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Abstract—The goal of this work is to present a systematic solution for RGB-D salient object detection, which addresses the following
three aspects with a unified framework: modal-specific representation learning, complementary cue selection and cross-modal
complement fusion. To learn discriminative modal-specific features, we propose a hierarchical cross-modal distillation scheme, in which
the well-learned source modality provides supervisory signals to facilitate the learning process for the new modality. To better extract

the complementary cues, we formulate a residual function to incorporate complements from the paired modality adaptively.
Furthermore, a top-down fusion structure is constructed for sufficient cross-modal interactions and cross-level transmissions. The
experimental results demonstrate the effectiveness of the proposed cross-modal distillation scheme in zero-shot saliency detection and
pre-training on a new modality, as well as the advantages in selecting and fusing cross-modal/cross-level complements.

Index Terms—RGB-D, salient object detection, convolutional neural network, cross-modal distillation

1 INTRODUCTION

HE availability of depth sensors (e.g., in Microsoft

Kinect and Intel RealSense) allows the RGB-based com-
puter vision systems with more accurate and robust perfor-
mance, hence nurturing a wide range of applications [1f].
Complementary to the RGB data, the synchronized depth
information carries additional geometry cues, which are
immune to appearance changes, illumination varying and
subtle background movements. The joint inference with
RGB and depth information could benefit various computer
vision tasks [2], [3]. A good example is the salient object
detection [4] of identifying the most visually attractive ob-
ject/objects in a scene, which has been widely applied in
image retrieval [5] and object tracking [6]. The RGB-based
methods are very likely to fail when the salient object and
background present similar appearance [7], [8], [9], [10].
From another perspective, the corresponding depth map,
which supplies auxiliary saliency cues, opens up a new
opportunity to solve this challenge.

By fusing the RGB and depth data, a rich amount of
algorithms [12]], [13], [14], [15], [16], [17]], [18], [19], [20],
[21], [22], [23], [24], [25], [26] have been proposed for RGB-D
salient object detection. Some previous works [17], [21]], [23],
[24] focus on crafting RGB-D features with prior knowledge,
as the salient object tends to pop-out its surroundings.
However, these nontrivial assumptions cannot be well gen-
eralized to all contexts. Another line of works [4], [18], [19],
[20] infer saliency from each modality separately and then
solve the multi-modal fusion problem by straightforward
combination schemes. However, the cross-modal comple-
ments are not well integrated for better representations.
Recently, the success of deep learning techniques [27] in
various computer vision tasks motivates more researchers
to design RGB-D systems based on deep learning tools.
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A popular architecture is the “two-stream” Convolutional
Neural Network (CNN) [25], [26], [28], [29], [30], [31], in
which the paired RGB and depth images work indepen-
dently and then aggregate in an early or late stage. In these
networks, the depth stream is typically trained from scratch
or initialized with the well-trained RGB CNN. Nonetheless,
these training schemes typically end with insufficient depth-
specific learning due to the scarcity of the labeled depth
data.

Without carefully selecting the real complementary cues,
the direct combination strategy in previous two-stream
networks is also confronted with ambiguous and unin-
formative fusion. Moreover, with a single fusion layer as
done in [25], [26], [28], [31], it is unlikely to explore both
the contextual and spatial cross-modal complementarities
existed in multiple levels. Thus, the systematic solution
for understanding RGB-D data still remains as an open
issue. As illustrated in Fig. 1, we argue that an ideal RGB-
D fusion system should successfully achieve the following
three goals:

(1) Learn: In some scenarios, the specialists in one
modality (e.g., geometry cues in the depth map) are missing
in its counterpart (i.e., the RGB image). Accordingly, an
informative RGB-D combination firstly calls for carefully
extracting discriminative modal-specific features from each
modality. Otherwise, knowledge from one modality may
not assist and even mislead the inference for its counter-
part. However, we are often confronted with an imbalanced
amount of labeled data prepared for each modality. Thus,
the challenge lies on how to learn rich modal-specific repre-
sentations from the new modality with limited labeled data.

(2) Select: An informative multi-modal fusion process
should be attentive to the real complementary components.
This awareness mechanism enables the cross-modal fusion
to select complementary representations and ignore the
redundant ones.

(3) Fuse: The last step is to fuse the selected cross-modal
information sufficiently. The complementarities between
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Fig. 2: The architecture of the hierarchical cross-modal distillation network. Adaptation layers in each level are omitted for
simplification. When training the teacher network, the L2 loss in each level is replaced with the cross-entropy loss between
the side output and the ground-truth mask. For the depth data, we follow the previous approach [11] to encode it as
3-channel HHA (horizontal, aboveground height and surface normal angle) representations.

