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Abstract Multi-object tracking (MOT) is an important prob-
lem in computer vision which has a wide range of applica-
tions. Formulating MOT as multi-task learning of object de-
tection and re-ID in a single network is appealing since it
allows joint optimization of the two tasks and enjoys high
computation efficiency. However, we find that the two tasks
tend to compete with each other which need to be carefully
addressed. In particular, previous works usually treat re-ID
as a secondary task whose accuracy is heavily affected by
the primary detection task. As a result, the network is bi-
ased to the primary detection task which is not fair to the
re-ID task. To solve the problem, we present a simple yet
effective approach termed as FairMOT based on the anchor-
free object detection architecture CenterNet. Note that it is
not a naive combination of CenterNet and re-ID. Instead,
we present a bunch of detailed designs which are critical to
achieve good tracking results by thorough empirical studies.
The resulting approach achieves high accuracy for both de-
tection and tracking. The approach outperforms the state-of-
the-art methods by a large margin on several public datasets.
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1 Introduction

Multi-Object Tracking (MOT) has been a longstanding goal
in computer vision (Bewley et al., 2016; Wojke et al., 2017;
Chen et al., 2018a; Yu et al., 2016). The goal is to esti-
mate trajectories for objects of interest presented in videos.
The successful resolution of the problem can immediately
benefit many applications such as intelligent video analy-
sis, human computer interaction, human activity recognition
(Wang et al., 2013; Luo et al., 2017), and even social com-
puting.

Most of the existing methods such as (Mahmoudi et al.,
2019; Zhou et al., 2018; Fang et al., 2018; Bewley et al.,
2016; Wojke et al., 2017; Chen et al., 2018a; Yu et al., 2016)
attempt to address the problem by two separate models: the
detection model firstly detects objects of interest by bound-
ing boxes in each frame, then the association model extracts
re-identification (re-ID) features from the image regions cor-
responding to each bounding box, links the detection to one
of the existing tracks or creates a new track according to
certain metrics defined on features.

There has been remarkable progress on object detection
(Ren et al., 2015; He et al., 2017; Zhou et al., 2019a; Red-
mon and Farhadi, 2018; Fu et al., 2020; Sun et al., 2021b,a)
and re-ID (Zheng et al., 2017a; Chen et al., 2018a) respec-
tively recently which in turn boosts the overall tracking ac-
curacy. However, these two-step methods suffer from scala-
bility issues. They cannot achieve real-time inference speed
when there are a large number of objects in the environment
because the two models do not share features and they need
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to apply the re-ID models for every bounding box indepen-
dently in the video.

With the maturity of multi-task learning (Kokkinos, 2017;
Chen et al., 2018b), one-shot trackers which estimate ob-
jects and learn re-ID features using a single network have
attracted more attention (Wang et al., 2020b; Voigtlaender
et al., 2019). For example, Voigtlaender et al. (Voigtlaender
et al., 2019) add a re-ID branch to Mask R-CNN to extract a
re-ID feature for each proposal (He et al., 2017). It reduces
inference time by re-using backbone features for the re-ID
network. But the performance drops remarkably compared
to the two-step models. In fact, the detection accuracy is still
good but the tracking performance drops a lot. For example,
the number of ID switches increases by a large margin. The
result suggests that combining the two tasks is a non-trivial
task and should be treated carefully.

In this paper, we investigate the reasons behind the fail-
ure, and present a simple yet effective solution. Three fac-
tors are identified to account for the failure. The first issue
is caused by anchors. Anchors are originally designed for
object detection (Ren et al., 2015). However, we show that
anchors are not suitable for extracting re-ID features for two
reasons. First, anchor-based one-shot trackers such as Track
R-CNN (Voigtlaender et al., 2019) overlook the re-ID task
because they need anchors to first detect objects (i.e. , us-
ing RPN (Ren et al., 2015)) and then extract the re-ID fea-
tures based on the detection results (re-ID features are use-
less when detection results are incorrect). So when competi-
tion occurs between the two tasks, it will favor the detection
task. Anchors also introduce a lot of ambiguity during train-
ing the re-ID features because one anchor may correspond
to multiple identities and multiple anchors may correspond
to one identity, especially in crowded scenes.

The second issue is caused by feature sharing between
the two tasks. Detection task and re-ID task are two totally
different tasks and they need different features. In general,
re-ID features need more low-level features to discriminate
different instances of the same class while detection features
need to be similar for different instances. The shared fea-
tures in one-shot trackers will lead to feature conflict and
thus reduce the performance of each task.

The third issue is caused by feature dimension. The di-
mension of re-ID features is usually as high as 512 (Wang
et al., 2020b) or 1024 (Zheng et al., 2017a) which is much
higher than that of object detection. We find that the huge
difference between dimensions will harm the performance
of the two tasks. More importantly, our experiments suggest
that it is a generic rule that learning low-dimensional re-ID
features for “joint detection and re-ID” networks achieves
both higher tracking accuracy and efficiency. This also re-
veals the difference between the MOT task and the re-ID
task, which is overlooked in the field of MOT.

In this work, we present a simple approach termed as
FairMOT which elegantly address the three issues as illus-
trated in Figure 1. FairMOT is built on top of CenterNet
(Zhou et al., 2019a). In particular, the detection and re-ID
tasks are treated equally in FairMOT which essentially dif-
fers from the previous “detection first, re-ID secondary” frame-
work. It is worth noting that it is not a naive combination of
CenterNet and re-ID. Instead, we present a bunch of detailed
designs which are critical to achieve good tracking results by
thorough empirical studies.

