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Abstract Human motion prediction aims to forecast

future human poses given a historical motion. Whether

based on recurrent or feed-forward neural networks, ex-

isting learning based methods fail to model the obser-

vation that human motion tends to repeat itself, even

for complex sports actions and cooking activities. Here,

we introduce an attention based feed-forward network

that explicitly leverages this observation. In particu-

lar, instead of modeling frame-wise attention via pose

similarity, we propose to extract motion attention to

capture the similarity between the current motion con-

text and the historical motion sub-sequences. In this

context, we study the use of different types of atten-

tion, computed at joint, body part, and full pose levels.

Aggregating the relevant past motions and processing

the result with a graph convolutional network allows
us to effectively exploit motion patterns from the long-

term history to predict the future poses. Our exper-

iments on Human3.6M, AMASS and 3DPW validate

the benefits of our approach for both periodical and

non-periodical actions. Thanks to our attention model,

it yields state-of-the-art results on all three datasets.

Our code is available at https://github.com/wei-mao-

2019/HisRepItself.
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1 Introduction

Human motion prediction consists of forecasting the fu-

ture poses of a person given a history of their previous

motion. Predicting human motion can be highly ben-

eficial for tasks such as human tracking (Gong et al.,

2011), human-robot interaction (Koppula and Saxena,

2013), and human motion generation for computer graph-

ics (Levine et al., 2012; Kovar et al., 2008; Sidenbladh

et al., 2002).

Traditional methods, such as hidden Markov mod-
els (Brand and Hertzmann, 2000) and Gaussian Process

Dynamical Models (Wang et al., 2008), have proven

effective for simple motions, such as walking and golf

swings. However, they are typically outperformed by

deep learning ones on more complex motions. The most

common trend in modeling the sequential data that

constitutes human motion consists of using Recurrent

Neural Networks (RNNs)(Martinez et al., 2017; Fragki-

adaki et al., 2015; Jain et al., 2016). However, as dis-

cussed in (Li et al., 2018a), in the mid- to long-term

horizon, RNNs tend to generate static poses because

they struggle to keep track of long-term history. To

tackle this problem, existing works (Li et al., 2018a; Gui

et al., 2018) either rely on Generative Adversarial Net-

works (GANs), which are notoriously hard to train (Ar-

jovsky and Bottou, 2017), or introduce an additional

long-term encoder to represent information from the

further past (Li et al., 2018a). Unfortunately, such an

encoder treats the entire motion history equally, thus

not allowing the model to put more emphasis on the
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Fig. 1 Human motion prediction aims to forecast future human poses (> 0s) given past ones. From top to bottom, we
show the ground-truth pose sequence, the predictions of LTD (Mao et al., 2019) and those of our approach. The frames where
LTD (Mao et al., 2019) yields larger errors on the arms and legs are highlighted with a blue and red box, respectively. Note
that our results better match the ground truth than those of LTD (Mao et al., 2019).

parts of the past motion that better reflect the context

of the current motion.

In this paper, by contrast, we introduce an attention-

based motion prediction approach that effectively ex-

ploits historical information by dynamically adapting

its focus on the previous motions to the current con-

text. Our method is motivated by the observation that

humans tend to repeat their motion, not only in short

periodical activities, such as walking, but also in more

complex actions occurring across longer time periods,

such as sports and cooking activities (Runia et al., 2018;

Li et al., 2018b). Therefore, we aim to find the relevant

historical information to predict future motion.

While Tang et al. (2018) have attempted to lever-

age attention for motion prediction, they achieved this

in a frame-wise manner, by comparing the human pose

from the last observable frame with each one in the

historical sequence. As such, this approach fails to re-
flect the motion direction and is affected by the fact

that similar poses may appear in completely different

motions. For instance, in most Human3.6M activities,

the actor will at some point be standing with their arm

resting along their body. To overcome this, we therefore

propose to model motion attention, and thus compare

the last visible sub-sequence with a history of motion

sub-sequences.

For periodical motions, such as walking and jogging,

humans tend to repeat their full-body motion across

long time horizons. However, for non-periodical mo-

tions, such as discussion and cooking, motion repeti-

tiveness rather happens at the level of body parts. To

model this, we explore the use of motion attention at

three different levels: full pose, body parts, and indi-

vidual joints. We observe that, as they capture differ-

ent kinds of motion repetitiveness, the effectiveness of

each of these different levels of motion attention varies

across different activities and sequences. To handle this,

we therefore introduce a fusion model that combines

different attention levels and focuses on the attention

level best-suited for the current motion context.

When dealing with a time-related problem such as

motion prediction, the question of how to encode the

temporal information naturally arises. The most com-

mon trend consists of using Recurrent Neural Networks

(RNNs) (Fragkiadaki et al., 2015; Jain et al., 2016; Mar-

tinez et al., 2017; Gui et al., 2018). However, as argued

in (Gui et al., 2018; Li et al., 2018a), RNNs for motion

prediction suffer from error accumulation and discon-

tinuities between the last observed frame and the first

predicted one. As an alternative, convolutions across

time on the observed poses are used in (Butepage et al.,

2017; Li et al., 2018a). The temporal dependencies that

such an approach can encode, however, strongly de-

pend on the size of the convolutional filters. To remove

such a dependency, here, we introduce a drastically dif-

ferent approach to modeling temporal information for

motion prediction. Inspired by ideas from the nonrigid

structure-from-motion literature (Akhter et al., 2009),

we propose to represent human motion in trajectory

space instead of pose space, and thus adopt the Dis-

crete Cosine Transform (DCT) to encode temporal in-

formation.

Another question that arises when working with hu-

man poses is how to encode the spatial dependencies

among the joints. In Butepage et al. (2017), this was

achieved by exploiting the human skeleton, and in Li

et al. (2018a) by defining a relatively large spatial fil-

ter size. While the former does not allow one to model

dependencies across different limbs, such as left-right

symmetries, the dependencies encoded by the latter

again depend on the size of the filters. In this paper,

we propose to overcome these two issues by exploiting

graph convolutions (Kipf and Welling, 2017). However,

instead of using a pre-defined, sparse graph as in (Kipf

and Welling, 2017), we introduce an approach to learn-

ing the graph connectivity. This strategy allows the net-
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work to capture joint dependencies that are neither re-

stricted to the kinematic tree, nor arbitrarily defined

by a convolutional kernel size.

Altogether, our overall framework represents each

sub-sequence in trajectory space using the discrete co-

sine transform (DCT). We then exploit our motion at-

tention at different levels as weights to aggregate the

entire DCT-encoded motion history into a future mo-

tion estimate. This estimate is combined with the lat-

est observed motion, and the result acts as input to

a graph convolutional network (GCN), which lets us

better encode spatial dependencies between the differ-

ent joints. As evidenced by our experiments on Hu-

man3.6M (Ionescu et al., 2014), AMASS (Mahmood

et al., 2019), and 3DPW (von Marcard et al., 2018),

and illustrated in Fig. 1, our motion attention-based ap-

proach consistently outperforms the state of the art on

short-term and long-term motion prediction by training

a single unified model for both settings. This contrasts

with our previous, state-of-the-art LTD model (Mao

et al., 2019), which requires training different models

for different settings to achieve its best performance.

Furthermore, we demonstrate that our approach can ef-

fectively leverage motion repetitiveness in even longer

sequences.

Our contributions can be summarized as follows. (i)

We introduce an attention-based model that exploits

motions instead of static frames to better leverage his-

torical information for motion prediction; (ii) Our mo-

tion attention allows us to train a unified model for

both short-term and long-term prediction; (iii) Our ap-

proach can effectively make use of motion repetitive-

ness in long-term history; (iv) It yields state-of-the-art

results and generalizes better than existing methods

across datasets and actions.

This article extends our previous works (Mao et al.,

2019, 2020) in the following ways:

– Instead of modeling attention on the full body only,

as in (Mao et al., 2020), we study the use of atten-

tion at three different levels: full body, body parts,

and individual joints. Our experiments evidence that

different activities or sequences benefit from differ-

ent levels of attention.

– We introduce a fusion module that combines our

multi-level attention mechanisms to achieve better

performance than the full body pose-level attention

model we proposed in (Mao et al., 2020).

2 Related Work

RNN-based human motion prediction. RNNs have

proven highly successful in sequence-to-sequence pre-

diction tasks (Sutskever et al., 2011; Kiros et al., 2015).

As such, they have been widely employed for human

motion prediction (Fragkiadaki et al., 2015; Jain et al.,

2016; Martinez et al., 2017; Gopalakrishnan et al., 2019).

For instance, Fragkiadaki et al. (2015) proposed an En-

coder Recurrent Decoder (ERD) model that incorpo-

rates a non-linear multi-layer feed-forward network to

encode and decode motion before and after recurrent

layers. To avoid error accumulation, curriculum learn-

ing was adopted during training. Jain et al. (2016) in-

troduced a Structural-RNN model relying on a manually-

designed spatio-temporal graph to encode motion his-

tory. The fixed structure of this graph, however, re-

stricts the flexibility of this approach at modeling long-

range spatial relationships between different limbs. To

improve motion estimation, Martinez et al. (2017) pro-

posed a residual-based model that predicts velocities in-

stead of poses. Furthermore, it was shown in this work

that a simple zero-velocity baseline, i.e., constantly pre-

dicting the last observed pose, led to better perfor-

mance than (Fragkiadaki et al., 2015; Jain et al., 2016).

While this led to better performance than the previ-

ous pose-based methods, the predictions produced by

the RNN still suffer from discontinuities between the

observed poses and predicted ones. To overcome this,

Gui et al. (2018) proposed to adopt adversarial training

to generate smooth sequences. Hernandez et al. (2019)

treat human motion prediction as a tensor inpainting

problem and exploit a generative adversarial network

for long-term prediction. While this approach further

improves performance, the use of an adversarial clas-

sifier notoriously complicates training (Arjovsky and

Bottou, 2017), making it challenging to deploy on new

datasets.

Feed-forward methods and long motion history

encoding. In view of the drawbacks of RNNs, several

works considered feed-forward networks as an alterna-

tive solution (Butepage et al., 2017; Li et al., 2018a;

Mao et al., 2019). In particular, Butepage et al. (2017)

introduced a fully-connected network to process the re-

cent pose history, investigating different strategies to

encode temporal historical information via convolutions

and exploiting the kinematic tree to encode spatial in-

formation. However, similarly to (Jain et al., 2016), and

as discussed in (Li et al., 2018a), the use of a fixed tree

structure does not reflect the motion synchronization

across different, potentially distant, human body parts.

To capture such dependencies, Li et al. (2018a) built

a convolutional sequence-to-sequence model processing

a two-dimensional pose matrix whose columns repre-

sent the pose at every time step. This model was then

used to extract a prior from long-term motion history,

which, in conjunction with the more recent motion his-
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Fig. 2 Overview of our motion attention pipeline. The past poses are shown as blue and red skeletons and the predicted
ones in green and purple. The last observed M poses are initially used as query. For every M consecutive poses in the history
(key), we compute an attention score to weigh the DCT coefficients (values) of the corresponding sub-sequence. The weighted
sum of such values is then concatenated with the DCT coefficients of the last observed sub-sequence to predict the future.
At test time, to predict poses in the further future, we use the output of the predictor as input and predict future motion
recursively (as illustrated by the dashed line).

tory, was used as input to an autoregressive network

for future pose prediction. While more effective than

the RNN-based frameworks, the manually-selected size

of the convolutional window highly influences the tem-

poral encoding.

Our work builds on our previous work (Mao et al.,

2019), which showed that encoding the short-term his-

tory in frequency space using the DCT, followed by a

GCN to encode spatial and temporal connections led

to state-of-the-art performance for human motion pre-

diction up to 1s. However, encoding long-term history

in DCT yields an overly-general motion representation,

leading to worse performance than using short-term

history. In this paper, we overcome this drawback by

introducing a motion attention based approach to hu-

man motion prediction. This allows us to capture the

motion recurrence in the long-term history. Further-

more, in contrast to (Li et al., 2018a), whose encoding

of past motions depends on the manually-defined size of

the temporal convolution filters, our model dynamically

adapts its history-based representation to the context

of the current prediction.

Attention models for human motion prediction.

While attention-based neural networks are commonly

employed for machine translation (Vaswani et al., 2017;

Bahdanau et al., 2015), their use for human motion pre-

diction remains largely unexplored. The work of Tang

et al. (2018) constitutes an exception, incorporating an

attention module to summarize the recent pose history,

followed by an RNN-based prediction network. This

work, however, uses frame-wise pose-based attention,

which may lead to ambiguous motion, because static

poses do not provide information about the motion di-

rection and similar poses occur in significantly different

motions. To overcome this, we propose to leverage mo-

tion attention. As evidenced by our experiments, this,

combined with a feed-forward prediction network, al-

lows us to outperform the state-of-the-art motion pre-

diction frameworks.

In a similar spirit to our approach, the concurrent

work of Cai et al. (2020) leverages an attention-based

transformer for human motion prediction. Neverthe-

less, their attention module mainly serves to model the

global spatial dependencies among the joint trajecto-

ries. By contrast, our motion attention aims to cap-

ture the motion repetitiveness in history, thus model-

ing temporal motion dependencies. In addition to the

attention-based module, Cai et al. (2020) proposed to

progressively predict the joint trajectories with a dictio-

nary which stores the global motion patterns of train-

ing data. These two components, however, are orthog-

onal to the attention-based module. Our experiments

demonstrate that our method outperforms that of Cai

et al. (2020) with only the attention-based module and

is comparable to the full-model of Cai et al. (2020).

3 Our Approach

Let us now introduce our approach to human motion

prediction. Let X1:N = [x1,x2,x3, · · · ,xN ] encode the
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motion history, consisting ofN consecutive human poses,

where xi ∈ RK , with K the number of parameters de-

scribing each pose, in our case 3D coordinates or an-

gles of human joints. Our goal is to predict the poses

XN+1:N+T for the future T time steps. To this end,

we introduce a motion attention model that allows us

to form a future motion estimate by aggregating the

long-term temporal information from the history. We

then combine this estimate with the latest observed

motion and input this combination to a GCN-based

feed-forward network that lets us learn the spatial and

temporal dependencies in the data. Below, we discuss

these two steps in detail.

3.1 Motion Attention Model

As humans tend to repeat their motion across long

time periods, our goal is to discover sub-sequences in

the motion history that are similar to the current sub-

sequence. We propose to achieve this via an attention

model. To capture motion repetitiveness at different

levels, we introduce a general framework that models

attention on body parts. Specifically, a part can be the

entire body, a human limb, e.g., the right arm, or an

individual joint. This framework allows us to study dif-

ferent levels of attention, such as pose motion attention,

part motion attention and joint motion attention.

