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Real-Time Semantic Segmentation via Auto Depth, Downsampling Joint

Decision and Feature Aggregation

Peng Sun - Jiaxiang Wu - Songyuan Li -

Abstract To satisfy the stringent requirements on compu-
tational resources in the field of real-time semantic segmen-
tation, most approaches focus on the hand-crafted design of
light-weight segmentation networks. Recently, Neural Ar-
chitecture Search (NAS) has been used to search for the op-
timal building blocks of networks automatically, but the net-
work depth, downsampling strategy, and feature aggregation
way are still set in advance by trial and error. In this paper,
we propose a joint search framework, called AutoRTNet,
to automate the design of these strategies. Specifically, we
propose hyper-cells to jointly decide the network depth and
downsampling strategy, and an aggregation cell to achieve
automatic multi-scale feature aggregation. Experimental re-
sults show that AutoRTNet achieves 73.9% mloU on the
Cityscapes test set and 110.0 FPS on an NVIDIA TitanXP
GPU card with 768 x 1536 input images.
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Fig. 1: The inference speed and accuracy for different net-
works on the Cityscapes test set. Compared with other meth-
ods, our AutoRTNet locates in the right-top since it features
lower latency with comparable accuracy. Best viewed in
color.

1 Introduction

Semantic segmentation, a fundamental topic in computer
vision, aims at assigning per-pixel semantic labels for im-
ages. Recent approaches [541l6[7,155]] based on fully convo-
lutional networks [25] have achieved remarkable accuracy
on public benchmarks [3,9l[10]. Such improvements, how-
ever, come at the cost of deeper and less efficient networks,
which may not be applicable to many real-time systems, e.g.
autonomous driving and video surveillance.

To perform fast semantic segmentation with satisfactory
accuracy, the design philosophy of real-time segmentation
network architectures mainly concentrates on three aspects:
1) building block design [[16,33]], which considers the block-
level feature representation capacity, computational complex-
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ity, and receptive field size; 2) network depth and downsam-
pling strategy [[16l/18], which directly affect the accuracy
and speed of networks, hence real-time networks favor shal-
low layers and fast downsampling; and 3) feature aggrega-
tion [49.53]], which fuses multi-scale features to compensate
the loss of spatial details caused by fast downsampling.

The above hand-crafted networks make huge progress,
while they require expertise in architecture design based on
laborious trial and error. To relieve this burden, some re-
searchers introduce neural architecture search (NAS) meth-
ods [2,56.,231146] into this field, and obtain excellent results [\,
2211521130]]. AutoDeepLab [22] and DPC [3]] focus on high-
quality segmentation instead of real-time applications. To
meet the real-time demand, CAS [52] searches a customized
architecture by introducing a latency loss function. Though
its building block is searched, the network depth, downsam-
pling strategy and feature aggregation way are still set by
hand in advance and non-adjustable during the search pro-
cess. While the aforementioned three aspects are highly cor-
related and indispensable for a remarkable real-time seg-
mentation network, and these non-adjustable settings increase
the difficulties and limitations to find an optimal real-time
segmentation architecture (i.e. the best trade-off between per-
formance and speed). These motivate us to explore all of the
aspects automatically during the search process.

In this paper, we propose a joint search framework to
search for the optimal building blocks, network depth, down-
sampling strategy, and feature aggregation way simultane-
ously. Specifically, we propose hyper-cells to jointly decide
the network depth and downsampling strategy via a cell-
level pruning process in an adaptive manner, and an aggre-
gation cell to fuse features from multiple spatial scales auto-
matically. As for the hyper-cell, we introduce a novel learn-
able architecture parameter for it, and the network depth and
downsampling strategy are fully determined concurrently ac-
cording to the optimized hyper-cell architecture parameters.
As for the aggregation cell, we aggregate multi-level fea-
tures in the network automatically to effectively fuse the
low-level spatial details and high-level semantic context.

We denote the resulting network as Auto searched Real-
Time semantic segmentation network or AutoRTNet. We
evaluate AutoRTNet on both Cityscapes [9] and CamVid
[3] datasets. The experiments demonstrate the superiority of
AutoRTNet, as shown in Figure E], where our AutoRTNet
achieves the best accuracy-efficiency trade-off.

The main contributions can be summarized as follows:

— We propose a joint search framework for real-time se-
mantic segmentation that automatically searches for the
building blocks, network depth, downsampling strategy,
and feature aggregation way simultaneously.

— We propose the hyper-cell to learn the network depth
and downsampling strategy in an adaptive manner via

the cell-level pruning process, and the aggregation cell
to achieve automatic multi-scale feature aggregation.

— Notably, AutoRTNet has achieved 73.9% mloU on the
Cityscapes test set and 110.0 FPS on an NVIDIA Ti-
tanXP GPU card with 768 x 1536 input images.

2 Related Work
2.1 Semantic Segmentation

High-Quality Segmentation = FCN [235] is the pioneer work
which has greatly promoted the development of semantic
segmentation. Extensions to FCN follow many directions.
Encoder-decoder structures [[1,20,31]] combine low-level and
high-level features to improve accuracy of semantic seg-
mentation. DRN [50] and DeepLab [6l[7] use dilated con-
volution to effectively enlarge the receptive field. To capture
multi-scale context information, DeepLabV3 [[6] and PSP-
Net [54] propose the pyramid modules. Recently, attention
mechanism [41] has been used in segmentation field [11}
S1LI55L117]. These outstanding works are designed for high-
quality segmentation, which is inapplicable to real-time ap-
plications.

Real-Time Methods  Various algorithms have been pro-
posed for real-time semantic segmentation. Some works [45]]
reduce the computation overheads via restricting the input
image size, channel-pruning algorithms [33l/1]] are introduced
to boost the inference speed, and most real-time methods
focus on designing the light-weight and effective network
architectures. The design philosophy mainly can be summa-
rized into the following three aspects. And in our work, we
fully explore all three aspects simultaneously.

Building block design The building block design [33[36128],
16] requires researchers to give sufficient consideration to
the computational complexity, feature representation capac-
ity, and receptive field size, which is essential for real-time
semantic segmentation. For example, ENet [33]] and DAB-
Net [16] propose light-weight blocks and stack them with
different dilation rates to form a whole network. MobileNet
and its variants [[14,37]] use blocks with depth-wise separa-
ble convolution in pursuit of light-weight models.

