrained using a collection of hazy-clean image pairs as
did in (Zhu et al., 2018), whereas our method obtains the
result only using the observed hazy image itself. From the re-
sults, one could find that our method qualitatively performs
better than DehazeNet. Zoom-in is recommended to see the
detailed comparisons.

Zhu et al., 2015) by employing a widely recognized at-

mospheric scattering physical model (Nayar and Narasimhan,

1999), which could be roughly divided into two catego-

rizes: prior- and learning-based methods.

To be specific, prior-based methods employ some

handcrafted priors derived from the intrinsic properties

of image, such as texture, contrast, and chromatic aber-

ration. For instance, He et al. (2009) observe there ex-

ists the dark channel in the local patches of the outdoor

haze-free images and accordingly propose using such a

dark channel prior (DCP) to estimate the transmission

map and atmospheric light for reconstructing the clean

image. With the assumption of the image depth is pos-

itively correlated to the difference between brightness

and saturation, Zhu et al. (2015) propose color atten-

uation prior (CAP) to estimate the transmission map.

Although these methods have achieved remarkable per-

formance, the dehazing quality heavily depends on the

consistency between the adopted prior and the actual

image properties.

To alleviate the dependence of priors, learning-based

methods especially deep learning based models have

recently attracted much attention and a lot of efforts

have been devoted in recent (Cai et al., 2016; Hahner

et al., 2019; Li et al., 2017; Liu et al., 2019; Qu et al.,

2019; Zhang and Patel, 2018; Zhang et al., 2017, 2018).

Different from prior-based methods, the parameters of

atmospheric scattering model are learned from a large

scale training dataset. For example, DehazeNet (Cai

et al., 2016) estimates the transmission map by utilizing

a deep neural network trained on a large scale dataset

with the supervision of the ground-truth transmission

map. Although these learning methods have achieved

state-of-the-art performance in image dehazing, almost

all of them work in a supervised and trained man-

ner. Namely, they usually require a large scale training

dataset which is with some kind of ground truths (e.g.,

hazy-clean image pair). Once the conditions are unsat-

isfied, these learning-based methods would be failed.

In practice, however, it is daunting even impossible

to collect a large scale dataset with the desirable ground

truth due to the variation in scene and the other fac-

tors such as illumination. Therefore, most of methods

resort to collect some clean images first and then syn-

thesize the corresponding hazy images via the atmo-

spheric scattering model with the handcrafted parame-

ters. However, the synthesized hazy images are proba-

bly less informative and inconsistent with the real hazy

images, which would lead to the domain shift issue when

the model trained on the synthetic dataset is applied

to the real-world hazy images. To address the above

issues, it is highly expected to develop a novel deep

neural network which could work in an unsupervised

and untrained manner simultaneously, while achieving

the promising performance. However, to the best of

our knowledge, such a challenging task is less touched

heretofore.

In this paper, we propose a novel neural network

called you only look yourself (YOLY) which employs

three joint subnetworks (i.e., J-Net, T-Net, and A-Net)

to disentangle a given hazy image into three compo-

nent layers, i.e., scene radiance layer, transmission map

layer, and atmospheric light layer. After that, these

three layers are further used to reconstruct the observed

input. Thanks to the proposed novel objective function

and network structure, YOLY performs image dehazing

by only using the information contained in the observed

single hazy image. In other words, the proposed network

performs like a “real” single image dehazing method,

which does not follow the conventional paradigm of

training the neural network on an image set with some

ground truths. The major advantages of our YOLY is

that it could avoid the labor-intensive data collection

and domain shift issue like existing deep learning based

methods, while achieving promising results. Besides,

benefiting from the disentanglement of scene radiance,

transmission map, and atmospheric light, our method

provides an effective way to synthesize new hazy im-

ages in a learning-based rather than handcrafted fash-

ion, which could also be the first study afak.

To summarize, the contributions are given as fol-

lows:

– To the best of our knowledge, this work could be

one of the first unsupervised and untrained neu-

ral networks for single image dehazing, which re-

moves haze without training on a image collection

and the ground-truth clean image pairs. To the best
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of knowledge, the closest work is DDIP (Irani, 2019)

which is with significantly difference with the pro-

posed YOLY and the discussion on their distinction

is presented in Section 2.

– A new neural network (i.e., YOLY) is proposed,

which consists of three joint disentanglement sub-

networks. In brief, two non-degenerate convolutional

neural networks (J-Net and T-Net) are used to ob-

tain the clean image and the transmission map, and

a variational auto-encoder (A-Net) is used to obtain

the atmospheric light. The whole network is learned

in a self-supervised manner, which only explore and

exploit the information rooted in the observed hazy

image as the supervision.