RGB and depth data exist in both high-level contexts and
low-level spatial details. Consequently, a sufficient RGB-D
fusion process is in demand to associate both the low-level
and high-level cross-modal features for joint decision.

Considering the unavailability of large-scale labeled data
in the depth modality, we leverage structured knowledge
provided by the source modality (i.e., RGB) to aid the
learning of the new modality. Specifically, we use the side
outputs of the source modality (i.e., RGB) as supervision to
learn the target modality (i.e., depth). We term our scheme
hierarchical cross-modal distillation, which eschews the
reliance on saliency ground-truths in the new modality.

To render an effective fusion process, we explicitly en-

code the cross-modal complements with the residual func-
tion and the goal of selecting cross-modal features is formu-
lated as asymptotically approximating the residual. Differ-
ent from the direct concatenation of multi-modal features,
such a cross-modal residual connection is more likely to
expose the desired complementarity.

Concerning sufficient multi-modal fusion, we adopt a
top-down fusion manner, in which cross-modal features are
combined in each level and the integrated RGB-D repre-
sentations, in turn, guide the inference of shallower layers.
The resulting network demonstrates rich multi-level RGB-
D representations for joint inference and consequently, the
saliency map quality is improved progressively from coarse
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to fine.

Our preliminary studies [16] discussed the above-
mentioned “Select” and “Fuse” problems. However, the
problem “Learn” remains under-studied. In this work, we
extend [16] by investigating the problem “Learn” and pro-
pose the hierarchical cross-modal distillation method.

In summary, this work has the following five contribu-
tions:

(1) We systematically analyze the key issues in interpret-
ing RGB-D data, which guides the system design process.

(2) We propose a cross-modal distillation scheme, which
allows zero-shot detection or favors better learning of new
modalities with limited labeled data.

(3) The residual function is designed to explicitly capture
the cross-modal complementarity.

(4) We propose a progressively top-down cross-modal
cross-level fusion topology. Thus, the inference path comes
to be aware of modal-specific and level-specific contribu-
tions.

(5) This work achieves state-of-the-art performance on
three benchmarks consistently.

2 RELATED WORK

2.1 RGB-D Saliency Detection and Other RGB-D Sys-
tems

A large body of earlier works focus on designing RGB-
D features or combining unimodal predictions, which are
termed as “feature fusion” and “result fusion” solutions
respectively. A common wisdom in crafting depth-induced
saliency cues is that human fixations prefer closer depth
ranges. Based on this prior, Lang et al. [18] use Gaussian
Mixture Models to model the distribution of depth-induced
saliency. This prior is useful but is easily confused by nearer
backgrounds. On the other hand, two regions, sharing the
same depth may be in different contexts and should be
differentiated. Considering the scene structures, Ju et al. [21]
use relative depth instead of the absolute one for evaluation
and propose the anisotropic center-surround difference for
measurement. Desingh et al. [19] adopt the global-contrast
method [9] used in the RGB-induced saliency detection with
depth values as inputs. A similar framework is also used in
[32]. Different from these global-contrast paradigms, Feng
et al. [17] propose to measure the distinction of one region
in a local context. They design a local background enclo-
sure feature, which estimates the proportion of the object
popping out the background. Peng et al. [4] then propose
a hybrid framework that incorporates global-contrast and
local-contrast strategies. To further enrich the representative
ability of RGB-D data, Song et al. [23] segment the RGB-D
pair into superpixels with different scales. The features are
then combined as multi-scale representations.

Despite the effectiveness of these handcrafted features,
they lack high-level reasoning and suffer from limited gen-
eralization ability. To address this limitation, recent works
resort to deep learning techniques. Qu et al. [25] combine
the low-level features from RGB and depth modalities as
the joint input to train a CNN from scratch. Compared to the
previous works based on handcrafted features, this method
achieves encouraging performance gains. However, it may
be difficult to fully leverage the power of CNNs by feeding

3

the crafted features rather than the raw image pair as inputs.
In contrast, Han et al. [26] design a “two-stream” late fusion
architecture, in which the RGB and depth images are learned
separately and their deep representations are combined
by a joint fully connected layer for collaborative decision.
Compared to [25], [26] achieves large improvement due
to the better combination of high-level contexts. Despite
this, the low-level cross-modal complements are underex-
plored in [26] and the resulting saliency maps are severely
blurred. In summary, both [25] and [26] fail to combine
the low-level and high-level cross-modal complementarity
simultaneously. Recently, Chen et al. [33] propose a multi-
branch fusion network with fully connected layers for global
reasoning and dilated convolutional layers for capturing
local details. The results from two branches are combined
by direct summation. However, the network is not a fully
convolutional one and fails to utilize the information from
all layers for joint inference.