To this end, we first divide each human pose xi ∈
RK into P parts as

xi =




x1
i

x2
i

x3
i
...

xPi




where xpi ∈ RKp concatenates the 3D coordinates (or

rotation angles) of one body part and
∑P
p=1Kp = K.

In particular, P = 1 corresponds to treating the entire

human pose as a single part, P = NJ , with NJ is the

number of skeleton joints, means that each joint acts as

a part, whereas P ∈ (1, NJ) ranges between these two

extreme cases, grouping multiple joints into a part.

Following the machine translation formalism of

Vaswani et al. (2017), we describe our attention model

as a mapping from a query and a set of key-value pairs

to an output. The output is a weighted sum of values,

where the weight, or attention, assigned to each value is

a function of its corresponding key and of the query. Map-

ping to our motion attention model, the query corre-

sponds to a learned representation of the last observed

sub-sequence, and the key-value pairs are treated as

a dictionary within which keys are learned representa-

tions for historical sub-sequences and values are the cor-

responding learned future motion representations. Our

motion attention model output is defined as the ag-

gregation of these future motion representations based

on partial motion similarity between the latest motion

sub-sequence and historical sub-sequences.

In our context, we aim to compute attention from

short sequences. To this end, we first divide the motion

history of each body part Xp
1:N = [xp1,x

p
2,x

p
3, · · · ,x

p
N ],

with p ∈ {1, 2, · · · , P}, into N−M−T+1 sub-sequences

{Xp
i:i+M+T−1}

N−M−T+1
i=1 , each of which consists of M+

T consecutive body part poses. By using sub-sequences

of length M +T , we assume that the motion predictor,

which we will introduce in Section 3.2, exploits the past

M frames to predict the future T frames. We then take

the first M poses of each sub-sequence Xp
i:i+M−1 to be

a key, and the whole sub-sequence Xp
i:i+M+T−1 is the

corresponding value. Furthermore, we define the query

as the latest sub-sequence Xp
N−M+1:N with length M .

To make the output of our attention model consis-

tent with that of the final predictor, we map the re-

sulting values to trajectory space using the DCT on

the temporal dimension. That is, we take our final val-

ues to be the DCT coefficients {Vp
i }
N−M−T+1
i=1 , where

Vp
i ∈ RKp×(M+T ). Each row of Vp

i contains the DCT

coefficients of one joint coordinate sequence. In prac-

tice, we can truncate some high frequencies to avoid

predicting jittery motion.

As depicted by Fig. 2, the query and keys are used

to compute attention scores, which then act as weights

to combine the corresponding values. To this end, we

first map the query and keys to vectors of the same

dimension d by two functions fpq : RKp×M → Rd and

fpk : RKp×M → Rd modeled with neural networks. This

can be expressed as

qp = fpq (Xp
N−M+1:N ) , (1)

kpi = fpk (Xp
i:i+M−1) , (2)

where qp,kpi ∈ Rd, i ∈ {1, 2, · · · , N −M − T + 1}, and

p ∈ {1, 2, · · · , P}. For each key, we then compute an

attention score as

api =
qpkpi

T

∑N−M−T+1
i=1 qpkpi

T
. (3)

Note that, instead of the softmax function which is com-

monly used in attention mechanisms, we simply normal-

ize the attention scores by their sum, which we found

to avoid the gradient vanishing problem that may occur

when using a softmax. While this division only enforces
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Fig. 3 Predictor. We first apply the DCT to encode temporal pose information in trajectory space. The DCT coefficients
concatenated with the output of motion attention model are treated as features input to graph convolutional layers. In each
layer, we depict how our framework aggregates information from multiple nodes via learned adjacency matrices.
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<latexit sha1_base64="6DV2SUX7vMLUZGs40OQqMufwxJI=">AAAB+nicbVDLSsNAFJ3UV62vVJdugkVwVRItPnZFNy4rmFpoQ5hMJ+3QyYOZG7XEfIobF4q49Uvc+TdO0iBqPXDhcM69M/ceL+ZMgml+apWFxaXllepqbW19Y3NLr293ZZQIQm0S8Uj0PCwpZyG1gQGnvVhQHHic3niTi9y/uaVCsii8hmlMnQCPQuYzgkFJrl4fAL0Hz0/tzE1jLCBz9YbZNAsY88QqSQOV6Lj6x2AYkSSgIRCOpexbZgxOqt5ihNOsNkgkjTGZ4BHtKxrigEonLVbPjH2lDA0/EqpCMAr150SKAymngac6Awxj+dfLxf+8fgL+qZOyME6AhmT2kZ9wAyIjz8EYMkEJ8KkimAimdjXIGAtMQKVVK0I4y3H8ffI86R42raNm66rVaJ+XcVTRLtpDB8hCJ6iNLlEH2YigO/SIntGL9qA9aa/a26y1opUzO+gXtPcvTYaU0Q==</latexit>

Upose
<latexit sha1_base64="Pxli6j4aSf5ag5Y3WR2XtpErrUk=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16CRbBU0m0+HErevFYwdZCW8JmO2mXbj7Ynagl5qd48aCIV3+JN/+N27SIWh8MPN6bYWaeFwuu0LY/jcLC4tLySnG1tLa+sblllrdbKkokgyaLRCTbHlUgeAhN5CigHUuggSfgxhtdTPybW5CKR+E1jmPoBXQQcp8zilpyzXIX4R49P21mbhpHCjLXrNhVO4c1T5wZqZAZGq750e1HLAkgRCaoUh3HjrGXUomcCchK3URBTNmIDqCjaUgDUL00Pz2z9rXSt/xI6grRytWfEykNlBoHnu4MKA7VX28i/ud1EvRPeykP4wQhZNNFfiIsjKxJDlafS2AoxppQJrm+1WJDKilDnVYpD+FsguPvl+dJ67DqHFVrV7VK/XwWR5Hskj1yQBxyQurkkjRIkzByRx7JM3kxHown49V4m7YWjNnMDvkF4/0LTaOU0Q==</latexit>

D<latexit sha1_base64="shamfAVXBatJFeKqASywPRSgURY=">AAAB8XicbVDLSsNAFJ3UV62vqks3g0VwVRItPnZFXbisYB/YhjKZTtqhk0mYuRFL6F+4caGIW//GnX/jJA2i1gMXDufcy733eJHgGmz70yosLC4trxRXS2vrG5tb5e2dlg5jRVmThiJUHY9oJrhkTeAgWCdSjASeYG1vfJn67XumNA/lLUwi5gZkKLnPKQEj3fWAPYDnJ1fTfrliV+0MeJ44OamgHI1++aM3CGkcMAlUEK27jh2BmxAFnAo2LfVizSJCx2TIuoZKEjDtJtnFU3xglAH2Q2VKAs7UnxMJCbSeBJ7pDAiM9F8vFf/zujH4Z27CZRQDk3S2yI8FhhCn7+MBV4yCmBhCqOLmVkxHRBEKJqRSFsJ5ipPvl+dJ66jqHFdrN7VK/SKPo4j20D46RA46RXV0jRqoiSiS6BE9oxdLW0/Wq/U2ay1Y+cwu+gXr/Qvw45E7</latexit>

Weight & Sum

Pose Motion Attention 

Part Motion Attention 

Joint Motion Attention 

Predictor

Ujoint
<latexit sha1_base64="y39O/wE5mF1MwDp8pLxqV49+cjA=">AAAB+3icbVBNS8NAEN34WetXrEcvwSJ4KokWP25FLx4rmLbQhrDZbtq1m03YnUhLyF/x4kERr/4Rb/4bkzSIWh8MPN6bYWaeF3GmwDQ/taXlldW19cpGdXNre2dX36t1VBhLQm0S8lD2PKwoZ4LawIDTXiQpDjxOu97kOve7D1QqFoo7mEXUCfBIMJ8RDJnk6rUB0Cl4fmKnbnIfMgGpq9fNhlnAWCRWSeqoRNvVPwbDkMQBFUA4VqpvmRE4CZbACKdpdRArGmEywSPaz6jAAVVOUtyeGkeZMjT8UGYlwCjUnxMJDpSaBV7WGWAYq79eLv7n9WPwL5yEiSgGKsh8kR9zA0IjD8IYMkkJ8FlGMJEsu9UgYywxgSyuahHCZY6z75cXSeekYZ02mrfNeuuqjKOCDtAhOkYWOkctdIPayEYETdEjekYvWqo9aa/a27x1SStn9tEvaO9fHxqVSA==</latexit>

Upart
<latexit sha1_base64="6DV2SUX7vMLUZGs40OQqMufwxJI=">AAAB+nicbVDLSsNAFJ3UV62vVJdugkVwVRItPnZFNy4rmFpoQ5hMJ+3QyYOZG7XEfIobF4q49Uvc+TdO0iBqPXDhcM69M/ceL+ZMgml+apWFxaXllepqbW19Y3NLr293ZZQIQm0S8Uj0PCwpZyG1gQGnvVhQHHic3niTi9y/uaVCsii8hmlMnQCPQuYzgkFJrl4fAL0Hz0/tzE1jLCBz9YbZNAsY88QqSQOV6Lj6x2AYkSSgIRCOpexbZgxOqt5ihNOsNkgkjTGZ4BHtKxrigEonLVbPjH2lDA0/EqpCMAr150SKAymngac6Awxj+dfLxf+8fgL+qZOyME6AhmT2kZ9wAyIjz8EYMkEJ8KkimAimdjXIGAtMQKVVK0I4y3H8ffI86R42raNm66rVaJ+XcVTRLtpDB8hCJ6iNLlEH2YigO/SIntGL9qA9aa/a26y1opUzO+gXtPcvTYaU0Q==</latexit>

Upose
<latexit sha1_base64="Pxli6j4aSf5ag5Y3WR2XtpErrUk=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16CRbBU0m0+HErevFYwdZCW8JmO2mXbj7Ynagl5qd48aCIV3+JN/+N27SIWh8MPN6bYWaeFwuu0LY/jcLC4tLySnG1tLa+sblllrdbKkokgyaLRCTbHlUgeAhN5CigHUuggSfgxhtdTPybW5CKR+E1jmPoBXQQcp8zilpyzXIX4R49P21mbhpHCjLXrNhVO4c1T5wZqZAZGq750e1HLAkgRCaoUh3HjrGXUomcCchK3URBTNmIDqCjaUgDUL00Pz2z9rXSt/xI6grRytWfEykNlBoHnu4MKA7VX28i/ud1EvRPeykP4wQhZNNFfiIsjKxJDlafS2AoxppQJrm+1WJDKilDnVYpD+FsguPvl+dJ67DqHFVrV7VK/XwWR5Hskj1yQBxyQurkkjRIkzByRx7JM3kxHown49V4m7YWjNnMDvkF4/0LTaOU0Q==</latexit>

Concat

D<latexit sha1_base64="shamfAVXBatJFeKqASywPRSgURY=">AAAB8XicbVDLSsNAFJ3UV62vqks3g0VwVRItPnZFXbisYB/YhjKZTtqhk0mYuRFL6F+4caGIW//GnX/jJA2i1gMXDufcy733eJHgGmz70yosLC4trxRXS2vrG5tb5e2dlg5jRVmThiJUHY9oJrhkTeAgWCdSjASeYG1vfJn67XumNA/lLUwi5gZkKLnPKQEj3fWAPYDnJ1fTfrliV+0MeJ44OamgHI1++aM3CGkcMAlUEK27jh2BmxAFnAo2LfVizSJCx2TIuoZKEjDtJtnFU3xglAH2Q2VKAs7UnxMJCbSeBJ7pDAiM9F8vFf/zujH4Z27CZRQDk3S2yI8FhhCn7+MBV4yCmBhCqOLmVkxHRBEKJqRSFsJ5ipPvl+dJ66jqHFdrN7VK/SKPo4j20D46RA46RXV0jRqoiSiS6BE9oxdLW0/Wq/U2ay1Y+cwu+gXr/Qvw45E7</latexit>

Pre-fusion

Concat

Pose Motion Attention 

Part Motion Attention 

Joint Motion Attention 

Predictor

D<latexit sha1_base64="shamfAVXBatJFeKqASywPRSgURY=">AAAB8XicbVDLSsNAFJ3UV62vqks3g0VwVRItPnZFXbisYB/YhjKZTtqhk0mYuRFL6F+4caGIW//GnX/jJA2i1gMXDufcy733eJHgGmz70yosLC4trxRXS2vrG5tb5e2dlg5jRVmThiJUHY9oJrhkTeAgWCdSjASeYG1vfJn67XumNA/lLUwi5gZkKLnPKQEj3fWAPYDnJ1fTfrliV+0MeJ44OamgHI1++aM3CGkcMAlUEK27jh2BmxAFnAo2LfVizSJCx2TIuoZKEjDtJtnFU3xglAH2Q2VKAs7UnxMJCbSeBJ7pDAiM9F8vFf/zujH4Z27CZRQDk3S2yI8FhhCn7+MBV4yCmBhCqOLmVkxHRBEKJqRSFsJ5ipPvl+dJ66jqHFdrN7VK/SKPo4j20D46RA46RXV0jRqoiSiS6BE9oxdLW0/Wq/U2ay1Y+cwu+gXr/Qvw45E7</latexit>

Ujoint
<latexit sha1_base64="y39O/wE5mF1MwDp8pLxqV49+cjA=">AAAB+3icbVBNS8NAEN34WetXrEcvwSJ4KokWP25FLx4rmLbQhrDZbtq1m03YnUhLyF/x4kERr/4Rb/4bkzSIWh8MPN6bYWaeF3GmwDQ/taXlldW19cpGdXNre2dX36t1VBhLQm0S8lD2PKwoZ4LawIDTXiQpDjxOu97kOve7D1QqFoo7mEXUCfBIMJ8RDJnk6rUB0Cl4fmKnbnIfMgGpq9fNhlnAWCRWSeqoRNvVPwbDkMQBFUA4VqpvmRE4CZbACKdpdRArGmEywSPaz6jAAVVOUtyeGkeZMjT8UGYlwCjUnxMJDpSaBV7WGWAYq79eLv7n9WPwL5yEiSgGKsh8kR9zA0IjD8IYMkkJ8FlGMJEsu9UgYywxgSyuahHCZY6z75cXSeekYZ02mrfNeuuqjKOCDtAhOkYWOkctdIPayEYETdEjekYvWqo9aa/a27x1SStn9tEvaO9fHxqVSA==</latexit>

