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Abstract
Understanding the scene in which an autonomous robot operates is critical for its competent functioning. Such scene compre-
hension necessitates recognizing instances of traffic participants along with general scene semantics which can be effectively
addressed by the panoptic segmentation task. In this paper, we introduce the Efficient Panoptic Segmentation (EfficientPS)
architecture that consists of a shared backbone which efficiently encodes and fuses semantically rich multi-scale features. We
incorporate a new semantic head that aggregates fine and contextual features coherently and a new variant of Mask R-CNN
as the instance head. We also propose a novel panoptic fusion module that congruously integrates the output logits from
both the heads of our EfficientPS architecture to yield the final panoptic segmentation output. Additionally, we introduce the
KITTI panoptic segmentation dataset that contains panoptic annotations for the popularly challenging KITTI benchmark.
Extensive evaluations on Cityscapes, KITTI, Mapillary Vistas and Indian Driving Dataset demonstrate that our proposed
architecture consistently sets the new state-of-the-art on all these four benchmarks while being the most efficient and fast
panoptic segmentation architecture to date.

Keywords Panoptic segmentation · Semantic segmentation · Instance segmentation · Scene understanding

1 Introduction

Holistic scene understanding plays a pivotal role in enabling
intelligent behavior. Humans from an early age are able to
effortlessly comprehend complex visual scenes which forms
the bases for learning more advanced capabilities (Bremner
andSlater 2008). Similarly, intelligent systems such as robots
should have the ability to coherently understand visual scenes
at both the fundamental pixel-level as well as at the dis-
tinctive object instance level. This enables them to perceive
and reason about the environment holistically which facili-
tates interaction. Such modeling ability is a crucial enabler
that can revolutionize several diverse applications including
autonomous driving, surveillance, and augmented reality.

The components of a scene can generally be categorized
into ‘stuff’and ‘thing’ objects. ‘Stuff’ can be defined as
uncountable and amorphous regions such as sky, road and
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sidewalk, while ‘thing’ are countable objects for example
pedestrians, cars and riders. Segmentation of ‘stuff’ classes
is primarily addressed using the semantic segmentation task,
whereas segmentation of ‘thing’ classes is addressed by the
instance segmentation task. Both tasks have garnered a sub-
stantial amount of attention in recent recent years (Shotton
et al 2008; Krähenbühl and Koltun 2011; Silberman et al
2014; He and Gould 2014a). Moreover, advances in deep
learning (Chen et al 2018b; Zhao et al 2017; Valada et al
2016a; He et al 2017; Liu et al 2018; Zürn et al 2019)
have further boosted the performance of these tasks to new
heights. However, state-of-the-art deep learningmethods still
predominantly address theses tasks independently although
their objective of understanding the scene at the pixel level
establishes an inherent connection between them. More sur-
prisingly, they have also fundamentally branched out into
different directions of proposal based methods (He et al
2017) for instance segmentation and fully convolutional net-
works (Long et al 2015) for semantic segmentation, even
though some earlier approaches (Tighe et al 2014; Tu et al
2005; Yao et al 2012) have demonstrated the potential bene-
fits in combining them.

Recently, Kirillov et al (2019b) revived the need to tackle
these tasks jointly by coining the term panoptic segmenta-
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Fig. 1 Overview of our proposed EfficientPS architecture for panoptic
segmentation. Our model predicts four outputs: semantics prediction
from the semantic head, and class, bounding box and mask prediction
from the instance head. All the aforementioned predictions are then
fused in the panoptic fusion module to yield the final panoptic segmen-
tation output

tion and introducing the panoptic qualitymetric for combined
evaluation. The goal of this task is to jointly predict ‘stuff’
and ‘thing’ classes, essentially unifying the separate tasks
of semantic and instance segmentation. More specifically, if
a pixel belongs to the ‘stuff’ class, the panoptic segmenta-
tion network assigns a class label from the ‘stuff’ classes,
whereas if the pixel belongs to the ‘thing’ class, the net-
work predicts both which ‘thing’ class it corresponds to as
well as the instance of the object class. Kirillov et al (2019b)
also present a baseline approach for panoptic segmentation
that heuristically combines predictions from individual state-
of-the-art instance and semantic segmentation networks in
a post-processing step. However, this disjoint approach has
several drawbacks including large computational overhead,
redundancy in learning and discrepancy between the predic-
tions of each network. Although recent methods have made
significant strides to address this task in top-down manner
with shared components or in a bottom-up manner sequen-
tially, these approaches still face several challenges in terms
of computational efficiency, slow runtimes and subpar results
compared to task-specific individual networks.

In this paper, we propose the novel EfficientPS architec-
ture that provides effective solutions to the aforementioned
problems for urban road scene understanding. The archi-
tecture consists of our new shared backbone with mobile
inverted bottleneck units and our proposed 2-way Feature
Pyramid Network (FPN), followed by task-specific instance
and semantic segmentation heads with seperable convolu-
tions, whose outputs are combined in our parameter-free
panoptic fusion module. The entire network is jointly opti-
mized in an end-to-end manner to yield the final panoptic
segmentation output. Figure 1 shows an overview of the
information flow in our network along with the intermediate
predictions and the final output. The design of our proposed
EfficientPS is influenced by the goal of achieving superior

performance compared to existing methods while simultane-
ously being fast and computationally more efficient.

Currently, the best performing top-down panoptic seg-
mentation models (Porzi et al 2019; Xiong et al 2019; Li
et al 2018a) primarily employ the ResNet-101 (He et al
2016) or ResNeXt-101 (Xie et al 2017) architecture with
Feature Pyramid Networks (Lin et al 2017) as the back-
bone. Although these backbones have a high representational
capacity, they consume a significant amount of parameters.
In order to achieve a better trade-off, we propose a new back-
bone network consisting of a modified EfficientNet (Tan
and Le 2019) architecture that employs compound scaling
to uniformly scale all the dimensions of the network, cou-
pled with our novel 2-way FPN. Our proposed backbone is
substantially more efficient as well as effective than its pop-
ular counterparts (He et al 2016; Kaiser et al 2017; Xie et al
2017). Moreover, we identify that the standard FPN architec-
ture has its limitations to aggregate multi-scale features due
to the unidirectional flow of information. While there are
other extensions that aim to mitigate this problem by adding
bottom-up path augmentation (Liu et al 2018) to the outputs
of the FPN. We propose our novel 2-way FPN as an alter-
nate that facilities bidirectional flow of information which
substantially improves the panoptic quality of ‘thing’ classes
while remaining comparable in runtime.

Now the outputs of our 2-way FPN are of multiple scales
which we refer to as large-scale features when they have a
downsampling factor of ×4 or ×8 with respect to the input
image, and small-scale features when they have a down-
sampling factor of ×16 or ×32. The large-scale outputs
comprise of fine or characteristic features, whereas the small-
scale outputs contain features rich in semantic information.
The presence of these distinct characteristics necessitates
processing features at each scale uniquely. Therefore, we
propose a new semantic head with depthwise separable
convolutions, which aggregates small-scale and large-scale
features independently before correlating and fusing con-
textual features with fine features. We demonstrate that this
semantically reinforces fine features resulting in better object
boundary refinement. For our instance head, we build upon
Mask-R-CNN and augment it with depthwise separable con-
volutions and iABN sync (Rota Bulò et al 2018) layers.

One of the critical challenges in panoptic segmentation
deals with resolving the conflict of overlapping predic-
tions from the semantic and instance heads. Most architec-
tures (Kirillov et al 2019a; Porzi et al 2019; Li et al 2019b;
de Geus et al 2018) employ a standard post-processing
step (Kirillov et al 2019b) that adopts instance-specific
‘thing’ segmentation from the instance head and ‘stuff’ seg-
mentation from the semantic head. This fusion technique
completely ignores the logits of the semantic head while seg-
menting ‘thing’ regions in the panoptic segmentation output
which is sub-optimal as the ‘thing’ logits of the semantic
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head can aid in resolving the conflict more effectively. In
order to thoroughly exploit the logits from both heads, we
propose a parameter-free panoptic fusion module that adap-
tively fuses logits by selectively attenuating or amplifying
fused logit scores based on how agreeable or disagreeable the
predictions of individual heads are for each pixel in a given
instance. We demonstrate that our panoptic fusion mecha-
nism is more effective and efficient than other widely used
methods in existing architectures.

Furthermore, we also introduce the KITTI panoptic seg-
mentation dataset that contains panoptic annotations for
images in the challenging KITTI benchmark (Geiger et al
2013). As KITTI provides groundtruth for a whole suite of
perception and localization tasks, these new panoptic anno-
tations further complement the widely popularly benchmark.
We hope that these panoptic annotations that we make pub-
licly available encourages future research inmulti-task learn-
ing for holistic scene understanding. Furthermore, in order to
facilitate comparison, we benchmark previous state-of-the-
art models on our newly introduced KITTI panoptic segmen-
tation dataset and the IDD dataset. We perform exhaustive
experimental evaluations and benchmarking of our proposed
EfficientPS architecture on four standard urban scene under-
standing datasets including Cityscapes (Cordts et al 2016),
Mapillary Vistas (Neuhold et al 2017), KITTI (Geiger et al
2013) and Indian Driving Dataset (IDD) (Varma et al 2019).

Our proposed EfficientPS with a PQ score of 66.4% is
ranked first for panoptic segmentation on the Cityscapes
benchmark leaderboard without training on coarse annota-
tions or using model ensembles. Additionally, EfficientPS
is also ranked second for the semantic segmentation task
as well as the instance segmentation task on the Cityscapes
benchmark with a mIoU score of 84.2% and an AP of 39.1%
respectively. On theMapillary Vistas dataset, our single Effi-
cientPSmodel achieves aPQscore of 40.5%on the validation
set, thereby outperforming all the existing methods. Simi-
larly, EfficientPS consistently outperforms existing panoptic
segmentation models on both the KITTI and IDD datasets
by a large margin. More importantly, our EfficientPS archi-
tecture not only sets the new state-of-the-art on all the four
panoptic segmentation benchmarks, but it is also the most
computationally efficient by consuming the least amount of
parameters and having the fastest inference time compared
to previous state-of-the-art methods. Finally, we present
detailed ablation studies that demonstrate the improvement
in performance due to each of the architectural contributions
that we make in this work. Moreover, we also make imple-
mentations of our proposed EfficientPS architecture, training
code and pre-trained models publicly available.

In summary, the following are the main contributions of
this work:

1. The novel EfficientPS architecture for panoptic segmen-
tation that incorporates our proposed efficient shared
backbone with our new feature aligning semantic head,
a new variant of Mask R-CNN as the instance head, and
our novel adaptive panoptic fusion module.

2. A new panoptic backbone consisting of an augmented
EfficientNet architecture, and our proposed 2-way FPN
that both encodes and aggregates semantically rich multi-
scale features in a bidirectional manner.

3. A novel semantic head that captures fine features and
long-range context efficiently as well as correlates them
before fusion for better object boundary refinement.

4. A new panoptic fusion module that dynamically adapts
the fusion of logits from the semantic and instance heads
based on their mask confidences and congruously inte-
grates instance-specific ‘thing’ classes with ‘stuff’ classes
to compute the panoptic prediction.

5. The KITTI panoptic segmentation dataset that provides
panoptic groundtruth annotations for images from the
challenging KITTI benchmark dataset.

6. Benchmarking of existing state-of-the-art panoptic seg-
mentation architectures on the newly introduced KITTI
panoptic segmentation dataset and IDD dataset.

7. Comprehensive benchmarking of our proposed Effi-
cientPS architecture on Cityscapes, Mapilliary Vistas,
KITTI and IDD datasets.

8. Extensive ablation studies that compare the performance
of various architectural components that we propose in
this work with their counterparts from state-of-the-art
architectures.

9. Implementation of our proposed architecture and a live
demo on all the four datasets is publicly available at http://
rl.uni-freiburg.de/research/panoptic.

2 RelatedWorks

Panoptic segmentation is a recently introduced scene under-
standing problem (Kirillov et al 2019b) that unifies the tasks
of semantic segmentation and instance segmentation. There
are numerous methods that have been proposed for each of
these sub-tasks, however only a handful of approaches have
been introduced to tackle this coherent scene understand-
ing problem of panoptic segmentation. Most works in this
domain are largely built upon advances made in semantic
segmentation and instance segmentation, therefore we first
review recent methods that have been proposed for these
closely related tasks, followed by state-of-the-art approaches
that have been introduced for panoptic segmentation.
Semantic Segmentation:There has been significant advanc-
es in semantic segmentation approaches in recent years.
In this section, we briefly review methods that use a sin-
gle monocular image to tackle this task. Approaches from
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the past decade, typically employ random decision forests
to address this task. Shotton et al (2008) use randomized
decision forests on local patches for classification, whereas
Plath et al (2009) fuse local and global features along with
Conditional Random Fields(CRFs) for segmentation. As
opposed to leveraging appearance-based features, Brostow
et al (2008) use cues from motion with random forests.
Sturgess et al (2009) further combine appearance-based
features with structure-from-motion features in addition to
CRFs to improve the performance. However, 3D features
extracted from dense depth maps (Zhang et al 2010) have
been demonstrated to be more effective than the combined
features. Kontschieder et al (2011) exploit the inherent
topological distribution of object classes to improve the per-
formance, whereas Krähenbühl and Koltun (2011) improve
segmentationbypairingCRFswithGaussian edgepotentials.
Nevertheless, all these methods employ handcrafted features
that do not encapsulate all the high-level and low-level rela-
tions thereby limiting their representational ability.