Deep learning techniques especially CNNs are also pop-
ular solutions for other RGB-D systems. Among which,
the “two-stream” late fusion architecture is likewise the
most widely-used one. In [28] and [31], the multi-modal
fusion layer combines the decisions from RGB and depth
by modeling their consistency and independency. More
recent works [29], [34], [35], [36] also investigate the cross-
modal complementarity in multiple levels. Although the
community of CNN-based RGB-D systems has achieved
encouraging improvements, a comprehensive analysis on
the RGB-D fusion problem is lacking, which, in our view,
will benefit future works on multi-modal systems or new
unlabeled modalities a lot.

2.2 Cross-modal transfer

The transfer learning community mainly solve the domain
adaptation problem in the same modality [37], [38], [39],
[40]. In [37], Hinton et al. use the final soft outputs of the
large well-trained teacher network as targets of the small
student network. Subsequent works [38], [39], [40] extend
this idea by encouraging the student to mimic the deep
representations from the teacher. Our topic lies in the cross-
modal transfer problem, which is more difficult due to the
severe cross-modal discrepancy. Notable works include [41],
[42], [43]], [44], [45], [46]. [42], [43] aims at learning joint rep-
resentation by mapping the features from different modali-
ties to a shared feature space. [41] learns a mapping from the
source modality to the unlabelled new ones to hallucinate
modalities, while [44], [45] design a hallucinate network
to distill depth features. Gupta et al. [46] generalize the
idea in [38], [39], [40] to the cross-modal domain. However,
due to the cross-modal discrepancy, a considerable part of
source feature maps (e.g., texture and color changes in RGB
images) are inaccessible for the target modality (i.e., depth).
Hence, it is too strict for the new modality to mimic the
high-dimensionality features from the teacher. These RGB-
specific features provide uninformative and even negative
supervision for the student. As a result, the student network
is hard to converge especially when it is deep. In this work,
the goal of the student network is relaxed to mimic the side
outputs from each level in the teacher network.
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Fig. 3: (a) The architecture of the RGB-D salient object detection network. (b) The details of direct concatenation of cross-
modal cross-level features without the cross-modal residual designs. (c) The details of the complementarity-aware fusion

(CA-Fuse) block.

3 THE PROPOSED METHOD

The proposed model can fulfill zero-shot detection in new
unlabeled modalities as well as multi-modal joint inference.
We address the three learning objectives with following
stages: the teacher network with RGB images and ground-
truth masks; the hierarchical cross-modal distillation net-
work with un-annotated RGB-D pairs; and the multi-modal
fusion network for RGB-D saliency detection with RGB-D
pairs and ground-truths. In the following sections, we will
follow the training sequence to introduce each network and
discuss how the proposed solution behaves to learn, select
and fuse cross-modal complementarity.

3.1

For the cross-modal transfer learning, suitable supervisory
signals should be customized for the student network. If
a excessively strict constraint is set, it turns out to be
difficult to ensure training convergence. In contrast, an over-
relaxed constraint, such as appropriating the final class
distributions, appears too weak to learn the shallow layers
effectively. A well-balanced knowledge distillation method
should provide sufficient supervisory signals while allows
the exploration of specialists in a new modality. Intuitively,
the features from two modalities, though discrepant, can
make consistent inference for the same task. So our primitive

Hierarchical Cross-modal Distillation

choice is to use the inference from each level in the teacher
network as supervision. However, as the observations in
[47], the lower layers are more modal-specific and task-
agnostic, while the deeper layers hold opposite character-
istics. As a result, the shallow layers will hardly produce
coherent inference by different modalities. Specifically, the
shallower layers trained with RGB images are activated
by texture/color changes, which are immune for the depth
modality. We further consider that with the global guidance
from the deep layers, the discrepancy between the combined
side-outs in shallow layers across different modalities can be
effectively reduced with respect to the individual inference
in each level. Also, it is hard to optimize multiple levels from
scratch jointly in a deep network. However, the progres-
sive enhancement inferred from the teacher reveals level-
specific contributions and cross-level collaborations, which
are pretty informative supervisory signals for the student.
To this end, we let the student progressively approach the
side-outs from the teacher. We call it “hierarchical cross-
modal distillation scheme”. Such a design presents several
distinguished advantages:

(a) Compared to the feature-based objective function,
the relaxed inference-based supervisory signals allow more
flexibility for the student to explore specialists.