Network depth and downsampling strategy Different from
high-quality segmentation networks using pre-defined back-
bones (ResNet [[13]], Xception [8], etc.) as encoders, the net-
work depth and downsampling strategy (i.e. how many blocks
or layers in each stage) are determined mostly by hand for
real-time segmentation networks (e.g. DABNet [[16]], DFANet
[L8], ERFNet [36]), as they directly affect the accuracy and
speed of the networks. For pursuing fast inference speed,
real-time networks always enjoy shallow layers and perform
fast downsampling with factor 16 or 32.
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Fig. 2: Tllustration of our joint network architecture search framework. The network begins with two convolution layers and
contains three hyper-cells which search for the optimal network depth and downsampling strategy via the cell-level pruning
process, each hyper-cell contains a reduction cell and n normal cells. The cells marked with the dotted white line are pruned
after optimization. The aggregation cell is designed to perform automatic multi-scale feature aggregation effectively, and it

seamlessly integrates the outputs of hyper-cells.

Feature aggregation The fast downsampling of real-time

networks easily results in the loss of spatial details. Thus,

multi-scale feature aggregation [49,/53.[18] has been proposed
to remedy the loss of spatial details. ICNet [S3]] proposes

a image cascade network with multi-scale inputs. BiSeNet

[49] decouples the network into context and spatial paths

to make a right balance between the accuracy and speed.

DFANet [18]] aggregates multi-scale features from different

layers to remedy the loss of spatial details.

2.2 Neural Architecture Search

NAS Overview  Neural architecture search (NAS) focuses
on automating the network architecture design process. Early
NAS methods are time-consuming (e.g. thousands of GPU
days) and computationally expensive via reinforcement learn-
ing [56.2L57,39]] or evolutionary algorithms [29[35]]. Re-
cently, the emergence of differentiable NAS methods [23|
461/4]] has greatly relieved the time-consuming problem while
achieving excellent performance. DARTSs [23]] is the pio-
neer work for gradient-based NAS, they propose an itera-
tive optimization framework which is based on the continu-
ous relaxation of the architecture representation. SNAS [46]
constrains the architecture parameters to approximate one-
hot, resolving the inconsistency in optimizing between the
performance of derived child networks and converged par-
ent networks. FBNet [42], ProxylessNAS [4]], MnasNet [39]
propose multi-objective optimization with the consideration
of real-world latency.

NAS For Segmentation DPC [3] is the first work for
dense image prediction using NAS methods and searches
for a multi-scale representation module. The similar work to
us is AutoDeepLab [22], they propose a hierarchical search
space and search for the downsampling path. Although they
also search for the downsampling strategy, the mechanism
is extremely different from ours. They design the network
level continuous relaxation to learn the downsampling path,

while we search for the downsampling strategy via the cell-
level pruning progress. Moreover, they cannot search for
the adaptive network depth and feature aggregation way and
they focus on high-quality segmentation instead of real-time
applications. For real-time requirements, CAS [52] searches
for an architecture with customized resource constraints and
achieves excellent real-time performance. However, our ap-
proach also searches for the adaptive network depth, down-
sampling strategy and feature aggregation way, which is ex-
tremely different from CAS [52].

NAS For Object Detection = The combination of multi-
scale features is also essential for object detection [21124].
In the field of NAS, NAS-FPN [12] and Auto-FPN [48] also
search for an architecture that merges features of varying di-
mensions and are successful at searching for the appropriate
combination method. Unlike us, NAS-FPN [12] proposes
merging cells and uses RNN controller to select candidate
feature layers and a binary operation in each merging cell.
Their search space only consists of two binary operations,
i.e. sum and global pooling for their simplicity. Auto-FPN
[48] searches for an efficient feature fusion module, which
search space is specially designed for detection and flexible
enough to cover many popular designs of detectors. Thus
the search space design, motivation and implementation of
above both methods are different from ours.

3 Methods

The joint search framework is shown in Figure [2 We pro-
pose the hyper-cell to search for the optimal network depth
and downsampling strategy as they directly affect the ac-
curacy and speed of networks. For remedying the loss of
spatial details caused by fast downsampling, a novel aggre-
gation cell is proposed for automatic multi-scale feature ag-
gregation. The framework contains two pre-defined convo-
lution layers, three hyper-cells and an aggregation cell. The
multi-scale module [52] is subsequently used to extract the
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global and local context for final prediction. For real-time
demands, we take the real-world latency into consideration
during the search process. We begin this section with the dif-
ferentiable architecture search. Afterwards, we elaborate the
proposed hyper-cell and aggregation cell in detail.

3.1 Differentiable Architecture Search

Intra-cell Search space  The hyper-cell is the building
block of the network, and the cell is the basic component
unit of the hyper-cell, as shown in Figure [2| There are two
types of cells, normal cells and reduction cells [23}/46]. The
reduction cells reduce the feature map size by a factor of 2
for downsampling, and the factor is 1 in normal cells.

A cell is a directed acyclic graph (DAG) consisting of an

ordered sequence of N nodes, denoted by N = {z(1), ..., 2(N)},

Each node z(" is a latent representation (i.e. feature map),
and each directed edge (3, j) is associated with some candi-
date operations (e.g. conv, pooling) in operation set O(%7),
representing all possible transformations from z(*) to z().
Each cell has two inputs (the outputs of the previous two
cells) and one output (the concatenation of all the interme-
diate nodes in the cell). The structure of cell is shown on the
right in Figure [3| Each intermediate node zU) is computed
based on all of its predecessors:

20) = . ﬁ“’j)(x(i)) (1)
1<J

where 6(7) € O(9) is the optimal operation at edge
(i, )-

In order to determine the optimal operation o7 at edge
(i,7), we represent the intra-cell search space with a set of
one-hot random variables from a fully factorizable joint dis-
tribution p(M) [46]. Specifically, each edge (4, j) is associ-
ated with a one-hot random variable M (7). We use M ()
as a mask to multiply all the candidate operations O(*7) at

edge (i, ), and the intermediate node 2(/) is given by:

20 = ZKj ZOEO m{h3) . (i3 (ac(i)) )

where m' e M9 and m ) is a random variable
in {0, 1}, it is evaluated to 1 if operation 0(*/) is selected.