Figure 1 shows an overview of FairMOT. It has a sim-
ple network structure which consists of two homogeneous
branches for detecting objects and extracting re-ID features,
respectively. Inspired by (Zhou et al., 2019a; Law and Deng,
2018; Zhou et al., 2019b; Duan et al., 2019), the detection
branch is implemented in an anchor-free style which esti-
mates object centers and sizes represented as position-aware
measurement maps. Similarly, the re-ID branch estimates a
re-ID feature for each pixel to characterize the object cen-
tered at the pixel. Note that the two branches are completely
homogeneous which essentially differs from the previous
methods which perform detection and re-ID in a two-stage
cascaded style. So FairMOT eliminates the unfair disadvan-
tage of the detection branch as reflected in Table 1, effec-
tively learns high-quality re-ID features and obtains a good
trade-off between detection and re-ID.

We evaluate FairMOT on the MOT Challenge bench-
mark via the evaluation server. It ranks first among all track-
ers on the 2DMOT 15 (Leal-Taixé et al., 2015), MOT 16 (Mi-
lan et al., 2016), MOT17 (Milan et al., 2016) and MOT20
(Dendorfer et al., 2020) datasets. When we further pre-train
our model using our proposed single image training method,
it achieves additional gains on all datasets. In spite of the
strong results, the approach is very simple and runs at 30
FPS on a single RTX 2080Ti GPU. It sheds light on the rela-
tionship between detection and re-ID in MOT and provides
guidance for designing one-shot video tracking networks.

Our contributions are as follows:

— We empirically demonstrate that the prevalent anchor-
based one-shot MOT architectures have limitations in
terms of learning effective re-ID features which has been
overlooked. The issues severely limit the tracking per-
formance of those methods.

— We present FairMOT to address the fairness issue. Fair-
MOT is built on top of CenterNet. Although the adopted
techniques are mostly not novel by themselves, we have
new discoveries which are important to MOT. These are
both novel and valuable.

— We show that the achieved fairness allows our FairMOT
to obtain high levels of detection and tracking accuracy
and outperform the previous state-of-the-art methods by
a large margin on multiple datasets such as 2DMOT15,
MOT16, MOT17 and MOT?20.
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Fig. 1 Overview of our one-shot tracker FairMOT. The input image is first fed to an encoder-decoder network to extract high resolution feature
maps (stride=4). Then we add two homogeneous branches for detecting objects and extracting re-ID features, respectively. The features at the

predicted object centers are used for tracking.

2 Related Work

The best-performing MOT methods (Bergmann et al., 2019;
Braso6 and Leal-Taixé, 2020; Hornakova et al., 2020; Yu et al.,
2016; Mahmoudi et al., 2019; Zhou et al., 2018; Wojke et al.,
2017; Chen et al., 2018a; Wang et al., 2020b; Voigtlaender
etal., 2019; Zhang et al., 2021a) usually follow the tracking-
by-detection paradigm, which first detect objects in each
frame and then associate them over time. We classify the
existing works into two categories based on whether they
use a single model or separate models to detect objects and
extract association features. We discuss the pros and cons of
the methods and compare them to our approach.

2.1 Detection and Tracking by Separate Models
2.1.1 Detection Methods

Most benchmark datasets such as MOT17 (Milan et al., 2016)
provide detection results obtained by popular methods such
as DPM (Felzenszwalb et al., 2008), Faster R-CNN (Ren
etal., 2015) and SDP (Yang et al., 2016) such that the works
that focus on the tracking part can be fairly compared on the
same object detections. Some works such as (Yu et al., 2016;
Wojke et al., 2017; Zhou et al., 2018; Mahmoudi et al., 2019)
use a large private pedestrian detection dataset to train the
Faster R-CNN detector with VGG-16 (Simonyan and Zis-
serman, 2014) as backbone, which obtain better detection
performance. A small number of works such as (Han et al.,
2020) use more powerful detectors which are developed re-
cently such as Cascade R-CNN (Cai and Vasconcelos, 2018)
to boost the detection performance.

2.1.2 Tracking Methods

Most of the existing works focus on the tracking part of the
problem. We classify them into two classes according to the
type of cues used for association.

Location and Motion Cues based Methods SORT (Bew-
ley et al., 2016) first uses Kalman Filter (Kalman, 1960)
to predict future locations of the tracklets, computes their
overlap with the detections, and uses Hungarian algorithm
(Kuhn, 1955) to assign detections to tracklets. IOU-Tracker
(Bochinski et al., 2017) directly computes the overlap be-
tween the tracklets (of the previous frame) and the detec-
tions without using using Kalman filter to predict future lo-
cations. The approach achieves 100K fps inference speed
(detection time not counted) and works well when object
motion is small. Both SORT and IOU-Tracker are widely
used in practice due to their simplicity.

However, they may fail in challenging cases of crowded
scenes and fast motion. Some works such as (Xiang et al.,
2015; Zhu et al., 2018; Chu and Ling, 2019; Chu et al.,
2019) leverage sophisticated single object tracking methods
to get accurate object locations and reduce false negatives.
However, these methods are extremely slow especially when
there are a large number of people in the scene. To solve the
problem of trajectory fragments, Zhang et al. (Zhang et al.,
2020) propose a motion evaluation network to learn long-
range features of tracklets for association. MAT (Han et al.,
2020) is an enhanced SORT, which additionally models the
camera motion and uses dynamic windows for long-range
re-association.
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Appearance Cues based Methods Some recent works (Yu
etal., 2016; Mahmoudi et al., 2019; Zhou et al., 2018; Wojke
et al., 2017) propose to crop the image regions of the detec-
tions and feed them to re-ID networks (Zheng et al., 2017b;
Hermans et al., 2017; Luo et al., 2019a) to extract image
features. Then they compute the similarity between track-
lets and detections based on re-ID features and use Hungar-
ian algorithm (Kuhn, 1955) to accomplish assignment. The
method is robust to fast motion and occlusion. In particular,
it can re-initialize lost tracks because appearance features
are relatively stable over time.