– Our method could also be used to synthesize new

hazy images by transferring the haze from one image

to another clean image, thus avoiding handcrafting

the parameters of the physical model.

2 Related Work

In this section, we briefly introduce some existing image

dehazing methods from the perspective of prior- and

learning-based category. Besides, we will also introduce

recent development in unsupervised neural networks for

image enhancement.

2.1 Prior-based methods

Almost all existing prior-based methods are shallow

models, which aim to explore various of handcrafted

priors from the hazy-free images, such as texture, con-

trast and chromatic aberration. With the prior, the

transmission map and atmospheric light could be esti-

mated, and thus the under-constrained dehazing prob-

lem could be well posed. Following this paradigm, dark

channel prior (He et al., 2009) was proposed based on

the following observation. Namely, most local patches

in haze-free outdoor images contain some pixels with

very low intensities in at least one color channel. By

using such a prior, DCP successfully estimate the trans-

mission map and atmospheric light of hazy image. Be-

sides, a variety of priors are employed based on dif-

ferent observations/assumptions, such as color attenu-

ation prior (CAP) (Zhu et al., 2015), non-local color

prior (NCP) (Berman et al., 2016) and haze-line prior

(HLP) (Berman et al., 2017).

Although promising performance has been achieved

by these prior-based methods, the dehazing performance

is not always desirable due to the inconsistency between

the adopted prior and changeable environment. More-

over, these methods are shallow models which might be

with limited capacity of handling complex data.

2.2 Learning-based methods

Different from the prior-based methods, learning-based

methods adopt a data-driven manner to learn the trans-

mission map and/or atmospheric light. In recent, mo-

tivated by the success of neural networks, some stud-

ies (Cai et al., 2016; Li et al., 2017; Liu et al., 2019;

Qu et al., 2019; Ren et al., 2016; Zhu et al., 2018) have

been conducted to apply neural networks to image de-

hazing, which have achieved the state-of-the-art per-

formance. For instance, Cai et al. (2016) proposed De-

hazeNet which utilizes a trainable convolutional neural

network to estimate the transmission map under the su-

pervision of the ground-truth transmission maps. Ren

et al. (2016) proposed a multi-scale convolutional neu-

ral network wherein a coarse- and fine-scale network

are combined to estimate the transmission map for de-

hazing. Zhu et al. (2018) proposed simultaneously esti-

mating the transmission map and the atmospheric light

by using a generative adversarial network. In summary,

like the neural network in other tasks, the success of

these deep deep image dehazing methods also rely on a

large scale training dataset which is with some truthful

supervisors such as the hazy-clean image pairs.

The differences of our method with these existing

deep learning based methods (Cai et al., 2016; Li et al.,

2017; Liu et al., 2019; Qu et al., 2019; Ren et al., 2016;

Zhu et al., 2018) are given in the following aspects: 1)

the proposed YOLY works in an unsupervised rather

than supervised manner. In other words, our method

does not need the hazy-clean pair images; 2) YOLY

is an “untrained” instead of “trained” model. In other

words, YOLY does not require training on a dataset,

which could directly handle each single hazy image when

it is observed. These two advantages make our method

avoid the labor-intensive data collection and the domain-

shift issues of using the synthetic hazy images to ad-

dress the real-world images; 3) our method could dis-

entangle the clean image, the transmission map, and

the atmospheric light from the hazy image. This makes

transferring haze from the real scenes to another image

possible. Namely, our method provides an effective so-

lution to synthesize new hazy images in a data-driven

rather than human-specific way.

2.3 Unsupervised Deep Image Enhancement Methods

Although there are only few efforts (Irani, 2019) in de-

veloping unsupervised approach for single image dehaz-
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ing, some methods have been proposed for other im-

age enhancement tasks in recent (Heckel and Hand,

2019; Irani, 2019; Krull et al., 2019; Lehtinen et al.,

2018; Ulyanov et al., 2018). For example, Noise2Noise

(N2N) (Lehtinen et al., 2018) shows that simple sta-

tistical arguments lead to new capabilities in data de-

noising using neural networks. However, it has to use

a corrupted image set with the same noise distribu-

tion to train the neural network. In other words, it

cannot handle the single image case like our method

does despite the difference in tasks. Deep image prior

(DIP) (Ulyanov et al., 2018) is another recently pro-

posed unsupervised method which fits a corrupted im-

age using a random noise vector and early-stoping strat-

egy to recover the clean image. However, it is a daunt-

ing task to determine the training epoch at which the

desirable result is obtained.