Upart
<latexit sha1_base64="6DV2SUX7vMLUZGs40OQqMufwxJI=">AAAB+nicbVDLSsNAFJ3UV62vVJdugkVwVRItPnZFNy4rmFpoQ5hMJ+3QyYOZG7XEfIobF4q49Uvc+TdO0iBqPXDhcM69M/ceL+ZMgml+apWFxaXllepqbW19Y3NLr293ZZQIQm0S8Uj0PCwpZyG1gQGnvVhQHHic3niTi9y/uaVCsii8hmlMnQCPQuYzgkFJrl4fAL0Hz0/tzE1jLCBz9YbZNAsY88QqSQOV6Lj6x2AYkSSgIRCOpexbZgxOqt5ihNOsNkgkjTGZ4BHtKxrigEonLVbPjH2lDA0/EqpCMAr150SKAymngac6Awxj+dfLxf+8fgL+qZOyME6AhmT2kZ9wAyIjz8EYMkEJ8KkimAimdjXIGAtMQKVVK0I4y3H8ffI86R42raNm66rVaJ+XcVTRLtpDB8hCJ6iNLlEH2YigO/SIntGL9qA9aa/a26y1opUzO+gXtPcvTYaU0Q==</latexit>

Upose
<latexit sha1_base64="Pxli6j4aSf5ag5Y3WR2XtpErrUk=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16CRbBU0m0+HErevFYwdZCW8JmO2mXbj7Ynagl5qd48aCIV3+JN/+N27SIWh8MPN6bYWaeFwuu0LY/jcLC4tLySnG1tLa+sblllrdbKkokgyaLRCTbHlUgeAhN5CigHUuggSfgxhtdTPybW5CKR+E1jmPoBXQQcp8zilpyzXIX4R49P21mbhpHCjLXrNhVO4c1T5wZqZAZGq750e1HLAkgRCaoUh3HjrGXUomcCchK3URBTNmIDqCjaUgDUL00Pz2z9rXSt/xI6grRytWfEykNlBoHnu4MKA7VX28i/ud1EvRPeykP4wQhZNNFfiIsjKxJDlafS2AoxppQJrm+1WJDKilDnVYpD+FsguPvl+dJ67DqHFVrV7VK/XwWR5Hskj1yQBxyQurkkjRIkzByRx7JM3kxHown49V4m7YWjNnMDvkF4/0LTaOU0Q==</latexit> Concat Predictor

D<latexit sha1_base64="shamfAVXBatJFeKqASywPRSgURY=">AAAB8XicbVDLSsNAFJ3UV62vqks3g0VwVRItPnZFXbisYB/YhjKZTtqhk0mYuRFL6F+4caGIW//GnX/jJA2i1gMXDufcy733eJHgGmz70yosLC4trxRXS2vrG5tb5e2dlg5jRVmThiJUHY9oJrhkTeAgWCdSjASeYG1vfJn67XumNA/lLUwi5gZkKLnPKQEj3fWAPYDnJ1fTfrliV+0MeJ44OamgHI1++aM3CGkcMAlUEK27jh2BmxAFnAo2LfVizSJCx2TIuoZKEjDtJtnFU3xglAH2Q2VKAs7UnxMJCbSeBJ7pDAiM9F8vFf/zujH4Z27CZRQDk3S2yI8FhhCn7+MBV4yCmBhCqOLmVkxHRBEKJqRSFsJ5ipPvl+dJ66jqHFdrN7VK/SKPo4j20D46RA46RXV0jRqoiSiS6BE9oxdLW0/Wq/U2ay1Y+cwu+gXr/Qvw45E7</latexit>

Concat Predictor

D<latexit sha1_base64="shamfAVXBatJFeKqASywPRSgURY=">AAAB8XicbVDLSsNAFJ3UV62vqks3g0VwVRItPnZFXbisYB/YhjKZTtqhk0mYuRFL6F+4caGIW//GnX/jJA2i1gMXDufcy733eJHgGmz70yosLC4trxRXS2vrG5tb5e2dlg5jRVmThiJUHY9oJrhkTeAgWCdSjASeYG1vfJn67XumNA/lLUwi5gZkKLnPKQEj3fWAPYDnJ1fTfrliV+0MeJ44OamgHI1++aM3CGkcMAlUEK27jh2BmxAFnAo2LfVizSJCx2TIuoZKEjDtJtnFU3xglAH2Q2VKAs7UnxMJCbSeBJ7pDAiM9F8vFf/zujH4Z27CZRQDk3S2yI8FhhCn7+MBV4yCmBhCqOLmVkxHRBEKJqRSFsJ5ipPvl+dJ66jqHFdrN7VK/SKPo4j20D46RA46RXV0jRqoiSiS6BE9oxdLW0/Wq/U2ay1Y+cwu+gXr/Qvw45E7</latexit>

Weights 
Net

Weight & Sum

X̂pose
<latexit sha1_base64="y4KGndTVao9TUn7dvJxK3FvDjNk=">AAACAHicbVDJSgNBEO2JW4xb1IMHL4NB8BQmGlxuQS8eI5gFMsPQ06lJmvQsdNeIYZiLv+LFgyJe/Qxv/o2dZBA1Pih4vFdFVT0vFlyhZX0ahYXFpeWV4mppbX1jc6u8vdNWUSIZtFgkItn1qALBQ2ghRwHdWAINPAEdb3Q18Tt3IBWPwlscx+AEdBBynzOKWnLLe/aQYmoj3KPnp90sc9M4UpC55YpVtaYw50ktJxWSo+mWP+x+xJIAQmSCKtWrWTE6KZXImYCsZCcKYspGdAA9TUMagHLS6QOZeaiVvulHUleI5lT9OZHSQKlx4OnOgOJQ/fUm4n9eL0H/3El5GCcIIZst8hNhYmRO0jD7XAJDMdaEMsn1rSYbUkkZ6sxK0xAuJjj9fnmetI+rtZNq/aZeaVzmcRTJPjkgR6RGzkiDXJMmaRFGMvJInsmL8WA8Ga/G26y1YOQzu+QXjPcvRjCXoQ==</latexit>

X̂part
<latexit sha1_base64="p46PsQh+66E972cItFvA9vS0poQ=">AAACAHicbVDLSsNAFJ3UV62vqAsXboJFcFUSLT52RTcuK9gHNCFMppN26OTBzI1YQjb+ihsXirj1M9z5N07SIGo9cOFwzr0z9x4v5kyCaX5qlYXFpeWV6mptbX1jc0vf3unKKBGEdkjEI9H3sKSchbQDDDjtx4LiwOO0502ucr93R4VkUXgL05g6AR6FzGcEg5Jcfc8eY0htoPfg+Wk/y9w0xgIyV6+bDbOAMU+sktRRibarf9jDiCQBDYFwLOXAMmNwUvUWI5xmNTuRNMZkgkd0oGiIAyqdtDggMw6VMjT8SKgKwSjUnxMpDqScBp7qDDCM5V8vF//zBgn4507KwjgBGpLZR37CDYiMPA1jyAQlwKeKYCKY2tUgYywwAZVZrQjhIsfp98nzpHvcsE4azZtmvXVZxlFF++gAHSELnaEWukZt1EEEZegRPaMX7UF70l61t1lrRStndtEvaO9fRhOXoQ==</latexit>

X̂joint
<latexit sha1_base64="HYf52ddOEmfpoNBA+1mfb83EA7Y=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAIrkqixceu6MZlBfuANoTJdNKOnUzCzI1YQtz4K25cKOLWv3Dn35ikQdR64MLhnHu59x435EyBaX5qpbn5hcWl8nJlZXVtfUPf3GqrIJKEtkjAA9l1saKcCdoCBpx2Q0mx73LacccXmd+5pVKxQFzDJKS2j4eCeYxgSCVH3+mPMMR9oHfgenE3SZz4JmACEkevmjUzhzFLrIJUUYGmo3/0BwGJfCqAcKxUzzJDsGMsgRFOk0o/UjTEZIyHtJdSgX2q7Dj/IDH2U2VgeIFMS4CRqz8nYuwrNfHdtNPHMFJ/vUz8z+tF4J3aMRNhBFSQ6SIv4gYERhaHMWCSEuCTlGAiWXqrQUZYYgJpaJU8hLMMx98vz5L2Yc06qtWv6tXGeRFHGe2iPXSALHSCGugSNVELEXSPHtEzetEetCftVXubtpa0YmYb/YL2/gUaR5gY</latexit>

X̂pose
<latexit sha1_base64="y4KGndTVao9TUn7dvJxK3FvDjNk=">AAACAHicbVDJSgNBEO2JW4xb1IMHL4NB8BQmGlxuQS8eI5gFMsPQ06lJmvQsdNeIYZiLv+LFgyJe/Qxv/o2dZBA1Pih4vFdFVT0vFlyhZX0ahYXFpeWV4mppbX1jc6u8vdNWUSIZtFgkItn1qALBQ2ghRwHdWAINPAEdb3Q18Tt3IBWPwlscx+AEdBBynzOKWnLLe/aQYmoj3KPnp90sc9M4UpC55YpVtaYw50ktJxWSo+mWP+x+xJIAQmSCKtWrWTE6KZXImYCsZCcKYspGdAA9TUMagHLS6QOZeaiVvulHUleI5lT9OZHSQKlx4OnOgOJQ/fUm4n9eL0H/3El5GCcIIZst8hNhYmRO0jD7XAJDMdaEMsn1rSYbUkkZ6sxK0xAuJjj9fnmetI+rtZNq/aZeaVzmcRTJPjkgR6RGzkiDXJMmaRFGMvJInsmL8WA8Ga/G26y1YOQzu+QXjPcvRjCXoQ==</latexit>

X̂part
<latexit sha1_base64="p46PsQh+66E972cItFvA9vS0poQ=">AAACAHicbVDLSsNAFJ3UV62vqAsXboJFcFUSLT52RTcuK9gHNCFMppN26OTBzI1YQjb+ihsXirj1M9z5N07SIGo9cOFwzr0z9x4v5kyCaX5qlYXFpeWV6mptbX1jc0vf3unKKBGEdkjEI9H3sKSchbQDDDjtx4LiwOO0502ucr93R4VkUXgL05g6AR6FzGcEg5Jcfc8eY0htoPfg+Wk/y9w0xgIyV6+bDbOAMU+sktRRibarf9jDiCQBDYFwLOXAMmNwUvUWI5xmNTuRNMZkgkd0oGiIAyqdtDggMw6VMjT8SKgKwSjUnxMpDqScBp7qDDCM5V8vF//zBgn4507KwjgBGpLZR37CDYiMPA1jyAQlwKeKYCKY2tUgYywwAZVZrQjhIsfp98nzpHvcsE4azZtmvXVZxlFF++gAHSELnaEWukZt1EEEZegRPaMX7UF70l61t1lrRStndtEvaO9fRhOXoQ==</latexit>

X̂joint
<latexit sha1_base64="HYf52ddOEmfpoNBA+1mfb83EA7Y=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAIrkqixceu6MZlBfuANoTJdNKOnUzCzI1YQtz4K25cKOLWv3Dn35ikQdR64MLhnHu59x435EyBaX5qpbn5hcWl8nJlZXVtfUPf3GqrIJKEtkjAA9l1saKcCdoCBpx2Q0mx73LacccXmd+5pVKxQFzDJKS2j4eCeYxgSCVH3+mPMMR9oHfgenE3SZz4JmACEkevmjUzhzFLrIJUUYGmo3/0BwGJfCqAcKxUzzJDsGMsgRFOk0o/UjTEZIyHtJdSgX2q7Dj/IDH2U2VgeIFMS4CRqz8nYuwrNfHdtNPHMFJ/vUz8z+tF4J3aMRNhBFSQ6SIv4gYERhaHMWCSEuCTlGAiWXqrQUZYYgJpaJU8hLMMx98vz5L2Yc06qtWv6tXGeRFHGe2iPXSALHSCGugSNVELEXSPHtEzetEetCftVXubtpa0YmYb/YL2/gUaR5gY</latexit>

Post-fusion

(a) (b) (c)

Fig. 4 Different fusion model. (a) Simply concatenate the outputs of all three motion models with the DCT coefficient
D. (b) Pre-fusion: The outputs of three motion models are first combined by a fusion model and fed into the predictor. (c)
Post-fusion: The fusion process occurs after the predictions are made.

the sum of the attention scores to be 1, we further re-

strict the outputs of fpq and fpk to be non-negative with

ReLU to avoid obtaining negative attention scores.

We then compute the output of the attention model

for each body part as the weighed sum of values, i.e.,

Up =

N−M−T+1∑

i=1

apiV
p
i , (4)

where Up ∈ RKp×(M+T ). The final output for the whole

body is the concatenation of those for all body parts

U = [UT
1 ,U

T
2 , · · · ,UT

P ]T with U ∈ RK×(M+T ). This

initial estimate is then combined with the latest sub-

sequence and processed by the prediction model de-

scribed below to generate future poses X̂N+1:N+T .

At test time, to generate longer future motion, we

augment the motion history with the last predictions

and update the query with the latest sub-sequence in

the augmented motion history, and the key-value pairs

accordingly. These updated entities are then used for

the next prediction step.

3.2 Prediction Model

To predict the future motion, we reuse the motion pre-

diction model we introduced in (Mao et al., 2019) as

shown in Fig. 3. Specifically, as mentioned above, we

use a DCT-based representation to encode the tempo-

ral information for each joint coordinate or angle and

GCNs with learnable adjacency matrices to capture the

spatial dependencies among the coordinates or angles.