There are also some works (Bae and Yoon, 2014; Tang
et al., 2017; Sadeghian et al., 2017; Chen et al., 2018a; Xu
et al., 2019) focusing on enhancing appearance features. For
example, Bae et al. (Bae and Yoon, 2014) propose an on-
line appearance learning method to handle appearance vari-
ations. Tang et al. (Tang et al., 2017) leverage body pose
features to enhance the appearance features. Some meth-
ods (Sadeghian et al., 2017; Xu et al., 2019; Shan et al.,
2020) propose to fuse multiple cues (i.e. motion, appearance
and location) to get more reliable similarity. MOTDT (Chen
et al., 2018a) proposes a hierarchical data association strat-
egy which uses IoU to associate objects when appearance
features are not reliable. A small number of works such as
(Mahmoudi et al., 2019; Zhou et al., 2018; Fang et al., 2018)
also propose to use more complicated association strategies
such as group models and RNNs.

Offline Methods The offline methods (or batch methods)
(Zhang et al., 2008; Wen et al., 2014; Berclaz et al., 2011;
Zamir et al., 2012; Milan et al., 2013; Choi, 2015; Bras6 and
Leal-Taixé, 2020; Hornakova et al., 2020) often achieve bet-
ter results by performing global optimization in the whole
sequence. For example, Zhang ef al. (Zhang et al., 2008)
build a graphical model with nodes representing detections
in all frames. The optimal assignment is searched using a
min-cost flow algorithm, which exploits the specific struc-
ture of the graph to reach the optimum faster than Linear
Programming. Berclaz et al. (Berclaz et al., 2011) also treat
data association as a flow optimization task and use the K-
shortest paths algorithm to solve it, which significantly speeds
up computation and reduces parameters that need to be tuned.
Milan et al. (Milan et al., 2013) formulate multi-object track-
ing as minimization of a continuous energy and focus on
designing the energy function. The energy depends on loca-
tions and motion of all targets in all frames as well as phys-
ical constraints. MPNTrack (Brasé and Leal-Taixé, 2020)
proposes trainable graph neural networks to perform a global
association of the entire set of detections and make MOT
fully differentiable. Lif_ T (Hornakova et al., 2020) formu-
lates MOT as a lifted disjoint path problem and introduces
lifted edges for long range temporal interactions, which sig-
nificantly reduces id switches and re-identify lost.

Advantages and Limitations For the methods which per-
form detection and tracking by separate models, the main
advantage is that they can develop the most suitable model
for each task separately without making compromise. In ad-
dition, they can crop the image patches according to the
detected bounding boxes and resize them to the same size
before estimating re-ID features. This helps to handle the
scale variations of objects. As a result, these approaches (Yu
et al., 2016; Henschel et al., 2019) have achieved the best
performance on the public datasets. However, they are usu-
ally very slow because the two tasks need to be done sep-
arately without sharing. So it is hard to achieve video rate
inference which is required in many applications.

2.2 Detection and Tracking by a Single Model

With the quick maturity of multi-task learning (Kokkinos,
2017; Ranjan et al., 2017; Sener and Koltun, 2018) in deep
learning, joint detection and tracking using a single network
has begun to attract more research attention. We classify
them into two classes as discussed in the following.

Joint Detection and Re-ID The first class of methods (Voigt-
laender et al., 2019; Wang et al., 2020b; Liang et al., 2020;
Pang et al., 2021; Lu et al., 2020) perform object detection
and re-ID feature extraction in a single network in order to
reduce inference time. For example, Track-RCNN (Voigt-
laender et al., 2019) adds a re-ID head on top of Mask R-
CNN (He et al., 2017) and regresses a bounding box and a
re-ID feature for each proposal. Similarly, JDE (Wang et al.,
2020b) is built on top of YOLOvV3 (Redmon and Farhadi,
2018) which achieves near video rate inference. However,
the accuracy of these one-shot trackers is usually lower than
that of the two-step ones.

Joint Detection and Motion Prediction The second class of
methods (Feichtenhofer et al., 2017; Zhou et al., 2020; Pang
et al., 2020; Peng et al., 2020; Sun et al., 2020) learn detec-
tion and motion features in a single network. D&T (Feicht-
enhofer et al., 2017) propose a Siamese network which takes
input of adjacent frames and predicts inter-frame displace-
ments between bounding boxes. Tracktor (Bergmann et al.,
2019) directly exploits the bounding box regression head to
propagate identities of region proposals and thus removes
box association. Chained-Tracker (Peng et al., 2020) pro-
poses an end-to-end model using adjacent frame pair as in-
put and generating the box pair representing the same target.
These box-based methods assume that bounding boxes have
a large overlap between frames, which is not true in low-
frame rate videos. Different from these methods, Center-
Track (Zhou et al., 2020) predicts the object center displace-
ments with pair-wise inputs and associate by these point dis-
tances. It also provides the tracklets as an additional point-
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based heatmap input to the network and is then able to match
objects anywhere even if the boxes have no overlap at all.
However, these methods only associate objects in adjacent
frames without re-initializing lost tracks and thus have diffi-
culty handling occlusion cases.

Our work belongs to the first class. We investigate the
reasons why one-shot trackers get degraded association per-
formance and propose a simple approach to address the prob-
lems. We show that the tracking accuracy is improved sig-
nificantly without heavy engineering efforts. A concurrent
work CSTrack (Liang et al., 2020) also aims to alleviate the
conflicts between the two tasks from the perspective of fea-
tures, and propose a cross-correlation network module to
enable the model to learn task-dependent representations.
Different from CSTrack, our method tries to address the
problem from three perspectives in a systematic way and
obtains notably better performances than CSTrack. Center-
Track (Zhou et al., 2020) is also related to our work since
it also uses center-based object detection framework. But
CenterTrack does not extract appearance features and only
links objects in adjacent frames. In contrast, FairMOT can
perform long-range association with the appearance features
and handle occlusion cases.