(b) These supervision signals decouple the joint learning
of multiple layers and define level-specific optimization
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objectives for each level independently, which simplifies the
training process for a deep student network.

(c) This method promotes a better transfer learning
across modalities and even promises the feasibility of using
deep CNNSs to zero-shot detection on new visual modalities.
Given a new modality M5 with unlabeled training samples
XP, our goal lies on learning model-specific features from
XP by transferring knowledge from a different modality
M3 with large-scale labeled images. .

Denote the K layered representations ¥ = {¢%,i =

., K}, where ¢% denotes the representation in the 7"
layer for the modality M. Based on %, a reliable classifier
8¢ is learned for level-specific inference P% = & (k).

Now, suppose we have a dataset D, 4 which contains
sufficient un-annotated paired images from M% and M%.
We implement this idea by densely skip-connecting the
inferences from the deeper layers to all lower layers to
generate collaborative side outputs. As shown in Fig.2,
the cross-modal distillation network contains two parts: (a)
Unimodal cross-level connections (Note that the teacher
and student share same cross-level connections), which are
described with dotted lines; (b) Cross-modal connections,
which are illustrated by solid lines. The inference of a deep
layer will be combined with all shallower sideouts (e.g.,
in the teacher net, P§ will be fed to P, P4, P, P% for
combination). Formally,

o K _
whPL+ > Wh Pk i=1..K-1

. k=gl 1)
P, i=K

P}, =

where wi, and ‘7"%.1 are the weights for P}'% and the side-out

P¥ from the k" level.
Similarly for the counterpart modality M=%:

K

whLPhHL+ Y WDzPD,z—l LK -1

_ k=it @
Py, i=K
where P}, = 85(¢), ® = {¢}, i = 1,..., K} denotes the K
layered representations, (V is the learned classifier, w% and
Wk , are the weights for P}, and the side-outs P} from the
deeper levels, respectively.

Our scheme for learning sufficient modal-specific rep-
resentations and inference from images in the modality
M35 is to train the representations ® and inference Py, (Iq)
such that the combined side-out Pj},(I;) matches the one
Pi(1,) inferred from its paired image in the modality M3 .
Therefore, we measure the discrepancy between the side-
outs from two modalities with a suitable loss g:

P =

K

Luecp= > Y9 (P}E(IT), P{)(Id)) @)
{I,,I4}€D, 4 1=1

In our experiments, we adopt the L2 loss g(x,y) = ||z — y||§

for measuring the distance. By minimizing Lgcp, the stu-
dent network is encouraged to learn rich feature hierarchies
for inference.

3.2 Complementarity-aware Cross-modal Fusion

Having learned modal-specific representations from each
modality, the following step is to select the complemen-
tary ones for informative multi-modal fusion. To this end,
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we propose the complementarity-aware cross-modal fusion
(CA-Fuse) block to explicitly select cross-modal comple-
ments. Fig. 3(a) shows the architecture of the multi-modal
fusion network and Fig. 3(c) exemplifies the CA-Fuse block
in the m'" level. Formally, the adapted deep features from
the RGB and depth streams are denoted as F7' and F7j},
respectively. A 1x1 convolutional layer, acting as a selector,
is appended after F7} to select complementary information
to enhance the RGB features via a cross-modal skip con-
nection Fi7' = F§' + R (FJ). It suggests that the target of
using R (-) to select complementary features from F7;' can
be posed as approximating the residual part, i.e., Fg' — F'p’
equivalently. Such a reformulation exposes the cross-modal
complements explicitly and eases the incorporation. If F7*
is competent for inference, the solver can simply adjust the
residual towards zero. Otherwise, #;(-) will be pushed to
distill complements from F7' to aid F§' for better predic-
tion. To further encourage the determination of the residual
part, the enhanced features F' will infer saliency Pp',
and then compared to the ground-truth Y. In minimizing
the distance L between Pp', and Y, F7 as well as
R (FF) will be optimized, thereby capturing the most
complementary cues from the paired modality. A symmetric
residual connection is also introduced from F' to F} to
capture the complements from the RGB stream to enhance
the depth features. Then these features across modalities are
concatenated for joint prediction.