Temporal encoding. Given a motion sequence X1:L,

whose kth row can be expressed as [xk,1, xk,2, · · · , xk,L],

the corresponding lth DCT coefficient of this row is

computed as

Ck,l =
√

2
L

∑L
n=1 xk,n

1√
1+δl1

cos
(
π
2L (2n− 1)(l − 1)

)
, (5)

where l ∈ {1, 2, · · · , L} and δij denotes the Kronecker

delta function, i.e.,

δij =

{
1 if i = j

0 if i 6= j.
(6)

Given such coefficients, the original pose representation

(coordinates or angles) can be obtained via the Inverse

Discrete Cosine Transform (IDCT) as

xk,n =
√

2
L

∑L
l=1 Ck,l

1√
1+δl1

cos
(
π
2L (2n− 1)(l − 1)

)
, (7)

where n ∈ {1, 2, · · · , L}.
To predict future poses XN+1:N+T , we make use

of the latest sub-sequence XN−M+1:N , which is also

the query in the attention model. Adopting the same
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Walking Eating Smoking Discussion
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Res. Sup. (Martinez et al., 2017) 23.2 40.9 61.0 66.1 16.8 31.5 53.5 61.7 18.9 34.7 57.5 65.4 25.7 47.8 80.0 91.3
convSeq2Seq (Li et al., 2018a) 17.7 33.5 56.3 63.6 11.0 22.4 40.7 48.4 11.6 22.8 41.3 48.9 17.1 34.5 64.8 77.6
LTD-50-25(Mao et al., 2019) 12.3 23.2 39.4 44.4 7.8 16.3 31.3 38.6 8.2 16.8 32.8 39.5 11.9 25.9 55.1 68.1
LTD-10-25(Mao et al., 2019) 12.6 23.6 39.4 44.5 7.7 15.8 30.5 37.6 8.4 16.8 32.5 39.5 12.2 25.8 53.9 66.7
LTD-10-10(Mao et al., 2019) 11.1 21.4 37.3 42.9 7.0 14.8 29.8 37.3 7.5 15.5 30.7 37.5 10.8 24.0 52.7 65.8

Pose Motion Att. (Mao et al., 2020) 10.0 19.5 34.2 39.8 6.4 14.0 28.7 36.2 7.0 14.9 29.9 36.4 10.2 23.4 52.1 65.4
Motion Att. + Post-fusion 9.9 19.3 33.7 39.0 6.2 13.7 28.1 35.3 6.8 14.5 29.0 35.5 9.9 22.8 51.0 64.0

LPJ (8 Sub-seq) (Cai et al., 2020) 7.9 14.5 29.1 34.5 8.4 18.1 37.4 45.3 6.8 13.2 24.1 27.5 8.3 21.7 43.9 48.0
Motion Att. + Post-fusion (8 Sub-seq) 7.9 14.4 25.5 29.6 7.9 17.5 37.4 45.2 7.0 14.3 25.4 29.0 8.6 20.4 37.7 43.6

Directions Greeting Phoning Posing
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Res. Sup. (Martinez et al., 2017) 21.6 41.3 72.1 84.1 31.2 58.4 96.3 108.8 21.1 38.9 66.0 76.4 29.3 56.1 98.3 114.3
convSeq2Seq (Li et al., 2018a) 13.5 29.0 57.6 69.7 22.0 45.0 82.0 96.0 13.5 26.6 49.9 59.9 16.9 36.7 75.7 92.9
LTD-50-25(Mao et al., 2019) 8.8 20.3 46.5 58.0 16.2 34.2 68.7 82.6 9.8 19.9 40.8 50.8 12.2 27.5 63.1 79.9
LTD-10-25(Mao et al., 2019) 9.2 20.6 46.9 58.8 16.7 33.9 67.5 81.6 10.2 20.2 40.9 50.9 12.5 27.5 62.5 79.6
LTD-10-10(Mao et al., 2019) 8.0 18.8 43.7 54.9 14.8 31.4 65.3 79.7 9.3 19.1 39.8 49.7 10.9 25.1 59.1 75.9

Pose Motion Att. (Mao et al., 2020) 7.4 18.4 44.5 56.5 13.7 30.1 63.8 78.1 8.6 18.3 39.0 49.2 10.2 24.2 58.5 75.8
Motion Att. + Post-fusion 7.2 18.0 43.4 55.0 13.6 29.9 62.9 77.2 8.4 18.0 38.3 48.4 9.8 23.7 57.8 74.9

LPJ (8 Sub-seq) (Cai et al., 2020) 11.1 22.7 48.0 58.4 13.2 28.0 64.5 77.9 10.8 19.6 37.6 46.8 8.3 22.8 65.6 81.8
Motion Att. + Post-fusion (8 Sub-seq) 11.3 22.9 50.6 62.6 12.9 26.6 68.2 85.4 11.2 19.6 37.7 44.1 7.7 21.3 62.2 78.7

Purchases Sitting Sitting Down Taking Photo
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Res. Sup. (Martinez et al., 2017) 28.7 52.4 86.9 100.7 23.8 44.7 78.0 91.2 31.7 58.3 96.7 112.0 21.9 41.4 74.0 87.6
convSeq2Seq (Li et al., 2018a) 20.3 41.8 76.5 89.9 13.5 27.0 52.0 63.1 20.7 40.6 70.4 82.7 12.7 26.0 52.1 63.6
LTD-50-25(Mao et al., 2019) 15.2 32.9 64.9 78.1 10.4 21.9 46.6 58.3 17.1 34.2 63.6 76.4 9.6 20.3 43.3 54.3
LTD-10-25(Mao et al., 2019) 15.5 32.3 63.6 77.3 10.4 21.4 45.4 57.3 17.0 33.4 61.6 74.4 9.9 20.5 43.8 55.2
LTD-10-10(Mao et al., 2019) 13.9 30.3 62.2 75.9 9.8 20.5 44.2 55.9 15.6 31.4 59.1 71.7 8.9 18.9 41.0 51.7

Pose Motion Att. (Mao et al., 2020) 13.0 29.2 60.4 73.9 9.3 20.1 44.3 56.0 14.9 30.7 59.1 72.0 8.3 18.4 40.7 51.5
Motion Att. + Post-fusion 12.8 28.7 59.4 72.8 9.1 19.7 43.7 55.4 14.7 30.4 58.4 71.3 8.2 18.1 40.2 51.1

LPJ (8 Sub-seq) (Cai et al., 2020) 18.5 38.1 61.8 69.6 9.5 23.9 49.8 61.8 11.2 29.9 59.8 68.4 6.3 14.5 38.8 49.4
Motion Att. + Post-fusion (8 Sub-seq) 18.1 36.8 58.4 67.9 9.9 24.3 53.8 66.3 10.4 26.6 54.6 66.3 5.9 14.8 38.0 49.4

Waiting Walking Dog Walking Together Average
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Res. Sup. (Martinez et al., 2017) 23.8 44.2 75.8 87.7 36.4 64.8 99.1 110.6 20.4 37.1 59.4 67.3 25.0 46.2 77.0 88.3
convSeq2Seq (Li et al., 2018a) 14.6 29.7 58.1 69.7 27.7 53.6 90.7 103.3 15.3 30.4 53.1 61.2 16.6 33.3 61.4 72.7
LTD-50-25(Mao et al., 2019) 10.4 22.1 47.9 59.2 22.8 44.7 77.2 88.7 10.3 21.2 39.4 46.3 12.2 25.4 50.7 61.5
LTD-10-25(Mao et al., 2019) 10.5 21.6 45.9 57.1 22.9 43.5 74.5 86.4 10.8 21.7 39.6 47.0 12.4 25.2 49.9 60.9
LTD-10-10(Mao et al., 2019) 9.2 19.5 43.3 54.4 20.9 40.7 73.6 86.6 9.6 19.4 36.5 44.0 11.2 23.4 47.9 58.9

Pose Motion Att. (Mao et al., 2020) 8.7 19.2 43.4 54.9 20.1 40.3 73.3 86.3 8.9 18.4 35.1 41.9 10.4 22.6 47.1 58.3
Motion Att. + Post-fusion 8.4 18.7 42.5 53.8 19.6 39.5 71.7 84.1 8.5 17.9 34.3 41.1 10.2 22.2 46.3 57.3

LPJ (8 Sub-seq) (Cai et al., 2020) 8.4 21.5 53.9 69.8 22.9 50.4 100.8 119.8 8.7 18.3 34.2 44.1 10.7 23.8 50.0 60.2
Motion Att. + Post-fusion (8 Sub-seq) 9.0 22.5 55.7 71.1 29.5 54.8 100.3 119.0 8.0 17.6 33.2 42.0 11.0 23.6 49.2 60.0

Table 1 Short-term prediction of 3D joint positions on H3.6M. The error is measured in millimeter. For “LTD”, we use the
number of observed frames and that of future frames to predict during training to distinguish different models. For instance,
“LTD-50-25” means the model is trained to observe past 50 frames and predict future 25 frames. Following QuaterNet (Pavllo
et al., 2019), we report the average error on 256 sub-sequences except for those with “(8 Sub-seq)” after their method names is
averaging over 8 sub-sequences per action. Our approach achieves state of the art performance across all 15 actions at almost
all time horizons, especially for actions with a clear repeated history, such as “Walking”. The proposed extension “Post-fusion”
further improves the results compared to the base model “Pose Motion Att.”.

Walking Eating Smoking Discussion Average
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

LPJ w/ att., w/o prog., w/o dict. (Cai et al., 2020) 10.5 17.1 31.9 35.7 10.1 21.2 40.7 47.5 8.6 15.9 26.5 30.4 10.6 24.1 47.5 51.3 9.9 19.5 36.6 41.2
Pose Motion Att. 8.1 14.7 25.0 29.4 8.2 18.2 38.6 46.9 7.0 14.5 25.9 29.2 8.8 21.7 40.0 45.9 8.1 17.3 32.4 37.9

Motion Att. + Post-fusion 7.9 14.4 25.5 29.6 7.9 17.5 37.4 45.2 7.0 14.3 25.4 29.0 8.6 20.4 37.7 43.6 7.9 16.7 31.5 36.9

Table 2 Short-term prediction of 3D joint positions on 4 actions of H3.6. Since LPJ (Cai et al., 2020) only provide their results
on 4 action of H3.6M, we compare our results with that of LPJ (Cai et al., 2020) on these actions. The “att.”, “prog.” and
“dict.” refer to attention-based prediction, progressive prediction and motion dictionary which are the 3 components proposed
in LPJ (Cai et al., 2020). With only the attention module, our method outperforms that of LPJ (Cai et al., 2020) by a large
margin on all cases.

padding strategy as in (Mao et al., 2019), we replicate

the last observed pose XN T times to generate a se-

quence of length M + T and the DCT coefficients of

this sequence are denoted as D ∈ RK×(M+T ). We then

aim to predict DCT coefficients of the future sequence

XN−M+1:N+T given D and the attention model’s out-

put U.

Spatial encoding. To capture spatial dependencies

between different joint coordinates or angles, we regard

the human body as a fully-connected graph with K

nodes. The input to a graph convolutional layer m is a

matrix H(m) ∈ RK×F , where each row is the F dimen-

sional feature vector of one node. For example, for the

first layer, the network takes as input the K×2(M+T )

matrix that concatenates D and U. A graph convolu-

tional layer then outputs a K × F̂ matrix of the form

H(m+1) = σ(A(m)H(m)W(m)) , (8)

where A(m) ∈ RK×K is the trainable adjacency matrix

of layer m, representing the strength of the connectivity

between nodes, W(m) ∈ RF×F̂ also encodes trainable
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weights but used to extract features, and σ(·) is an acti-

vation function, such as tanh(·). We stack several such

layers to form our GCN-based predictor.

Given D and U, the predictor learns a residual be-

tween the DCT coefficients D of the padded sequence

and those of the true sequence. By applying IDCT to

the predicted DCT coefficients, we obtain the coor-

dinates or angles X̂N−M+1:N+T , whose last T poses

X̂N+1:N+T are predictions in the future.

3.3 Fusion Model

As mentioned before, different activities/sequences may

benefit from using attention at different levels, i.e., full

body, parts, or individual joints. To model this, we in-

troduce a fusion model that automatically combines

different attention model and obtains the best-suited

attention level for the current context. Specifically, par-

titioning the human skeleton into full pose, body parts

and individual joints, corresponding to different choices

of P in Section 3.1, we compute the motion attentions

Upose, Upart, and Ujoint, respectively, and treat them

as motion priors. We then study the three different ways

to exploit these motion priors depicted by Fig. 4. The

first one (Fig. 4(a)) consists of simply concatenating

them with the DCT coefficients D of the padded se-

quence before being fed to the predictor. The other two

ways both involve training a fusion model which out-

puts 3 normalized weights, one for each type of motion

prior. The difference is where it is applied. For pre-

fusion shown in Fig. 4(b), the fusion model is used to

fuse the outputs of the motion models before fed into

the predictor, while in post-fusion, the fusion model is

trained to combine the predictions from three different

predictors given different level of motion attention out-

puts. As verified by our experiments, the post-fusion

model of Fig. 4(c) yields the best performance, and we

therefore adopt it for our approach.

3.4 Training

Let us now introduce the loss functions we use to train

our model on either 3D coordinates or joint angles.

For 3D joint coordinates prediction, we make use of

the Mean Per Joint Position Error (MPJPE) proposed

in (Ionescu et al., 2014). In particular, for one training

sample, this yields the loss

` =
1

J(M + T )

M+T∑

t=1

J∑

j=1

‖p̂t,j − pt,j‖2 , (9)

where p̂t,j ∈ R3 represents the 3D coordinates of the

jth joint of the tth human pose in X̂N−M+1:N+T , and

pt,j ∈ R3 is the corresponding ground truth.

For the angle-based representation, we use the aver-

age `1 distance between the predicted joint angles and

the ground truth as loss. For one sample, this can be

expressed as

` =
1

K(M + T )

M+T∑

t=1

K∑

k=1

|x̂t,k − xt,k| , (10)

where x̂t,k is the predicted kth angle of the tth pose

in X̂N−M+1:N+T and xt,k is the corresponding ground

truth.

3.5 Network Structure

As shown in Fig. 2, our motion prediction framework

consists of two modules: a motion attention model and

a predictor. For the attention model, we use the same

architecture for fpq and fpk . Specifically, we use a net-

work consisting of two 1D convolutional layers, each of

which is followed by a ReLU activation function. In our

experiments, the kernel size of these two layers is 6 and

5, respectively, to obtain a receptive field of 10 frames.

The dimension of the hidden features, the query vector

qp and the key vectors {kpi }
N−M−T+1
i=1 is set to 256.

For the predictor, we use the same GCN with resid-

ual structure as in our previous work (Mao et al., 2019).

It is made of 12 residual blocks, each of which contains

two graph convolutional layers, with an additional ini-

tial layer to map the DCT coefficients to features and

a final layer to decode the features to DCT residuals.

Details of the predictor network structure are shown in

Fig. 3. The learnable weight matrix W of each layer is

of size 256×256, and the size of the learnable adjacency

matrix A depends on the dimension of one human pose.

For example, for 3D coordinates, A is of size 66 × 66.

Thanks to the simple structure of our attention model,

the overall network remains still compact. Specifically,

in our experiments, it has around 3.4 million parame-

ters for both 3D coordinates and angles. The implemen-

tation details are included in supplementary material.

For the fusion model, we use a similar GCN-based net-

work structure as the predictor but without the overall

residual connection.