Multi-task Learning There is a large body of literature (Liu
et al., 2019; Kendall et al., 2018; Chen et al., 2018b; Guo
et al., 2018; Sener and Koltun, 2018) on multi-task learn-
ing which may be used to balance the object detection and
re-ID feature extraction tasks. Uncertainty (Kendall et al.,
2018) uses task-dependent uncertainty to automatically bal-
ance the single-task losses. MGDA is proposed in (Sener
and Koltun, 2018) to update the shared network weights by
finding a common direction among the task-specific gradi-
ents. GradNorm (Chen et al., 2018b) controls the training of
multi-task networks by simulating the task-specific gradi-
ents to be of similar magnitude. We evaluate these methods
in the experimental sections.

2.3 Video Object Detection

Video Object Detection (VOD) (Feichtenhofer et al., 2017;
Luo et al., 2019b) is related to MOT in the sense that it lever-
ages tracking to improve object detection performances in
challenging frames. Although these methods were not eval-
uated on MOT datasets, some of the ideas may be valuable
for the field. So we briefly review them in this section. Tang
et al. (Tang et al., 2019) detect object tubes in videos which
aims to enhance classification scores in challenging frames
based on their neighboring frames. The detection rate for
small objects increases by a large margin on the benchmark
dataset. Similar ideas have also been explored in (Han et al.,
2016; Kang et al., 2016, 2017; Tang et al., 2019; Pang et al.,
2020). One main limitation of these tube-based methods is

that they are extremely slow especially when there are a
large number of objects in videos.

3 Unfairness Issues in One-shot Trackers

In this section, we discuss three unfairness issues that arise
in the existing one-shot trackers which usually lead to de-
graded tracking performances.

3.1 Unfairness Caused by Anchors

The existing one-shot trackers such as Track R-CNN (Voigt-
laender et al., 2019) and JDE (Wang et al., 2020b) are mostly
anchor-based since they are directly modified from anchor-
based object detectors such as YOLO (Redmon and Farhadi,
2018) and Mask R-CNN (He et al., 2017). However, we find
that the anchor-based design is not suitable for learning re-
ID features which result in a large number of ID switches in
spite of the good detection results. We explain the problem
from three perspectives in the following.

Overlooked re-ID task Track R-CNN (Voigtlaender et al.,
2019) operates in a cascaded style which first estimates ob-
ject proposals (boxes) and then pools features from them
to estimate the corresponding re-ID features. The quality of
re-ID features heavily depends on the quality of proposals
during training (re-ID features are useless if proposals are
not accurate). As a result, in the training stage, the model is
seriously biased to estimate accurate object proposals rather
than high quality re-ID features. So the standard “detection
first, re-ID secondary” design of the existing one-shot track-
ers makes the re-ID network not fairly learned.

One anchor corresponds to multiple identities The anchor-
based methods usually use ROI-Align to extract features
from proposals. Most sampling locations in ROI-Align may
belong to other disturbing instances or background as shown
in Figure 2. As a result, the extracted features are not opti-
mal in terms of accurately and discriminatively representing
the target objects. Instead, we find in this work that it is sig-
nificantly better to only extract features at a single point, i.e.
, the estimated object centers.

Multiple anchors correspond to one identity In both (Voigt-
laender et al., 2019) and (Wang et al., 2020b), multiple adja-
cent anchors, which correspond to different image patches,
may be forced to estimate the same identity as long as their
IOU is sufficiently large. This introduces severe ambigu-
ity for training. See Figure 2 for illustration. On the other
hand, when an image undergoes small perturbation, e.g.,
due to data augmentation, it is possible that the same an-
chor is forced to estimate different identities. In addition,
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Fig. 2 (a) Track R-CNN treats detection as the primary task and re-ID as the secondary one. Both Track R-CNN and JDE are anchor-based. The
red boxes represent positive anchors and the green boxes represent the target objects. The three methods extract re-ID features differently. Track
R-CNN extracts re-ID features for all positive anchors using ROI-Align. JDE extracts re-ID features at the centers of all positive anchors. FairMOT
extracts re-ID features at the object center. (b) The red anchor contains two different instances. So it will be forced to predict two conflicting classes.
(c) Three different anchors with different image patches are response for predicting the same identity. (d) FairMOT extracts re-ID features only at

the object center and can mitigate the problems in (b) and (c).

feature maps in object detection are usually down-sampled
by 8/16/32 times to balance accuracy and speed. This is ac-
ceptable for object detection but it is too coarse for learning
re-ID features because features extracted at coarse anchors
may not be aligned with object centers.

3.2 Unfairness Caused by Features

For one-shot trackers, most features are shared between the
object detection and re-ID tasks. But it is well known that
they actually require features from different layers to achieve
the best results. In particular, object detection requires deep
features to estimate object classes and positions but re-ID
requires low-level appearance features to distinguish differ-
ent instances of the same class. From the perspective of the
multi-task loss optimization, the optimization objectives of
detection and re-ID have conflicts. Thus, it is important to
balance the loss optimization strategy of the two tasks.

3.3 Unfairness Caused by Feature Dimension

The previous re-ID works usually learn very high dimen-
sional features and have achieved promising results on the
benchmarks of their field. However, we find that learning
lower-dimensional features is actually better for one-shot
MOT for three reasons: (1) high-dimensional re-ID features

notably harms the object detection accuracy due to the com-
petition of the two tasks which in turn also has negative im-
pact to the final tracking accuracy. So considering that the
feature dimension in object detection is usually very low
(class numbers + box locations), we propose to learn low-
dimensional re-ID features to balance the two tasks; (2) the
MOT task is different from the re-ID task. The MOT task
only performs a small number of one-to-one matchings be-
tween two consecutive frames. The re-ID task needs to match
the query to a large number of candidates and thus requires
more discriminative and high-dimensional re-ID features.
So in MOT we do not need that high-dimensional features;
(3) learning low dimensional re-ID features improves the in-
ference speed as will be shown in our experiments.