3.3 Progressively Top-down Cross-modal Cross-level
Fusion Pattern

The last question regarding how to fuse the cross-modal
complements sufficiently is solved by a progressively top-
down fusion pattern, in which the cross-modal features are
selected and combined by the CA-Fuse block in each level
and the incorporated multi-modal features are selectively
transmitted to the adjacent shallower layer for the cross-
level combination Concretely, the RGB-D representations
Fmt R L, selected from the m+1 layer Fiii* by a transition
layer (detailed parameters are illustrated in Table 1), will
be upsampled by a fixed de-convolutional layer and then
concatenated with F'g* and F as a cross-level cross-modal
representation community F3',, which will be responsible
for the prediction of the m*" CA-Fuse block by:

Prp = 0ra(FEp), )
where 47 are the parameters for fusing cross-modal cross-
level features and performing joint inference. Another
cross-level fusion strategy of skip-connecting the side-outs
densely is also adopted in the multi-modal fusion net-
work and implemented by the backward prediction dense-
connection (BPDC) module. The combined side-out is de-
noted as

K
wis PRp + > wRDmPRD, m=2,..,K—-1

P RD — k=m-+1
Pz, m=K
®)
where w7, and W% kD.m denotes the weights for the pre-
dictions from the current layer and all deeper layers, re-
spectively. The joint loss function for the multi-modal fusion

network consists of the side loss from each CA-Fuse block.
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We also add a collaborative loss to encourage a informative
combination of all the side-outs:

K
Lfinal - Z

m=1

(A(PR_y Y) +d(PE_y, Y) + (PR, Y))

+d( Y PR, Y),

1

M=

(©)
where d is an appropriate loss function, Y is the ground-
truth mask, w™ is the weight for Pg,, Pp, and Pp
denote the predictions by F7* and FjJ in the CA-Fuse
block, respectively. This joint loss enables the cross-modal
and cross-level combinations to be complementary for better
inference.

4 EXPERIMENTS

In this section, we will introduce the implementation details,
experimental comparisons and ablation studies to verify the
advantages of the proposed method to learn, select and
fuse cross-modal complements and the promise in zero-shot
saliency detection from depth images.

4.1 Dataset and Evaluation Metrics

We evaluate our model on three RGB-D benchmark datasets:
NLPR [4]includes 1000 indoor/outdoor RGB-D pairs col-
lected using Kinect; NJUD [21] and STEREO [24] datasets
contains 2003 and 797 stereoscopic images respectively,
which are generated from the Internet and 3D movies and
an optical method is adopted to compute depth images.
We follow the previous works [16], [26], [33] to randomly
pick 650 and 1400 RGB-D pairs from the NLPR and NJUD
datasets respectively and combine them as the training set.
We adopt the Precision-Recall (PR) curve, the F-measure and
the mean absolute error (MAE) scores as evaluation metrics.
Concretely, each saliency map S will be binarized by a
threshold. The converted binary mask will be compared to
the ground-truth G' to compute the precision and recall. By
varying the threshold from 0 to 255, we can obtain a series
of precision-recall pairs, thereby forming the PR curve. The
formulation of the F-measure is

(14 B?) - Precision - Recall
B2 - Precision + Recall

F 8= 7)
where 32 = 0.3 as suggested by [9], [10]. The saliency map
and binary ground-truth are normalized to [0, 1] and the
MAE is to measure the pixel-wise discrepancy between the
saliency map S and the ground-truth mask G averagely:

1 W H B -

i=1j=1

MAE =

where W and H are the width and height of the saliency
map.

4.2

We conduct our experiments using the Caffe [48] toolbox on
a workstation with two GTX 1070 GPUs. The learning rate
for the teacher network, the hierarchical cross-modal distil-
lation network and the final RGB-D salient object detection
network are 1 x 1077, 1 x 1075 and 2 x 1077, respectively.

Implementation Details
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TABLE 1: The Parameters of the Adaptation Layers and the
Cross-level Transition Layers

Level Adaptation 1 Adaptation 2 Transition layer
CA-Fuse 6 — — 384, 1x1
CA-Fuse 5 384, 1x1 — 384, 1x1
CA-Fuse 4 384,3x%3 384, 3x3 256, 1x1
CA-Fuse 3 192, 3x3 192, 3x3 128, 1x1
CA-Fuse 2 128, 3x3 128, 3x3 —

For a fair comparison with the previous works based on
the VGG network, we also adopt the VGG model as the
backbone for both modalities and the detailed hierarchical
cross-modal transfer architecture is illustrated in Fig. 2. The
trunk inherits five convolutional blocks from the original
VGG model. We add a new 512 13x13 convolutional layer
for perceiving precedent features globally to enhance the
localization ability. Then the strategy similar to [49] is lever-
aged to generate side outputs for each level. Specifically,
the last layer in each convolutional block (e.g., Conv4_3
and Conv2_2) will be appended with one or two adaptation
layers to the backbone. The details of the adaptation layers
are shown in Table 1. We firstly train the teacher network
with the architecture shown in the left of Fig.2. Concretely,
the adapted features are used to infer level-specific saliency
P}, via a 1x1 convolutional layer. Considering that it may be
difficult for the first convolutional block to provide reliable
cues, we do not involve it into inference for the teacher,
student and the final RGB-D fusion network. Following
Eq. (1), P}, will be combined with the predictions from
deeper layers to generate the side-out P}, (refer to the BPDC
module in Fig. 3 for implementation details). Accordingly,
the loss function for the teacher network consists of the
distance between the ground-truth mask and each side-out
as well as the joint prediction combining all the side-outs as
another constraint term:

K 6
Lrcac = Y d(Pp, Y)+ dY_ WP, Y), (9
=2 =2

where W%, is the weight for Pj.