The significant improvement in performance of classifica-
tion tasks brought about by Convolutional Neural Network
(CNN) based approaches motivated researchers to explore
such methods for semantic segmentation. Initially, these
approaches relied on patch-wise training that severely lim-
ited their ability to accurately segment object boundaries.
However, they still perform substantially better than previ-
ous handcrafted methods. The advent of end-to-end learning
approaches for semantic segmentation lead by the intro-
duction of Fully Convolutional Networks (FCNs) (Long
et al 2015) revolutionized this field and FCNs still form
the base upon which state-of-the-art architecture are built
upon today. FCN is an encoded-decoder architecture where
the encoder is based on the VGG-16 (Simonyan and Zisser-
man 2014) architecture with inner-product layers replaced
with convolutions, and the decoder consists of convolu-
tion and transposed convolution layers. The subsequently
proposed SegNet (Badrinarayanan et al 2017) architecture
introduced unpooling layers for upsampling as a replace-
ment for transposed convolutions, whereas ParseNet (Liu
et al 2015) models global context directly as opposed to only
relying on the largest receptive field of the network.

The PSPNet (Zhao et al 2017) architecture emphasizes on
the importance of multi-scale features and propose pyramid
pooling to learn feature representations at different scales. Yu
and Koltun (2015) introduce atrous convolutions to further
exploit multi-scale features in semantic segmentation net-
works. Subsequently, Valada et al (2017) proposemulti-scale
residual units with parallel atrous convolutions with different
dilation rates to efficiently learn multiscale features through-
out the networkwithout increasing the number of parameters.
Chen et al (2017b) propose the Atrous Spatial Pyramid Pool-
ing (ASPP) module that concatenates feature maps from
multiple parallel atrous convolutions with different dila-

tion rates and a global pooling layer. ASPP substantially
improves the performance of semantic segmentation net-
works by aggregating multi-scale features and capturing
long-range context, however it significantly increases the
computational complexity.Therefore,Chen et al (2018a) pro-
pose Dense Prediction Cells (DPC) and Valada et al (2019)
propose Efficient Atrous Spatial Pyramid Pooling (eASPP)
that yield better semantic segmentation performance than
ASPP while being 10-times more efficient. Li et al (2019a)
suggest that global feature aggregation often leads to large
pattern features and also over-smooth regions of small pat-
terns which results in sub-optimal performance. In order to
alleviate this problem, the authors propose the use of a global
aggregation module coupled with a local distribution mod-
ule which results in features that are balanced in small and
large pattern regions. There are also several works that have
been proposed to improve the upsampling in decoders of
encoder-decoder architectures. In (Chen et al 2018b), the
authors introduce a novel decoder module for object bound-
ary refinement. Tian et al (2019) propose data-dependent
upsampling which accounts for the redundancy in the label
space as opposed to simple bilinear upsampling.
Instance Segmentation: Some of the initial approaches
employ CRFs (He and Gould 2014b) and minimize integer
quadratic relations (Tighe et al 2014). Methods that exploit
CNNs with Markov random fields (Zhang et al 2016) and
recurrent neural networks (Romera-Paredes and Torr 2016;
Ren andZemel 2017) have also been explored. In this section,
we primarily discuss CNN-based approaches for instance
segmentation. These methods can be categorized into pro-
posal free and proposal based methods.

Methods in the proposal free category often obtain
instancemasks froma resulting transformation.Bai andUrta-
sun (2017) uses CNNs to produce an energy map of the
image and then perform a cut at a single energy level to
obtain the corresponding object instances. Liu et al (2017)
employ a sequence of CNNs to solve sub-grouping prob-
lems in order to compose object instances. Some approaches
exploit FCNs which either use local coherence for estimat-
ing instances (Dai et al 2016) or encode the direction of each
pixel to its corresponding instance centre (Uhrig et al 2016).
The recent approach, SSAP (Gao et al 2019) uses pixel-pair
affinity pyramids for computing the probability that two pix-
els hierarchically belong to the same instance. However, they
achieve a lower than proposal based methods which has led
to a decline in their popularity.

In proposal based methods, Hariharan et al (2014) pro-
pose a method that uses Multiscale Combinatorial Group-
ing (Arbeláez et al 2014) proposals as input to CNNs for fea-
ture extraction and then employ an SVM classifier for region
classification. Subsequently, Hariharan et al (2015) propose
hypercolumn pixel descriptors for simultaneous detection
and segmentation. In recent works, DeepMask (Pinheiro et al

123



International Journal of Computer Vision (2021) 129:1551–1579 1555

2015) uses a patch of an image as input to aCNNwhich yields
a class-agnostic segmentation mask and the likelihood of the
patch containing an object. FCIS (Li et al 2017) employs
position-sensitive score maps obtained from classification
of pixels based on their relative positions to perform seg-
mentation and detection jointly. Dai et al (2016) propose an
approach for instance segmentation that uses three networks
for distinguishing instances, estimatingmasks and categoriz-
ing objects. Mask R-CNN (He et al 2017) is one of the most
popular and widely used approaches in the present time. It
extends Faster R-CNN for instance segmentation by adding
an object segmentation branch parallel to an branch that
performs bounding box regression and classification. More
recently, Liu et al (2018) propose an approach to improve
Mask R-CNN by adding bottom-up path augmentation that
enhances object localization ability in earlier layers of the
network. Subsequently, BshapeNet (Kang and Kim 2018)
extends Faster R-CNN by adding a bounding box mask
branch that provides additional information of object posi-
tions and coordinates to improve the performance of object
detection and instance segmentation.
Panoptic Segmentation: In an earlier attempt of unifying
semantic and instance segmentation task, (Tu et al 2005)
uses a Bayesian framework to output scene representation
as a parsing graph. Further, some approaches employ aux-
iliary variables to reason at the segment level (Yao et al
2012) and combination of region-level features with per-
exemplar sliding window detectors (Tighe and Lazebnik
2013) to address the task. Methods such as minimization
of an integer quadratic program (Tighe et al 2014) and max-
imization of a posteriori inference (Sun et al 2013) have also
been explored. Nevertheless, the aforementioned methods
due to their complexity and sub-par performance couldn’t
garner much attention to the task. But later Kirillov et al
(2019b) revived the unification of semantic segmentation
and instance segmentation tasks by introducing panoptic seg-
mentation. They propose a baseline model that combines the
output of PSPNet (Zhao et al 2017) and Mask R-CNN (He
et al 2017) with a simple post-processing step in which
each model processes the inputs independently. The meth-
ods that address this task of panoptic segmentation can be
broadly classified into two categories: top-down or proposal
based methods and bottom-up or proposal free methods.
Most of the current state-of-the-art methods adopt the top-
down approach. de Geus et al (2018) propose joint training
with a shared backbone that branches into Mask R-CNN for
instance segmentation and augmentedPyramidPoolingmod-
ule for semantic segmentation. Subsequently, Li et al (2019b)
introduce Attention-guided Unified Network that uses pro-
posal attention module and mask attention module for better
segmentation of ‘stuff’ classes.All the aforementionedmeth-
ods use a similar fusion technique to Kirillov et al (2019b)
for the fusion of ‘stuff’ and ‘thing’ predictions.

In top-down panoptic segmentation architectures, pre-
dictions of both heads have an inherent overlap between
them resulting in the mask overlapping problem. In order
to mitigate this problem, Li et al (2018b) propose a weakly
supervised model where ‘thing’ classes are weakly super-
vised by bounding boxes and ‘stuff’ classes are supervised
with image-level tags. Whereas, Liu et al (2019) address the
problem by introducing the spatial ranking module and Li
et al (2018a) propose a method that learns a binary mask to
constrain output distributions of ‘stuff’ and ‘thing’ explic-
itly. Subsequently, UPSNet (Xiong et al 2019) introduces
a parameter-free panoptic head to address the problem of
overlapping of instances and also predicts an extra unknown
class. More recently, AdaptIS (Sofiiuk et al 2019) uses point
proposals to produce instance masks and jointly trains with a
standard semantic segmentation pipeline to perform panoptic
segmentation. In contrast, Porzi et al (2019) propose an archi-
tecture for panoptic segmentation that effectively integrates
contextual information from a lightweight DeepLab-inspired
module with multi-scale features from a FPN.

Compared to the popular proposal based methods, there
are only a handful of proposal free methods that have been
proposed. Deeper-Lab (Yang et al 2019) was the first bottom-
up approach that was introduced and it employs an encoder-
decoder topology to pair object centres for class-agnostic
instance segmentationwithDeepLab semantic segmentation.
Cheng et al (2020) further builds onDeeper-Lab by introduc-
ing a dual-ASPP and dual-decoder structure for each sub-task
branch. SSAP (Gao et al 2019) proposes to grouppixels based
on a pixel-pair affinity pyramid and incorporate an efficient
graph method to generate instances while jointly learning
semantic labeling.

In this work, we adopt a top-down approach due to its
exceptional ability to handle large scale variation of instances
which is a critical requirement for segmenting ‘thing’ classes.
We present the novel EfficientPS architecture that incorpo-
rates our proposed efficient backbonewith our 2-wayFPN for
learning rich multi-scale features in a bidirectional manner,
coupled with a new semantic head that captures fine-features
and long-range context effectively, and a variant of Mask
R-CNN augmented with depthwise separable convolutions
as the instance head. We propose a novel panoptic fusion
module to dynamically adapt the fusion of logits from the
semantic and instance heads to yield the panoptic segmenta-
tion output. Our architecture achieves state-of-the-art results
on benchmark datasets while being themost efficient and fast
panoptic segmentation architecture.

3 EfficientPS Architecture

In this section, we first give a brief overview of our pro-
posed EfficientPS architecture and then detail each of its
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Fig. 2 Illustration of our proposed EfficientPS architecture consist-
ing of a shared backbone with our 2-way FPN and parallel semantic
and instance segmentation heads followed by our panoptic fusion mod-
ule. The shared backbone is built upon on the EfficientNet architecture
and our new 2-way FPN that enables bidirectional flow of information.

The instance segmentation head is based on a modified Mask R-CNN
topology andwe incorporate our proposed semantic segmentation head.
Finally, the outputs of both heads are fused in our panoptic fusion mod-
ule to yield the panoptic segmentation output

constituting components. Our network follows the top-down
layout as shown in Fig. 2. It consists of a shared backbone
with a 2-way Feature Pyramid Network (FPN), followed by
task-specific semantic segmentation and instance segmenta-
tion heads.We build upon the EfficientNet (Tan and Le 2019)
architecture for the encoder of our shared backbone (depicted
in red). It consists of mobile inverted bottleneck (Xie et al
2017) units and employs compound scaling to uniformly
scale all the dimensions of the encoder network. This enables
our encoder to have a rich representational capacity with
fewer parameters in comparison to other encoders or back-
bones of similar discriminative capability.

As opposed to employing the conventional FPN (Lin et al
2017) that is commonly used in other panoptic segmenta-
tion architectures (Kirillov et al 2019a; Li et al 2018a; Porzi
et al 2019), we incorporate our proposed 2-way FPN that
fuses multi-scale features more effectively than its counter-
parts. This can be attributed to the fact that the information
flow in our 2-way FPN is not bounded to only one direction as
depicted by the purple, blue and green blocks in Fig. 2. Subse-
quently after the 2-wayFPN,we employ two heads in parallel
which are semantic segmentation (depicted in yellow) and

instance segmentation (depicted in gray and orange) respec-
tively. We use a variant of the Mask R-CNN (He et al 2017)
architecture as the instancehead andwe incorporate our novel
semantic segmentation head consisting of dense prediction
cells (Chen et al 2018a) and residual pyramids. The seman-
tic head consists of three different modules for capturing fine
features, long-range contextual features and correlating the
distinctly captured features for improving object boundary
refinement. Finally, we employ our proposed panoptic fusion
module to fuse the outputs of the semantic and instance heads
to yield the panoptic segmentation output.