4 FairMOT

In this section, we present the technical details of FairMOT
including the backbone network, the object detection branch,
the re-ID branch as well as training details.

4.1 Backbone Network

We adopt ResNet-34 as backbone in order to strike a good
balance between accuracy and speed. An enhanced version
of Deep Layer Aggregation (DLA) (Zhou et al., 2019a) is
applied to the backbone to fuse multi-layer features as shown
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in Figure 1. Different from original DLA (Yu et al., 2018), it
has more skip connections between low-level and high-level
features which is similar to the Feature Pyramid Network
(FPN) (Lin et al., 2017a). In addition, convolution layers in
all up-sampling modules are replaced by deformable con-
volution such that they can dynamically adjust the receptive
field according to object scales and poses. These modifica-
tions are also helpful to alleviate the alignment issue. The
resulting model is named DLA-34. Denote the size of in-
put image as Himage X Wimage, then the output feature map
has the shape of C' x H x W where H = Himag/4 and
W = Winage /4. Besides DLA, other deep networks that
provide multi-scale convolutional features, such as Higher
HRNet (Cheng et al., 2020), can be used in our framework
to provide fair features for both detection and re-ID.

4.2 Detection Branch

Our detection branch is built on top of CenterNet (Zhou
et al., 2019a) but other anchor-free methods such as (Duan
et al., 2019; Law and Deng, 2018; Dong et al., 2020; Yang
et al., 2019) can also be used. We briefly describe the ap-
proach to make this work self-contained. In particular, three
parallel heads are appended to DLA-34 to estimate heatmaps,
object center offsets and bounding box sizes, respectively.
Each head is implemented by applying a 3 x 3 convolution
(with 256 channels) to the output features of DLA-34, fol-
lowed by a 1 x 1 convolutional layer which generates the
final targets.

4.2.1 Heatmap Head

This head is responsible for estimating the locations of the
object centers. The heatmap based representation, which is
the de facto standard for the landmark point estimation task,
is adopted here. In particular, the dimension of the heatmap
is 1 x H x W. The response at a location in the heatmap
is expected to be one if it collapses with the ground-truth
object center. The response decays exponentially as the dis-
tance between the heatmap location and the object center.
For each GT box b’ = (1, yi, x,y5) in the image, we

iy
; i i i _ Tt i
compute the object center (c;,, ¢, ) as ¢;, = ~15—2 and ¢, =

%, respectively. Then its location on the feature map

is obtained by dividing the stride (¢,,¢},) = (L%J, L%J)

Then the heatmap response at the location (x,y) is com-
(=) 2 +(y—2t)?2

puted as M, = Zfil exp 2 where N rep-

resents the number of objects in the image and o represents

the standard deviation. The loss function is defined as pixel-

wise logistic regression with focal loss (Lin et al., 2017b):

1’ _ 1 (1- Mwy)QIOg(Mwy): My =1,
hea‘__ﬁz 1— Myy)? (Myy)*log(1 — M therwi
zy ( xy) ( zy) og( J;y) otherwise,

(D

where M is the estimated heatmap, and «, 3 are the pre-
determined parameters in focal loss.

4.2.2 Box Offset and Size Heads

The box offset head aims to localize objects more precisely.
Since the stride of the final feature map is four, it will in-
troduce quantization errors up to four pixels. This branch
estimates a continuous offset relative to the object center for
each pixel in order to mitigate the impact of down-sampling.
The box size head is responsible for estimating height and
width of the target box at each location.

Denote the output of the size and offset heads as S e
R2XHXW and O € R2XHXW regpectively. For each GT
box b? = (x%,yi, 2%, yi) in the image, we compute its size
ass' = (x4 — i,y — yi). Similarly, the GT offset is com-
puted as o’ = (%, %) —( L%J , L%J ). Denote the estimated
size and offset at the corresponding location as §* and &, re-
spectively. Then we enforce /; losses for the two heads:

N
Loox = »_ [lo" = 6'[]1 + Adlls” — '] 2

i=1

where )\ is a weighting parameter and is set 0.1 as the orig-
inal CenterNet (Zhou et al., 2019a).

4.3 Re-ID Branch

Re-ID branch aims to generate features that can distinguish
objects. Ideally, affinity among different objects should be
smaller than that between same objects. To achieve this goal,
we apply a convolution layer with 128 kernels on top of
backbone features to extract re-ID features for each location.
Denote the resulting feature map as E € RI28xXHXW The
re-ID feature E, , € R!?® of an object centered at (z,y)
can be extracted from the feature map.

4.3.1 Re-ID Loss

We learn re-ID features through a classification task. All
object instances of the same identity in the training set are
treated as the same class. For each GT box b’ = (%, i, x5, y3)
in the image, we obtain the object center on the heatmap
(¢%, ). We extract the re-ID feature vector Ez: i and use
a fully connected layer and a softmax operation to map it to

a class distribution vector P = {p(k), k € [1, K}. Denote
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the one-hot representation of the GT class label as L*(k).
Then we compute the re-ID loss as:

N K .
Ligenity = — »_ > _ Li(k)log(p(k)), 3)

i=1 k=1

where K is the number of all the identities in the training
data. During the training process of our network, only the
identity embedding vectors located at object centers are used
for training, since we can obtain object centers from the ob-
jectness heatmap in testing.