The architecture of the student stream inherits the one
of the teacher stream. When training the hierarchical cross-
modal distillation network, the teacher stream is frozen. We
adopt the cross-entropy loss for optimization when training
the teacher network and the RGB-D fusion network:

d(P,Y)=Ylog P+ (1 —Y)log(l — P) (10)

4.3 On
Schema

the Hierarchical Cross-modal Distillation

4.3.1 Does the Student Network Learn Specific Cues?

The first question we want to investigate is whether the
proposed hierarchical cross-modal distillation scheme can
encourage the student network to learn specific cues to
complement the source modality. Fig. 4 shows the individ-
ual inference from each level without combining with the
predictions from deeper layers. It is not difficult to note that
the side-outs from the student network present different
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Fig. 4: The individual inference from the teacher and student streams in the hierarchical cross-modal distillation network.

TABLE 2: The Performance of Zero-shot Saliency Detection
from Depth Images

Fg MAE
Scheme
NLPR NJUD STEREO NLPR NJUD STEREO
A 0.705 0.753 0.733 0.096 0.131 0.142
B 0.511 0.598 0.576 0.158 0.188 0.192
C 0.747 0.790 - 0.088 0.109 -

patterns in contrast to the ones generated by the teacher.
More specifically, the shallow layers of the student network
are only responsive to the depth variations while insensitive
to the color/texture changes and the deeper layers, which
are more responsible for locating the salient object, pay
more attention to the object with distinguished depth. These
differences demonstrate that the student network explores
depth-specific saliency cues in each level effectively, which
are complementary to the ones from the paired modality.
Also, the cross-modal complementarity resides in multiple
levels. These observations verify our motivations that a se-
lector is in demand for highlighting the real complementary
cues. Besides, a sufficient fusion scheme is also necessary
considering the cross-modal complementarity in multiple
layers.

4.3.2 For Zero-shot Saliency Detection from Depth Images

Our cross-modal transfer learning scheme allows zero-shot
saliency detection for new modalities (e.g., depth). To verify
this advantage, we combine the RGB salient object detection
datasets including MSRA10K [9], ECSSD [50] and SED2 [51]
to train the teacher network. Then we only use the RGB-D
pairs from the RGB-D salient object detection training set
to train the hierarchical cross-modal distillation network.
We test the transferred student network with HHA (depth)
images (noted as “A”). We also test the teacher network
with the HHA images as inputs for comparison (noted as
“B”). As shown in Table 2, the significant outperformance of
the scheme “A” than “B” verifies the cross-modal discrep-

TABLE 3: Comparisons of Different Initialization Schemes
for the Depth-induced Saliency Detection and RGB-D
Saliency Detection Networks

Scheme Fs MAE
NLPR NJUD STEREO | NLPR NJUD STEREO
D-(A) Fail to converge
D-(B) 0.747  0.780 0.732 0.080 0.096  0.127
D-(C) 0.784  0.796 0.739 0.069 0.089  0.122
fine(D-(C))  0.792  0.807 0.737 0.066  0.082  0.118
RD-(A) 0.842  0.854 0.868 0.054 0.063  0.066
RD-(B) 0.861  0.860 0.877 0.049  0.061  0.061
RD-(C) 0.872  0.871 0.880 0.046  0.057 0.060
Notes:

- D-(B): Depth-induced saliency detection network initial-
ized by task-adapted ImageNet pre-trained weights .

- fine(D-(C)): Depth-induced saliency detection network
initialized by the proposed cross-modal distillation
scheme.

- RD-(A): RGB-D saliency detection network initialized by
ImageNet pre-trained weights.

- RD-(C): RGB-D saliency detection network initialized by
the proposed cross-modal distillation scheme.

The comparison between them also demonstrates the notable
improvement benefited from the distillation scheme. More de-
tails please refer to Section 4.3.3.

ancy and denotes the success of the proposed cross-modal
transfer method. It is able to encourage modal-specific rep-
resentations and inference, offering the promise in zero-shot
saliency detection for new modalities.