3.1 Network Backbone

The backbone of our network consists of an encoder with our
proposed 2-way FPN. The encoder is the basic building block
of any segmentation network and a strong encoder is essen-
tial to have high representational capacity. In this work, we
seek to find a good trade-off between the number of param-
eters and computational complexity to the representational
capacity of the network. EfficientNets (Tan and Le 2019)
which are a recent family of architectures have been shown
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to significantly outperform other networks in classification
tasks while having fewer parameters and FLOPs. It employs
compound scaling to uniformly scale the width, depth and
resolution of the network efficiently. Therefore, we choose
to build upon this scaled architecture with 1.6, 2.2 and 456
coefficients, commonly known as theEfficientNet-B5model.
This can be easily replaced with any of the EfficientNet mod-
els based on the capacity of the resources that are available
and the computational budget.

In order to adapt EfficientNet to our task, we first remove
the classification head as well as the Squeeze-and-Excitation
(SE) (Hu et al 2018) connections in the network.We find that
the explicit modelling of interdependencies between chan-
nels of the convolutional feature maps that are enabled by
the SE connections tend to suppress localization of features
in favour of contextual elements. This property is a desired
in classification networks, however both are equally impor-
tant for segmentation tasks, therefore we do not add any
SE connections in our backbone. Second, we replace all the
batch normalization (Ioffe and Szegedy 2015) layers with
synchronized Inplace Activated Batch Normalization (iABN
sync) (Rota Bulò et al 2018). This enables synchronization
across different GPUs, which in turn yields a better esti-
mate of gradients while performing multi-GPU training and
the in-place operations frees up additional GPUmemory.We
analyze the performance of ourmodifiedEfficientNet in com-
parison to other encoders commonly used in state-of-the-art
architectures in the ablation study presented in Sect. 4.4.2.

Our EfficientNet encoder comprises of nine blocks as
shown in Fig. 2 (in red). We refer to each block in the figure
as block 1 to block 9 in the left to right manner. The output
of block 2, 3, 5, and 9 corresponds to downsampling factors
×4,×8,×16 and ×32 respectively. The outputs from these
blocks with downsampling are also inputs to our 2-way FPN.
The conventional FPN used in other panoptic segmentation
networks aims to address the problem of multi-scale feature
fusion by aggregating features of different resolutions in a
top-down manner. This is performed by first employing a
1× 1 convolution to reduce or increase the number of chan-
nels of different encoder output resolutions to a predefined
number, typically 256. Then, the lower resolution features
are upsampled to a higher resolution and are subsequently
added together. For example, ×32 resolution encoder output
featureswill be resized to the×16 resolution and added to the
×16 resolution encoder output features. Finally, a 3×3 con-
volution is used at each scale to further learn fused features
which yields the P4, P8, P16 and P32 outputs. This FPN topol-
ogy has a limited unidirectional flow of information resulting
in an ineffective fusion ofmulti-scale features. Therefore, we
propose to mitigate this problem by adding a second branch
that aggregates multi-scale features in a bottom-up manner
to enable bidirectional flow of information.

Our proposed 2-way FPN shown in Fig. 2 consists of two
parallel branches. Each branch consists of a 1×1 convolution
with 256 output filters at each scale for channel reduction.
The top-down branch shown in blue follows the aggregation
schemeof a conventional FPN from right to left.Whereas, the
bottom-up branch shown in purple, downsamples the higher
resolution features to the next lower resolution from left to
right and subsequently adds them with the next lower reso-
lution encoder output features. For example, ×4 resolution
features will be resized to the ×8 resolution and added to
the ×8 resolution encoder output features. Then in the next
stage, the outputs from the bottom-up and top-down branches
at each resolution are correspondingly summed together and
passed through a 3×3 depthwise separable convolution with
256 output channels to obtain the P4, P8, P16, and P32 outputs
respectively. We employ depthwise separable convolutions
as opposed to standard convolutions in an effort to keep the
parameter consumption low.We evaluate the performance of
our proposed 2-way FPN in comparison to the conventional
FPN in the ablation study presented in Sect. 4.4.3.

3.2 Semantic Segmentation Head

Our proposed semantic segmentation head consists of three
components, each aimed at targeting one of the critical
requirements. First, at large-scale, the network should have
the ability to capture fine features efficiently. In order to
enable this, we employ our Large Scale Feature Extractor
(LSFE) module that has two 3 × 3 depthwise separable
convolutions with 128 output filters, each followed by an
iABN sync and a Leaky ReLU activation function. The first
3 × 3 depthwise separable convolution reduces the number
of filters to 128 and the second 3 × 3 depthwise separable
convolution further learns deeper features.

The second requirement is that at small-scale, the net-
work should be able to capture long-range context. Mod-
ules inspired by Atrous Spatial Pyramid Pooling (ASPP)
Chen et al (2017a) that are widely used in state-of-the-art
semantic segmentation architectures have been demonstrated
to be effective for this purpose. Dense Prediction Cells
(DPC) (Chen et al 2018a) and Efficient Atrous Spatial Pyra-
mid Pooling (eASPP) (Valada et al 2019) are two variants of
ASPP that are significantly more efficient and also yield a
better performance. We find that DPC demonstrates a better
performance with a minor increase in the number of param-
eters compared to eASPP. Therefore, we employ a modified
DPC module in our semantic head as shown in Fig. 2. We
augment the original DPC topology by replacing batch nor-
malization layers with iABN sync, and ReLUs with Leaky
ReLUs. The DPCmodule consists of a 3×3 depthwise sepa-
rable convolution with 256 output channels having a dilation
rate of (1,6) and extends out to five parallel branches. Three
of the branches, each consist of a 3×3 dilated depthwise sep-
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Fig. 3 Topologies of various architectural components in our proposed
semantic head and instance head of our EfficientPS architecture

arable convolution with 256 outputs, where the dilation rates
are (1,1), (6,21), and (18,15) respectively. The fourth branch
takes the output of the dilated depthwise separable convo-
lution with a dilation rate of (18,15), as input and passes it
through another 3 × 3 dilated depthwise separable convolu-
tion with 256 output channels and a dilation rate of (6,3).
The outputs from all these parallel branches are then con-
catenated to yield a tensor with 1280 channels. This tensor is
then finally passed through a 1×1 convolution with 256 out-
put channels and forms the output of the DPC module. Note
that each of the convolutions in the DPC module is followed
by a iABN sync and a Leaky ReLU activation function.

The third and final requirement for the semantic head
is that it should be able to mitigate the mismatch between
large-scale and small-scale featureswhile performing feature
aggregation. To this end, we employ our Mismatch Correc-
tion Module (MC) that correlates the small-scale features
with respect to large-scale features. It consists of cascaded
3×3 depthwise separable convolutionswith 128 output chan-
nels, followed by iABN syncwith LeakyReLU and a bilinear
upsampling layer that upsamples the feature maps by a factor
of 2. Figure 3a, c, d illustrate the topologies of these main
components of our semantic head.

The four different scaled outputs of our 2-way FPN,
namely P4, P8, P16 and P32 are the inputs to our semantic
head. The small-scale inputs, P32 andP16 with downsampling
factors of ×32 and ×16 are each fed into two parallel DPC
modules. While the large-scale inputs, P8 and P4 with down-

sampling factors of ×8 and ×4 are each passed through two
parallel LSFEmodules. Subsequently, the outputs from each
of these parallel DPC and LSFEmodules are augmentedwith
feature alignment connections and each of them is upsam-
pled to x4 scale. These upsampled feature maps are then
concatenated to yield a tensor with 512 channels which is
then input to a 1× 1 convolution with N‘stu f f ′+‘thing′ output
filters. This tensor is then finally upsampled by a factor of
4 and passed through a softmax layer to yield the semantic
logits having the same resolution as the input image. Now,
the feature alignment connections from the DPC and LSFE
modules interconnect each of these outputs by element-wise
summation as shown in Fig. 2. We add our MC modules
in the interconnections between the second DPC and LSFE
as well as between both the LSFE connections. These cor-
relation connections aggregate contextual information from
small-scale features and characteristic large-scale features
for better object boundary refinement. We use the weighted
per-pixel log-loss (Bulo et al 2017) for trainingwhich is given
by

Lpp(Θ) = −
∑

i j

wi j (p
∗
i j ) log pi j , (1)

p∗
i, j is the groundtruth for a given image, pi, j is the predicted

probability for the pixel (i, j) being assigned class c ∈ p,
wi j = 4

WH if pixel (i, j) belongs to 25% of the worst pre-
diction, and wi j = 0 otherwise. W and H are the width and
height of the given input image. The overall semantic head
loss is given by

Lsemantic(Θ) = 1

n

∑
L pp, (2)

where n is the batch size. We present in-depth analysis of
our semantic head in comparison other semantic heads com-
monly used in state-of-the-art architectures in Sect. 4.4.4.

3.3 Instance Segmentation Head

The instance segmentation head of our EfficientPS network
shown in Fig. 2 has a topology similar to Mask R-CNN (He
et al 2017) with certain modifications. More specifically, we
replace all the standard convolutions, batch normalization
layers, and ReLU activations with depthwise separable con-
volution, iABN sync, and Leaky ReLU respectively. Similar
to the rest of our architecture, we use depthwise separa-
ble convolutions instead of standard convolutions to reduce
the number of parameters consumed by the network. This
enables us to conserve 2.09 M parameters in comparison to
the conventional Mask R-CNN.

Mask R-CNN consists of two stages. In the first stage,
the Region Proposal Network (RPN) module shown in Fig.
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3b employs a fully convolutional network to output a set of
rectangular object proposals and an objectness score for the
given input FPN level. Subsequently, ROI align (He et al
2017) uses object proposals to extract features from FPN
encodings by directly pooling features from the nth channel
with a 14× 14 spatial resolution bounded within a bounding
box proposal. The features that are extracted then serve as
input to the bounding box regression, object classification
and mask segmentation networks. The logits output from the
mask segmentation networks for each candidate bounding
box proposal is then fused with the semantic logits in our
proposed panoptic fusion module described in Sect. 3.4.

In order to train the instance segmentation head, we adopt
the loss functions proposed in Mask R-CNN, i.e. two loss
functions for the first stage: objectness score loss and object
proposal loss, and three loss functions for the second stage:
classification loss, bounding box loss andmask segmentation
loss.We take a set of randomly sampled positivematches and
negative matches such that |Ns | ≤ 256. The objectness score
loss Los defined as log loss for a given Ns is given by

Los(Θ) = − 1

|Ns |
∑

(p∗
os ,pos )∈Ns

p∗
os · log pos

+ (1 − p∗
os) · log(1 − pos), (3)

where pos is the output of the objectness score branch of RPN
and p∗

os is the groundtruth labelwhich is 1 if the anchor is pos-
itive, and 0 if the anchor is negative.We use the same strategy
as Mask R-CNN for defining positive and negative matches.
For a given anchor a, if the groundtruth box b∗ has the largest
Intersection over Union (IoU) or IoU(b∗, a) > TH , then the
corresponding prediction b is a positive match and b is a neg-
ative match when IoU(b∗, a) < TL . The thresholds TH and
TL are pre-defined where TH > TL .

The object proposal loss Lop is a regression loss that is
defined only on positive matches and is given by

Lop(Θ) = 1

|Ns |
∑

(t∗,t)∈Np

∑

(i∗,i)∈(t∗,t)
L1(i∗, i), (4)

where L1 is the smooth L1 Norm, Np is the subset of Ns

positive matches, t∗ = (t∗x , t∗y , t∗w, t∗h ) and t = (tx , ty, tw, th)
are the parameterizations of b∗ and b respectively, b∗ =
(x∗, y∗, w∗, h∗) is the groundtruth box, b∗ = (x, y, w, h)

is the predicted bounding box, x, y, w and h are the cen-
ter coordinates, width and height of the predicted bounding
box. Similarly, x∗, y∗, w∗ and h∗ denote the center coordi-
nates, width and height of the groundtruth bounding box. The
parameterizations (Girshick 2015) are given by

tx = (x − xa)

wa
, ty = (y − ya)

ha
,

tw = log
w

wa
,

th = log
h

ha
, (5)

t∗x = (x∗ − xa)

wa
, t∗y = (y∗ − ya)

ha
,

t∗w = log
w∗

wa
,

t∗h = log
h∗

ha
, (6)

where xa, ya, wa and ha denote the center coordinates, width
and height of the anchor a.

Similar to the objectness score loss Los , the classification
lossLcls is defined for a set of Ks randomly sampled positive
and negative matches such that |Ks | ≤ 512. The classifica-
tion loss Lcls is given by

Lcls(Θ) = − 1

|Ks |
N‘thing′+1∑

c=1

Y ∗
o,c · log Yo,c, for(Y ∗, Y ) ∈ Ks , (7)

where Y is the output of the classification branch, Y ∗ is the
one hot encoded groundtruth label, o is the observed class,
and c is the correct classification for object o. For a given
image, it is a positivematch if IoU(b∗, b) > Tn and otherwise
a negative match, where b∗ is the groundtruth box, and b is
the object proposal from the first stage.