4.4 Training FairMOT

We jointly train the detection and re-ID branches by adding
the losses (i.e., Eq. (1), Eq. (2) and Eq. (3)) together. In
particular, we use the uncertainty loss proposed in (Kendall
et al., 2018) to automatically balance the detection and re-ID
tasks:

Ldeteclion = Lheat + LbOX7 (4)
1,1 1
Liota = §(eTlLdelection + 6TQLidentity + wy + w2)7 (5)

where w; and ws are learnable parameters that balance the
two tasks. Specifically, given an image with a few objects
and their corresponding IDs, we generate heatmaps, box off-
set and size maps as well as one-hot class representation of
the objects. These are compared to the estimated measures
to obtain losses to train the whole network.

In addition to the standard training strategy presented
above, we propose a single image training method to train
FairMOT on image-level object detection datasets such as
COCO (Lin et al., 2014) and CrowdHuman (Shao et al.,
2018). Different from CenterTrack (Zhou et al., 2020) that
takes two simulated consecutive frames as input, we only
take a single image as input. We assign each bounding box
a unique identity and thus regard each object instance in the
dataset as a separate class. We apply different transforma-
tions to the whole image including HSV augmentation, ro-
tation, scaling, translation and shearing. The single image
training method has significant empirical values. First, the
pre-trained model on the CrowdHuman dataset can be di-
rectly used as a tracker and get acceptable results on MOT
datasets such as MOT17 (Milan et al., 2016). This is be-
cause the CrowdHuman dataset can boost the human detec-
tion performance and also has strong domain generalization
ability. Our training of the re-ID features further enhances
the association ability of the tracker. Second, we can fine-
tune it on other MOT datasets and further improve the final
performance.

4.5 Online Inference

In this section, we present how we perform online inference,
and in particular, how we perform association with the de-
tections and re-ID features.

4.5.1 Network Inference

The network takes a frame of size 1088 x 608 as input which
is the same as the previous work JDE (Wang et al., 2020b).
On top of the predicted heatmap, we perform non-maximum
suppression (NMS) based on the heatmap scores to extract
the peak keypoints. The NMS is implemented by a simple
3 x 3 max pooling operation as in (Zhou et al., 2019a). We
keep the locations of the keypoints whose heatmap scores
are larger than a threshold. Then, we compute the corre-
sponding bounding boxes based on the estimated offsets and
box sizes. We also extract the identity embeddings at the es-
timated object centers. In the next section, we discuss how
we associate the detected boxes over time using the re-ID
features.

4.5.2 Online Association

We follow MOTDT (Chen et al., 2018a) and use a hierarchi-
cal online data association method. We first initialize a num-
ber of tracklets based on the detected boxes in the first frame.
Then in the subsequent frame, we link the detected boxes to
the existing tracklets using a two-stage matching strategy.
In the first stage, we use Kalman Filter (Kalman, 1960) and
re-ID features to obtain initial tracking results. In particu-
lar, we use Kalman Filter to predict tracklet locations in the
following frame and compute the Mahalanobis distance D,,
between the predicted and detected boxes following Deep-
SORT (Wojke et al., 2017). We fuse the Mahalanobis dis-
tance with the cosine distance computed on re-ID features:
D = A\D, + (1 — \)D,,, where \ is a weighting parame-
ter and is set to be 0.98 in our experiments. Following JDE
(Wang et al., 2020b), we set Mahalanobis distance to infin-
ity if it is larger than a threshold to avoid getting trajecto-
ries with large motion. We use Hungarian algorithm (Kuhn,
1955) with a matching threshold 7, = 0.4 to complete the
first stage matching.

In the second stage, for unmatched detections and track-
lets, we try to match them according to the overlap between
their boxes. In particular, we set the matching threshold 75 =
0.5. We update the appearance features of the tracklets in
each time step to handle appearance variations as in (Bolme
etal., 2010; Henriques et al., 2014). Finally, we initialize the
unmatched detections as new tracks and save the unmatched
tracklets for 30 frames in case they reappear in the future.



FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking 9

5 Experiments
5.1 Datasets and Metrics

There are six training datasets briefly introduced as follows:
the ETH (Ess et al., 2008) and CityPerson (Zhang et al.,
2017) datasets only provide box annotations so we only train
the detection branch on them. The CalTech (Dollar et al.,
2009), MOT17 (Milan et al., 2016), CUHK-SYSU (Xiao
etal., 2017) and PRW (Zheng et al., 2017a) datasets provide
both box and identity annotations which allows us to train
both branches. Some videos in ETH also appear in the test-
ing set of the MOT17 which are removed from the training
dataset for fair comparison. The overall training strategy is
described in Section 4.4, which is the same as (Wang et al.,
2020b). For the self-supervised training of our method, we
use the CrowdHuman dataset (Shao et al., 2018) which only
contains object bounding box annotations.

We evaluate our approach on the testing sets of four
benchmarks: 2DMOT15, MOT16, MOT17 and MOT20. We
use Average Precision (AP) to evaluate detection results.
Following (Wang et al., 2020b), we use True Positive Rate
(TPR) at a false accept rate of 0.1 for evaluating re-ID fea-
tures. In particular, we extract re-ID features which corre-
spond to ground truth boxes and use each feature to retrieve
N most similar candidates. We report the true positive rate at
false accept rate 0.1 (TPR@ FAR=0.1). Note that TPR is not
affected by detection results and faithfully reflects the qual-
ity of re-ID features. We use the CLEAR metric (Bernardin
and Stiefelhagen, 2008) (i.e. MOTA, IDs) and IDFI (Ristani
et al., 2016) to evaluate overall tracking accuracy.