4 Experiments

Following previous works (Gopalakrishnan et al., 2019;

Li et al., 2018a; Mao et al., 2019; Martinez et al., 2017;
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Walking Eating Smoking Discussion
milliseconds 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

Res. Sup. (Martinez et al., 2017) 71.6 72.5 76.0 79.1 74.9 85.9 93.8 98.0 78.1 88.6 96.6 102.1 109.5 122.0 128.6 131.8
convSeq2Seq (Li et al., 2018a) 72.2 77.2 80.9 82.3 61.3 72.8 81.8 87.1 60.0 69.4 77.2 81.7 98.1 112.9 123.0 129.3
LTD-50-25(Mao et al., 2019) 50.7 54.4 57.4 60.3 51.5 62.6 71.3 75.8 50.5 59.3 67.1 72.1 88.9 103.9 113.6 118.5
LTD-10-25(Mao et al., 2019) 51.8 56.2 58.9 60.9 50.0 61.1 69.6 74.1 51.3 60.8 68.7 73.6 87.6 103.2 113.1 118.6
LTD-10-10(Mao et al., 2019) 53.1 59.9 66.2 70.7 51.1 62.5 72.9 78.6 49.4 59.2 66.9 71.8 88.1 104.5 115.5 121.6

Pose Motion Att. (Mao et al., 2020) 47.4 52.1 55.5 58.1 50.0 61.4 70.6 75.7 47.6 56.6 64.4 69.5 86.6 102.2 113.2 119.8
Motion Att. + Post-fusion 46.2 51.0 54.4 57.1 48.6 59.9 68.9 73.7 46.5 55.5 63.4 68.7 85.2 100.9 111.6 117.5

Directions Greeting Phoning Posing
milliseconds 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

Res. Sup. (Martinez et al., 2017) 101.1 114.5 124.5 129.1 126.1 138.8 150.3 153.9 94.0 107.7 119.1 126.4 140.3 159.8 173.2 183.2
convSeq2Seq (Li et al., 2018a) 86.6 99.8 109.9 115.8 116.9 130.7 142.7 147.3 77.1 92.1 105.5 114.0 122.5 148.8 171.8 187.4
LTD-50-25(Mao et al., 2019) 74.2 88.1 99.4 105.5 104.8 119.7 132.1 136.8 68.8 83.6 96.8 105.1 110.2 137.8 160.8 174.8
LTD-10-25(Mao et al., 2019) 76.1 91.0 102.8 108.8 104.3 120.9 134.6 140.2 68.7 84.0 97.2 105.1 109.9 136.8 158.3 171.7
LTD-10-10(Mao et al., 2019) 72.2 86.7 98.5 105.8 103.7 120.6 134.7 140.9 67.8 83.0 96.4 105.1 107.6 136.1 159.5 175.0

Pose Motion Att. (Mao et al., 2020) 73.9 88.2 100.1 106.5 101.9 118.4 132.7 138.8 67.4 82.9 96.5 105.0 107.6 136.8 161.4 178.2
Motion Att. + Post-fusion 72.4 87.4 99.3 105.7 100.5 116.5 130.7 136.7 66.5 82.3 95.8 104.6 105.8 134.1 157.5 172.9

Purchases Sitting Sitting Down Taking Photo
milliseconds 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

Res. Sup. (Martinez et al., 2017) 122.1 137.2 148.0 154.0 113.7 130.5 144.4 152.6 138.8 159.0 176.1 187.4 110.6 128.9 143.7 153.9
convSeq2Seq (Li et al., 2018a) 111.3 129.1 143.1 151.5 82.4 98.8 112.4 120.7 106.5 125.1 139.8 150.3 84.4 102.4 117.7 128.1
LTD-50-25(Mao et al., 2019) 99.2 114.9 127.1 134.9 79.2 96.2 110.3 118.7 100.2 118.2 133.1 143.8 75.3 93.5 108.4 118.8
LTD-10-25(Mao et al., 2019) 99.4 114.9 127.9 135.9 78.5 95.7 110.0 118.8 99.5 118.5 133.6 144.1 76.8 95.3 110.3 120.2
LTD-10-10(Mao et al., 2019) 98.3 115.1 130.1 139.3 76.4 93.1 106.9 115.7 96.2 115.2 130.8 142.2 72.5 90.9 105.9 116.3

Pose Motion Att. (Mao et al., 2020) 95.6 110.9 125.0 134.2 76.4 93.1 107.0 115.9 97.0 116.1 132.1 143.6 72.1 90.4 105.5 115.9
Motion Att. + Post-fusion 94.5 110.2 124.4 133.1 75.8 92.3 106.0 115.0 96.0 115.0 130.7 141.8 71.8 89.9 104.9 115.2

Waiting Walking Dog Walking Together Average
milliseconds 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

Res. Sup. (Martinez et al., 2017) 105.4 117.3 128.1 135.4 128.7 141.1 155.3 164.5 80.2 87.3 92.8 98.2 106.3 119.4 130.0 136.6
convSeq2Seq (Li et al., 2018a) 87.3 100.3 110.7 117.7 122.4 133.8 151.1 162.4 72.0 77.7 82.9 87.4 90.7 104.7 116.7 124.2
LTD-50-25(Mao et al., 2019) 77.2 90.6 101.1 108.3 107.8 120.3 136.3 146.4 56.0 60.3 63.1 65.7 79.6 93.6 105.2 112.4
LTD-10-25(Mao et al., 2019) 75.1 88.7 99.5 106.9 105.8 118.7 132.8 142.2 58.0 63.6 67.0 69.6 79.5 94.0 105.6 112.7
LTD-10-10(Mao et al., 2019) 73.4 88.2 99.8 107.5 109.7 122.8 139.0 150.1 55.7 61.3 66.4 69.8 78.3 93.3 106.0 114.0

Pose Motion Att. (Mao et al., 2020) 74.5 89.0 100.3 108.2 108.2 120.6 135.9 146.9 52.7 57.8 62.0 64.9 77.3 91.8 104.1 112.1
Motion Att. + Post-fusion 72.7 86.9 97.6 105.1 105.1 117.5 131.6 141.4 51.2 56.2 60.3 63.2 75.9 90.4 102.5 110.1

Table 3 Long-term prediction of 3D joint positions on H3.6M. On average, our approach performs the best. Note that, on
“Walking” at 1000ms, the 3D error of our method is 17% lower than that of LTD-10-10 (Mao et al., 2019), which uses the
same predictor but no attention model.

(a)Discussion (b)Walking Dog

(c)Walking

Fig. 5 Qualitative comparison of short-term (“Discussion” and “Walking Dog”) and long-term (“Walking”) predictions on
H3.6M. From top to bottom, we show the ground truth, and the results of LTD-10-25, LTD-10-10 and our approach on 3D
positions. The ground truth is shown as blue-red skeletons, and the predictions as green-purple ones.

Pavllo et al., 2019), we evaluate our method on Hu-

man3.6m (H3.6M) (Ionescu et al., 2014) and AMASS (Mah-

mood et al., 2019). We further evaluate our method

on 3DPW (von Marcard et al., 2018) using our model

trained on AMASS to demonstrate the generalizabil-

ity of our approach. Below, we discuss these datasets,

the evaluation metric and the baseline methods, and

present our results using joint angles and 3D coordi-

nates.

4.1 Datasets

Human3.6M (Ionescu et al., 2014) is the most widely

used benchmark dataset for motion prediction. It de-
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Walking Eating Smoking Discussion
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Res. sup. (Martinez et al., 2017) 0.36 0.63 0.95 1.04 0.30 0.58 0.90 1.01 0.37 0.73 1.19 1.33 0.56 0.90 1.37 1.51
convSeq2Seq (Li et al., 2018a) 0.28 0.47 0.68 0.75 0.21 0.35 0.57 0.71 0.29 0.50 0.94 0.90 0.31 0.63 0.89 1.01
LTD-10-25 (Mao et al., 2019) 0.26 0.47 0.73 0.80 0.21 0.45 0.71 0.82 0.26 0.43 0.74 0.86 0.48 0.67 1.10 1.28
LTD-10-10 (Mao et al., 2019) 0.25 0.45 0.72 0.78 0.20 0.41 0.70 0.82 0.25 0.41 0.71 0.83 0.47 0.68 1.09 1.25

QuaterNet vel. (Pavllo et al., 2019) 0.28 0.49 0.76 0.83 0.22 0.47 0.76 0.88 0.28 0.47 0.79 0.91 0.48 0.74 1.20 1.37
Pose Motion Att. (Mao et al., 2020) 0.24 0.43 0.66 0.71 0.20 0.41 0.68 0.80 0.25 0.41 0.71 0.83 0.44 0.68 1.09 1.25

Motion Att. + Post-fusion 0.24 0.43 0.66 0.71 0.20 0.41 0.69 0.80 0.25 0.41 0.74 0.86 0.44 0.68 1.09 1.26

MHU (8 Sub-seq) (Tang et al., 2018) 0.32 0.53 0.69 0.77 - - - - - - - - 0.31 0.66 0.93 1.00
LJP (8 Sub-seq) (Cai et al., 2020) 0.17 0.30 0.51 0.55 0.16 0.29 0.50 0.61 0.21 0.40 0.85 0.78 0.19 0.54 0.89 0.94

Motion Att. + Post-fusion (8 Sub-seq) 0.18 0.31 0.48 0.52 0.16 0.28 0.47 0.59 0.22 0.41 0.86 0.80 0.19 0.51 0.77 0.85
Directions Greeting Phoning Posing

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Res. sup. (Martinez et al., 2017) 0.33 0.59 0.98 1.15 0.66 1.00 1.44 1.59 0.44 0.73 1.15 1.31 0.51 0.88 1.39 1.59
convSeq2Seq (Li et al., 2018a) 0.42 0.65 0.81 0.91 0.52 0.87 1.27 1.43 0.59 1.14 1.51 1.64 0.33 0.65 1.24 1.52
LTD-10-25 (Mao et al., 2019) 0.20 0.41 0.76 0.92 0.52 0.84 1.24 1.41 0.34 0.57 0.96 1.09 0.31 0.60 1.06 1.24
LTD-10-10 (Mao et al., 2019) 0.19 0.39 0.75 0.91 0.53 0.82 1.22 1.39 0 .33 0.54 0.94 1.07 0.30 0.61 1.02 1.20

QuaterNet vel. (Pavllo et al., 2019) 0.24 0.46 0.84 1.01 0.61 0.93 1.34 1.51 0.36 0.61 0.98 1.14 0.38 0.71 1.20 1.39
Pose Motion Att. (Mao et al., 2020) 0.19 0.38 0.74 0.90 0.50 0.79 1.21 1.38 0.32 0.54 0.94 1.07 0.27 0.57 1.00 1.22

Motion Att. + Post-fusion 0.19 0.38 0.73 0.89 0.50 0.81 1.19 1.36 0.32 0.54 0.93 1.06 0.29 0.57 1.01 1.21

MHU (8 Sub-seq) (Tang et al., 2018) - - - - 0.54 0.87 1.27 1.45 - - - - 0.33 0.64 1.22 1.47
LJP (8 Sub-seq) (Cai et al., 2020) 0.22 0.39 0.62 0.69 0.34 0.58 0.94 1.12 0.46 0.90 1.20 1.37 0.19 0.44 1.07 1.30

Motion Att. + Post-fusion (8 Sub-seq) 0.25 0.42 0.63 0.72 0.35 0.59 0.92 1.10 0.53 1.01 1.31 1.43 0.20 0.44 1.03 1.28
Purchases Sitting Sitting Down Taking Photo

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Res. sup. (Martinez et al., 2017) 0.58 0.98 1.37 1.47 0.44 0.81 1.29 1.46 0.62 1.07 1.65 1.85 0.32 0.56 0.94 1.09
convSeq2Seq (Li et al., 2018a) 0.62 0.89 1.18 1.25 0.41 0.64 1.03 1.20 0.41 0.76 1.13 1.26 0.29 0.52 0.81 0.95
LTD-10-25 (Mao et al., 2019) 0.47 0.84 1.24 1.33 0.33 0.52 0.92 1.06 0.44 0.75 1.21 1.40 0.21 0.35 0.62 0.74
LTD-10-10 (Mao et al., 2019) 0.45 0.80 1.22 1.32 0.28 0.56 0.94 1.08 0.43 0.74 1.20 1.38 0.20 0.34 0.61 0.72

QuaterNet vel. (Pavllo et al., 2019) 0.54 0.92 1.36 1.47 0.34 0.59 1.00 1.15 0.47 0.81 1.31 1.50 0.23 0.39 0.69 0.81
Pose Motion Att. (Mao et al., 2020) 0.43 0.79 1.21 1.32 0.27 0.56 0.94 1.06 0.43 0.74 1.20 1.39 0.19 0.34 0.60 0.72

Motion Att. + Post-fusion 0.43 0.78 1.20 1.30 0.27 0.56 0.96 1.05 0.43 0.73 1.19 1.38 0.19 0.34 0.60 0.71

MHU (8 Sub-seq) (Tang et al., 2018) - - - - 0.27 0.54 0.84 0.96 - - - - - - - -
LJP (8 Sub-seq) (Cai et al., 2020) 0.38 0.64 1.13 1.21 0.27 0.44 0.78 0.96 0.27 0.54 0.88 0.97 0.13 0.33 0.60 0.74

Motion Att. + Post-fusion (8 Sub-seq) 0.44 0.65 1.00 1.06 0.29 0.46 0.81 0.99 0.30 0.63 0.91 1.02 0.15 0.35 0.57 0.69
Waiting Walking Dog Walking Together Average

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Res. sup. (Martinez et al., 2017) 0.44 0.74 1.27 1.46 0.53 0.85 1.22 1.33 0.36 0.59 0.87 0.99 0.45 0.78 1.20 1.35
convSeq2Seq (Li et al., 2018a) 0.33 0.65 1.13 1.33 0.58 0.97 1.36 1.49 0.28 0.54 0.72 0.75 0.39 0.68 1.02 1.14
LTD-10-25 (Mao et al., 2019) 0.29 0.49 0.92 1.07 0.44 0.71 1.04 1.14 0.26 0.43 0.67 0.77 0.34 0.57 0.93 1.06
LTD-10-10 (Mao et al., 2019) 0.28 0.47 0.90 1.05 0.43 0.69 1.02 1.13 0.24 0.40 0.63 0.73 0.32 0.55 0.91 1.04

QuaterNet vel. (Pavllo et al., 2019) 0.32 0.54 1.00 1.15 0.48 0.78 1.12 1.21 0.28 0.45 0.69 0.79 0.37 0.62 1.00 1.14
Pose Motion Att. (Mao et al., 2020) 0.27 0.47 0.91 1.07 0.42 0.68 1.01 1.12 0.24 0.39 0.62 0.71 0.31 0.55 0.90 1.04

Motion Att. + Post-fusion 0.27 0.47 0.91 1.06 0.42 0.68 1.00 1.11 0.24 0.39 0.61 0.71 0.31 0.55 0.90 1.03

MHU (8 Sub-seq) (Tang et al., 2018) - - - - 0.56 0.88 1.21 1.37 - - - - 0.39 0.68 1.01 1.13
LJP (8 Sub-seq) (Cai et al., 2020) 0.21 0.48 0.86 1.08 0.40 0.75 1.05 1.23 0.14 0.32 0.52 0.55 0.25 0.49 0.83 0.94

Motion Att. + Post-fusion (8 Sub-seq) 0.23 0.49 0.90 1.11 0.46 0.77 1.05 1.21 0.14 0.32 0.50 0.55 0.27 0.51 0.81 0.93

Table 4 Short-term prediction of joint angles on H3.6M. Following QuaterNet (Pavllo et al., 2019), we report the average
error on 256 sub-sequences, except when indicating “(8 Sub-seq)” after a method’s name, in which case the error is averaged
over 8 sub-sequences per action, as reported in the corresponding paper.

picts seven actors performing 15 actions. Each human

pose is represented as a 32-joint skeleton. We compute

the 3D coordinates of the joints by applying forward

kinematics on a standard skeleton as in (Mao et al.,

2019). Following (Li et al., 2018a; Mao et al., 2019; Mar-

tinez et al., 2017), we remove the global rotation, trans-

lation and constant angles or 3D coordinates of each

human pose, and down-sample the motion sequences

to 25 frames per second. As previous work (Li et al.,

2018a; Mao et al., 2019; Martinez et al., 2017), we test

our method on subject 5 (S5). However, instead of test-

ing on only 8 random sub-sequences per action, which

was shown in (Pavllo et al., 2019) to lead to high vari-

ance, we report our results on 256 sub-sequences per ac-

tion. Nevertheless, for the baselines (Tang et al., 2018;

Cai et al., 2020) whose code is not publicly available,

we compare our results to theirs on the same 8 sub-

sequences of each action.