We also report the RGB-only saliency results on the
target dataset as another baseline (using RGB images as
inputs to feed the teacher network, denoted as C). The
RGB detector trained on the source dataset obtains satis-
factory performance on the RGB images, while our zero-
shot saliency detector on depth images achieve comparable
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detection performance (noted as A). Note that the STEREO
dataset contains some same images in the source RGB
saliency dataset. So we do not list the comparison results
on this dataset.

4.3.3 Advantages as A Pre-training Scheme

In this section, we report the advantages of the proposed hi-
erarchical cross-modal distillation scheme as a pre-training
method for depth-induced saliency detection. We involve
other two initialization strategies for comparison: 1) D-(A):
Random initialization; 2) D-(B): Using the weights of the
RGB-induced saliency detection network as initialization; 3)
D-(C): Using the proposed hierarchical cross-modal distilla-
tion schema. As shown in Table 3, we find that with ground-
truth masks in each level as supervision, the convergence
cannot be guaranteed when training the depth CNN from
scratch, even we carefully tune the learning parameters.
Compared to finetuning the RGB CNN, a huge improve-
ment can be observed by using the hierarchical cross-
modal distillation scheme, which demonstrates the efficacy
of our cross-modal adaptation strategy. This improvement
indicates that the side-outs from the teacher network serve
as better guidance than the more correct ground-truth. We
attribute this superiority to the progressive enhancement
across the side-outs from the teacher. Compared to super-
vising each level with the same ground-truth, these side-
outs become more direct and level-specific supervisions.
The evolution of the side-outs demystifies level-specific
contributions and cross-level collaborations explicitly. As a
result, the goal of each level of the student is simplified as
mimicking level-specific inference. For example, the goal of
shallow layers is to learn low-level features for identifying
object edges, which is a much easier task for them than
predicting the completed saliency map. Additionally, fine-
tuning the adapted student stream with ground-truth masks
(denoted as “ fine(D-(C))” allows further improvement.
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TABLE 4: Analyze the Components in the CA-Fuse Block
Quantitatively

Block Fis MAE
NLPR NJUD STEREONLPR NJUD STEREO
F3(b) 0.842 0843 0860 0.056 0.065 0.070
F3()-Lr-Lp 0867 0866  0.878  0.048 0059  0.062
F3(c) 0.872 0871 0.880 0.046  0.057  0.060
F3()-Fh), 0867 0862 0878 0047 0059  0.060

Depth Ours

1IN
ALLLYLY

Fig. 6: Visual comparison to state-of-the-art RGB salient
object detection method.

We also report the performance of using the proposed
cross-modal transfer learning method as pre-training for the
final RGB-D salient object detection network. We involve
other two strategies for comparison. RD-(A): Both the RGB
and the depth streams are initialized by the VGG model
without respective finetuning with the RGB-D saliency
datasets. This strategy is adopted in [16]; RD-(B): Stage-
wise training. It means finetuning the RGB stream with
the VGG model as initialization firstly. Then we train the
depth stream starting from the well-trained RGB weights.
This strategy is widely adopted in the previous works
such as [26], [33]; RD-(C): Using the trained hierarchical
cross-modal distillation network as initialization. With the
three initialization schemes, we then train the RGB-D fusion
network using the RGB-D pairs and ground-truth. The
comparison in Table 3 showcases the outperformance of
the proposed cross-modal transfer schema, suggesting its
success in learning better modal-specific representations.

4.4 On the CA-Fuse Block

In this section, we analyze the components in the CA-Fuse
block. We first study the importance of introducing cross-
modal residual functions. Fig. 5 illustrates the side outputs
from each level with different designs shown in Fig. 3.
The columns indexed as “F3(b)” show that the saliency
maps inferred in the top-down pattern can be basically
refined from coarse to fine with the help of the added
supervision in each level and the cross-level combinations.
However, the salient objects are not uniformly highlighted
and some background regions are failed to be identified,
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Fig. 7: Quantitative comparison to state-of-the-art RGB and RGB-D salient object detection methods. The MDSF only reports

the results on the NLPR and NJUD datasets.