5.2 Implementation Details

We use a variant of DLA-34 proposed in (Zhou et al., 2019a)
as our default backbone. The model parameters pre-trained
on the COCO dataset (Lin et al., 2014) are used to initial-
ize our model. We train our model with the Adam opti-
mizer (Kingma and Ba, 2014) for 30 epochs with a start-
ing learning rate of 10~*. The learning rate decays to 107>
at 20 epochs. The batch size is set to be 12. We use stan-
dard data augmentation techniques including rotation, scal-
ing and color jittering. The input image is resized to 1088 x
608 and the feature map resolution is 272 x 152. The training
step takes about 30 hours on two RTX 2080 Ti GPUs.

5.3 Ablative Studies

In this section, we present rigorous studies of the three crit-
ical factors in FairMOT including anchor-less re-ID feature
extraction, feature fusion and feature dimensions by care-
fully designing a number of baseline methods.

Table 1 Comparison of different re-ID feature extraction (sampling)
strategies on the validation set of MOT17. The rest of the models are
kept the same for fair comparison. T means the larger the better and |
means the smaller the better. The best results are shown in bold.

Feature Extraction Anchor MOTA?T IDF11 IDs| TPR?T

FairMOT (ROI-Align) v 68.7 71.0 331 93.1
FairMOT (POS-Anchor) v 69.0 703 434 939

FairMOT (Center) 69.1 728 299 944
FairMOT (Center-BI) 68.8 743 303 949
FairMOT (Two-Stage) v 69.0 68.2 388 90.5

5.3.1 Anchors

We evaluate four strategies for sampling re-ID features from
the detected boxes which are frequently used by previous
works (Wang et al., 2020b) (Voigtlaender et al., 2019). The
first strategy is ROI-Align used in Track R-CNN (Voigt-
laender et al., 2019). It samples features from the detected
proposals using ROI-Align. As discussed previously, many
sampling locations deviate from object centers. The second
strategy is POS-Anchor used in JDE (Wang et al., 2020b). It
samples features from positive anchors which may also de-
viate from object centers. The third strategy is “Center” used
in FairMOT. It only samples features at object centers. Re-
call that, in our approach, re-ID features are extracted from
discretized low-resolution maps. In order to sample features
at accurate object locations, we also try to apply Bi-linear
Interpolation (Center-BI) to extract more accurate features.

We also evaluate a two-stage approach to first detect ob-
ject bounding boxes and then extract re-ID features. In the
first stage, the detection part is the same as our FairMOT. In
the second stage, we use ROI-Align (He et al., 2017) to ex-
tract the backbone features based on the detected bounding
boxes and then use a re-ID head (a fully connected layer)
to get re-ID features. The main difference between the two-
stage approach and the one-stage “ROI-Align” approach is
that the re-ID features of the two-stage approach rely on the
detection results while those of the one-stage approach do
not during training.

The results are shown in Table 1. Note that the five ap-
proaches are all built on top of FairMOT. The only differ-
ence lies in how they sample re-ID features from detected
boxes. First, we can see that our approach (Center) obtains
notably higher IDFI score and True Positive Rate (TPR)
than ROI-Align, POS-Anchor and the two-stage approach.
This metric is independent of object detection results and
faithfully reflects the quality of re-ID features. In addition,
the number of ID switches (IDs) of our approach is also sig-
nificantly smaller than the two baselines. The results vali-
date that sampling features at object centers is more effective
than the strategies used in the previous works. Bi-linear In-
terpolation (Center-BI) achieves even higher TPR than Cen-
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ter because it samples features at more accurate locations.
The two-stage approach harms the quality of the re-ID fea-
tures.

5.3.2 Balancing Multi-task Losses

We evaluate different methods for balancing the losses of
different tasks including Uncertainty (Kendall et al., 2018),
GradNorm (Chen et al., 2018b) and MGDA-UB (Sener and
Koltun, 2018). We also evaluate a baseline with fixed weights
obtained by grid search. We implement two versions for the

uncertainty-based method. The first is “Uncertainty-task’” which

learns two parameters for the detection loss and re-ID loss,

respectively. The second is “Uncertainty-branch” which learns

four parameters for the heatmap loss, box size loss, offset
loss and re-ID losses, respectively.

Table 2 Comparison of different loss weighting strategies on the vali-
dation set of the MOT17 dataset. The best results are shown in bold.

Loss Weighting MOTA1T IDF1tT IDs| AP{ TPR?T
Fixed 69.6 71.6 387 819 938
Uncertainty-task 69.1 72.8 299 812 944
Uncertainty-branch 68.5 733 319 81.0 96.0
MGDA-UB 63.6 67.9 355 785 97.0
GradNorm 69.5 73.8 311 813 95.1

Table 3 Comparison of different backbones on the validation set of
MOT17 dataset. “MLFF” is short for multi-layer feature fusion. “Acc”
is short for ImageNet classification accuracy. The results of the Ima-
geNet classification accuracy are from the original papers of the back-
bone networks. The best results are shown in bold.

Backbone w/ MLFF MOTA? IDF14 IDs). AP} TPRY Acct
ResNet-34 63.6 672 435 75.1 90.9 752
ResNet-50 63.7 677 501 75.5 91.9 77.8
RegNetY-4.0GF 63.9 68.0 407 75.8 91.9 79.4

ResNet-34-FPN v 644  69.6 369 77.7 942 752
RegNetY-4.0GF-FPN v 65.8 693 257 78.0 943 794
HRNet-W18 v 67.4 743 315 80.5 94.6 76.8
DLA-34 v 69.1 728 299 812 944 769
HarDNet-85 v 71.2 745 198 82.6 95.8 77.0

The results are shown in Table 2. We can see that the
“Fixed” method gets the best MOTA and AP but the worst
IDs and TPR. It means that the model is biased to the de-
tection task. MGDA-UB has the highest TPR but the lowest
MOTA and AP, which indicates that the model is biased to
the re-ID task. Similar results can be found in (Wang et al.,
2020b; Vandenhende et al., 2021). GradNorm gets the best
overall tracking accuracy (highest IDF1 and second highest

MOTA), meaning that ensuring different tasks to have simi-
lar gradient magnitude is helpful to handle feature conflicts.
However, GradNorm takes longer training time. So we use
the simpler Uncertainty method which is slightly worse than
GradNorm in the rest of our experiments.