Although both the aforementioned methods and our

YOLY are unsupervised methods, there are largely dif-

ferent. First, most of the aforementioned methods are

not specifically designed for single image dehazing. Will

be shown in our experiments, they cannot achieve en-

couraging performance in such a challenging task (haze

is a kind of signal-dependent noises). Second, the meth-

ods such as N2N and its variants require using a data

collection for training, whereas our method will only

use the observed hazy image itself. Third, our method

is based on the layer disentanglement idea which is dif-

ferent from these methods in the methodology. It should

be pointed out that our method is also remarkably dif-

ferent from the recently proposed DDIP (Irani, 2019) in

the following two aspects. On one hand, the loss and the

network structure are totally different. To be specific,

our method employs variational inference to model the

atmospheric light, whereas DDIP adopts a U-Net-like

structure to fit the image same with DIP. Moreover,

our YOLY utilizes the color attenuation as a supervi-

sor to estimate the clean image, whereas DDIP mainly

employs the early-stopping fitting strategy (Ulyanov

et al., 2018). On the other hand, the input and the

working mechanism are different. In brief, DDIP takes

three random noises as inputs and feeds them into three

generator networks to fit the hazy image, which utilizes

the properties of DIP. In contrast, our method directly

feeds the hazy image as the conditional input into three

subnetworks so that different layers are disentangled.

In other words, DDIP performs layer composition in

a bottom-to-top fashion, whereas our YOLY performs

layer disentanglement in a top-to-bottom fashion.

3 Proposed Method

Given a single hazy image x as the input, we aim to re-

cover the clean image J(x) without using the informa-

tion beyond the image content itself. The basic idea of

our methods is to disentangle x into three layer compo-

nents using three joint subnetworks as shown in Fig 2.

More specifically, YOLY simultaneously feeds x into a

clean image estimation network (J-Net), a transmission

map estimation network (T-Net), and an atmospheric

light estimation network (A-Net). After that, the out-

puts of them are further combined to reconstruct x

at the top of YOLY through the atmospheric scatter-

ing physical model. In such a way, the whole model

is learned in an unsupervised fashion and these sub-

networks are optimized in an end-to-end manner. For-

mally, at the top layer of YOLY, we aim to minimize

the following loss:

LRec = ‖I(x)− x‖p, (1)

where ‖·‖p denotes p-norm of a given matrix. In this pa-

per, we simply adopt Frobenius norm. I(x) is computed

by composing the outputs of the three subnetworks via

I(x) = J(x)T (x) +A(1− T (x)) (2)

where J(x) denotes the clean image predicted by J-Net,

T (x) is the medium transmission map predicted by T-

Net, and A is the global atmospheric light on each pixel

coordinates predicted by A-Net. It should be pointed

out that some algorithms (Zhu et al., 2018) have been

proposed by learning these factors based on the above

physical model, however, to the best of our knowledge,

there is few efforts have been devoted to developing

unsupervised methods so far.

The loss LRec is designed to constrain the entire

network including the subnetworks to well reconstruct

the hazy image x after layer disentanglement. In other

words, it guides the layer disentanglement and composi-

tion through incorporating the haze generation process.

In the following, we will illustrate how these three net-

works could obtained desired layer components, besides

directly utilizing the above self-supervision.

3.1 J-Net

J-Net aims to predict the clean image J(x) from the

hazy image x. As demonstrated in Fig.(2), J-Net takes

a non-degenerate architecture by following (Li et al.,

2018). Namely, our J-Net does not implement the down-

sampling operation, thus preventing the loss of detail in
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Fig. 2 The architecture of YOLY. In brief, YOLY consists of three joint learning subnetworks which are the clean image
estimation network (J-Net), the transmission map estimation network (T-Net), and the atmospheric light estimation network
(A-Net). Taking a single hazy image as the input, these three subnetworks disentangle the input into three different layers
which are then utilized to reconstruct the input hazy image in a decomposition-composition fashion. Note that, the atmospheric
light fA(x) would be approximately even exact homogeneous if the transmission map fT (x) could be well recovered as shown
in the figure. HSV denotes the operation of transforming the recovered image to its HSV version.