The bounding box loss Lbbx is a regression loss that is
defined only on positive matches and is expressed as

Lbbx (Θ) = 1

|Ks |
∑

(T ∗,T )∈Kp

∑

(i∗,i)∈(T ∗,T )

L1(i∗, i), (8)

where L1 is the smooth L1 Norm (Girshick 2015), Kp is the
subset of Ks positive matches, T ∗ and T are the parameter-
izations of B∗ and B respectively, similar to Equation (3)
and (4) where B∗ is the groundtruth box, and B is the corre-
sponding predicted bounding box.

Finally, the mask segmentation loss is also defined only
for positive samples and is given by

Lmask(Θ) = − 1

|Ks |
∑

(P∗,P)∈Ks

L p(P
∗, P), (9)

where L p(P∗, P) is given as

L p(P
∗, P) = − 1

|Tp|
∑

(i, j)∈Tp
P∗
i, j · log Pi, j

+ (1 − P∗
i, j ) · log(1 − Pi, j ), (10)

where P is the predicted 28×28 binary mask for a class with
Pi, j denoting the probability of the mask pixel (i, j), P∗ is
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Fig. 4 Illustration of our proposedPanoptic FusionModule.Here,MLA
and MLB mask logits are fused as (σ (MLA) + σ(MLB)) � (MLA +
MLB)), where MLB is output of the function f ∗, σ(·) is the sigmoid
function and� is theHadamard product. Here, the f ∗ function for given
class prediction c (cyclist in this example), zeroes out the score of the c

channel of the semantic logits outside the corresponding bounding box.
Please note that 16 initial mask logits and 4 instances are just arbitrary
number taken for the sake of ease of explanation. The real values can
and are much higher than these numbers

the 28× 28 groundtruth binary mask for the class, and Tp is
the set of non-void pixels in P∗.

All the five losses are weighed equally and the total
instance segmentation head loss is given by

Linstance = Los + Lop + Lcls + Lbbx + Lmask . (11)

Similar to Mask R-CNN, the gradient that is computed w.r.t
to the losses Lcls , Lbbx and Lmask flow only through the net-
work backbone and not through the region proposal network.

3.4 Panoptic FusionModule

In order to obtain the panoptic segmentation output, we need
to fuse the prediction of the semantic segmentation head and
the instance segmentation head. However, fusing both these
predictions is not a straightforward task due to the inherent
overlap between them. Therefore, we propose a novel panop-
tic fusion module to tackle the aforementioned problem in
an adaptive manner in order to thoroughly exploit the pre-
dictions from both the heads congruously. Figure 4 shows
the topology of our panoptic fusion module. We obtain a
set of object instances from the instance segmentation head
of our network where for each instance, we have its corre-
sponding class prediction, confidence score, bounding box
and mask logits. First, we reduce the number of predicted
object instances in two stages. We begin by discarding all
object instances that have a confidence score of less than a
certain confidence threshold. We then resize, zero pad and
scale the 28 × 28 mask logits of each object instance to the
same resolution as the input image. Subsequently, we sort

the class prediction, bounding box and mask logits accord-
ing to the respective confidence scores. In the second stage,
we check each sorted instance mask logit for overlap with
other object instances. To do so we compute the sigmoid
of the mask logits and threshold it at 0.5 to obtain the cor-
responding binary mask. Then if the overlap between the
binary masks is greater than a given overlap threshold, the
mask logits with the highest confidence are retained and the
other overlapping mask logits are discarded.

After filtering the object instances, we have the class pre-
diction, bounding box prediction and mask logit MLA of
each instance.We simultaneously obtain semantic logitswith
N channels from the semantic head, where N is the sum of
N‘stu f f ′ and N‘thing′ . We then compute a second mask logit
MLB for each instance where we select the channel of the
semantic logits based on its class prediction. We only keep
the logit score of the selected channel for the area within
the instance bounding box, while we zero out the scores that
are outside this region. In the end, we have two mask logits
for each instance, one from instance segmentation head and
the other from the semantic segmentation head. We combine
these two logits adaptively by computing theHadamard prod-
uct of the sum of sigmoid of MLA and sigmoid of MLB , and
the sum of MLA and MLB to obtain the fused mask logits
FL of instances expressed as

FL = (σ (MLA) + σ(MLB)) � (MLA + MLB), (12)

where σ(·) is the sigmoid function and � is the Hadamard
product. We then concatenate the fused mask logits of the
object instances with the ‘stuff’ logits along the channel
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dimension to generate intermediate panoptic logits. Subse-
quently, we apply the argmax operation along the channel
dimension to obtain the intermediate panoptic prediction. In
the final step, we take a zero-filled canvas and first copy
the instance-specific ‘thing’ prediction from the intermedi-
ate panoptic prediction. We then fill the empty parts of the
canvas with ‘stuff’ class predictions by copying them from
the predictions of the semantic head while ignoring classes
that have an area smaller than a predefined threshold called
minimum stuff area. This gives us the final panoptic segmen-
tation output.

We fuse MLA and MLB instance logits in the aforemen-
tioned manner due to the fact that if both logits for a given
pixel conform with each other, the final instance score will
increase proportionately to their agreement or vice-versa. In
case of agreement, the corresponding object instance will
dominate or be superseded by other instances as well as the
‘stuff’ classes score. Similarly, in case of disagreement, the
score of the given object instance will reflect the extent of
their difference. Simply put, the fused logit score is either
adaptively attenuated or amplified according to the consen-
sus. We evaluate the performance of our proposed panoptic
fusion module in comparison to other existing methods in
the ablation study presented in Sect. 4.4.5.

4 Experimental Results

In this section, we first describe the standard evaluation met-
rics that we adopt for empirical evaluations, followed by
brief descriptions of the datasets that we benchmark on in
Sect. 4.1. We then present extensive quantitative compar-
isons and benchmarking results in Sect. 4.3, and detailed
ablation studies on the various proposed architectural compo-
nents in Sect. 4.4. Finally,we present qualitative comparisons
and visualizations of panoptic segmentation on each of the
datasets that we evaluate on in Sects.4.5 and 4.6 respectively.

We use PyTorch (Paszke et al 2019) for implementing
all our architectures and we trained our models on a sys-
tem with an Intel Xenon@2.20GHz processor and NVIDIA
TITAN X GPUs. We use the standard Panoptic Quality (PQ)
metric (Kirillov et al 2019b) for quantifying the performance
of our models. The PQ metric is computed as

PQ =
∑

(p,g)∈T P IoU (p, g)

|T P| + 1
2 |FP| + 1

2 |FN | , (13)

where T P, FP, FN and I oU are true positives, false pos-
itives, false negatives and the intersection-over-union. The
I oU is computed as I oU = T P/(T P + FP + FN ). We
also report the Segmentation Quality (SQ) and Recognition
Quality (RQ) metrics computed as

SQ =
∑

(p,g)∈T P IoU (p, g)

|T P| , (14)

RQ = |T P|
|T P| + 1

2 |FP| + 1
2 |FN | . (15)

Following the standard benchmarking criteria for pantop-
tic segmentation, we report PQ, SQ and RQ over all the
classes in the dataset, and we also report them for the ‘stuff’
classes (PQSt, SQSt, RQSt) and the ‘thing’ classes (PQTh,
SQTh, RQTh). Additionally, for the sake of completeness,
we report the Average Precision (AP), mean Intersection-
over-Union (mIoU) for both ‘stuff’ and ‘thing’ classes, as
well as the inference time and FLOPs for comparisons. The
implementation of our proposed EfficientPSmodel and a live
demo on various datasets is publicly available at https://rl.
uni-freiburg.de/research/panoptic.

4.1 Datasets

We benchmark our proposed EfficientPS for panoptic seg-
mentation on four challenging urban scene understanding
datasets, namely,Cityscapes (Cordts et al 2016),KITTI (Geiger
et al 2013),MapillaryVistas (Neuhold et al 2017), and Indian
Driving Dataset (Varma et al 2019). The KITTI benchmark
does not provide panoptic annotations, therefore to facilitate
this work, we publicly release manually annotated panop-
tic groundtruth segmentation labels for the popular KITTI
benchmark. These four diverse datasets contain images that
range from congested city driving scenarios to rural scenes
and highways. They also contain scenes in challenging per-
ceptual conditions including snow, motion blur and other
seasonal visual changes. We briefly describe the characteris-
tics of these datasets in this section.
Cityscapes: The Cityscapes dataset (Cordts et al 2016)
consists of urban street scenes and focuses on semantic
understanding of common driving scenarios. It is one of the
most challenging datasets for panoptic segmentation due to
its sheer diversity as it covers scenes from over 50 European
cities recorded over several seasons such as spring, sum-
mer and fall. The presence of a large number of dynamic
objects further add to its complexity. Figure 5a shows an
example image and the corresponding panoptic groundtruth
annotation from the Cityscapes dataset. As we see from
this example, the scenes are extremely clutterd with many
dynamic objects such as pedestrians and cyclists that are
often grouped near one and another or partially occluded.
These factors make panoptic segmentation, especially seg-
menting the ‘thing’ class exceedingly challenging.

The widely used Cityscapes dataset recently introduced
a benchmark for the task of panoptic segmentation. The
dataset contains pixel-level annotations for 19 object classes
of which 11 are ‘stuff’ classes and 8 are instance-specific
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Fig. 5 Example images from the challenging urban scene under-
standing datasets that we benchmark on, namely, Cityscapes, KITTI,
Mapillary Vistas, and Indian Driving Dataset (IDD). The images show
cluttered urban scenes with many dynamic objects, occluded objects,
perpetual snowy conditions and unstructured environments

‘thing’ classes. It consists of 5000 finely annotated images
and 20000 coarsely annotated images that were captured at a
resolution of 2048× 1024 pixels using an automotive-grade
22 cm baseline stereo camera. The finely annotated images
are divided into 2975 for training, 500 for validation and 1525
for testing. The annotations for the test set are not publicly
released, they are rather only available to the online eval-
uation server that automatically computes the metrics and
publishes the results. We report the performance of our pro-
posed EfficientPS on both the validation set as well as the
test set. We also use the Cityscapes dataset for evaluating
the improvement due to the various architectural contribu-
tions that we make in the ablation study. We report results
on the validation set for our model trained only on the fine
annotations and we report the results on the test set from the
benchmarking server for our model trained on both the fine
and coarse annotations.
KITTI: The KITTI vision benchmark suite (Geiger et al
2013) is one of themost comprehensive datasets that provides
groundtruth for a variety of tasks such as semantic segmen-
tation, scene flow estimation, optical flow estimation, depth
prediction, odometry estimation, tracking and road lane
detection.However, it still has not expanded its annotations to
support the recently introduced panoptic segmentation task.
The challenging nature of the KITTI scenes and its poten-
tial for benchmarking multi-task learning problems, makes

extending this dataset to include panoptic annotations of
great interest to the community. Therefore, in this work, we
introduce the KITTI panoptic segmentation dataset for urban
scene understanding that provides panoptic annotations for a
subset of images from theKITTI vision benchmark suite. The
annotations for the images that we provide do not intersect
with the official KITTI semantic/instance segmentation test
set, therefore in addition to panoptic segmentation, they can
also be used as supplementary training data for benchmark-
ing semantic or instance segmentation tasks individually.