AMASS. The Archive of Motion Capture as Surface

Shapes (AMASS) dataset (Mahmood et al., 2019) is a

recently published human motion dataset, which unifies

many mocap datasets, such as CMU, KIT and BML-

rub, using a SMPL (Loper et al., 2015; Romero et al.,

2017) parameterization to obtain a human mesh. SMPL

represents a human by a shape vector and joint rota-

tion angles. The shape vector, which encompasses co-

efficients of different human shape bases, defines the

human skeleton. We obtain human poses in 3D by ap-

plying forward kinematics to one human skeleton. In

AMASS, a human pose is represented by 52 joints, in-

cluding 22 body joints and 30 hand joints. Since we fo-

cus on predicting human body motion, we discard the

hand joints and the 4 static joints, leading to an 18-

joint human pose. As for H3.6M, we down-sample the

frame-rate to 25Hz. Since most sequences of the official

testing split1 of AMASS consist of transition between

two irrelevant actions, such as dancing to kicking, kick-

ing to pushing, they are not suitable to evaluate our

prediction algorithms, which assume that the history

is relevant to forecast the future. Therefore, instead of

1 Described at https://github.com/nghorbani/amass
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Walking Eating Smoking Discussion
milliseconds 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

Res. sup. (Martinez et al., 2017) 1.21 1.32 1.41 1.47 1.19 1.36 1.47 1.55 1.44 1.57 1.68 1.76 1.78 1.92 2.04 2.12
convSeq2Seq (Li et al., 2018a) 0.87 0.96 0.97 1.00 0.86 0.90 1.12 1.24 0.98 1.11 1.42 1.67 1.42 1.76 1.90 2.03
LTD-10-25 (Mao et al., 2019) 0.92 0.97 1.03 1.05 0.99 1.16 1.26 1.33 1.07 1.26 1.41 1.55 1.48 1.59 1.68 1.76

LTD-10-10 (Mao et al., 2019) 0.95 1.03 1.09 1.12 0.98 1.15 1.28 1.36 1.04 1.21 1.36 1.51 1.47 1.59 1.71 1.79
Pose Motion Att. (Mao et al., 2020) 0.84 0.91 0.99 1.03 0.98 1.14 1.24 1.31 1.04 1.20 1.38 1.50 1.49 1.62 1.72 1.82

Motion Att. + Post-fusion 0.85 0.91 0.99 1.03 0.98 1.13 1.23 1.30 1.07 1.23 1.38 1.47 1.50 1.57 1.72 1.79

MHU (8 Sub-seq) (Tang et al., 2018) 1.44 1.46 - 1.44 - - - - - - - - 1.37 1.66 - 1.88
Motion Att. + Post-fusion (8 Sub-seq) 0.58 0.62 0.61 0.63 0.73 0.80 0.99 1.09 0.86 1.00 1.34 1.57 1.27 1.52 1.65 1.71

Directions Greeting Phoning Posing
milliseconds 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

Res. sup. (Martinez et al., 2017) 1.35 1.50 1.63 1.72 1.82 2.02 2.16 2.21 1.52 1.70 1.85 1.96 1.90 2.13 2.37 2.46
convSeq2Seq (Li et al., 2018a) 1.00 1.18 1.41 1.44 1.73 1.75 1.92 1.90 1.66 1.81 1.93 2.05 1.95 2.26 2.49 2.63
LTD-10-25 (Mao et al., 2019) 1.10 1.23 1.35 1.41 1.63 1.81 1.95 2.01 1.29 1.48 1.63 1.74 1.54 1.81 2.10 2.23
LTD-10-10 (Mao et al., 2019) 1.09 1.21 1.34 1.41 1.63 1.82 1.99 2.06 1.29 1.50 1.67 1.78 1.53 1.81 2.12 2.25

Pose Motion Att. (Mao et al., 2020) 1.08 1.22 1.35 1.42 1.62 1.79 1.93 1.99 1.28 1.49 1.65 1.76 1.55 1.80 2.10 2.24
Motion Att. + Post-fusion 1.08 1.21 1.34 1.41 1.59 1.75 1.87 1.93 1.27 1.48 1.65 1.76 1.53 1.78 2.08 2.22

MHU (8 Sub-seq) (Tang et al., 2018) - - - - 1.75 1.74 - 1.87 - - - - 1.82 2.17 - 2.51
Motion Att. + Post-fusion (8 Sub-seq) 0.83 1.02 1.25 1.30 1.45 1.46 1.60 1.56 1.41 1.56 1.67 1.67 1.54 1.83 2.15 2.33

Purchases Sitting Sitting Down Taking Photo
milliseconds 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

Res. sup. (Martinez et al., 2017) 1.65 1.80 1.92 1.98 1.76 1.99 2.18 2.28 2.20 2.46 2.71 2.84 1.35 1.55 1.73 1.85
convSeq2Seq (Li et al., 2018a) 1.68 1.65 2.13 2.50 1.31 1.43 1.66 1.72 1.45 1.70 1.85 1.98 1.09 1.18 1.27 1.32
LTD-10-25 (Mao et al., 2019) 1.51 1.66 1.80 1.87 1.34 1.60 1.79 1.87 1.71 1.95 2.17 2.26 0.94 1.10 1.23 1.34
LTD-10-10 (Mao et al., 2019) 1.52 1.68 1.83 1.91 1.34 1.60 1.79 1.89 1.68 1.91 2.13 2.22 0.93 1.08 1.22 1.34

Pose Motion Att. (Mao et al., 2020) 1.47 1.62 1.75 1.82 1.33 1.59 1.79 1.88 1.68 1.90 2.12 2.22 0.92 1.07 1.21 1.33
Motion Att. + Post-fusion 1.46 1.61 1.73 1.81 1.32 1.58 1.78 1.87 1.68 1.90 2.12 2.21 0.92 1.07 1.21 1.32

MHU (8 Sub-seq) (Tang et al., 2018) - - - - 1.04 1.14 - 1.35 - - - - - - - -
Motion Att. + Post-fusion (8 Sub-seq) 1.43 1.50 1.93 2.25 1.14 1.27 1.49 1.54 1.17 1.41 1.54 1.68 0.79 0.86 0.94 1.01

Waiting Walking Dog Walking Together Average
milliseconds 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

Res. sup. (Martinez et al., 2017) 1.74 1.95 2.13 2.25 1.50 1.68 1.77 1.86 1.18 1.30 1.38 1.45 1.57 1.75 1.90 1.99
convSeq2Seq (Li et al., 2018a) 1.68 2.02 2.33 2.45 1.73 1.85 1.99 2.04 0.82 0.89 0.95 1.29 1.35 1.50 1.69 1.82
LTD-10-25 (Mao et al., 2019) 1.30 1.48 1.63 1.74 1.30 1.45 1.55 1.64 0.91 0.98 1.02 1.06 1.27 1.44 1.57 1.66
LTD-10-10 (Mao et al., 2019) 1.30 1.47 1.63 1.75 1.31 1.48 1.59 1.68 0.89 0.98 1.03 1.08 1.26 1.44 1.59 1.68

Pose Motion Att. (Mao et al., 2020) 1.31 1.49 1.64 1.77 1.30 1.45 1.55 1.63 0.86 0.94 1.00 1.04 1.25 1.42 1.56 1.65
Motion Att. + Post-fusion 1.30 1.47 1.63 1.75 1.28 1.44 1.54 1.62 0.86 0.93 0.99 1.04 1.25 1.40 1.55 1.64

MHU (8 Sub-seq) (Tang et al., 2018) - - - - 1.67 1.81 - 1.90 - - - - 1.34 1.49 1.69 1.80
Motion Att. + Post-fusion (8 Sub-seq) 1.50 1.87 2.20 2.27 1.50 1.59 1.75 1.81 0.63 0.68 0.81 1.18 1.12 1.27 1.46 1.57

Table 5 Long-term prediction of joint angles on H3.6M.

using this official split, we treat BMLrub2 (522 min.

video sequence), as our test set as each sequence con-

sists of one actor performing one type of action. We

then split the remaining parts of AMASS into training

and validation data.

3DPW. The 3D Pose in the Wild dataset (3DPW) (von

Marcard et al., 2018) consists of challenging indoor and

outdoor actions. We only evaluate our model trained on
AMASS on the test set of 3DPW to show the general-

ization of our approach.

As mentioned in Section 3.1, we model motion at-

tention at 3 different levels. The full-pose and individual-

joints ones are self-explanatory. For part-based motion

attention, we divide the human body into 5 parts fol-

lowing the human kinematic tree: torso (including neck

and head), left arm, right arm, left leg and right leg.

Each part consists of several human joints.

4.2 Evaluation Metrics and Baselines

Metrics. For the models that output 3D positions, we

report the Mean Per Joint Position Error (MPJPE)

(Ionescu et al., 2014) in millimeter, which is commonly

used in human pose estimation. For those that pre-

dict angles, we follow the standard evaluation proto-

2 Available at https://amass.is.tue.mpg.de/dataset.

col (Martinez et al., 2017; Li et al., 2018a; Mao et al.,

2019) and report the Euclidean distance in Euler angle

representation.

Baselines. We compare our approach with two RNN-

based methods, Res. sup. (Martinez et al., 2017) and

MHU (Tang et al., 2018), two feed-forward models, con-

vSeq2Seq (Li et al., 2018a) and LTD (Mao et al., 2019),

which constitutes the state of the art. We further com-

pare it with the concurrent work LPJ (Cai et al., 2020),

which exploits an attention-based transformer. The an-

gular results of Res. sup. (Martinez et al., 2017), con-

vSeq2Seq (Li et al., 2018a) on H3.6M are obtained by

running the official training code and report on 256

sub-sequences. For the other results of Res. sup. (Mar-

tinez et al., 2017) and convSeq2Seq (Li et al., 2018a),

we adapt the code provided by the authors for H3.6M

to 3D and AMASS. The results of MHU (Tang et al.,

2018) and LPJ (Cai et al., 2020) on H3.6M are directly

taken from the respective paper. For our LTD (Mao

et al., 2019), we rely on the pre-trained models released

for H3.6M, and train the model on AMASS using the

released code.

While Res. sup. (Martinez et al., 2017), convSeq2Seq

(Li et al., 2018a) and MHU (Tang et al., 2018) are all

trained to generate 25 future frames, LTD (Mao et al.,

2019) has 3 different models, which we refer to as LTD-

50-25 (Mao et al., 2019), LTD-10-25 (Mao et al., 2019),
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(a) Left foot of Walking (b) Right wrist of Discussion
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Fig. 6 Visualization of attention maps and joint trajectories. The x-axis denotes the frame index, with prediction starting
at frame 0. The y-axis of the attention map (top) is the prediction step. Specifically, since the model is trained to predict 10
future frames, we recursively perform prediction for 3 steps to generate 30 frames. Each row of an attention map is then the
attention vector when predicting the corresponding 10 future frames. For illustration purpose, we show per-frame attention,
which represents the attention for its motion subsequence consisting of M-1 frames forward and T frames afterwards. (a)
Predicted attention map and trajectory of the left foot’s x coordinate for ’Walking’, where the future motion closely resembles
that between frames −45 and −10. Our model correctly attends to that very similar motion in the history. (b) Predicted
attention map and trajectory of the right wrist’s x coordinate for ’Discussion’. In this case, the attention model searches for
the most similar motion in the history. For example, in the 1st prediction step, to predict frames 0 to 10 where a peak occurs,
the model focuses on frames −30 to −20, where a similar peak pattern occurs.