To make p(M) differentiable, we use Gumbel Softmax
technique [15L127] to relax the discrete sampling distribution
to be continuous and differentiable:

M) = £ 5 (G0 = softmax((log a®9) 4+ G9)) /\)
3)
where M (%9) is the softened one-hot random variable for op-

eration selection at edge (i, j), (") is the intra-cell archi-
tecture parameter at edge (4, ), G("7) = —log(—log(U)))

is a vector of Gumbel random variables, U (:9) is a uniform
random variable in the range (0, 1). A is the temperature of
softmax, and as \ approaches 0, M () approximately be-
comes one-hot. The technique of using Gumbel Softmax
makes the entire intra-cell search differentiable [4342,46]
to both network parameter w and architecture parameter «.

For the candidate operation set O, we collect the opera-
tions as follows:

— zero operation

— skip connection

— 3 x 3 max pooling

- 3 x 3 conv

— 3 x 3 conv, repeat 2

— 3 X 3 separable conv

— 3 x 3 separable conv, repeat 2

— 3 x 3 dilated separable conv, dilation=2

— 3 x 3 dilated separable conv, dilation=4

— 3 x 3 dilated separable conv, dilation=2, repeat 2

Intra-cell Latency Cost  For the operation selection of
cells towards real-time network, we take real-world latency
into consideration. Specifically, we build a GPU-latency lookup
table [4.139,42l[52] that records the inference time cost of
each candidate operation. The latency of each operation is
measured in micro-second on a TitanXP GPU. During the
search process, we associate a cost laty’j ) with each candi-
date operation o(*7) at edge (i, ), thus the latency cost of

cell p is formulated as:
= (6:3) . 1 q(89)
lat, Z(i’j) ZOEO my lat, 4

where m$7) € M) and M9 denotes the softened one-
hot random variable at edge (i, 7). By using the pre-built
lookup table and above sampling process, the latency loss is

also differentiable with respect to mff’y ),

3.2 Adaptive Network Depth and Downsampling

Hyper-Cell Search Space  The network depth and down-
sampling strategy directly affect the accuracy and speed of
networks for real-time semantic segmentation. To adjust them
in an adaptive manner, we formulate the two design-making
processes as a single cell-level pruning process. Specifically,
we propose a hyper-cell, as shown in Figure [3] which con-
sists of a reduction cell and n normal cells. We introduce
n+1 edges to connect each cell with the hyper-cell’s output,
and associate them with the learnable architecture parameter
3. The intra-cell architecture parameters « of n normal cells
are shared in the same hyper-cell.

We determine the depth of each hyper-cell by limiting
that only one edge can be activated for each hyper-cell, and
all cells behind this activated edge can be pruned safely.
Each specific edge in hyper-cell s is associated with a one-
hot random variable U® = (uf, u3, ..., u;,, ) from a fully



Real-Time Semantic Segmentation via Auto Depth, Downsampling Joint Decision and Feature Aggregation 5

v
Hyper Output j Hyper-Cell

Us l
ﬂ Normal Cell-4 <
© 0 0 A1 0) Cellk
Hyper Output

I Hyper-Cell

l N

Reduction Cell <
|

Fig. 3: Illustration of our hyper-cell. The hyper-cell con-
sists of a reduction cell and n normal cells and n + 1 edges
with architecture parameter which encodes the depth of the
hyper-cell. The structure of cell is shown on the right in this
figure.

factorizable joint distribution P(U). The U® works as a mask
during the training process, and the output of the hyper-cell
s is designed as:

n+1

HyperOut'® = Z up® - (Cp°) 5)

p=1
where C7 is the output of p-th cell in hyper-cell s, u;, repre-
sents the random variable in {0, 1} of p-th edge of hyper-cell
s. Similarly, we adopt the Gumbel Softmax based sampling
process to make the training process differentiable.

U®= fz:(G*) = softmax((log 3° + G*)/\) (6)

where U? is the softened one-hot random variable for edge
selection of hyper-cell s, 3¢ is the architecture parameter of
hyper-cell s. G* and A are similar to the ones in equation (3).
The hyper-cell architecture parameter S we introduced can
be effectively optimized together with the network parame-
ter w, intra-cell architecture parameter « in the same round
of back-propagation. After stacking hyper-cells to form a
whole network, the network depth and downsampling strat-
egy can be fully explored concurrently according to the ar-
chitecture parameter [3.

To better explain the cell-level pruning process, we give
an example as follows. In the initial phase, let’s say we have
five cells (one reduction cell and four normal cells) and each
cell in hyper-cell keeps its original inputs and outputs. As
shown in Figure 3] if the fourth edge is activated currently
(i.e. Uis {0,0,0,1,0}), the Normal Cell-4 will be pruned in
this iteration, and the output of this hyper-cell is the output
of Normal Cell-3. At the same time, the reduction cell in

Search Space

Hyper Output 3
s=2 / . g concat
Hyper Output 2
s=2 s=2
/ Aggregation Cell
Hyper Output 1

Fig. 4: Overview of the aggregation cell for automatic multi-
scale feature aggregation. The aggregation cell contains
edges (dotted arrows), each edge is equiped with some can-
didate operations. The “s=2" means stride = 2. Best viewed
in color.

next hyper-cell s 4+ 1 takes the outputs of hyper-cell s and
Normal Cell-2 in hyper-cell s as its inputs, to stick to the
“two-input” principle of the cell. The learning and adjusting
like this go through the entire searching phase.

By introducing the architecture parameter 3 in the pro-
posed hyper-cell, we can dynamically adjust and search for
the network depth as well as the downsampling strategy for
real-time semantic segmentation.