Our dataset consists of a total of 1055 images, out ofwhich
855 are used for the training set and 200 are used for the
validation set. We provide annotations for 11 ‘stuff’ classes
and 8 ‘thing’ classes adhering to the Cityscapes ‘stuff’ and
‘thing’ class distribution. In order to create panoptic anno-
tations, we gathered semantic annotations from community
driven extensions ofKITTI (Xuet al 2016;Ros et al 2015) and
combined themwith the 200 training images from the KITTI
semantic training set. We then manually annotated all the
images with instance masks. We do so by manually drawing
boundaries around the objects.Weuse an overlay ofRGBand
semantic segmentation image to guide the boundary draw-
ing process. The pixels within the drawn boundaries in the
semantic segmentation image are then labelled with a unique
id to generate the corresponding instance segmentationmask.
We create our simple annotation toolbox for labelling.We try
to delineate objects as much as humanly possible otherwise
treat the object as background or crowd in our annotations
scheme. The instancemasks are thenmergedwith the seman-
tic annotations to generate the panoptic segmentation ground
truth labels. The images in our KITTI panoptic segmentation
dataset are a resolution of 1280 × 384 pixels and contain
scenes from both residential and inner city scenarios. Fig-
ure 5b shows an example image from the KITTI panoptic
segmentation dataset and its corresponding panoptic segmen-
tation labels. We observe that the car denoted in teal color
pixels and the van are both partially occluded by other ‘stuff’
classes such that they cause an object instance to be disjoint
into two components.We find that scenarios such as these are
extremely challenging for the task of panoptic segmentation
as the disjoint object mask has to be assigned to the same
instance ID. We hope that this dataset encourages innovative
solutions to such real-world problems that are uncommon
in other datasets and also accelerates research in multi-task
learning for urban scene understanding.
Mapillary Vistas: Mapillary Vistas (Neuhold et al 2017)
is one of the largest publicly available street-level imagery
datasets that contains pixel-accurate and instance-specific
semantic annotations. The novel aspects of this dataset
include diverse scenes from over six continents and in a
variety of weather conditions, season, time of day, cameras,
and viewpoints. It consists of 18,000 images for training,
2,000 images for validation, and 5,000 images for testing.
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The dataset provides panoptic annotations for 37 ‘thing’
classes and 28 ‘stuff’ classes. The images in this dataset are
of different resolutions, ranging from 1024 × 768 pixels to
4000× 6000 pixels. Figure 5c shows an example image and
the corresponding panoptic segmentation groundtruth from
theMapillaryVistas dataset.We can see that due to the snowy
condition, recognizing distant objects such as the car in this
example becomes extremely difficult. Such drastic seasonal
changes make this dataset one of the most challenging for
panoptic segmentation.
Indian Driving Dataset: The Indian Driving Dataset (IDD)
(Varma et al 2019) was recently introduced for scene under-
standing of unstructured environments. Unlike other urban
scene understanding datasets, IDD consists of scenes that
do not have well-delineated infrastructures such as lanes
and sidewalks. It has a significantly more number of ‘thing’
instances in each scene compared to other datasets and it
only has a small number of well-defined categories for traf-
fic participants. The images in this dataset were captured
with a front-facing camera mounted on a car and the data
was gathered in two Indian cities as well as in their outskirts.
IDD consists of a total of 10,003 images, where 6993 are
used for training, 981 for validation and 2029 for testing.
The images are a resolution of either 1920 × 1080 pixels
or 720 × 1280 pixels. We train and evaluate all our mod-
els on 720p resolution on this dataset. The annotations are
provided in four levels of hierarchy. Existing approaches pri-
marily report their results for level 3, therefore we report the
results of our model on the same to facilitate comparison.
This level comprises of a total of 26 classes out of which 17
are ‘stuff’ classes and 9 are instance-specific ‘thing’ classes.
An example image and the corresponding panoptic segmen-
tation groundtruth from the IDD dataset is shown in Fig. 5d.
We observe that the transition between the road and the side-
walk class is structurally not well defined which often leads
to misclassifications. Factors such as this, make evaluating
on this dataset uniquely challenging.

4.2 Training Protocol

We train our network on crops of different resolutions of the
input image, namely, 1024×2048, 1024×1024, 384×1280,
and 720×1280 pixels.We take crops from the full resolution
of the image provided in each of the datasets. We perform a
limited set of random data augmentations including flipping
and scaling within the range of [0.5, 2.0]. We initialize the
backbone of our EfficientPS with weights from the Efficient-
Netmodel pre-trained on the ImageNet dataset (Russakovsky
et al 2015) and initialize the weights of the iABN sync layers
to 1. We use Xavier initialization (Glorot and Bengio 2010)
for the other layers, zero constant initialization for the biases
andweuseLeakyReLUwith a slope of 0.01.Weuse the same
hyperparameters as Girshick (2015) for our instance head

and additionally set TH = 0.7, TL = 0.3, and TN = 0.5. In
our proposed panoptic fusion module, we use a confidence
threshold of ct = 0.5, overlap threshold of ot = 0.5 and
minimum stuff area of minsa = 2048.

We train our model with Stochastic Gradient Descent
(SGD) with a momentum of 0.9 using a multi-step learning
rate schedule i.e. we start with an initial base learning rate and
train the model for a certain number of iterations, followed
by lowering the learning rate by a factor of 10 at each mile-
stone and continue training until convergence. We denote
the base learning rate lrbase, milestones and the total num-
ber of iterations t i for each dataset in the following format:
{lrbase, {milestone,milestone}, t i}. The training schedule
for Cityscapes, Mapillary Vistas, KITTI and IDD are {0.07,
{32K, 44K}, 50K}, {0.07, {144K, 176K}, 192K}, {0.07,
{16K, 22K}, 25K} and {0.07 ,{108K, 130K}, 144K} respec-
tively. At the beginning of the training, we have a warm-up
phase where the lrbase is increased linearly from 1

3 · lrbase
to lrbase in 200 iterations. Aditionally, we freeze the iABN
sync layers and further train the model for 10 epochs with a
fixed learning rate of lr = 10−4. The final loss Ltotal that
we optimize is computed as

Ltotal = Lsemantic + Linstance, (16)

where Lsemantic and Linstance are given in Equation (2) and
Equation (11) respectively. We train our EfficientPS with a
batch size of 16 on 16 NVIDIA Titan X GPUs where each
GPU tends to a single-image.

4.3 Benchmarking Results

In this section, we report results comparing the per-
formance of our proposed EfficientPS architecture against
current state-of-the-art panoptic segmentation approaches.
For comparisons on the Cityscapes and Mapillary Vistas
datasets, we directly report the performance metrics of the
state-of-the-art methods as stated in their corresponding
manuscripts. While for KITTI and IDD, we report results for
the models that we trained using the official implementations
that have been publicly released by the authors after further
tuning of hyperparameters to the best of our ability. Note
that existing methods have not reported results on KITTI
and IDD validation sets. We report results on the validation
sets for all the datasets and we additionally report results on
the test set for the Cityscapes dataset by evaluating them on
the official server. Note that at the time of submission, only
the Cityscapes benchmark has the provision to evaluate the
results on the test set. On each of the datasets, we report both
the single-scale andmulti-scale evaluation results. Following
standard practise, we perform horizontal flipping and scaling
(scales of {0.75, 1, 1.25, 1.5, 1.75, 2}) during the multi-scale
evaluations.
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Table 1 Performance comparison of panoptic segmentation on the Cityscapes validation set. Superscripts St and Th refer to ‘stuff’ and ‘thing’
classes respectively. − denotes that the metric has not been reported for the corresponding method

Mode Network Pre-training PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt AP mIoU
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Single-Scale WeaklySupervised 47.3 − − 39.6 − − 52.9 − − 24.3 71.6

TASCNet 55.9 − − 50.5 − − 59.8 − − − −
Panoptic FPN 58.1 − − 52.0 − − 62.5 − − 33.0 75.7

AUNet 59.0 − − 54.8 − − 62.1 − − 34.4 75.6

UPSNet 59.3 79.7 73.0 54.6 79.3 68.7 62.7 80.1 76.2 33.3 75.2

DeeperLab 56.3 − − − − − − − − − −
Seamless 60.3 − − 56.1 − − 63.3 − − 33.6 77.5

SSAP 61.1 − − 55.0 − − − − − − −
AdaptIS 62.0 − − 58.7 − − 64.4 − − 36.3 79.2

Panoptic-DeepLab 63.0 − − − − − − − − 35.3 80.5

EfficientPS (ours) 63.9 81.5 77.1 60.7 81.2 74.1 66.2 81.8 79.2 38.3 79.3

TASCNet COCO 59.3 − − 56 − − 61.5 − − 37.6 78.1

UPSNet COCO 60.5 80.9 73.5 57.0 − − 63.0 − − 37.8 77.8

Seamless Vistas 65.0 − − 60.7 − − 68.0 − − − 80.7

Panoptic-Deeplab Vistas 65.3 − − − − − − − − 38.8 82.5

EfficientPS (ours) Vistas 66.1 82.5 78.9 62.7 81.9 75.2 68.5 82.9 81.6 41.9 81.0

Multi-Scale Panoptic-DeepLab 64.1 − − − − − − − − 38.5 81.5

EfficientPS (ours) 65.1 82.2 79.0 61.5 81.4 75.4 67.7 82.8 81.7 39.7 80.3

TASCNet COCO 60.4 − − 56.1 − − 63.3 − − 39.1 78.7

M-RCNN + PSPNet COCO 61.2 80.9 74.4 54.0 − − 66.4 − − 36.4 80.9

UPSNet COCO 61.8 81.3 74.8 57.6 77.7 70.5 64.8 81.4 39.0 79.2

Panoptic-Deeplab Vistas 67.0 − − − − − − − − 42.5 83.1

EfficientPS (ours) Vistas 67.5 83.2 80.2 63.5 82.2 77.2 70.4 83.9 82.4 43.8 82.1

Table 2 Comparison of
panoptic segmentation
benchmarking results on the
Cityscapes test set

Network Pre-training PQ SQ RQ PQTh PQSt

(%) (%) (%) (%) (%)

SSAP 58.9 82.4 70.6 48.4 66.5

TASCNet COCO 60.7 81.0 73.8 53.4 66.0

Panoptic-Deeplab 62.3 82.4 74.8 52.1 69.7

Seamless Vistas 62.6 82.1 75.3 56.0 67.5

Panoptic-Deeplab Vistas 66.5 83.5 78.8 58.8 72.0

EfficientPS (ours) 64.1 82.6 76.8 56.7 69.4

EfficientPS (ours) Vistas 67.1 83.4 79.6 60.9 71.6

Superscripts St and Th refer to ‘stuff’ and ‘thing’ classes respectively

Table 3 Comparison of model efficiency with both state-of-the-art top-
down and bottom-up panoptic segmentation architectures

Network Input Size Params. FLOPs Time
(pixels) (M) (B) (ms)

DeeperLab 1025 × 2049 − − 463

UPSNet 1024 × 2048 45.05 487.02 202

Seamless 1024 × 2048 51.43 514.00 168

Panoptic-Deeplab 1025 × 2049 46.73 547.49 175

EfficientPS (ours) 1024 × 2048 40.89 433.94 166

We compare the performance of our proposed EfficientPS
against state-of-the-art models on the Cityscapes dataset
including WeaklySupervised (Li et al 2018b), TASCNet (Li
et al 2018a), Panoptic FPN (Kirillov et al 2019a), AUNet (Li
et al 2019b), UPSNet (Xiong et al 2019), DeeperLab (Yang
et al 2019), Seamless (Porzi et al 2019), SSAP (Gao et al
2019), AdaptIS (Sofiiuk et al 2019), and Panoptic-DeepLab
(Cheng et al 2020). Table 1 shows the results on the
Cityscapes validation set. For a fair comparison, we cat-
egorize models in the table separately according to those
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Table 4 Performance comparison of panoptic segmentation on the Mapillary Vistas validation set

Mode Network PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt AP mIoU
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Single-Scale JSIS-Net 17.6 55.9 23.5 10.0 47.6 14.1 27.5 66.9 35.8 − −
DeeperLab 32.0 − − − − − − − − − 55.3

TASCNet 32.6 − − 31.1 − − 34.4 − − 18.5 −
AdaptIS 35.9 − − 31.5 − − − 41.9 − − −
Seamless 37.7 − − 33.8 − − 42.9 − − 16.4 50.4

Panoptic-DeepLab 37.7 − − 30.4 − − 47.4 − − 14.9 55.3

EfficientPS (ours) 38.3 74.2 48.0 33.9 73.3 43.0 44.2 75.4 54.7 18.7 52.6

Multi-Scale TASCNet 34.3 − − 34.8 − − 33.6 − − 20.4 −
Panoptic-DeepLab 40.3 − − 33.5 − − 49.3 − − 17.2 56.8

EfficientPS (ours) 40.5 74.9 49.5 35.0 73.8 44.4 47.7 76.2 56.4 20.8 54.1

Note that no additional data was used for training EfficientPS on this dataset other than pre-training the encoder on ImageNet. Superscripts St and
Th refer to ‘stuff’ and ‘thing’ classes respectively. − denotes that the metric has not been reported for the corresponding method

that report single-scale and multi-scale evaluation, as well as
without any pre-training and pre-training on other datasets,
namely Mapillary Vistas (Neuhold et al 2017) denoted as
Vistas and Microsoft COCO (Lin et al 2014) abbreviated as
COCO.We report the performance of all the aforementioned
variants of our EfficientPSmodel. Note that we do not use the
Cityscapes coarse annotations, depth data or exploit temporal
data. Our EfficientPS model trained only on the Cityscapes
fine annotations andwith single-scale evaluation outperforms
the previous best proposal based approach AdaptIS by 1.9%
in PQ and 2.0% in AP, while outperforming the best bottom-
up approach Panoptic-Deeplab by 0.9% in PQ and 3.0% in
AP. Furthermore, our EfficientPS model trained only on the
Cityscapes fine annotations and with multi-scale evaluation
achieves an improvement of 1.0% in PQ and 1.2% inAP over
Panoptic-Deeplab.We observe a similar trend while compar-
ing with models that have been pre-trained with additional
data, where our proposed EfficientPS outperforms the former
state-of-the-art Panoptic-Deeplab in both single-scale evalu-
ation and multi-scale evaluation. EfficientPS pre-trained on
Mapillary Vistas and with single-scale evaluation outper-
forms Panoptic-Deeplab in the same configuration by 0.8%
in PQ and 3.1% in AP, while for multi-scale evaluation it
exceeds the performance of Panoptic-Deeplab by 0.5% in
PQ and 1.3% in AP.