AMASS-BMLrub 3DPW
milliseconds 80 160 320 400 560 720 880 1000 80 160 320 400 560 720 880 1000

convSeq2Seq (Li et al., 2018a) 20.6 36.9 59.7 67.6 79.0 87.0 91.5 93.5 18.8 32.9 52.0 58.8 69.4 77.0 83.6 87.8
LTD-10-25 (Mao et al., 2019) 11.0 20.7 37.8 45.3 57.2 65.7 71.3 75.2 12.6 23.2 39.7 46.6 57.9 65.8 71.5 75.5
LTD-10-10 (Mao et al., 2019) 10.3 19.3 36.6 44.6 61.5 75.9 86.2 91.2 12.0 22.0 38.9 46.2 59.1 69.1 76.5 81.1

Pose Motion Att. (Mao et al., 2020) 11.3 20.7 35.7 42.0 51.7 58.6 63.4 67.2 12.6 23.1 39.0 45.4 56.0 63.6 69.7 73.7
Motion Att. + Post-fusion 11.0 20.3 35.0 41.2 50.7 57.4 61.9 65.8 12.4 22.6 38.1 44.4 54.7 62.1 67.9 71.8

LTD-10-25 (Mao et al., 2019) 0.21 0.37 0.62 0.71 0.83 0.91 0.95 0.98 0.38 0.64 1.00 1.16 1.34 1.50 1.60 1.69
Pose Motion Att. (Mao et al., 2020) 0.20 0.36 0.57 0.65 0.75 0.83 0.87 0.92 0.38 0.64 0.99 1.15 1.32 1.49 1.59 1.68

Motion Att. + Post-fusion 0.20 0.36 0.56 0.64 0.74 0.81 0.86 0.90 0.38 0.63 0.98 1.13 1.30 1.47 1.57 1.66

Table 6 Short-term and long-term prediction of 3D joint positions (upper) and joint angles (bottom) on BMLrub (left) and
3DPW (right).

and LTD-10-10 (Mao et al., 2019). The two numbers af-

ter the method name indicate the number of observed

past frames and that of future frames to predict, respec-

tively, during training. For example, LTD-10-25 (Mao

et al., 2019) means that the model is trained to take the

past 10 frames as input to predict the future 25 frames.

4.3 Results

Following the setting of our baselines (Martinez et al.,

2017; Li et al., 2018a; Tang et al., 2018; Mao et al.,

2019), we report results for short-term (< 500ms) and

long-term (> 500ms) prediction. On H3.6M, our model

is trained using the past 50 frames to predict the future

10 frames, and we produce poses further in the future

by recursively applying the predictions as input to the

model. On AMASS, our model is trained using the past

50 frames to predict the future 25 frames.

Human3.6M. In Tables 1 and 3, we provide the H3.6M

results for short-term and long-term prediction in 3D

space, respectively. Note that we outperform all the

baselines on average for both short-term and long-term

prediction. In particular, our method yields larger im-

provements on activities with a clear repeated history,

such as “Walking” and “Walking Together”. Neverthe-

less, our approach remains competitive on the other ac-

tions. Note that we consistently outperform LTD-50-25,

which is trained on the same number of past frames as

our approach. This, we believe, evidences the benefits

of exploiting attention on the motion history.

Moreover, the performance of our motion attention

model (denoted as “Pose Motion Att.” in the tables) is

consistently improved with the use of our fusion model,

for both short-term and long-term prediction. Our ap-

proach performs comparable to the concurrent LPJ (Cai

et al., 2020). Note that our motion attention strategy

and fusion model are orthogonal to the progressive joint

prediction and motion dictionary of LPJ (Cai et al.,

2020), and thus one could expect further improvement

by combining these two strategies. We further show that

our methods with only the attention module outper-

forms that of LPJ (Cai et al., 2020) by a large margin

in Table 2.

Let us now focus on the LTD (Mao et al., 2019) base-

line, which constitutes the state of the art. Although

LTD-10-10 is very competitive for short-term predic-

tion, when it comes to generate poses in the further

future, it yields higher average error, i.e., 114.0mm at

1000ms. By contrast, LTD-10-25 and LTD-50-25 achieve

good performance at 880ms and above, but perform

worse than LTD-10-10 at other time horizons. Our ap-

proach with a unified model, however, yields state-of-

the-art performance for both short-term and long-term

predictions. To summarize, our motion attention model
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Fig. 7 Visualization of attention maps and joint coordinate trajectories for “Smoking” on H3.6M. (a) Results of our model
observing 50 past frames. (b) Results of our model observing 100 frames. (c) Results obtained when replacing the motion of
the past 40 frames with a constant pose.

milliseconds 80 160 320 400 560 720 880 1000
Ours-50 10.7 22.4 46.9 58.3 79.0 97.1 111.0 121.1
Ours-100 10.7 22.5 46.4 57.5 77.8 95.1 107.6 116.9

Table 7 Short-term and long-term prediction of 3D posi-
tions on selected sequences where similar patterns occur in
the longer history. The number after “Ours” indicates the
observed frames during testing. Both methods observed 50
frames during training.

improves the performance of the predictor for short-

term prediction and further enables it to generate bet-

ter long-term predictions. This is further confirmed by

Tables 4 and 5, where we report the short-term and

long-term prediction results in angle space on H3.6M,

and by the qualitative comparison in Fig. 5.

AMASS & 3DPW. The results of short-term and

long-term prediction in 3D on AMASS and 3DPW are

shown in Table 6. Our method consistently outperforms

baseline approaches, which further shows the benefits of

our motion attention model. Since none of the methods

were trained on 3DPW, these results further demon-

strate that our approach generalizes better to new datasets

than the baselines.

Visualisation of attention. In Fig. 6, we visualize

the attention maps computed by our motion attention

model on a few sampled joints for their corresponding

coordinate trajectories. In particular, we show atten-

tion maps for joints in a periodical motion (“Walking”)

and a non-periodical one (“Discussion”). In both cases,

the attention model can find the most relevant sub-

sequences in the history, which encode either a nearly

identical motion (periodical action), or a similar pat-

tern (non-periodical action).

Motion repeats itself in longer-term history. Our

model, which is trained with fixed-length observations,

can nonetheless exploit longer history at test time if it

is available. To evaluate this and our model’s ability to

capture long-range motion dependencies, we manually

sampled 100 sequences from the test set of H3.6M, in

which similar motion occurs in the further past than

that used to train our model.

In Table 7, we compare the results of a model trained

with 50 past frames and using either 50 frames (Ours-

50) or 100 frames (Ours-100) at test time. Although the

performance is close in the very short term (< 160ms),

the benefits of our model using longer history become

obvious when it comes to further future, leading to a

performance boost of 4.2mm at 1s. In Fig. 7, we com-

pare the attention maps and predicted joint trajecto-

ries of Ours-50 (a) and Ours-100 (b). The highlighted

regions (in red box) in the attention map demonstrate

that our model can capture the repeated motions in the

further history if it is available during test and improve

the motion prediction results.

To show the influence of further historical frames,

we replace the past 40 frames with a static pose, thus

removing the motion in that period, and then perform

prediction with this sequence. As shown in Fig. 7 (c),

attending to the similar motion between frames −80

and −60, yields a trajectory much closer to the ground

truth than only attending to the past 50 frames.

Importance of different levels of attention. Our

different levels of motion attention complement each

other in the two ways discussed below. Note that, in

this discussion, we categorize our 3 different levels of

motion attention into 2 relative levels: global and local.

For example, parts motion attention is referred to as

local-level attention when compared to full pose motion

attention, but as global-level attention when compared

to joint motion attention.

On one hand, modeling attention at a global level

is not effective for motions whose local movements are

not synchronized. Specifically, when the motion pat-

terns of different body parts/joints are different, com-

puting attention for them separately is more effective

than using one shared attention. Such out of sync mo-

tions are common in non-periodical actions and some-

times even occur in periodical ones, such as the one

shown in Figure 8. Specifically, in Figure 8, we compare

the attention maps generated by pose motion attention

(first row), joint motion attention (second row) and the

predicted trajectories (third row) of two different joints
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1
2
3
1
2
3

Pose Att.

Joint Att.

(a) Right hand of Walking (b) Right foot of Walking

-50 3020100-10-20-30-40 -50 3020100-10-20-30-40

0.1
0

0.1
0

100

0

200

0

-200

Frame Frame

Fig. 8 Visualization of attention maps and joint coordinate trajectories of different motion attentions for “Walking” on H3.6M.
Pose motion attention captures the repeated motion for right foot (first row of (b)) while miss the the motion pattern for right
hand (first row of (a)). Joint motion attention however, attends to the most relevant historical motion for both joints with two
different attention maps and leads to a better prediction.

1
2
3
1
2
3

Part Att.

Joint Att.

0.1
0

0.1
0

(a) Right knee of Taking Photo

-50 3020100-10-20-30-40

-100

-150

-200

(b) Right foot of Taking Photo

-50 3020100-10-20-30-40

-100

-200

-300

Frame Frame

Fig. 9 Visualization of attention maps and joint coordinate trajectories of different motion attentions for “Taking Photo” on
H3.6M. At the first prediction step, as highlighted in red box, part motion attention, which generates one attention map for
both joints by treating them as one body part, attends to historical motions that better reflect the current context.

Walking Eating Smoking Discussion Directions Greeting Phoning Posing
Pose Motion Att. (Mao et al., 2020) 58.1 75.7 69.5 119.8 106.5 138.8 105.0 178.2

Motion Att. + Post-fusion 57.1 73.7 68.7 117.5 105.7 136.7 104.6 172.9

Purchases Sitting SittingDown TakingPhoto Waiting WalkingDog WalkingTogether Average
Pose Motion Att. (Mao et al., 2020) 134.2 115.9 143.6 115.9 108.2 146.9 64.9 112.1

Motion Att. + Post-fusion 133.1 115.0 141.8 115.2 105.1 141.4 63.2 110.1

Table 8 Per-action 3D error at 1s on H3.6M.

R Knee (2) R Ankle (3) R Foot (4) R Toe (5) L Knee (7) L Ankle (8) L Foot (9) L Toe (10) Spine (12) Neck (13) Head (14)
Pose Motion Att. (Mao et al., 2020) 63.9 130.1 137.3 139.2 69.0 130.0 137.6 139.6 33.6 71.4 90.7

Motion Att. + Post-fusion 62.5 127.5 134.5 136.3 67.3 126.5 133.3 135.1 33.2 70.3 89.0

Head Top (15) L Shoulder (17) L Elbow (18) L Wrist (19) L Site (21) L Wrist End (22) R Shoulder (25) R Elbow (26) R Wrist (27) R Site (29) R Wrist End (30)
Pose Motion Att. (Mao et al., 2020) 98.9 69.4 110.4 152.8 156.7 184.3 69.4 126.3 178.7 179.9 229.4

Motion Att. + Post-fusion 96.8 68.4 108.9 150.5 154.3 181.4 68.2 125.0 176.2 177.3 226.0

Table 9 Per-joint 3D error at 1s on H3.6M. The numbers after the joint names are the joint index defined in H3.6M dataset.
The index starts from 0. Note that, we eliminate the joints that are fixed such as the “Hip (0)”. For joints that share same 3D
location, we only keep one of them in the table. For example, the 13th, 16th and 24th joints share the same 3D location, we
thus only show the results on the 13th one.

(right hand and right foot) in a “Walking” sequence. As

the motion patterns of the foot joint and hand joint are

not synchronized, pose motion attention correctly cap-

tures the repeated pattern of the foot while attending

to the wrong area for the hand. By contrast, joint mo-

tion attention, which generates two attention maps for

these two joints, attends to the most relevant historical

motions for both joints and leads to a better prediction.

On the other hand, relying purely on local-level at-

tention is not always optimal. Since local-level attention

is computed from only the history of local movements,

it may attend to sub-optimal areas in history, where

different local body parts/joints have no or multiple

similar motion patterns. Global-level attention helps to

disambiguate the motion in such situations. We pro-

vide one example of this in Figure 9, where we show

the attention maps and the trajectories predicted with

part motion attention and joint motion attention for a

“Taking Photo” sequence. Given the historical motion

of individual joints only, joint motion attention wrongly

attends to the area where a sharp motion in the nega-

tive direction occurs. By contrast, by leveraging infor-
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σ (mm)
Short-term Long-term

80 160 320 400 560 720 880 1000
0 10.2 22.2 46.3 57.3 75.9 90.4 102.5 110.1
2 13.1 26.0 50.3 61.0 78.8 92.6 104.3 111.6
4 16.6 29.9 54.1 64.5 81.4 94.6 105.8 112.9
6 19.8 33.4 57.3 67.4 83.9 96.6 107.6 114.5
8 22.9 36.3 60.0 69.9 85.8 98.0 108.8 115.5
10 26.0 39.6 62.7 72.4 87.9 99.8 110.4 117.3

Table 10 Short & long-term prediction of 3D joint positions
on H3.6M with different levels of observation noise. The first
column indicates the standard deviation (in millimeter) of
the Gaussian noise added to the historical sequences. σ = 0
means that no noise was added.

mation about complete body parts, part motion atten-

tion finds the historical motion that best reflects the

current context.

As to quantitative results, we will provide an abla-

tion study on fusing different motion attention in sec-

tion 4.4. Here, we would like to emphasize that our

multi-level motion attention fusion improves the mo-

tion prediction performance over pose motion atten-

tion only consistently for all actions. As shown in Ta-

ble 8, these improvements vary for actions of different

natures. For instance, motion attention at the full pose

level is sufficient to capture the motion patterns of pe-

riodical actions, such as “Walking”; in such cases, the

improvement obtained by our multi-level motion atten-

tion fusion model is indeed relatively small. By contrast,

for other actions, such as “Posing” and “Walking Dog”,

fusing multi-level motion information yields significant

improvements, of up to 5 mm, as evidenced by results

in Table 8.This is due to the fact that, in such actions,

the repetitive motion patterns do not involve the full

body but only body parts/joints.

To better understand the error distribution for each

joint, we further show the 3D error for each joint sepa-

rately after 1 second of prediction on H3.6M in Table 9.

Our “Motion Att. + Post-fusion” consistently improves

the performance on all joints. For some joints, such as

“Left Foot”, the improvements go up to 4 mm.

Influence of noisy history. We further study our

model’s ability of handling noisy history. In Table 10,

we provide the results of our model obtained using ob-

servations corrupted by different levels of noise. Specif-

ically, given the pretrained model, we added Gaussian

noise ({N (0, σ2)}σ={0,2,4,6,8,10}) to all joint coordinates

of each frame in the history. As further shown in Fig-

ure 10, the 3D error grows linearly with the noise level

(σ).

We further analyze the influence of jitter in Fig-

ure 11. Jitter was created by corrupting each historical

pose with Gaussian noise N (0, 10). Our model is robust

to such jitter and produces smooth future motions that

are close to the ones predicted with the ground-truth

0 2 4 6 8 10
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Fig. 10 3D error vs noise levels.

milliseconds 80 160 320 400 560 720 880 1000
Concat. 10.7 23.3 49.0 60.6 79.6 94.1 106.2 113.6

Pre-fusion 10.7 23.0 47.9 59.1 77.7 92.0 104.2 111.9
Post-fusion 10.2 22.2 46.3 57.3 75.9 90.4 102.5 110.1

Concat. 0.32 0.56 0.93 1.07 1.28 1.45 1.59 1.68
Pre-fusion 0.31 0.55 0.90 1.04 1.25 1.42 1.56 1.64
Post-fusion 0.31 0.55 0.90 1.03 1.25 1.40 1.55 1.64

Table 11 Comparison of different fusion strategies. “Con-
cat.” corresponds to concatenating the outputs of all motion
attention models, as shown in Fig. 4(a).

history. This is because, instead of performing frame by

frame prediction as in (Martinez et al., 2017), our model

generates a temporal encoding (DCT) of the sequence,

which encourages global smoothness.