Network Latency Cost  We define the set of cells in all
hyper-cells in the initial phase as P, after optimization, the
number of the set is reduced and the new set is marked as P.
For the current architecture (c, ) containing several hyper-
cells, the total latency excludes the pruned cells and can be
calculated as:

Latency(a, 8) = Z lat, @)

peP
where P is the set of remaining cells in all hyper-cells of
architecture (v, ). The lat, is the latency of cell p. Thus
the total loss function is formulated as:

L((a, B),w) = CE((av, B),w) 4+ v log(Latency((«, B)))
3

where CE((a, §),w) is the cross-entropy loss of architec-
ture (v, B) with network weight w and + controls the mag-
nitude of latency term (i.e. balance the trade-off between ac-
curacy and speed).

3.3 Network-Level Auto Feature Aggregation

For remedying the loss of spatial details in real-time seg-
mentation networks due to fast downsampling, we propose
the aggregation cell to automatically aggregate features by
optimal operations from different levels in the network. The
aggregation cell seamlessly integrates the outputs of above
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hyper-cells, and the outputs of the early hyper-cells compen-
sate for the loss of spatial details.

The structure of the proposed aggregation cell is shown
in Figure ] The aggregation cell takes three hyper-cells’
outputs with different resolutions as its inputs, thus the ag-
gregation cell is designed to combine multi-scale features
(i.e. low-level spatial details and high-level semantic con-
text). The aggregation cell is designed as a directed acyclic
graph consisting of M nodes and E edges, each node is a la-
tent representation (i.e. feature map) and each directed edge
is associated with some candidate operations. As shown in
Figure[d] each edge’s stride is set to 1, unless explicitly spec-
ified by “s=2" (stride 2), which acts as the downsampling
connection. The output of the aggregation cell is designed as
the concatenation of the final feature maps from three hyper-
cells. We use the same sampling and optimization process as
intra-cell search in Section [3.1] to optimize the aggregation
cell’s architecture parameter.

Given the candidate operation set, the aggregation cell
also efficiently enlarges the receptive field of the network.
Moreover, the aggregation cell is designed for effectively
improving the segmentation accuracy, thus we introduce it
without the latency constraint. For the operation set of the
aggregation cell, we collect following 5 kinds of operations:

— 1x1 conv, repeat 2
— 3%3 conv, repeat 2
33 dilated separable conv, dilation=2, repeat 2
33 dilated separable conv, dilation=4, repeat 2
33 dilated separable conv, dilation=8, repeat 2

4 Experiments

To verify the effectiveness and superiority of our joint search
framework, we compare our AutoRTNet with other state-
of-the-art methods on two challenging benchmark datasets:
Cityscapes [9] and CamVid [3]]. Moreover, we conduct a se-
ries of ablation studies to verify the effectiveness of the pro-
posed hyper-cell and aggregation cell. Finally, we provide
an in-depth analysis about the detailed architecture of Au-
toRTNet.

4.1 Implementation Details

Searching  For the searching process, the whole network
contains three hyper-cells and the initial cell numbers in
these hyper-cells are {5, 10, 10}, respectively. The interme-
diate node number of the cell is set to 2. The initial channel
number is 8, and the channels are X3 when downsampling in
reduction cells. The search process, which is conducted on
the Cityscapes dataset, runs 150 epochs with mini-batch size
16, which takes approximately 16 hours with 16 TitanXP
GPU cards. Similar to FBNet [42], we postpone the training

of the hyper-cell architecture parameter 5 by 50 epochs to
warm-up weight w and intra-cell architecture parameter .
The « and 3 are optimized by Adam, with initial learning
rate 0.001, momentum (0.5, 0.999) and weight decay le-4.
The w is optimized using SGD with momentum 0.9, weight
decay le-3, and cosine learning scheduler that decays learn-
ing rate from 0.025 to 0.001. For Gumbel Softmax, we em-
pirically set the initial temperature X in equation (3) and (6)
as 3.0, and gradually decrease to the minimum value of 0.03.
We set the node number M and edge number E as 7 in the
aggregation cell.

Retraining = When the search process is over, the searched
network is firstly pretrained on the ImageNet dataset from
scratch. We then finetune the network on the specific seg-
mentation dataset (i.e. Cityscapes or CamVid) for 200 epochs
with mini-batch size 16. The base learning rate is 0.01 and
the poly learning rate policy is adopted with power 0.9, to-
gether with momentum is 0.9 and weight decay is 0.0005.
Following [44.49], we compute the loss function with the
online bootstrapping strategy. Data augmentation contains
random horizontal flip, random resizing with scale ranges in
[0.5, 2.0], and random cropping into fix size for training.

4.2 Benchmarks and Evaluation Metrics

Cityscapes [9]], a public street scene dataset, contains high
quality pixel-level annotations of 5000 images with size 1024
X 2048 and 19,998 images with coarse annotations. 19 se-
mantic classes are used for training and evaluation. CamVid
[3]] is another public dataset, and it contains 701 images in
total. We follow the training/testing set split in [52l13]], with
468 training and 233 testing labeled images. These images
are densely labeled with 11 semantic class labels. We use
three evaluation metrics, including mean of class-wise inter-
section over uniou (mloU), network forward time (Latency),
and Frames Per Second (FPS).

4.3 Real-time Semantic Segmentation Results

In this section, we compare the AutoRTNet with other real-
time segmentation methods. We run all experiments based
on Pytorch 0.4 [34] and measure the latency on an NVIDIA
TitanXP GPU card under CUDA 9.0. For fair comparison,
we directly quote the reported remeasured or estimated speed
results on TitanXP of other algorithms mentioned in [52|
32]]. For the AutoRTNet, we report the average inference
time through 500 times. In this process, we don’t employ
any test augmentation.

Results on Cityscapes.  AutoRTNet-A and AutoRTNet-
B are searched with latency term weight v 0.01 and 0.001,
respectively. We evaluate them on the Cityscapes test set.
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Table 1: Accuracy and speed comparison of our method
against other state-of-the-art methods on Cityscapes test set.
Methods trained using both fine and coarse data are marked
with . The mark f represents the speed is remeasured by us
on Titan XP.