We report the benchmarking results on the Cityscapes
test set in Table 2, where the results were obtained directly
from the leaderboard.Note that the official Cityscapes bench-
mark only reports the PQ, PQSt, PQTh, SQ and RQ metrics,
and ranks the methods primarily based on the standard
PQ metric. Our proposed EfficientPS without pre-training
on any extra data achieves a PQ of 64.1% which is an
improvement of 1.8% over the previous state-of-the-art
Panoptic-Deeplab trained only using Cityscapes fine annota-
tions and an improvement of 1.5% in PQ over the Seamless

model that also uses extra data. More importantly, our pro-
posedEfficientPSmodel pre-trained onMapillaryVistas, sets
the new state-of-art on the Cityscapes panoptic benchmark
achieving aPQscore of 66.4%.This accounts for an improve-
ment of 0.9% in PQ compared to the previous state-of-the-art
PanopticDeeplab pre-trained onMapillaryVistas.Moreover,
our EfficientPS model ranks second in the semantic segmen-
tation task with a mIoU of 84.2% as well as second in the
instance segmentation task with an AP of 39.1%, among all
the published methods in the Cityscapes benchmark.

We compare the efficiency of our proposed EfficientPS
architecture against state-of-the-art models in terms of the
number of parameters and FLOPs that it consumes as well
as the runtime on the Cityscapes dataset. Operations that
involve addition andmultiplication at their core are only con-
sideredwhile computing FLOPs.We compute the end-to-end
runtime of inference for our architecture as well as for the
state-of-the-art methods whose runtime is not reported in
their respective paper. We use a single Nvidia Titan RTX
GPU and an Intel Xenon@2.20GHz CPU. We average over
1000 runs on the same image with single scale test. In the
case of parallel components in the architecture, maximum
runtime among all the components contribute to the total
runtime. Table 3 shows the comparison with the top two top-
down and bottom-up panoptic segmentation architectures.
Our proposed EfficientPS has a runtime of 166ms for an
input image resolution of 1024 × 2048 pixels which makes
it faster than the competing methods. We also observe that
our EfficientPS architecture consumes the least amount of
parameters and FLOPs, thereby making it the most efficient
state-of-the-art panoptic segmentation model.

In Table 4, we report results on the Mapillary Vistas
validation set. The Mapillary Vistas dataset presents a sub-
stantial challenge as it contains images from varying seasons,
weather conditions and time of day as well as the presence of
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Table 5 Performance comparison of panoptic segmentation on the KITTI validation set

Mode Network PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt AP mIoU
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Single-Scale Panoptic FPN 38.6 70.4 51.2 26.1 68.3 40.1 47.6 71.9 59.2 24.4 52.1

UPSNet 39.1 70.7 51.7 26.6 68.5 40.6 48.3 72.4 59.8 24.7 52.6

Seamless 41.3 71.7 52.3 28.5 69.2 42.3 50.6 73.6 59.6 25.9 53.8

EfficientPS (ours) 42.9 72.7 53.6 30.4 69.8 43.7 52.0 74.9 60.9 27.1 55.3

Multi-Scale Panoptic FPN 39.3 70.8 51.6 26.9 68.7 40.4 48.3 72.4 59.8 24.8 52.8

UPSNet 39.9 71.2 52.0 27.2 68.8 40.8 49.1 72.9 60.2 25.2 53.2

Seamless 42.2 72.3 52.9 29.1 69.7 42.9 51.8 74.2 60.1 26.6 55.1

EfficientPS (ours) 43.7 73.2 54.1 30.9 70.2 44.0 53.1 75.4 61.5 27.9 56.4

Note that no additional data was used for training EfficientPS on this dataset other than pre-training the encoder on ImageNet. Superscripts St and
Th refer to ‘stuff’ and ‘thing’ classes respectively

Table 6 Performance comparison of panoptic segmentation on the Indian Driving Dataset (IDD) validation set

Mode Network PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt AP mIoU
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Single-Scale Panoptic FPN 45.9 75.9 60.8 46.1 77.8 60.9 45.8 74.9 60.7 27.8 68.1

UPSNet 46.6 76.5 60.9 47.6 78.9 61.1 46.0 75.3 60.8 28.2 68.4

Seamless 47.7 77.2 61.2 48.9 79.5 61.5 47.1 76.1 61.1 30.1 69.6

EfficientPS (ours) 50.1 78.4 62.0 50.7 80.6 61.6 49.8 77.1 62.2 31.6 71.3

Multi-Scale Panoptic FPN 46.7 77.0 61.0 47.3 78.9 61.1 46.4 76.1 61.0 28.9 70.1

UPSNet 47.1 77.9 60.9 47.6 79.8 61.2 46.8 76.9 60.8 29.2 70.6

Seamless 48.5 78.2 61.9 49.5 80.4 62.2 47.9 77.1 61.7 31.4 71.3

EfficientPS (ours) 51.1 78.8 63.5 52.6 81.2 65.4 50.3 77.5 62.5 32.9 72.1

Note that no additional data was used for training EfficientPS on this dataset other than pre-training the encoder on ImageNet. Superscripts St and
Th refer to ‘stuff’ and ‘thing’ classes respectively

65 semantic object classes. Our proposed EfficientPS model
exceeds the state-of-the-art for both single-scale and multi-
scale evaluation. For single-scale evaluation, it achieves an
improvement of 0.6% in PQ over the top-down approach
Seamless and the bottom-up approach Panoptic-DeepLab.
While for multi-scale evaluation, it achieves an improve-
ment of 0.4% in PQ and 3.6% in AP over the previous
state-of-the-art Panoptic-DeepLab. Note that we do not use
model ensembles. Our network falls short of the bottom-up
approach Panoptic-Deeplab in PQSt score primarily due to
the output stride of 16 at which it operates which increases
the computational complexity, whereas our EfficientPS uses
an output stride of 32, hence is more efficient. On the one
hand, bottom-up approaches tend to have a better semantic
segmentation ability which is evident from the high PQSt

of Panoptic-Deeplab. While on the other hand, top-down
approaches tend to have better instance segmentation ability
as they can handle large-scale variations in object instances.
It would be interesting to investigate architectures that can
combine the strengths of the two in future.

We present results on the KITTI validation set in Table 5.
Our proposed EfficientPS outperforms the previous state-of-

the-art Seamless by 1.6% in PQ, 1.2% in AP and 1.5%mIoU
for single scale evaluation and 1.5% in PQ, 1.3% in AP and
1.3% in mIoU for multi-scale evaluation. This dataset con-
sists of cluttered and occluded objects that often have object
masks split into two or more parts. In these cases context
aggregation plays a major role. Hence, the improvement that
we observe can be attributed to three factors: the multi-scale
feature aggregation in our 2-way FPNdue to the bidirectional
flow of information, the long-range context being captured
by our semantic head, and the adaptive fusion in our panoptic
fusion module that effectively leverages the predictions from
the individual heads.

Finally, we also report results on the Indian Driving
Dataset (IDD) largely due to the fact that it contains images of
unstructured urban environments and scenes that do not have
clear delineated road infrastructurewhichmakes it extremely
challenging. Table 6 presents results on the IDD validation
set. Our proposed EfficientPS substantially exceeds the state-
of-the-art by achieving a PQ score of 50.1% and 51.1%
for single-scale and multi-scale evaluation respectively. This
amounts to an improvement of 2.6% in PQ over Seamless
and 4% in PQ over UPSNet for multi-scale evaluation. The
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unstructured scenes in this dataset challenges the ability of
models to detect object boundaries of ‘stuff’ classes such as
road and sidewalk. Our EfficientPS achieves a PQSt score of
49.8% for single-scale evaluation which is an improvement
of 2.7% over Seamless and this can be attributed to the effec-
tiveness of our proposed semantic head in capturing object
boundaries.

4.4 Ablation Studies

In this section, we present extensive ablation studies on the
various architectural components that we propose in our
EfficientPS architecture in comparison to their counterparts
employed in state-of-the-art models. Primarily, we study the
impact of our proposed network backbone, semantic head
and panoptic fusion module on the overall panoptic segmen-
tation performance of our network. We begin with a detailed
analysis of various components of our EfficientPS architec-
ture, followed by comparisons of different encoder network
topologies and FPN architectures for the network backbone.
We then study the impact of different parameter configu-
rations in our proposed semantic head and its comparison
with existing semantic head topologies. Finally, we assess
the performance of our proposed panoptic fusion module by
comparing with different panoptic fusion methods proposed
in the literature. For all the ablative experiments, we train our
models on the Cityscapes fine annotations and evaluate it on
the validation set.We use the PQmetric as the primary evalu-
ation criteria for all the experiments presented in this section.
Nevertheless, we also report the other metrics defined in the
beginning of Sect. 4.

4.4.1 Detailed Study on the EfficientPS Architecture

We first study the improvement due to the various compo-
nents that we propose in our EfficientPS architecture. Results
from this experiment are shown in Table 7. The basic model
M1 employs the network configuration and panoptic fusion
heuristics as Kirillov et al (2019b). It uses the ResNet-50
with FPN as the backbone and incorporates Mask R-CNN
for the instance head. It employs group norm (Wu and He
2018) for the normalization layer. The semantic head of this
network is comprised of an upsampling stage which has a
3 × 3 convolution, group norm (Wu and He 2018), ReLU,
and ×2 bilinear upsampling. At each FPN level, this upsam-
pling stage is repeated until the feature maps are 1/4 scale
of the input. These resulting feature maps are then summed
element-wise and passed through a 1 × 1 convolution, fol-
lowed by ×4 bilinear upsampling, and softmax to yield the
semantic segmentation output. This modelM1 achieves a PQ
of 57.8%, AP of 31.1% and an mIoU score of 74.1%. For the
M2 and M3 model, we use BN sync and IABN sync as the
normalization layer. Additionally in M3 ReLU is replaced

with leakyReLU activation layer. We observe that M3 and
M2 obtains a gain of 0.4% and 0.3% over M1 respectively,
implying that with a higher batch size of 16 it is better to
employ BN sync or iABN sync than group norm as the nor-
malization layer. As M3 has a slight improvement over M2
we build subsequent models based on M3.

The next modelM4 that incorporates our proposed panop-
tic fusion module achieves an improvement of 0.6% in
PQ, 2.2% in AP and 0.8% in the mIoU score without
increasing the number of parameters. This increase in perfor-
mance demonstrates that the adaptive fusion of semantic and
instance head outputs is effective in resolving the inherent
overlap conflict. In theM5model, we replace all the standard
convolutions in the instance head with depthwise separable
convolutions which reduces the number of parameters of the
model by 2.09 M with a drop of 0.2% in PQ, 0.1% drop in
AP and mIoU score. However, from the aspect of having an
efficient model, a reduction of 5% of the model parameters
for a drop of 0.2% in PQ can be considered as a reasonable
trade-off. Therefore, we employ depthwise separable con-
volutions in the instance head of our proposed EfficientPS
architecture.

In the M6 model, we replace the ResNet-50 encoder with
our modified EfficientNet-B5 encoder that does not have any
squeeze-and-excitation connections, and we replace all the
normalization layers and ReLU activations with iABN sync
and leaky ReLU. This model achieves a PQ of 59.7% which
is an improvement of 1.1% in PQ over the M3 model and a
larger improvement is also observed in the mIoU score. The
improvement in performance can be attributed to the richer
representational capacity of the EfficientNet-B5 architecture.
Subsequently in the M7 model, we replace the standard FPN
with our proposed 2-way FPN which additionally improves
the performance by 1.8% in PQ and 2.7% inAP. The addition
of the parallel bottom-up branch in our 2-way FPN enables
bidirectional flow of information, thus breaking away from
the limitation of the standard FPN.