4.4 Ablation Study

To further evaluate our fusion model, below, we first

compare the performance of the different fusion strate-

gies introduced in Section 3.3. We then investigate the

performance of fusing among different motion attention

models.

Fusion strategies. In Table 11, we compare the per-

formance of three different fusion strategies. Post-fusion

provides the best performance for both 3D joint posi-

tions and joint angles prediction.

Ablation on post-fusion. In Table 12, we evaluate

the influence of fusing among the outputs of different

motion attention models. For 3D joint position repre-

sentation, the best results are obtained by fusing from

all three motion attention models. By contrast, for joint

angle representation, fusing among pose motion atten-

tion and part motion attention performs best.

This is mainly due to the bias on training set. In

particular, as shown in Table 13, for joint angle repre-

sentation, joint motion attention performs better than

others on 59.3% of the motion sequences in training

set. After training on the biased training set, the fusion

model tends to focus on predictions from joint motion

attention model at all cases which leads to a inferior

performance on the unbiased test set.

GCNs vs fully-connected networks. Finally, we

evaluate the importance of using GCNs vs fully-connected



16 Wei Mao et al.

Fig. 11 Influence of jitter in the motion history. We created jitter by corrupting each historical pose with Gaussian
noise N (0, 10). Our model still produces smooth future motions that are close to those predicted when using GT history.

Pose Att. Part Att. Joint Att. Post-fusion 80ms 160ms 320ms 400ms 560ms 720ms 880ms 1000ms
X 10.4 22.6 47.1 58.3 77.3 91.8 104.1 112.1

X 10.5 22.7 47.6 58.8 77.5 92.0 104.3 112.0
X 10.5 22.9 48.1 59.6 78.4 92.8 104.9 112.3

X X X 10.4 22.6 47.1 58.3 77.3 91.8 104.1 112.1
X X X 10.3 22.3 46.5 57.6 76.3 90.7 102.9 110.5

X X X 10.5 22.9 48.1 59.6 78.4 92.8 104.9 112.3
X X X X 10.2 22.2 46.3 57.3 75.9 90.4 102.5 110.1

X 0.31 0.55 0.90 1.04 1.25 1.42 1.56 1.65
X 0.32 0.56 0.92 1.05 1.26 1.42 1.57 1.65

X 0.31 0.55 0.92 1.05 1.27 1.43 1.57 1.66
X X X 0.31 0.55 0.90 1.03 1.25 1.40 1.55 1.64
X X X 0.31 0.55 0.92 1.05 1.27 1.43 1.57 1.66

X X X 0.31 0.55 0.92 1.05 1.27 1.43 1.57 1.66
X X X X 0.31 0.55 0.91 1.04 1.25 1.41 1.56 1.64

Table 12 Ablation on post-fusion strategy. We compare the average 3D joint position error (upper) and joint angle error
(bottom) on H3.6M. For 3d joint position, best performance is obtained by fusing among all 3 motion attention models. For
joint angle, fusing pose motion attention and part motion attention performs the best.

80ms 160ms 320ms 400ms 560ms 720ms 880ms 1000ms percent

Test set
Pose Att. 0.31 0.55 0.90 1.04 1.25 1.42 1.56 1.65 33.5%
Part Att. 0.32 0.56 0.92 1.05 1.26 1.42 1.57 1.65 31.1%
Joint Att. 0.31 0.55 0.92 1.05 1.27 1.43 1.57 1.66 35.3%

Training set
Pose Att. 0.29 0.50 0.81 0.94 1.17 1.34 1.49 1.58 21.5%
Part Att. 0.29 0.50 0.81 0.94 1.17 1.33 1.48 1.57 19.2%
Joint Att. 0.28 0.48 0.77 0.89 1.12 1.29 1.44 1.54 59.3%

Table 13 Performance bias on training set comparing to test set of 3 different attention models. We show the average angle
error on test set (top) and training set (bottom) of H3.6M. Besides, the last column demonstrates the percentage of each type
of motion attention model outperforms the others among all sequences. For example, the joint attention model outperforms
others on 59.3% training samples, leading to a consistent better performance across all time horizons. However, all 3 attention
models perform comparable to each other on test set.

networks and of learning the connectivity in the GCN

instead of using a pre-defined adjacency matrix based

on the kinematic tree. The results of these experiments,

provided in Table 14, demonstrate the benefits of both

using GCNs and learning the corresponding graph struc-

ture. Altogether, this ablation study indicates the im-

portance of both aspects of our contribution: Using the

DCT to model temporal information and learning the

connectivity in GCNs to model spatial structure.

5 Conclusion

In this paper, we have introduced an attention-based

motion prediction approach that selectively exploits his-

torical information according to the similarity between

the current motion context and the sub-sequences in

the past. This has led to a predictor equipped with

a motion attention model that can effectively make

use of historical motions, even when they are far in

the past. Furthermore, we have studied the use of mo-

tion attention at different levels, full body, body parts,

joints, and shown that combining these different at-

tention levels led to better performance. Our approach

achieves state-of-the-art performance on the commonly-

used motion prediction benchmarks and on recently-

published datasets. Moreover, our experiments have demon-

strated that our network generalizes to previously-unseen

datasets without re-training or fine-tuning, and can han-

dle longer history than that it was trained with to fur-

ther boost performance on non-periodical motions with
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Walking Eating Smoking Discussion Average
80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Fully-connected network 0.20 0.34 0.54 0.61 0.18 0.31 0.53 0.66 0.22 0.43 0.85 0.83 0.28 0.64 0.87 0.93 0.22 0.43 0.70 0.76
with pre-defined connectivity 0.25 0.46 0.70 0.8 0.23 0.41 0.68 0.83 0.24 0.46 0.93 0.91 0.27 0.62 0.89 0.97 0.25 0.49 0.80 0.88
with learnable connectivity 0.18 0.31 0.49 0.56 0.16 0.29 0.50 0.62 0.22 0.41 0.86 0.80 0.20 0.51 0.77 0.85 0.19 0.38 0.66 0.71

Fully-connected network 11.2 18.6 33.5 38.8 9.0 18.8 39.0 48.0 8.5 15.4 26.3 31.4 12.2 26.0 46.3 53.0 10.2 19.7 36.3 42.8
with pre-defined connectivity 25.6 44.6 80.3 96.8 16.3 31.9 62.4 78.8 11.6 21.4 34.6 38.6 20.7 38.7 62.5 69.9 18.5 34.1 59.9 71.0
with learnable connectivity 8.9 15.7 29.2 33.4 8.8 18.9 39.4 47.2 7.8 14.9 25.3 28.7 9.8 22.1 39.6 44.1 8.8 17.9 33.4 38.4

Table 14 Influence of GCNs and of learning the graph connectivity. Top: angle error on 8 sequences per action; Bottom: 3D
error on 8 sequences per action. Note that GCNs with a pre-defined connectivity yield much higher errors than learning this
connectivity as we do. Here, we reused the results from (Mao et al., 2019).

repeated history. In the future, we will investigate the

combination of our approach with the progressive pre-

diction strategy of Cai et al. (2020).
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V (2012) Continuous character control with low-

dimensional embeddings. ACM Transactions on

Graphics 31(4):28

Li C, Zhang Z, Lee WS, Lee GH (2018a) Convolutional

sequence to sequence model for human dynamics. In:

CVPR, pp 5226–5234

Li X, Li H, Joo H, Liu Y, Sheikh Y (2018b) Structure

from recurrent motion: From rigidity to recurrency.

In: CVPR, pp 3032–3040

Loper M, Mahmood N, Romero J, Pons-Moll G, Black

MJ (2015) SMPL: A skinned multi-person linear

model. ACM Trans Graphics (Proc SIGGRAPH

Asia) 34(6):248:1–248:16

Mahmood N, Ghorbani N, Troje NF, Pons-Moll G,

Black MJ (2019) Amass: Archive of motion capture

as surface shapes. In: ICCV, URL https://amass.

is.tue.mpg.de

https://amass.is.tue.mpg.de
https://amass.is.tue.mpg.de


18 Wei Mao et al.

Mao W, Liu M, Salzmann M, Li H (2019) Learning tra-

jectory dependencies for human motion prediction.

In: ICCV, pp 9489–9497

Mao W, Liu M, Salzmann M (2020) History repeats it-

self: Human motion prediction via motion attention.

In: ECCV

von Marcard T, Henschel R, Black M, Rosenhahn B,

Pons-Moll G (2018) Recovering accurate 3d human

pose in the wild using imus and a moving camera. In:

ECCV

Martinez J, Black MJ, Romero J (2017) On human mo-

tion prediction using recurrent neural networks. In:

CVPR

Paszke A, Gross S, Chintala S, Chanan G, Yang E, De-

Vito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017)

Automatic differentiation in pytorch. In: NIPS-W

Pavllo D, Feichtenhofer C, Auli M, Grangier D (2019)

Modeling human motion with quaternion-based neu-

ral networks. IJCV pp 1–18

Romero J, Tzionas D, Black MJ (2017) Embodied

hands: Modeling and capturing hands and bodies to-

gether. ACM Transactions on Graphics, (Proc SIG-

GRAPH Asia) 36(6)

Runia TF, Snoek CG, Smeulders AW (2018) Real-

world repetition estimation by div, grad and curl.

In: CVPR, pp 9009–9017

Sidenbladh H, Black MJ, Sigal L (2002) Implicit prob-

abilistic models of human motion for synthesis and

tracking. In: ECCV, Springer, pp 784–800

Sutskever I, Martens J, Hinton GE (2011) Generating

text with recurrent neural networks. In: ICML, pp

1017–1024

Tang Y, Ma L, Liu W, Zheng WS (2018) Long-term

human motion prediction by modeling motion con-

text and enhancing motion dynamics. IJCAI DOI

10.24963/ijcai.2018/130, URL http://dx.doi.org/

10.24963/ijcai.2018/130

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L,

Gomez AN, Kaiser  L, Polosukhin I (2017) Attention

is all you need. In: NIPS, pp 5998–6008

Wang JM, Fleet DJ, Hertzmann A (2008) Gaussian pro-

cess dynamical models for human motion. TPAMI

30(2):283–298

http://dx.doi.org/10.24963/ijcai.2018/130
http://dx.doi.org/10.24963/ijcai.2018/130


Multi-level Motion Attention for Human Motion Prediction 19

Multi-level Motion Attention for Human Motion Prediction
—–Supplementary Material—–

1 Datasets

Below we provide more details about the datasets used

in our experiments.

Human3.6M. As in (Mao et al., 2019), we use the

skeleton of the subject 1 (S1) of Human3.6M as stan-

dard skeleton to compute the 3D joint coordinates from

the joint angle representation. After removing the global

rotation, translation and constant angles or 3D coor-

dinates of each human pose, this leaves us with a 48

dimensional vector and a 66 dimensional vector for hu-

man pose in angle representation and 3D position, re-

spectively. As in (Mao et al., 2019; Li et al., 2018a; Mar-

tinez et al., 2017), the rotation angles are represented as

exponential maps. During training, we set aside subject

11 (S11) as our validation set to choose the model that

achieves the best performance across all future frames,

and the remaining 5 subjects (S1,S6,S7,S8,S9) are used

as training set.

AMASS & 3DPW. The human skeleton in AMASS

and 3DPW is defined by a shape vector. In our experi-

ment, we obtain the 3D joint positions by applying for-

ward kinematic on the skeleton derived from the shape

vector of the CMU dataset. As specified in the main

paper, we evaluate the model on BMLrub and 3DPW.

Each video sequence is first downsampled to 25 frames

per second, and evaluate on sub-sequences of length

M + T that start from every 5th frame of each video

sequence.

2 Implementation Details

We implemented our network in Pytorch (Paszke et al.,

2017) and trained it using the ADAM optimizer (Kingma

and Ba, 2015). We use a learning rate of 0.0005 with a

decay at every epoch so as to make the learning rate be

0.00005 at the 50th epoch. We train our model for 50

epochs with a batch size of 32 for H3.6M and 128 for

AMASS. One forward and backward pass takes 32ms

for H3.6M and 45ms for AMASS on an NVIDIA Titan

V GPU.

For post-fusion strategy, we first train the three dif-

ferent level of attention model as well as their predictors

for 50 epochs. After that, we fix the attention models

and predictors and use the output of the predictors to

train the fusion model for another 20 epochs.

3 Generating Long Future for Periodical

Motions

For periodical motions, such as “Walking”, our approach

can generate very long futures (up to 16 seconds). As

shown in the supplementary video, such future predic-

tions are hard to distinguish from the ground truth even

for humans.

4 Additional Results on AMASS

In Fig. 1, we compare the results of LTD (Mao et al.,

2019) and of our approach on the BMLrub dataset. Our

results better match the ground truth.

5 Motion Attention vs. Frame-wise Attention

To further investigate the influence of motion atten-

tion, where the attention on the history sub-sequences

{Xi:i+M+T−1}N−M−T+1
i=1 is a function of the first M

poses of every sub-sequence {Xi:i+M−1}N−M−T+1
i=1 (keys)

and the last observed M poses XN−M+1:N (query), we

replace the keys and query with the last frame of each

sub-sequence. That is, we use {Xi+M−1}N−M−T+1
i=1 as

keys and XN as query. We refer to the resulting method

as Frame-wise Attention. As shown in Table 1, motion

attention outperforms frame-wise attention by a large

margin. As discussed in the main paper, this is due to

frame-wise attention not considering the direction of

the motion, leading to ambiguities.
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(a) Jogging

(b) Walking

(c) Stretching

Fig. 1 Qualitative comparison on the BMLrub dataset. From top to bottom, we show the ground-truth motion, the prediction
results of LTD (Mao et al., 2019) and of our approach on 3D position. The observed poses are shown as blue and red skeletons
and the predictions in green and purple. As highlighted by the red boxes, our predictions better match the ground truth, in
particular for the legs.

milliseconds 80 160 320 400 560 720 880 1000
Frame-wise Attention 24.0 44.5 76.1 88.3 107.5 121.7 131.7 136.7

Motion Attention 10.8 23.9 49.4 60.7 77.3 92.0 104.4 112.4

Table 1 Comparison of frame-wise attention and with our motion attention.
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