[ Method | Input Size [mloU (%) [ Latency(ms) [ FPS |
FCN-8S [25] 512 x 1024 65.3 227.23 4.4
PSPNet [34] 713 x 713 81.2 1288.0 0.78
DeepLabV3* [6] 769 x 769 81.3 769.23 1.3
AutoDeepLab* 221 | 769 x 769 81.2 303.0 33
SegNet [1] 360 x 640 57.0 30.3 33
ENet [33] 360 x 640 58.3 12.7 78.4
SQ [40] 1024 x 2048 59.8 46.0 21.7
ERFNet [36]] 512 x 1024 69.7 48.5 20.6
ICNet [53] 1024 x 2048 69.5 26.5 37.7
DF1-Seg [47] 768 x 1536 73.0 20.1 34.4
SwiftNet [32] 1024 x 2048 75.1 26.2 38.1
ESPNet [28] 512 x 1024 60.3 8.2 121.7
DFANet [18] 1024 x 1024 71.3 10.0 100.0
DFANet T [18] 1024 x 1024 | 713 20.6 1 485 1
BiSeNet [49] 768 x 1536 68.4 9.52 105.8
CAS [52] 768 x 1536 70.5 9.25 108.0
CAS* [52] 768 x 1536 72.3 9.25 108.0
AutoRTNet-A 768 x 1536 72.2 9.09 110.0
AutoRTNet-A* 768 x 1536 73.9 9.09 110.0
AutoRTNet-B 768 x 1536 74.3 14.0 71.4
AutoRTNet-B* 768 x 1536 75.8 14.0 71.4

The validation set is added for training before submitting
to online Cityscapes server. Following [52,/49]], we scale the
resolution of the images from 1024 x 2048 to 768 x 1536 as
inputs to measure the speed and accuracy. As shown in Table
our AutoRTNet achieves the best trade-off between ac-
curacy and speed. AutoRTNet-A yields 72.2% mloU while
maintaining 110.0 FPS on the Cityscapes test set with only
fine data and without any test augmentation. When the coarse
data is added to the training set, the mIoU achieves 73.9%,
which is the state-of-the-art trade-off for real-time semantic
segmentation. Compared with BiseNet [49] and CAS [52]
which have comparable speed to us, AutoRTNet-A surpasses
them by 3.8% and 1.7% in mloU on the Cityscapes test
set, respectively. Compared with other real-time segmenta-
tion methods (e.g. ENet [33]], ICNet [53]), our AutoRTNet-
A surpasses them in both speed and accuracy by a large
margin. Moreover, our AutoRTNet-B achieves 74.3% and
75.8% mloU (+coarse data) on the Cityscapes test set with
71.4 FPS, which is also the state-of-the-art real-time perfor-
mance.

Results on CamVid. To validate the transferability of
the networks searched by our framework, we directly trans-
fer AutoRTNet-A and AutoRTNet-B, which are obtained
on Cityscapes, to the CamVid dataset, as reported in Table
]l With 720 x 960 input images, AutoRTNet-A achieves
73.5% mloU on CamVid test set with 140.0 FPS, which

is the state-of-the-art trade-off between accuracy and speed.
AutoRTNet-B achieves 74.2% mloU with 82.5 FPS. We also
conduct the architecture search on CamVid (v = 0.1) and

name the resulting network AutoRTNet-C. Notably, AutoRTNet-

C achieves amazing 250.0 FPS while maintaining 68.6%
mloU on the CamVid test set, which surpasses ICNet [53]]
(67.1% mloU with 34.5 FPS) and DFANet [18]] (64.7% mloU
with 120 FPS) significantly.

[ Method [ mloU (%) [Latency(ms) [ FPS [Parameters (M) |

SegNet [1] 55.6 34.01 29.4 29.5
ENet [33] 51.3 16.33 61.2 0.36
ICNet [53] 67.1 28.98 34.5 26.5
BiSeNet [49] 65.6 - - 5.8
DFANet [18]] 64.7 8.33 120 7.8
CAS [52] 71.2 5.92 169 -

AutoRTNet-A 73.5 7.14 140.0 2.5
AutoRTNet-B 74.2 12.1 82.5 39
AutoRTNet-C 68.6 4.0 250.0 1.4

Table 2: Results on the CamVid test set with resolution 720
X 960.

Parameter Results For many real-time applications on
computationally limited mobile platforms, which have re-
strictive memory constraints, thus model size (number of pa-
rameters) is also an important consideration. Table [2| shows
the results of our AutoRTNet and other methods on CamVid
test set. With only 2.5 million parameters, our AutoRTNet-
A achieves impressive accuracy (i.e. 73.5% mloU) on the
CamVid test set, which significantly outperforms existing
real-time segmentation networks. The model sizes of Au-
toRTNet B and C are 3.9M and 1.4M, respectively.

4.4 Ablation Study

The contribution of each component is investigated in fol-
lowing ablation studies on Cityscapes validation set. The la-
tency term weight v in equation is set to 0.01 and all
networks are firstly pretrained on ImageNet in following ex-
periments for fair comparison, if not specially noted.

4.4.1 Comparison with Random Search

Table 3: Comparison with random search on the Cityscapes
validation set.

Method mloU (%) |Latency (ms) FPS
AutoRTNet 72.9 9.09 110.0
random search | 66.7 £2.5 | 114~ 162 |87.5~61.2
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As discussed in [1938], NAS is a specialized hyper-
parameter optimization problem, while random search is a
competitive baseline for the problem. We apply random search
to semantic segmentation by randomly sampling ten archi-
tectures from our previously-defined search space. The whole
search space contains intra-cell operation selection and hyper-
cell depth decision, which is significantly challenging for
random search to find a satisfactory network. As shown in
Table 3] random search achieves average mloU 66.7% +
2.5% on Cityscapes validation set with ImageNet pretrained,
which is substantially lower than our AutoRTNet. The re-
sults also demonstrate the effectiveness of our search algo-
rithm.

4.4.2 Hyper-Cell

Robustness  Firstly, to verify the robustness of hyper-cell,
we set different initial numbers of cells and different random
seeds in the initialization phase. The network contains three
hyper-cells and the initial cell numbers in hyper-cells are set
to {a, b, c}, after optimization, the numbers of cells remain-
ing in each hyper-cell are {@, b, ¢}. As shown in Table@ the
experiments demonstrate that the hyper-cells are insensitive
to both initial numbers of cells and random seeds, which
verify the robustness of the hyper-cell.

Table 4: The optimization results of hyper-cells with differ-
ent initial states and different random seeds.