Finally, we incorporate our proposed semantic head into
theM8model that fuses and alignsmulti-scale features effec-
tively which enables it to achieve a PQ of 63.9%. Although
our semantic head contributes to this improvement of 2.4% in
the PQ score, it cannot not be solely attributed to the seman-
tic head. This is due to the fact that if we employ standard
panoptic fusion heuristics, an improvement in semantic seg-
mentation would only contribute to an increase in PQst score.
However, our proposed adaptive panoptic fusion yields an
improvement in PQth as well, which is evident from the over-
all improvement in the PQ score. We denote this M8 model
configuration as EfficientPS in this work. In the following
sections, we further analyze the individual architectural com-
ponents of the M6 model in more detail.
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Table 8 Performance comparison of various encoder topologies employed in the M8 model

Encoder Params FLOPs PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt AP mIoU
(M) (B) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

MobileNetV3 5.40 9.44 55.8 78.1 70.2 50.4 77.4 67.1 59.8 78.6 72.4 29.1 72.2

ResNet-50 25.60 172.19 60.3 80.1 72.6 55.3 79.9 68.9 63.9 80.3 75.3 34.9 76.1

ResNet-101 44.50 327.99 61.1 80.3 75.1 56.5 80.1 71.9 64.2 80.5 77.4 35.9 77.2

Xception-71 27.50 210.38 62.1 81.1 75.4 58.5 80.9 72.3 64.7 81.2 77.7 36.2 78.1

ResNeXt-101 86.74 636.84 63.2 81.2 76.0 59.6 80.4 72.9 65.8 81.7 78.3 36.9 78.9

Mod. EfficientNet-B5 (Ours) 30.00 250.97 63.9 81.5 77.1 60.7 81.2 74.1 66.2 81.8 79.2 38.3 79.3

Results are shown for the models trained on the Cityscapes fine annotations and evaluated on the validation set. Superscripts St and Th refer to
‘stuff’ and ‘thing’ classes respectively

Table 9 Performance
comparison of various FPN
architectures employed in the
M8 model

Architecture PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt AP mIoU
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Bottom-Up FPN 60.4 80.6 73.7 56.3 80.4 69.9 63.4 80.8 76.4 35.2 75.3

Top-Down FPN 62.2 80.9 75.7 58.1 80.1 72.4 65.1 81.4 78.0 36.5 78.2

PANet FPN 63.1 81.1 75.5 59.4 80.3 72.3 65.8 81.6 77.8 37.1 78.8

2-way FPN (Ours) 63.9 81.5 77.1 60.7 81.2 74.1 66.2 81.8 79.2 38.3 79.3

Results are shown for the models trained on the Cityscapes fine annotations and evaluated on the validation
set. Superscripts St and Th refer to ‘stuff’ and ‘thing’ classes respectively

4.4.2 Comparison of Encoder Topologies

There are numerous network architectures that have been
proposed for addressing the task of image classification.
Typically, these networks serve as the encoder or feature
extractor for more complex tasks such as panoptic segmen-
tation. In this section, we evaluate the performance of our
proposed modified EfficientNet-B5 in comparison to five
widely employed encoder architectures. For a fair compar-
ison, we keep all the other components of our EfficientPS
network the same and only replace encoder. More specifi-
cally, we compare with MobileNetV3 (Howard et al 2019),
ResNet-50 (He et al 2016), ResNet-101 (He et al 2016),
Xception-71 (Chollet 2017), ResNeXt-101 (Xie et al 2017),
and EfficientNet-B5 (Tan and Le 2019). Results from this
experiment are presented in Table 8. We observe that our
modified EfficientNet-B5 architecture yields the highest PQ
score, closely followed by the ResNeXt-101 architecture.
However, ResNext-101 has an additional 56.74 M param-
eters which is more than twice the number of parameters
consumed by our modified EfficientNet-B5 architecture.
Similarly, ResNeXt-101 in FLOPs is 385.87 Bmore. We can
see that the other encoder models, especially MobileNetV3,
ResNet-50 and Xception-71 have a comparable or fewer
parameters and FLOPs than our modified EfficientNet-B5.
However they also yield a substantially lower PQ score.
Therefore, we employ our modified EfficientNet-B5 as the
encoder backbone in our proposed EfficientPS architecture.

The computation of FLOPs presented in Table 8 architectures
is only for the encoder part of the network.

4.4.3 Evaluation of the 2-way FPN

In this section, we compare the performance of our novel
2-way FPN with other existing FPN variants. For a fair com-
parison, we keep all the other components of our EfficientPS
network the same and only replace the 2-way FPN in the
backbone. We compare with the top-down FPN (Lin et al
2017), bottom-up FPN and PANet FPN variants. We refer to
the FPN architecture described in Liu et al (2018) as PANet
FPN in which the top-down path is followed by a bottom-up
path. For each of the FPN variants we use iABN sync and
leaky ReLU layers instead of BN andRelu layers. The results
from comparing with various FPN architectures are shown
in Table 9.

The top-down FPN model predominantly propagates
semantically high-level featureswhichdescribe entire objects,
whereas the bottom-up FPN model propagates low-level
information such as local textures and patterns. The Effi-
cientPS model with the bottom-up FPN achieves a PQ of
60.4%, while the model with the top-down FPN achieves
a PQ of 62.2%. Both these models achieve a performance
which is 3.2% and 1.4% lower in PQ than our 2-way FPN
respectively. A similar trend can also be observed in the other
metrics. The lower PQ score of the individual bottom-up FPN
and top-down FPN models substantiate the limitation of the
unidirectional flow of information in the standard FPN topol-
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ogy. Both the PANet FPN and our proposed 2-way FPN aim
to mitigate this problem by adding another bottom-up path to
the standard FPN in a sequential or parallel manner respec-
tively. We observe that the model with our proposed 2-way
FPN demonstrates an improvement of 0.5% in PQ over the
model with the PANet FPN. This implies that the parallel
information pathways aremore likely to capture better multi-
scale features to predict stuff regions at varying resolutions
as well as are able to encode sufficiently rich semantics to
precisely predict class labels.

4.4.4 Detailed Study on the Semantic Head

We construct the topology of our proposed semantic head
considering two critical factors. First, since large-scale out-
puts comprise of characteristic features and small-scale
outputs consist of contextual features, they both should be
captured distinctly by the semantic head. Second, while fus-
ing small and large-scale outputs, the contextual features
need to be aligned to obtain semantically reinforced fine fea-
tures. In order to demonstrate that these two critical factors
are essential, we perform ablative experiments on various
configurations of our semantic head incorporated into theM8
model described in Sect. 4.4.4. Results from this experiment
are presented in Table 10.

The output at each level of the 2-way FPN, P32, P16, P8
and P4 are the inputs to our semantic head. In the first M81
model configuration, we employ two cascaded 3× 3 convo-
lutions, iABN sync and leaky ReLU activation sequentially
at each level of the 2-way FPN. The aforementioned series
of layers constitute the LSFE module which is followed by
a bilinear upsampling layer at each level of the 2-way FPN
to yield an output which is 1/4 scale of the input image.
These upsampled features are then concatenated and passed
through a 1 × 1 convolution and bilinear upsamplig to yield
an output which is the same scale as the input image. This
M61 model achieves a PQ of 61.6%. In the subsequent M82
model configuration, we replace all the standard 3 × 3 con-
volutions with 3 × 3 depthwise separable convolutions in
the LSFE module to reduce the number of parameters. This
also yields a minor improvement in performance compared
to the M81 model, therefore we employ depthwise separable
convolutions in all the experiments that follow.

In the M83 model, we replace the LSFE module in the
P32 level of the 2-way FPNwith dense prediction cells (DPC)
described in Sect. 3.2. ThisM83model achieves an improve-
ment of 0.6% in PQ and 0.7% in the mIoU score. This can
be attributed to the ability of DPC to effectively capture
long-range context. In the M84 model, we replace the LSFE
module in the P16 level with DPC and in the subsequent M85
model, we introduce DPC at both P16 and P8 levels. We find
that the M84 model achieves an improvement of 0.6% in
PQ over M63, however the performance drops in the M85

model by 0.5% in PQ when we add the DPC module at the
P8 level. This can be attributed to the fact that DPC con-
sisting of dilated convolutions do not capture characteristic
features effectively at this large-scale. The finalM86model is
derived from the M84 model to which we add our mismatch
correction (MC) module along with the feature correlation
connections as described in Sect. 3.2. This model achieves
the highest PQ score of 63.9% which is an improvement of
1.0% compared to the M84 model. This can be attributed to
the MC module that correlates the semantically rich contex-
tual featureswith fine features and subsequentlymerges them
along the feature correlation connection to obtain semanti-
cally reinforced features that results in better object boundary
refinement.

Additionally, we present experimental comparisons of our
proposed semantic head against those that are used in other
state-of-the-art panoptic segmentation architectures. Specif-
ically, we compare against the semantic head proposed by
Kirillov et al (2019a) which we denote as the baseline,
UPSNet (Xiong et al 2019) and Seamless (Porzi et al 2019).
For a fair comparison, we keep all the other components of
the EfficientPS architecture the same across different exper-
iments while only replacing the semantic head. Table 11
presents the results of this experiment.

The semantic head of UPSNet which is essentially a sub-
network comprising of sequential deformable convolution
layers (Dai et al 2017) achieves a PQ score of 62.0% which
is an improvement of 0.5% over the baseline model. The
semantic head of the Seamless model employs their MiniDL
module at each level of the 2-way FPN that further improves
the PQ by 0.9% over semantic head of UPSNet. The seman-
tic heads of all these models use the same module at each
level of the 2-way FPN output which are of different scales.
In contrast, our proposed semantic head that employs a com-
bination of LSFE and DPC modules at different levels of the
2-way FPN achieves the highest PQ score of 63.9% and con-
sistently outperforms the other semantic head topologies in
all the evaluation metrics.

4.4.5 Evaluation of Panoptic Fusion Module

In this section, we evaluate our proposed Fusion Eq. (12)
to fuse MLA and MLB to its simple addition and multiplica-
tion counterpart. Here,MLA andMLB are the same entity as
defined in Sect. 3.4. At a glance, addition and multiplication
operationsmight seem like a logical choice for fusing the log-
its to attain adaptive attenuation or amplification according to
the consensus. But they are in fact sub-optimal choices with
respect to Equation (12). Table 12 shows the results from
this experiment. We observe our proposed fusion strategy
achieves the highest performance of 63.9% in PQ. It is 0.5%
higher than addition and 1.6% higher than multiplication. In
the case of multiplication, the resulting thing logits attain
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Table 11 Performance
comparison of various existing
semantic head topologies
employed in the M8 model

Semantic Head PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt AP mIoU
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Baseline 61.5 80.7 75.6 57.2 80.6 72.5 64.6 80.9 77.9 36.8 77.3

UPSNet 62.0 81.0 74.7 58.5 80.5 70.9 64.5 81.3 77.5 35.9 76.1

Seamless 62.9 81.1 75.5 58.9 80.4 71.3 65.6 81.6 78.5 36.8 78.5

Ours 63.9 81.5 77.1 60.7 81.2 74.1 66.2 81.8 79.2 38.3 79.3

Results are reported for the model trained on the Cityscapes fine annotations and evaluated on the validation
set. Superscripts St and Th refer to ‘stuff’ and ‘thing’ classes respectively

Table 12 Performance
comparison of our proposed
adaptive fusion (σ (MLA) +
σ(MLB)) � (MLA + MLB),
with Multiply: (MLA � MLB)

and Add: (MLA + MLB) ,
employed in the M8 model
where σ(·) is the sigmoid
function and � is the Hadamard
product

Model PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt

(%) (%) (%) (%) (%) (%) (%) (%) (%)

Multiply 62.3 80.7 76.0 56.9 79.1 71.9 66.3 81.9 79.0

Add 63.4 81.4 76.9 59.3 80.4 73.5 66.4 82.0 79.3

Ours 63.9 81.5 77.1 60.7 81.2 74.1 66.2 81.8 79.2

Results are reported for the model trained on the Cityscapes fine annotations and evaluated on the validation
set. Superscripts St and Th refer to ‘stuff’ and ‘thing’ classes respectively

Table 13 Performance
comparison of our proposed
panoptic fusion module with
various other panoptic fusion
mechanisms employed in the
M8 model

Model PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt

(%) (%) (%) (%) (%) (%) (%) (%) (%)

Baseline 62.4 80.8 75.4 58.7 80.4 72.6 65.1 81.1 77.4

TASCNet 62.5 80.9 75.6 58.6 80.5 72.8 65.3 81.2 77.7

UPSNet 63.1 81.3 76.1 59.5 80.6 73.2 65.7 81.8 78.2

Ours 63.9 81.5 77.1 60.7 81.2 74.1 66.2 81.8 79.2

Results are reported for the model trained on the Cityscapes fine annotations and evaluated on the validation
set. Superscripts St and Th refer to ‘stuff’ and ‘thing’ classes respectively

high values in comparison to stuff logits when concatenated
together to form intermediate panoptic logits. This leads to
over-representation of thing classes, as a result, PQTh suffers
a lot due to an increase in false positives. PQTh of 56.9% for
multiplication is the lowest out of all the strategies.

Similarly, in the case of addition, the different range values
of MLA and MLB results in biased fused logits. Gener-
ally, semantic logits have higher values out of the two and
hence the fused logits are biased towards MLB . This again
doesn’t allow optimal adaptive attenuation or amplification.
PQTh for this strategy is 59.3% which is 2.4% higher than
multiplication. Clearly, addition is a better strategy than
multiplication but is not the best. In contrast to the above
strategies, our proposed strategy addresses the aforemen-
tioned shortcomings by normalizing the sum of the two logits
(MLA + MLB) based on the sum of their individual confi-
dence ((σ (MLA) + σ(MLB)) where σ(·) is the sigmoid
function. This enables the proposed fusion module to be
adaptive, achieving a gain of 1.4% in PQTh while remain-
ing relatively equal in stuff.