suggesting that directly concatenating cross-modal features
is incapable of capturing the complementary information
sufficiently. Then we improve the “F3(b)” block by adding
cross-modal residual connections and this variant is denoted
as “F3(c)-Lr-Lp”. Benefiting from the cross-modal residual
functions, the complementary cues from both modalities
are incorporated more easily, resulting in more informative
multi-modal fusion. The comparison between “F3(b)” and
“F3(c)-Lr-Lp” in Table 4 verifies the large performance
gains from the cross-modal residual connections. Moreover,
the comparison between “F3(c)-Lr-Lp” and “F3(c)” verifies
the benefits of adding supervisions on the RGB and depth
branches (Lr and Lp), which further boost the emergence
of the complementary cues from the paired modality. An-
other question we want to study is whether it is beneficial
to transmit cross-level features to the adjacent shallower
layer? To answer this question, we remove the F, ;’;}1[, in Fig.
3(c). Accordingly, F* and F5* will be concatenated for joint
inference. We denote this variant as “F3(c)-F :,ZEID ”. The
quantitative comparison in Table 4 reports the noticeable
gains by transmitting the cross-level features. We attribute
this improvement to the richer RGB-D representations due
to combining cross-level features.

4.5 Comparison to State-of-the-art Methods

We compare our model (the variant “RD-(C)” ) to 11 state-of-
the-art RGB-D salient object detection methods: NLPR [4],
EGP [52], ACSD [21], DCMC [22], LBE [17], MDSF [23], SE
(53], DF [25], CTMF [26], MMCI and our preliminary
work PCA-Net [16], among which DF [25], CTMF [26],
MMCI and PCA-Net are CNN-based methods. We
also compare our method with a state-of-the-art RGB salient
object detection model DSS to verify the benefits of the
synchronized depth data. Fig. 6 presents the comparison
to the RGB-induced saliency visually. It can be noted that
when the salient object and the background are with similar
appearance or the background is seriously cluttered or the
salient object is non-uniform, it is difficult to locate the
salient object correctly and highlight the salient regions
uniformly by relying on RGB inputs only. In these scenes,
our model effectively incorporates the complementary cues
from the paired depth data to overcome these deficiencies
to identify the real salient object and highlight the salient
regions consistently. The quantitative comparison in Fig. 7
shows that our proposed method outperforms others signif-
icantly. Compared to other RGB-D salient object detection
methods, the proposed one holds distinguished advantages
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Fig. 8: Visual comparison to state-of-the-art RGB-D salient object detection methods.

in learning, selecting and fusing cross-modal complements.
The methods [4], [17], [21], [22], [23], [52], [53] based on
handcrafted RGB-D features are easy to be confused by
complex background and intra-variant salient objects due
to the lack of high-level global contexts. Previous CNN-
based methods [25], [26] that combine cross-modal features
only in a single level are incapable of capturing the cross-
modal complementarity residing in high-level contexts and
low-level spatial cues simultaneously. The “early fusion”
schema adopted in [25] results in inconsistent highlighting
of salient regions and the “late fusion” strategy used in [26]
leads to severely blurred saliency maps. Although the work
[33] remedies this shortcoming by designing two branches
for global reasoning and local capturing respectively, it only
leverages the last fully connected layer and an intermediate
convolutional layer for joint inference. The final results
are combined by directly summing the results from two
branches, which is unlikely to combine local spatial cues
and global contexts robustly. In contrast, our preliminary
work [16] involves the information in all layers via a top-
down path, which is able to progressively select and fuse
the complements from each modal/level and refine the
saliency maps gradually. By further using the hierarchi-
cal cross-modal distillation schema proposed in this ex-
tended work, the salient object is better located. Besides,
the saliency maps are more uniform and carry better details
than the ones generated by [16], implying the advantages
of the proposed cross-modal transfer scheme in learning
better modal-specific representations. In various challenging

scenes shown in Fig. 8, such as the background is com-
plex (the 1°¢-2"¢ rows); the salient object and background
have indistinguishable appearance or depth (the 374-4th
and 5%-6!" rows, resp.); the appearance or depth in the
salient objects is non-uniform (the 7" and 8!"* rows, resp.);
large/small salient objects (the 9! and 10" rows, resp.);
multiple separated salient objects (the 10t row). In these
cases, our proposed model can learn rich representations
from each modality, select the complementary cues and fuse
them informatively for successful joint inference.

5 CONCLUSION

In this paper, we propose a comprehensive view and a
systematic solution for RGB-D salient object detection. The
philosophy in designing an RGB-D system is generalized
as three keys: modal-specific representations learning, com-
plementary information selection and cross-modal comple-
ments fusion. Accordingly, we propose a new cross-modal
transfer learning scheme, an explicit cross-modal comple-
mentarity selector and a sufficient cross-modal cross-level
fusion pattern. The proposed solution solves the problems
of zero-shot detection and multi-modal fusion jointly. We
believe the insights provided from this work will allow us to
learn better representations from new unlabeled modalities
and more sufficient fusion for other multi-modal systems.
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