Random seed | Initial phase | After optimization | mloU | Frames Per
setting {a, b, c} {a@,b,c} (%) | Second (FPS)
2 {5, 10, 10} {2,4, 6} 72.9 110.0
2 {5, 10, 15} {2,4,6} 73.0 106.5
2 {5, 15, 15} {1,4,6} 72.5 102.8
2 {10, 10, 10} {2,4,6} 72.8 112.3
1 {5, 10, 10} {2,4,6} 73.0 113.6
3 {5, 10, 10} {1,4,7} 72.8 107.9

Downsampling strategy  To demonstrate the superiority
of the downsampling strategy searched by hyper-cells, we
compare the random downsampling position settings with
the searched one. The total cell number is 12 (a+b+¢) searched
by our framework, we fix the searched cell structures and
only random change the downsampling positions (X, y, z)
for fair comparison. The (X, y, z) represents the index posi-
tions of reduction cells in total 12 cells. After pretaining and
retraining, the results in Table [5|demonstrate the superiority
of the searched downsampling strategy through hyper-cells.
Compared with the random ones, our hyper-cell achieves the
best trade-off between accuracy and speed.

Table 5: Comparison to random downsampling strategy.

[ Downsampling Positions [ mIoU(%) | FPS | Downsampling Design Rule |

(1,3,7) 72.9 106 Hyper Cell
(1,5, 10) 71.6 |90.2 Random
(3,5,98) 72.5 75.7 Random
(1,2,4) 68.4 125 Random

4.4.3 Aggregation Cell

To demonstrate the effectiveness of the proposed aggrega-
tion cell, we conduct a series of experiments with differ-
ent strategies: a) without multi-scale feature aggregation;
b) with random designed aggregation cell using random se-
lected operations from the aggregation cell’s search space;
¢) with searched aggregation cell (i.e. our AutoRTNet-A).
Among them, the result of the random aggregation cell is
the average result over ten repeated random experiments and
the results are shown in Table[6] Overall, the searched aggre-
gation cell successfully boosts up the mloU from 69.9% to
72.9% on Cityscapes val set. Particularly, the searched ag-
gregation cell surpasses the random one 1.5% performance
gains.

Table 6: Ablation study for effectiveness of the aggregation
cell.

[ Methods [ mloU (%) ]
a) without aggregation cell 69.9
b) random aggregation cell 71.4
c) AutoRTNet-A 729

4.4.4 Hyper-Cell Searching Process

To better analyze how hyper-cell works throughout the whole
searching process, we visualize the number of cells of each
hyper-cell after the warm-up phase, as depicted in Figure [5]
The initial cell numbers are {5, 10,10} and eventually con-
verges to {2,4, 6} in three hyper-cells. The blue lines from
top to bottom denote the actual cell numbers according to
current architecture parameter 3 of each hyper-cell, and red
curves represent the mathematical expectation values of cur-
rent cell numbers. We observe that the framework actively
explores different cell numbers (i.e. different depths) in each
hyper-cell at the early stage of searching, and the expecta-
tion values of cell numbers also change gradually. The cell
numbers progressively become stable towards the final ar-
chitecture in the late stage of searching, and the actual cell
number lines gradually get close to the expectation curves.
Another interesting observation is that hyper-cell #1 finds
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Fig. 5: Illustration of cell numbers in hyper-cells during the
search process. Blue lines from top to bottom denote the
actual cell number changing in each hyper-cell with the in-
crease of epochs, and red curves represent the mathematical
expectation values of the current cell numbers in hyper-cells.

its optimal depth much earlier than the other ones, indicat-
ing the search process follows a shallow-to-deep manner as
we expected.

4.4.5 Different Latency Settings

300
—— mloU (%)
74 4 — FPS

72-\
°
3

F275
F225

r 200

FPS

68 4
r 150

mloU / %
N
o
0.01 \

0.05

66 F125

V=0.001
y=i

Ve
y=0.1

T T T T 100
0.02 0.04 0.06 0.08 0.10

Latency loss weight (y)

0.

=3
)

Fig. 6: The results of different latency settings on CamVid
dataset.

Our joint search framework searches for the optimal net-
work architectures under different latency settings (i.e. loss
weight y). In Section 4.3, AutoRTNet A and B are searched
with v = 0.01 and 0.001 on the Cityscapes dataset, respec-
tively, which demonstrates the flexibility of our framework.

We also conduct the architecture search on the CamVid dataset

with different latency settings, and the results are as de-
picted in Figure [6] The networks searched with v = 0.001,

0.01, 0.05, 0.1 achieve 73.3%, 70.2%, 69.2%, 68.6% mloU
and 138.0, 200.2, 232.1, 250.0 FPS on the CamVid test set,
respectively. Notably, our AutoRTNet achieves 250.0 FPS

while maintaining 68.6% mloU, which surpasses ICNet (67.1%

mloU with 34.5 FPS) and DFANet (64.7% mloU with 120
FPS) significantly.

4.4.6 Insights from Searched AutoRTNet

Finally, we provide an in-depth analysis of the AutoRTNet-
A searched by our framework. We use the NAS methods to
search the suitable architectures for specific tasks, likewise,
we should understand why the searched network works well
and it will guide the hand-designed process in turn. We have
the following three important observations.

Early Downsampling  We notice that the searched down-
sampling strategy is stable and reasonable. As shown in Ta-
ble[] in the first hyper-cell, whether the initialized cell num-
ber is 5 or 10, the final number is at most 2 after the opti-
mization. The reason is that the visual information is highly
spatially redundant, thus can be compressed into a more
efficient representation. Under the latency constraints, the
searched downsampling strategy is as we expected and fol-
lows the early downsampling [33]] priori knowledge.

Suitable receptive field  The suitable receptive field size
[26] is crucial for semantic segmentation. Too large recep-
tive field may introduce some extra noise or negative inter-
ference, and the network lacks of capturing enough context
information if it is too small. During the search process, the
AutoRTNet continuously adjusts the operation selection to
determine the final receptive field, for example, in Figure[7]
in the optimized aggregation cell, the operations from the
outputs of third hyper-cell always choose the operation with
dil=4 rather than dil=2 or 8 also in the search space. So we
should choose right operations for suitable receptive field in
hand-designed real-time semantic segmentation networks.