Next, we evaluate the performance of our proposed panop-
tic fusion module in comparison to other existing panoptic
fusion mechanisms. First, we compare with the panoptic

fusion heuristics introduced by Kirillov et al (2019b) which
we consider as a baseline as it is extensively used in sev-
eral panoptic segmentation networks. We then compare with
Mask-Guided fusion (Li et al 2018a) and the panoptic fusion
heuristics proposed in (Xiong et al 2019) which we refer to
as TASCNet and UPSNet in the results respectively. Once
again for a fair comparison, we keep all the other network
components the same across different experiments and only
change the panoptic fusion mechanism.

Table 13 presents results from this experiment. Combin-
ing the outputs of the semantic head and instance head that
have an inherent overlap is one of the critical challenges faced
by panoptic segmentation networks. The baseline approach
directly chooses the output of the instance head, i.e, if there
is an overlap between predictions of the ‘thing’ and ‘stuff’
classes for a given pixel, the baseline heuristic classifies
the pixel as a ‘thing’ class and assigns it an instance ID.
This baseline approach achieves the lowest performance
of 62.4% in PQ demonstrating that this fusion problem is
more complex than just assigning the output from one of
the heads. The Mask-Guided fusion method of TASCNet
seeks to address this problem by using a segmentation mask.
The mask selects which pixel to consider from the instance
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segmentation output and which pixel to consider from the
semantic segmentation output. This fusion approach achieves
a PQ of 62.5% which is comparable to the baseline method.
Subsequently, the model that employs the UPSNet fusion
heuristics achieves a larger improvement with a PQ score of
63.1%. This method computes the panoptic logits by adding
the non-overlapping instance segmentation logits MLA to
MLB that is obtained using the semantic logits as described
in Section 3.4 while concatenating it to stuff logits from
semantic segmenation logits. As shown, in previous exper-
iment this is sub-optimal. However, our proposed adaptive
fusion method that dynamically fuses the outputs from both
the heads while refining the stuff segmentation using seman-
tic head predictions achieves the highest PQ score of 63.9%
which is an improvement of 0.8% over the UPSNet method.
We also observe a consistently higher performance in all the
other metrics.

4.5 Qualitative Evaluations

In this section, we qualitatively evaluate the panoptic seg-
mentation performance of our proposed EfficientPS archi-
tecture in comparison to the state-of-the-art Seamless (Porzi
et al 2019) model on each of the datasets that we benchmark
on. We use the publicly available official implementation
of the Seamless architecture to obtain the outputs for the
qualitative comparisons. The best performing state-of-the-art
model Panoptic-Deeplab does not provide any publicly avail-
able implementation or pre-trainedmodelswhichmakes such
comparisons infeasible. Figure 6 presents two examples from
the validation sets of each of the urban scene understanding
dataset. For each example, we show the input image, the cor-
responding panoptic segmentation output from the Seamless
model and our proposed EfficientPSmodel. Additionally, we
show the improvement and error map where a green pixel
indicates that our EfficientPS made the right prediction but
the Seamless model misclassified it (improvement of Effi-
cientPS over Seamless), a blue pixel indicates that Seamless
model made the right prediction but EfficientPS misclassi-
fied it, and a red pixel denotes that both models misclassified
it with respect to the groundtruth.

Figure 6a and b show examples from the Cityscapes
dataset in which the improvement over the Seamless model
can be seen in the ability to segment heavily occluded ‘thing’
class instances. In the first example, the truck far behind on
the bridge is occluded by cars and a cyclist, and in the second
example, the distant car parked on the left side of the image
is only partially visible as the car in the front occludes it. We
observe from the improvement maps that our proposed Effi-
cientPS model accurately detect, classify and segment these
instances, while the Seamless model misclassifies these pix-
els. This can be primarily attributed to our 2-way FPN that
effectively aggregates multi-scale features to learn semanti-

cally richer representations and the panoptic fusion module
that addresses the instance overlap ambiguity in an adaptive
manner.

In Figure 6c and d, we qualitatively compare the per-
formance on the challenging Mapillary Vistas dataset. We
observe that in Fig. 6c the group of people towards left side
of the image who are behind the fence are misclassified in
the output of the Seamless model and the instances of these
people are not detected. Whereas, our EfficientPS model
accurately segments each of the instances of the people. Sim-
ilarly, the distant van on the right side of the image shown in
Fig. 6d is partially occluded by the neighboring cars and is
entirely misclassified by the Seamless model. However, our
EfficientPS model accurately captures this heavily occluded
object instance. In Fig. 6c, interestingly, the Seamless model
misclassifies the cyclist on the road as a pedestrian. We
hypothesize that this might be due to the fact that one of
the legs of the cyclist is touching the ground and the other
leg which is on the pedal of the bicycle is barely visible.
Hence, this causes the Seamless model to misclassify the
object instance. Whereas, our EfficientPS model effectively
leverages both the semantic and instance prediction in our
panoptic fusion module to accurately address this ambiguity
in the scene. We also observe in Fig. 6c that the EfficientPS
model misclassifies the traffic sign fixed on the fence and
only partially segments the advertisement board attached to
the building near the fence while it accurately segments all
the other instances of this class. This is primarily due to the
fact that there is a lack of relevant examples for this type of
traffic sign which is atypical of those found in the training
set.

Figure 6e and f showqualitative comparisons on theKITTI
dataset. In Fig. 6e, we see that the Seamless model misclas-
sifies the bus that is towards the right of the image as a truck
although it segments the object coherently. This is primarily
due to the fact that there are poles as well as an advertisement
board in front of the bus which divides the it into different
subregions. This leads the model to predict it as a truck that
has a transition between the tractor unit and the trailer. How-
ever, our proposed EfficientPS model mitigates this problem
with its bidirectional aggregation of multi-scale features that
effectively captures contextual information. In Fig. 6f, we
observe that a distant truck on the right lane is partially
occluded by cars behind it which causes the Seamless model
to not detect the truck as a new instance, rather it detects the
truck and the car behind it as being the same object. This is
similar to the scenario observed on the Cityscapes dataset in
Fig. 6a. Nevertheless, our proposed EfficientPSmodel yields
accurate predictions in such challenging scenarios consis-
tently across different datasets.

In Fig 6g andh,wepresent examples from the IDDdataset.
We can see that our EfficientPS model captures the bound-
aries of ‘stuff’ classes more precisely than the Seamless
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Fig. 6 Qualitative panoptic segmentation results of our proposed
EfficientPS network in comparison to the state-of-the-art Seamless
architecture (Porzi et al 2019) on different benchmark datasets. In addi-
tion to the panoptic segmentation output, we also show the improvement
error map which denotes the pixels that are misclassified by the Seam-

less model but correctly predicted by the EfficientPS model in green,
the pixels that are misclassified by the EfficientPS model but correctly
predicted by the Seamless model in blue, and the pixels that are mis-
classified by both the EfficientPS model and the Seamless model in red
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Fig. 7 Visual panoptic segmentation results of our proposed Effi-
cientPS model on each of the challenging urban scene understanding
datasets that we benchmark on which in total encompasses scenes from
over 50 countries. These examples show complex urban scenarios with

numerous object instances in multiple scales and with partial occlusion.
These scenes also show diverse lighting conditions from dawn to dusk
as well as seasonal changes
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model in both the examples. For instance, the pillar of the
bridge in Fig. 6g and the extent of the sidewalk in Fig. 6h
are more well defined in the panoptic segmentation output
of our EfficientPS model. This can be attributed to the object
boundary refinement ability of our semantic head that cor-
relates features of different scales before fusing them. In
Fig. 6h, the Seamless model misclassifies the auto-rickshaw
as a caravan due to the similar visual appearances of these two
objects, however our proposed EfficientPS model with our
novel panoptic backbone has an extensive representational
capacity which enables it to accurately classify objects even
with such subtle differences. We observe that although the
upper half of the cyclist towards the left of the image is accu-
rately segmented, the front leg of the cyclist is misclassifies
as being part of the bicycle. This is a challenging scenario
due to the high contrast in this region. We also observe that
the boundary of the sidewalk towards the left of the auto
rickshaw is misclassified. However, on visual inspection of
the groundtruth, it appears that the sidewalk boundary in this
region is mislabeled in groundtruth mask, while the model is
making a reasonable prediction.

4.6 Visualizations

We present visualizations of panoptic segmentation results
from our proposed EfficientPS architecture on Cityscapes,
Mapillary Vistas, KITTI, and Indian Driving Dataset (IDD)
in Fig. 7. The figures show the panoptic segmentation output
of our EfficientPSmodel using single scale evaluation, which
is overlaid on the input image. Fig. 7a and b show exam-
ples from the Cityscapes dataset which exhibit complex road
scenes consisting of a large number of traffic participants.
These examples show challenging scenarios with dynamic
as well as static pedestrian groups in close proximity to each
other and distant parked cars that are barely visible due to
their neighbouring ‘thing’ class instances. Our proposedEffi-
cientPS architecture effectively addresses these challenges
and yields reliable panoptic segmentation results. In Fig. 7c
and d, we present results on the Mapillary Vistas dataset
that show drastic viewpoint variations and scenes in different
times of day. Figure 7c.iv, d.i and d.iv show scenes that were
captured from uncommon viewpoints from those observed in
the training data and Fig. 7d.iii shows a scene that was cap-
tured during nighttime. Nevertheless, our EfficientPS model
demonstrates substantial robustness against these perceptual
variations.

In Fig. 7e and f, we present results on the KITTI dataset
which show residential and highway road scenes consist-
ing of several parked and dynamic cars, as well as a large
amount of thin structures such as poles. We observe that
our EfficientPS model generalizes effectively to these com-
plex scenes even when the network was only trained on
the relatively small dataset. Figure 7g and h show exam-

ples from the IDD dataset that highlight challenges of an
unstructured environment. One such challenge is the accu-
rate segmentation of sidewalks, as the transition between the
road and the sidewalk is not well delineated often caused
by a layer of sand over asphalt. The examples also show
heavy traffic with numerous types of vehicles, motorcycles
and pedestrians scattered all over the scene. However, our
proposed EfficientPS model shows exceptional robustness in
these immensely challenging scenes thereby demonstrating
its suitability for autonomous driving applications.

5 Conclusions

In this paper, we presented our EfficientPS architecture for
panoptic segmentation that achieves state-of-the-art perfor-
mance while being computationally efficient. It incorporates
our proposed panoptic backbone with a variant of Mask R-
CNN augmented with depthwise separable convolutions as
the instance head, a new semantic head that captures fine
and contextual features efficiently, and our novel adaptive
panoptic fusion module. We demonstrated that our panop-
tic backbone consisting of the modified EfficientNet encoder
and our 2-way FPN achieves the right trade-off between per-
formance and computational complexity. Our 2-way FPN
achieves effective aggregation of semantically rich multi-
scale features due to its bidirectional flow of information.
Thus in combination with our encoder, it establishes a new
strong panoptic backbone.We proposed a new semantic head
that employs scale-specific feature aggregation to capture
long-range context and characteristic features effectively, fol-
lowed by correlating them to achieve better object boundary
refinement capability.We also introduced our parameter-free
panoptic fusion module that dynamically fuses logits from
both heads based on their mask confidences and congru-
ously integrates instance-specific ‘thing’ classes with ‘stuff’
classes to yield the panoptic segmentation output.

Additionally, we introduced the KITTI panoptic segmen-
tation dataset that contains panoptic groundtruth annotations
for images from the challenging KITTI benchmark. We
hope that our panoptic annotations complement the suite of
other perception tasks in KITTI and encourage the research
community to develop novel multi-task learning methods
that include panoptic segmentation. We presented exhaus-
tive benchmarking results on Cityscapes, Mapillary Vistas,
KITTI and IDD datasets that demonstrate that our pro-
posed EfficientPS sets the new state-of-the-art in panoptic
segmentation while being faster and more parameter effi-
cient than existing state-of-the-art architectures. In addition
to being ranked first on the Cityscapes panoptic segmen-
tation leaderboard, our model is ranked second on both
the Cityscapes semantic segmentation and instance seg-
mentation leaderboards. We also presented detailed ablation

123



International Journal of Computer Vision (2021) 129:1551–1579 1577

studies, qualitative analysis and visualizations that highlight
the improvements that we make to various core modules
of panoptic segmentation architectures. To the best of our
knowledge, this work is the first to benchmark on all the
four standard urban scene understanding datasets that sup-
port panoptic segmentation and exceed the state-of-the-art on
each of them while simultaneously being the most efficient.
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