J(x). More specifically, J-Net only consists of the con-

volutional layer, batch normalization layer (Ioffe and

Szegedy, 2015), and LeakyReLU activation. In the last

layer, we choose sigmoid function to normalize the out-

put into [0, 1]. More details about the network imple-

mentation could refer to the experimental setting and

supplementary materials.

To supervise J-Net, we propose the following loss

function

LJ = ‖V (fJ(x))− S(fJ(x))‖p, (3)

where V (fJ(x)) denotes the brightness of fJ(x), and

S(fJ(x)) denotes the saturation of fJ(x).

The loss term LJ is designed based on the observa-

tion in (Zhu et al., 2015). Namely, the depth of clean

image is positively correlated to the difference between

brightness and saturation of a clean image. To utilize

this prior in an unsupervised manner, we recast the

prior as the above formulation, i.e., the difference be-

tween the value and saturation should be as small as

possible in the predicted J(x). Eq. (3) has two advan-

tages. On one hand, the formulation has sub-gradients

and pluggable into our model to enjoy the joint opti-

mization through back-propagation. On the other hand,

it makes possibility to recover the clean image without

using the ground-truth clean image.

3.2 T-Net

As the clean background and the transmission map are

dependent of the input x, we adopt the similar net-

work structure for J-Net and T-Net. There are only

two differences between them. To be specific, the out-

put layer of J-Net is with three channels, whereas the

output layer of T-Net is with only one channel for com-

putational efficiency. On the other hand, T-Net does

not employ an explicit loss, which only utilizes the self-

supervision back-propagated from the top layer of YOLY

to guide the optimization.

3.3 A-Net

A-Net aims to estimate the global atmospheric light

from the observed images. As the global atmospheric

light A is independent of the image content and owns

the global property, it is reasonable to assume that A is

sampled from a latent Gaussian distribution. Accord-

ingly, we recast the learning of A as a variational in-
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ference problem (Kingma and Welling, 2014). To be

specific, A-Net consists of an encoder, a symmetric de-

coder, and an intermediate block. Both the encoder and

the decoder consist of four blocks. In the encoder, the

blocks consist of a convolutional layer, a ReLU acti-

vation function, and a max pooling layer in sequence.

In the decoder, the blocks sequentially perform upsam-

pling, convolution, batch normalization, and ReLU ac-

tivation. To learn the latent Gaussian model, the in-

termediate block is used to transform the output (i.e.,

z) of the encoder to the latent Gaussian distribution

N (µz, σ
2
z), i.e., z → {µz, σ

2
z}, where µz and σ2

z are mean

and variance of the learned Gaussian model. Through

resampling from the Gaussian model, the reconstruc-

tion of the latent code could be generated, i.e.,N (µz, σ
2
z)

→ ẑ. After that, ẑ is fed into the decoder to obtain

the reconstruction of the disentangled atmospheric light

fA(x).

The loss function for A-Net is formulated as below:

LA = LH + LKL + λLReg, (4)

where LH is the loss between the disentangled atmo-

spheric light fA(x) and the initial hint A(x), where

A(x) is estimated from x. LKL and LReg denote the

loss for variational inference and regularization term,

respectively. λ is a nonnegative parameter to balance

the regularization.

To be exact, LH is defined as

LH = ‖fA(x)−A(x)‖F . (5)

LKL aims to minimize the difference between the

latent code z and the corresponding reconstruction ẑ re-

sampled from the Gaussian model. To enjoy the end-to-

end optimization using the standard stochastic gradient

methods, the reparameterization trick could be used to

yield a lower bound estimator (Kingma and Welling,

2014). Mathematically,

LKL = KL(N (µz, σ
2
z)||N (0, I))

=
1

2

∑
i

(
(µzi)

2 + (σzi)
2 − 1− log(σzi)

2
)

(6)

where KL(·) denotes the Kullback-Leibler divergence

between two distributions, zi denotes the i-th dimen-

sion of z.

To avoid overfitting, we enforce LReg on the outputs

of A-Net, i.e., fA(x). Formally,

LReg(x) =
1

2m

m∑
i=1

(xi −
1

|N(xi)|
∑

yi∈N(xi)

yi)
2, (7)

where N (xi) is the second order neighborhood of xi,

|N (xi)| is the neighborhood size, and m denotes the

pixel number of x. Clearly, the regularizations play a

role of mean filtering, which enforce A(x) to be smooth.

Note that, the high-frequency details of the recovered

haze-free image might lose if the above regularization

is enforced on the output of J-Net.