Operation selection  The early operations act as good
feature extractors, as shown in Figure[7} the selection of op-
erations in early stage always tends to conv3x3. The mid-
dle and deep layers have the diversity of operation selection.
When performing multi-scale feature aggregation in aggre-
gation cell, as shown in Figure[7] we clearly found that the
deeper layers enjoy dilated convolution, while the lower lay-
ers only prefer the common convolution operations.

4.5 Detailed Time and GPU Information for Fair
Comparison

The inference time or FPS is influenced by the GPU device
and the input image size of the model. Here we list detailed
information of previous approaches in Table [7] for readers
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Fig. 7: Illustration of the detailed AutoRTNet-A architecture. The structures of the reduction cells and normal cells in three
hyper-cells are shown in the figure respectively. The structure of searched aggregation cell in shown on the right. Best viewed

in color.

as reference. Our GPU device is Nvidia TitanXP GPU. For
fair comparison, we directly quote the reported remeasured
or estimated results on TitanXP of other algorithms in CAS
[52] and SwiftNet [32] paper. And we remeasure the speed
of the methods based on our implementation if the original
speed was reported on different GPUs and not mentioned
in CAS [52]] and SwiftNet [32]]. Note that our implemen-
tations and speed measurements do not use TensorRT opti-
mizations.

About the speed gap between the original DFANet [[18]]
and our measurement: The speed of DFANet is reported on
TitanX GPU, and also not mentioned in CAS [52]] and Swift-
Net [32]. So we carefully remeasure the inference time on
TitanXP for fair comparison. There still has a speed gap be-
tween the original speed and the one we measured, we sus-
pect that this is caused by the inconsistency of the imple-
mentation platform. We reimplement the DFANet using of-
ficial PyTorch [34], and they measure it on their own frame-
work in which the depth-wise separable convolution is more
fully optimized.

4.6 Full Quantitative Results on Cityscapes and CamVid
Dataset

Here we provide detailed quantitative results of per-class
mloU on the Cityscapes and CamVid datasets. Moreover,
we provide the performance of the AutoRTNet on the full-
resolution Cityscapes validation set.

4.6.1 Cityscapes Dataset

Compared with other methods, our AutoRTNet-A achieves
overall 72.2% mloU with 110.0 FPS, which is the state-

of-the-art trade-off between accuracy and speed. The per-
class accuracy values are shown in Table [8] In compari-
son with other methods with public per-class accuracy on
the Cityscapes test set, our predictions are more accurate
in 13 out of 19 classes. AutoRTNet-A achieves slight im-
provements on the general classes (Road, Sidewalk, Build-
ing, Terrain, Car, etc.), while obtaining a significant accu-
racy improvement on the challenging classes (Truck, Mo-
torbike, Train, Fence, Rider, etc.). AutoRTNet-B achieves
74.3% mloU on Cityscapes test set with 71.4 FPS.

Cityscapes contains high-resolution 1024 x 2048 im-
ages, which make it a big challenge for real-time semantic
segmentation. ICNet [53] focuses on building a practically
fast semantic segmentation system with high-resolution im-
age inputs while accomplishing high-quality results. Swift-
Net [32] and CAS [52] also perform the experiments on
Cityscapes with full-resolution image inputs. In this part, we
compare with these methods on the Cityscapes validation set
and the results are shown in Table [9] We refer to the speed
scaling factors on different GPUs in SwiftNet [32] paper and
estimate the speed values of ICNet, SwiftNet, CAS on Titan
XP GPU.

AutoRTNet-A  Our AutoRTNet-A achieves 75.0% mloU
and delieves 62.7 FPS on full-resolution Cityscapes val set
(i.e. 1024 x 2048). To the best of our knowledge, the real-
time performance of AutoRTNet-A outperforms all existing
real-time methods. Compared with ICNet, AutoRTNet sur-
passes it by 5.5% in mloU with a faster inference speed.
Moreover, AutoRTNet outperforms SwiftNet and CAS by
0.6% and 1.0% in mloU, and has a great advantage in in-
ference speed (i.e. 62.7 FPS vs 38.1 FPS, 62.7 FPS vs 45.2
FPS).
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Table 7: The detailed information of our AutoRTNet and other state-of-the-art methods on the Cityscapes test set. Methods
trained using both fine and coarse data are marked with . The mark } represents the speed is remeasured by us.

Method Input Size T;?[[J Z:t) Latency (ms) on TitanXP | FPS on TitanXP F(;,?g[mal lé?:;}lts
FCN-8S [25] 512x1024 | - | 653 227.23 44 - -
PSPNet [54] 713x713 - 812 1288.0 0.78 - -
DeepLabV3* [6] 769x769 - | 813 769.23 1.3 - -
AutoDeepLab* [22]] | 769x769 - | 81.2 303.0 33 - -
SegNet [1] 640x320 - 1570 30.3 33 - -

SQ [40] 1024x2048 | - [59.8 46.0 21.7 - Titan X M
ENet [33] 640x320 - |583 12.7 78.4 135.4 Titan X
ERFNet [36] 1024x512 | - | 69.7 48.5 20.6 11.2 | TitanX M
ICNet [53] 1024x2048 | 67.7 | 69.5 26.5 37.7 30.3 | TITAN X(M)
SwiftNet [32] 1024x2048 | 74.4 | 75.1 26.2 38.1 34.0 | GTX 1080Ti
DF1-Seg [47] 768x1536 |74.1|73.0 29.1 344 30.7 | GTX 1080Ti
ESPNet [28] 1024x512 | - |60.3 8.2 121.7 112 TitanX
BiSeNet [49] 768x1536 |69.0 | 68.4 9.52 105.8 105.8| TitanXP
DFANet [18] 1024x1024 | - |71.3 20.61 48.5F 100.0 TitanX
CAS [52] 768x1536 |71.6|70.5 9.25 108.0 108.0| TitanXP
CAS* [52] 768x1536 |72.5|72.3 9.25 108.0 108.0| TitanXP
AutoRTNet-A 768x1536 [72.9|72.2 9.09 110.0 110.0| TitanXP
AutoRTNet-A* 768x1536 |74.5|73.9 9.09 110.0 110.0| TitanXP
AutoRTNet-B 768x1536 |74.7|74.3 14.0 71.4 71.4 TitanXP
AutoRTNet-B* 768x1536 |76.0|75.8 14.0 71.4 71.4 TitanXP