In summary, the total loss of our YOLY is as below:

L =LRec + LJ + LH + LKL + λLReg

=‖I(x)− x‖2F + ‖V (fJ(x))− S(fJ(x))‖2F
+ ‖fA(x)−A(x)‖2F
+
∑
i

(
(µzi)

2 + (σzi)
2 − 1− log(σzi)

2
)

+
λ

m

m∑
i=1

(fA(x)i −
1

|N(fA(x)i)|
∑

yi∈N(fA(x)i)

yi)
2

(8)

4 Experiments

In this section, we evaluate our method on two synthetic

datasets and two real-world datasets, comparing with

14 baseline methods in terms of PSNR and SSIM. In

the following, we will first demonstrate the experimen-

tal setting, and then show the qualitative and quantita-

tive results on the datasets, as well as the time cost of

YOLY. After that, we will show the effectiveness of our

method for haze transfer. Finally, the ablation study

is presented to verify the effectiveness of the proposed

method.

4.1 Experimental Settings

In this part, we elaborate on the used datasets, base-

lines, the evaluation metrics, and the implementation

details.

Datasets: RESIDE (Li et al., 2019) is a new large

scale haze image dataset, of which the testing subsets

consist of Synthetic Objective Testing Set (SOTS) and

Hybrid Subjective Testing Set (HSTS). To be specific,

SOTS consists of 500 indoor hazy images, which are

synthesized by the physical model with handcrafted pa-

rameters. HSTS contains 10 synthetic haze images and

10 real-world hazy images. In our experiments, we take

SOTS and HSTS for evaluations. Besides, we also man-

ually collect 10 hazy real-world images from Internet for

a more comprehensive investigation.

Baselines: For comprehensive comparisons, we com-

pare the proposed YOLY with 14 methods which are

divided into three groups, namely, four learning-based

dehazing methods, five prior-based dehazing methods

and five unsupervised deep image enhancement meth-

ods. It should be pointed out that, both the prior-based
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and unsupervised deep methods remove haze from im-

age without using the ground-truth clean image, and

their major difference is that the former is the shal-

low model whereas the latter is based on deep neural

networks.

To be specific, the learning-based dehazing meth-

ods are DehazeNet (Cai et al., 2016), MSCNN (Ren

et al., 2016), AOD-Net (Li et al., 2017) and CAP (Zhu

et al., 2015). Here, although CAP use prior informa-

tion, we still classify it into the learning-based cate-

gory because it employs the ground-truth transmission

as the supervisor. The prior-based dehazing approaches

are DCP (He et al., 2009), FVR (Tarel and Hautiere,

2009), BCCR (Meng et al., 2013), GRM (Chen et al.,

2016), NLD (Berman et al., 2016). The unsupervised

deep image enhancement methods contain N2N (Lehti-

nen et al., 2018), N2V (Krull et al., 2019), DIP (Ulyanov

et al., 2018), DD (Heckel and Hand, 2019) and DDIP (Irani,

2019). Noticed that, N2N, N2V, DD, and DIP are specif-

ically designed for other image enhancement tasks rather

than image dehazing, which are compared in our ex-

periments for two reasons. On one hand, there is no

unsupervised deep model for singe image dehazing ex-

cepted DDIP so far. Thus, the comparisons with them

could provide a more extensive study. On the other

hand, the inferior performance achieved by them shows

that it would achieve undesirable result if these meth-

ods are simply applied to the dehazing task. Further-

more, among all the tested methods, only N2V, DD,

DIP, DDIP, and our YOLY are untrained neural net-

works, which means that they do not require training

data and only use the given hazy image.

Evaluation Metrics: Like (Irani, 2019; Li et al.,

2017; Qu et al., 2019; Ren et al., 2016; Zhang and Pa-

tel, 2018), two popular metrics are used in the quanti-

tative comparisons, i.e., PSNR and SSIM. Higher value

of these metrics indicates better dehazing performance.

Experimental Configurations: We conduct ex-

periments on an NVIDIA Titan RTX GPU in PyTorch.

To optimize YOLY, we employ the ADAM optimizer (Kingma,

2015) with the default learning rate and the maximal

epoch of 500. For better reproducibility, we do not ex-

haustively tune parameters for our method and instead

fix λ = 0.1 for all the evaluations. To initialize the hint,

we use the method similar to (He et al., 2009). Re-

garding some of baselines, we directly refer to the best

results reported in the original papers. For the baselines

without the corresponding results, we carry out them

by using the source codes provided by the authors and

adopting their parameter settings. The source code of

YOLY will be released on Github.

4.2 Comparisons on Synthetic Datasets

Table 1 and Fig. 3 report the quantitative and qualita-

tive results on the indoor testing dataset (i.e., SOTS).

It is worthy to note that, we do not illustrate the vi-

sualization results of FVR, BCCR, and NLD due to

the space limitation and their relatively inferior per-

formance. From Table 1 and Fig. 3, one could observe

that:

– Compared with the unsupervised deep methods, YOLY

is 2.44 and 0.1180 higher than the best of them in

terms of PSNR and SSIM, respectively. Compared

with the unsupervised shallow method (i.e., prior-

based), YOLY achieves a gain of 0.55 over the best

method in SSIM.

– YOLY surpasses all supervised methods excepted

DehazeNet in the quantitative comparisons. In the

qualitative comparisons, YOLY shows the best vi-

sual results as shown in Fig. 3, especially in the bor-

der areas of the figures. For example, DehazeNet

fails to obtain a desirable result from the first im-

age and remove the haze from the area close to the

chair in the second image.

– On the dataset, YOLY takes about 34.08s to obtain

the final result for each image, i.e., it costs 68.15ms

to run each epoch. Note that, this is the whole time

cost of YOLY and no more training is required.

Different from the indoor scenes, the outdoor scenes

are usually much more complex in depth, illustration,

and background. As shown in Table 2 and Fig. 4, our

method achieves promising dehazing performance in

the outdoor scenes (HSTS). More specifically,

– Table 2 shows that our method is remarkably supe-

rior to all the unsupervised baselines including deep

and prior-based shallow methods. More specifically,

it outperforms the best unsupervised deep method

by 2.91 and 0.0283 in terms of PSNR and SSIM,

respectively. It is also 4.9 and 0.0941 higher than

the best prior-based dehazing methods. Note that,

N2N cannot achieve result on the HSTS dataset be-

cause it requires multiple hazy samples from the

same scene whereas this dataset only includes a sin-

gle sample for each scene.

– Although YOLY is quantitively worse than DehazeNet,

it shows better recovery performance in the visual

comparison (see Fig. 4(b) of DehazeNet and Fig. 4(k)

of YOLY for example). In fact, the haze-free images

recovered by our YOLY seem more favorite than the

ground truth clean image (Fig. 4(l)) which might be

corrupted during data collection.

– The visualization results partially show the limi-

tations of the traditional prior-based methods in
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Table 1 Results on the synthetic indoor database (SOTS). The bold number indicates the best method of each category of
methods.

Metrics
Learning-based Dehazing Methods Prior-based Dehazing Methods

DehazeNet MSCNN AOD-Net CAP DCP FVR BCCR GRM NLD
PSNR 21.14 17.57 19.06 19.05 16.62 15.72 16.88 18.86 17.29
SSIM 0.8472 0.8102 0.8504 0.8364 0.8179 0.7483 0.7913 0.8553 0.7489

Metrics
Unsupervised Neural Networks

N2N N2V DIP DD DDIP Ours
PSNR 14.49 10.67 12.28 11.92 16.97 19.41
SSIM 0.7078 0.5397 0.5782 0.6404 0.7147 0.8327

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Fig. 3 Visual Results on SOTS. From the left to the right column (i.e., Figs. (3(a)–3(l))), the input hazy image, De-
hazeNet (Cai et al., 2016), MSCNN (Ren et al., 2016), AOD-Net (Li et al., 2017), DCP (He et al., 2009), GRM (Chen et al.,
2016), N2V (Krull et al., 2019), DIP (Ulyanov et al., 2018), DD (Heckel and Hand, 2019), DDIP (Irani, 2019), our YOLY and
the ground truth are presented in column-wise. Some areas are highlighted by red rectangles and zooming-in is recommended
for a better visualization and comparison.

Table 2 Results on the synthetic outdoor database (HSTS). The bold number indicates the best method of each category of
methods.

Metrics
Learning-based Dehazing Methods Prior-based Dehazing Methods

DehazeNet MSCNN AOD-Net CAP DCP FVR BCCR GRM NLD
PSNR 24.48 18.64 20.55 21.53 14.84 14.48 15.08 18.54 18.92
SSIM 0.9153 0.8168 0.8973 0.8726 0.7609 0.7624 0.7382 0.8184 0.7411

Metrics
Unsupervised Neural Networks

N2N N2V DIP DD DDIP Ours
PSNR - 11.79 14.55 14.66 20.91 23.82
SSIM - 0.5450 0.5573 0.6409 0.8842 0.9125

handling the complex scenes which may violate the

adopted prior. More specifically, DCP shows some

distortions in the sky area. The main reason is that

the sky and the bright areas do not satisfy the as-

sumption of DCP, thus resulting in inaccurate esti-

mation of the transmission map.