Table 8: Detailed performance comparison of our AutoRTNet-A with other state-of-the-art methods on the Cityscapes test

set.
S
= &0 ED ;ﬁ .E’ i 8
3 § & 8 g & 1 f s ¥ -
s 2 = 3 5 2 : 2 $ E z B 2 5 EF & £ 2 Z2|:2|¢
Method ~ A @ = T - =] = 2 = A - &~ o &= a = = a = [
SegNet 964 732 84.0 284 290 357 398 451 870 638 91.8 628 428 893 381 431 441 358 519 | 570 33
ENet 963 742 750 322 332 434 341 440 886 614 90.6 655 384 90.6 369 505 481 388 554 | 583 78.4
ICNet 97.1 792 89.7 432 489 615 604 634 O9l5 683 935 746 561 926 513 727 513 53.6 705 | 695 37.7
ESPNet 97.0 775 762 350 361 450 356 463 908 632 926 670 409 923 381 525 50.1 41.8 572 | 60.3 | 121.7
ERFNet 979 821 90.7 452 504 590 626 683 919 694 942 785 598 934 523 608 537 499 642 | 69.7 20.6
BiSeNet - - - - - - - - - - - - - - - - - - - 68.4 | 105.8
DFANet - 71.3 83.1
CAS - - 70.5 | 108.0
AutoRTNet-A ‘ 985 849 914 459 530 522 603 673 915 706 939 782 625 953 637 745 639 568 67.0 ‘ 72.2 ‘ 110.0 ‘
AutoRTNet-B ‘ 984 866 912 522 549 585 637 684 915 715 949 793 614 954 659 780 698 59.6 698 ‘ 74.3 ‘ 714 ‘

AutoRTNet-B  Our AutoRTNet-B achieves 76.8% mloU
with 45.6 FPS on full-resolution Cityscapes val set, which
is the state-of-the-art real-time performance. Compared with
SwiftNet and CAS which have a little bit slower speed than
us, our AutoRTNet-B surpasses them by 2.4% and 2.8% in
mloU, respectively.

4.6.2 CamVid Dataset

As shown in Table [I0] with 720 x 960 input images, the
searched AutoRTNet-A achieves 73.5% mloU with 140.0
FPS, which is the state-of-the-art trade-off between accuracy
and speed on the CamVid test set. In comparison with other

methods, the predictions of our AutoRTNet-A are more ac-
curate in 7 out of the 11 classes. More importantly, the in-
ference speed of AutoRTNet-A achieves 140 FPS, which is
very impressive compared with other methods. (e.g. SegNet
29.4 FPS, ENet 61.2 FPS, ICNet 34.5 FPS). The per-class
accuracy of AutoRTNet B and C are also shown in Table[T0}

4.6.3 Visual Segmentation Results

We provide some visual prediction results on both Cityscapes
and CamVid datasets here. As shown in Figure[8|and Figure
[] the columns correspond to input image, ground truth, the
prediction of ICNet, and the prediction of our AutoRTNet-



Peng Sun et al.

Table 9: Accuracy and speed comparison on the Cityscapes validation set with image resolution 1024 x 2048.

Original Results

Method Input Size | mIoU (%) | FPS on Titan XP 7PS [ GPU
SQ [40] 1024x2048 59.8 - - | Titan X(M)
ICNet [53]] 1024x2048 69.5 55.6 30.3 | Titan X(M)
SwiftNet [32] | 1024x2048 74.4 38.1 34.0 | GTX 1080Ti
CAS [52] 1024x2048 74.0 45.2 342 | GTX 1070
AutoRTNet-A | 1024x2048 75.0 62.7 62.7| Titan XP
AutoRTNet-B | 1024x2048 76.8 45.6 45.6| Titan XP

Table 10: Detailed performance comparison of our AutoRTNet-A with other state-of-the-art methods on the CamVid test set.

S
= =
;2 5] = '% 3] Q ) [ & % n
= o > <} =] = = = Q ]
Method a = 7 @] (%D & & ia £ n o) = 2
SegNet 888 873 924 821 205 972 571 493 275 844 307 | 556 | 294
ENet 747 778 951 824 51.0 951 672 517 354 867 341 | 513 61.2
ICNet - - - - - - - - - - - 67.1 345
BiseNet-Xception39 | 822 744 919 80.8 428 933 538 497 254 773 50.0 | 65.6 -
BiseNet-Res18 83.0 758 920 837 465 946 588 53.6 319 814 540 | 68.7 -
DFANet - - - - - - - - - - - 64.7 | 120.0
CAS - - - - - - - - - - - 71.2 | 169.0
AutoRTNet-A | 88.1 784 917 930 440 962 668 60.8 330 886 674 | 73.5 | 140.0 |
AutoRTNet-B 89.1 793 917 925 410 968 647 66.5 322 90.0 72.1 | 742 | 825
AutoRTNet-C 875 779 917 906 304 956 622 47.1 252 875 589 | 68.6 | 250.0
A. Compared with ICNet, AutoRTNet-A produces more ac- References

curate and detailed results with faster inference speed. For
example, AutoRTNet-A captures small objects in more de-
tails (e.g. traffic light in Figure[8] poles in Figure[9) and gen-
erates “‘smoother” results on object boundaries (e.g. rider,
fence in Figure[§] car in Figure[9).

5 Conclusion

In this paper, we propose a novel joint search framework
which covers all three main aspects of the design philosophy
for real-time semantic segmentation networks. The frame-
work searches for building blocks, network depth, down-
sampling strategy, and feature aggregation way simultane-
ously. The hyper-cell is proposed for searching for the net-
work depth and downsampling strategy in an adaptive man-
ner, and the aggregation cell is introduced for automatic multi-
scale feature aggregation. Extensive experiments on both
Cityscapes and CamVid datasets demonstrate the superiority
and effectiveness of our approach.
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