– It is worth noting that all unsupervised deep models

excepted DDIP and YOLY cannot perform well in

the qualitative and quantitative comparisons. The

reason is that they are not specifically designed for

dehazing. This shows the difficulty and necessity in

developing new deep unsupervised single image de-

hazing methods.

– On the dataset, YOLY takes about 28.58s for han-

dling each image averagely and each epoch costs

57.17ms.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) our (l)

Fig. 4 Visual Results on HSTS. From the left to the right column (i.e., Figs.(4(a)–4(l))), the input hazy image, DehazeNet (Cai
et al., 2016), MSCNN (Ren et al., 2016), AOD-Net (Li et al., 2017), DCP (He et al., 2009), GRM (Chen et al., 2016), N2V (Krull
et al., 2019), DIP (Ulyanov et al., 2018), DD (Heckel and Hand, 2019), DDIP (Irani, 2019), our YOLY and the ground truth
are presented in column-wise. Zooming-in is recommended for a better visualization.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 5 Visual Results on the Real-World Dataset. From the left to the right column (i.e., Figs.(6(a)–5(j))), the input hazy
image, DehazeNet (Cai et al., 2016), MSCNN (Ren et al., 2016), AOD-Net (Li et al., 2017), DCP (He et al., 2009), GRM (Chen
et al., 2016), DIP (He et al., 2009), DD (Heckel and Hand, 2019), DDIP (Irani, 2019) and our method are presented in column-
wise. Some areas are highlighted by red rectangles and zooming-in is recommended for a better visualization and comparison.

4.3 Comparisons on Real World Dataset

To demonstrate the effectiveness of the proposed method
in real-world hazy scenes, we carry out qualitative ex-

periments on the HSTS real-world image set which is

without the ground-truth clean image.

From Fig. 6, one could observe that our YOLY demon-

strates the best visualization result in almost all scenes.

For example, although DehazeNet, MSCNN, AOD-Net,

DCP, and DDIP successfully remove most of haze in the

pictures, they fail to handle the areas with much more

details. Besides, the methods such as DCP and DDIP

also suffer from the color distortions in the background.

DehazeNet and AOD-Net lose some details after de-

hazing in the low-light areas. In contrast, our method

could be immune from these issues and get a much more

favorite recovery. On this dataset, YOLY takes about

59.27s for dehazing each image and each epoch costs

about 118.54ms.

Besides the results on the HSTS real-world image

set, we also conduct comparisons on 10 hazy images

collected from Internet by us. As shown in Fig. 6, the

proposed YOLY is remarkably superior to the base-

lines. Moreover, we also illustrate the transmission map

learned by YOLY for a more comprehensive investiga-

tion in the last column.

4.4 Haze Transfer

Recent works have witnessed the effectiveness of su-

pervised neural networks in image dehazing. To well

train the neural networks, a large scale hazy-clean im-

age pairs are required, and most of works resort to the

synthetic dataset by manually specifying the parame-

ters of the physical model. Such a handcrafted haze cre-

ation solution has suffered from a variety of limitations,

e.g., the domain shift when using the synthetic hazy

images to address the real-world images. To solve this

problem, it is highly expected to develop new haze cre-

ation methods which work in a learning manner. How-

ever, to the best of our knowledge, there are few efforts

have devoted to this problem so far.

As a by-product of our layer disentanglement idea,

our method could transfer haze from a given hazy im-
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Fig. 6 Visual Results on the Real-World scenes. From the left to the right column (i.e., Figs.(6(a)–6(l))), the input hazy
image, DehazeNet (Cai et al., 2016), MSCNN (Ren et al., 2016), AOD-Net (Li et al., 2017), DCP (He et al., 2009), GRM (Chen
et al., 2016), N2V (Krull et al., 2019), DIP (He et al., 2009), DD (Heckel and Hand, 2019), DDIP (Irani, 2019), our method and
the estimated transmission map are presented. Some areas are highlighted by red rectangles and zooming-in is recommended
for a better visualization and comparison.

age to another clean one. In other words, we provide

a novel solution to haze creation. To transfer the haze,

our method first disentangles the atmospheric light and

the transmission map from the hazy image. After that,

the model is further used to generate the new hazy im-

ages w.r.t. a given clean image.

To demonstrate the effectiveness of our method in

haze transfer, we conduct the following experiments,

i.e., transferring haze 1) from an indoor image to an-

other indoor clean image, see Fig. 7; 2) from an indoor

image to another outdoor clean image, see Fig. 8; 3)

from an outdoor image to another outdoor clean image.

From the results, one could find that our method could

successfully transfer the haze as expected. The perfor-

mance dominance of YOLY is more distinct in Fig. 9,

where the haze source comes from the real world. More

specifically, one could observe that the haze nearby the

camera is much heavier than other areas in the second

image of Fig. 9(b). The major reason might attribute

to the difficulty in estimating the depth information

of outdoor image. In contrast, the hazy images gener-

ated by our method less suffers from this issue, which

shows the promising haze creation performance of our

method.

4.5 Ablation Study

To verify the effectiveness of our loss function, we con-

duct an ablation study on the HSTS dataset by re-

moving one of LH , LKL, LJ , and LReg. From Table 3,

one could see that: 1) our method leverages the advan-

tages of variational inference in haze removal with the

formulation of LH and LKL; 2) the statistical infor-

mation used on J-Net could improves the performance
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(a) (b) (c) (d)

Fig. 7 Haze transferring from synthetic indoor hazy im-
ages to indoor clean images. Fig. 7(a) and 7(b) are the
ground truth clean image and the corresponding handcrafted
hazy image. Fig. 7(c) is our hazy image synthesized by trans-
ferring the haze from Fig. 7(d) to Fig. 7(a). From the result,
one could find that the handcrafted hazy images show some
distortions due to the wrong depth information, i.e., the area
near to the border of the piano in the first image and the chair
near to the camera in the third and fourth images. There are
also some unreal haze distribution in the handcrafted hazy
image, i.e., the area near to the camera in the second image.
Some areas are highlighted by red rectangles and zooming-in
is recommended for a better visualization and comparison.

(a) (b) (c) (d)

Fig. 8 Haze transferring from synthetic indoor hazy im-
ages to outdoor clean images. Fig. 8(a) and 8(b) are the
ground truth clean image and the corresponding handcrafted
hazy image. Fig. 8(c) is our hazy image synthesized by trans-
ferring the haze from Fig. 8(d) to Fig. 8(a). One could find
out that the haze is average distributed in the handcrafted
hazy image. In contrast, the transferred hazy images show
that the haze is light near the camera and heavy in other
areas. Namely, our transferred hazy images is more real than
the handcrafted ones.

of the model; 3) the performance of YOLY is slightly

improved with the regularization on the estimation of

atmospheric light.

(a) (b) (c) (d)

Fig. 9 Haze transferring from real-world hazy images to
outdoor clean images. Fig. 9(a) and 9(b) are the ground
truth clean image and the corresponding handcrafted hazy
image. Fig. 9(c) is our hazy image synthesized by transfer-
ring the haze from Fig. 9(d) to Fig. 9(a). From the result,
one could find out that there are a lot unreal haze distribu-
tions in the handcrafted hazy images. For example, the second
image shows a heavy haze near the camera and light haze in
the sky area, which is inconsistent with the real-world cases.
As a contrast, our hazy image is faithful to such common
knowledge.

Table 3 Ablation Study on the HSTS database.

Metrics LH LKL LJ LReg Ours

PSNR 21.16 21.68 22.53 22.28 23.82
SSIM 0.8733 0.8690 0.9039 0.8836 0.9125

5 Conclusion

In this paper, we propose an unsupervised and un-

trained image dehazing neural network which separates

the observed hazy image into scene radiance layer, trans-

mission map layer and atmospheric light layer. Three

advantages of the proposed YOLY are: 1) unsupervised

characteristic means that the method does not use the

information beyond the image content; 2) untrained

characteristic means that the method does not require

using an image collection for training like most exist-

ing neural networks do; 3) transferable hazy capacity

which could synthesize new hazy images by extract-

ing the haze from a given image in a learning- and

unsupervised-fashion. Extensive experiments on two syn-
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thesis datasets and one real-world dataset demonstrate

the promising performance of our method in the quan-

titative and qualitative comparisons.

Although our method remarkably outperforms most

existing unsupervised shallow and deep methods, it is

only comparable to the state-of-the-art supervised im-

age dehazing approaches. Thus, it is promising to con-

tinually improve its performance in future. Moreover, it

is also valuable to explore how to extend our method to

other image/video enhancement tasks such as denois-

ing, inpainting, and so on.
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