5.3.3 Multi-layer Feature Fusion

We compare a number of backbones such as vanilla ResNet
(Heetal., 2016), Feature Pyramid Network (FPN) (Lin et al.,
2017a), High-Resolution Network (HRNet) (Wang et al.,
2020a), DLA (Zhou et al., 2019a), HarDNet (Chao et al.,
2019) and RegNet (Radosavovic et al., 2020). Note that the
rest of the factors of these approaches such as training datasets
are all controlled to be the same for fair comparison. In par-
ticular, the stride of the final feature map is four for all meth-
ods. We add three up-sampling operations for vanilla ResNet
and RegNet to obtain feature maps of stride four. We divide
these backbones into two categories, one without multi-layer
fusion (i.e. ResNet and RegNet) and one with (i.e. FPN, HR-
Net, DLA and HarDNet).

The results are shown in Table 3. We also list the Ima-
geNet (Russakovsky et al., 2015) classification accuracy Acc
in order to demonstrate that a strong backbone in one task
does not mean it will also get good results in MOT. So de-
tailed studies for MOT are necessary and useful.

By comparing the results of ResNet-34 and ResNet-50,
we find that blindly using a larger network does not notably
improve the overall tracking result measured by MOTA. In
particular, the quality of re-ID features barely benefits from
the larger network. For example, IDFI only improves from
67.2% to 67.7% and TPR improves from 90.9% to 91.9%,
respectively. In addition, the number of ID switches even
increases from 435 to 501. By comparing ResNet-50 and
RegNetY-4.0GF, we can find that using a even more power-
ful backbone also achieves very limited gain. The re-ID met-
ric TPR of RegNetY-4.0GF is the same as ResNet-50 (91.9)
while the ImageNet classification accuracy improves a lot
(79.4 vs 77.8). All these results suggest that directly using
a larger or a more powerful network cannot always improve
the final tracking accuracy.

In contrast, ResNet-34-FPN, which actually has fewer
parameters than ResNet-50, achieves a larger MOTA score
than ResNet-50. More importantly, TPR improves signifi-
cantly from 90.9% to 94.2%. By comparing RegNetY-4.0GF-
FPN with RegNetY-4.0GF, we can see that adding multi-
layer feature fusion structure (Lin et al., 2017a) to RegNet
brings considerable gains (+1.9 MOTA, +1.3 IDF1, -36.9%
IDs, +2.2 AP, +2.3 TPR), which suggests that multi-layer
feature fusion has clear advantages over simply using larger
or more powerful networks.

In addition, DLA-34, which is also built on top of ResNet-
34 but has more levels of feature fusion, achieves an even
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Table 4 Demonstration of feature conflict between the detection and
re-ID tasks on the validation set of the MOT17 dataset. “-det” means
only the detection branch is trained and the re-ID branch is randomly
initialized. The best results are shown in bold.

Backbone MOTAT IDFI{ IDs| AP{ TPR}
ResNet-34 63.6 672 435 751 909
ResNet-34-det 637 604 597 761 367
DLA-34 69.1 728 299 812 944

Table 5 The impact of different backbones on objects of different
scales. Small: area smaller than 7000 pixels; Medium: area from 7000
to 15000 pixels; Large: area larger than 15000 pixels. The best results
are shown in bold.

Backbone  |APS APM APE|TPRS TPR™M TPRZ|IDs IDs™ IDs”
ResNet-34  [40.6 57.8 852|917 857 888|190 87 118
ResNet-50  [39.7 59.4 86.0[91.3 853 89.0 |248 91 124

ResNet-34-FPN|45.9 61.0 85.4|90.7 91.5 933|166 71 90
HRNet-W18 |51.1 63.7 85.7| 942 925 93.1|168 55 56
DLA-34 46.8 65.1 88.8/92.7 912 918|134 64 70

larger MOTA score. In particular, TPR increases significantly
from 90.9% to 94.4% which in turn decreases the number of
ID switches (IDs) from 435 to 299. Similar conclusions can
be obtained from the results of HRNet-W18. The results val-
idate that feature fusion (FPN, DLA and HRNet) effectively
improves the discriminative ability of re-ID features. On the
other hand, although ResNet-34-FPN obtains equally good
re-ID features (TPR) as DLA-34, its detection results (AP)
are significantly worse than DLA-34. We think the use of
deformable convolution in DLA-34 is the main reason be-
cause it enables more flexible receptive fields for objects of
different sizes - it is very important for our method since
FairMOT only extracts features from object centers with-
out using any region features. We can only get 65.0 MOTA
and 78.1 AP when replacing all the deformable convolutions
with normal convolutions in DLA-34. As shown in Table 5,
we can see that DLA-34 mainly outperforms HRNet-W18
on middle and large size objects. When we further use a
more powerful backbone HarDNet-85 with more multi-layer
feature fusion structures, we achieve even better results than
DLA-34 (+2.1 MOTA, +1.7 IDF1, -33.8% IDs, +1.4 AP,
+1.4 TPR). Although HRNet-W18, DLA-34 and HarDNet-
85 get lower ImageNet classification accuracy than ResNet-
50 and RegNetY-4.0GF, they achieve much higher tracking
accuracy. Based on the experimental results above, we be-
lieve that multi-layer feature fusion is the key to solve the
“feature” issue.

To validate the existence of feature conflict between the
detection and re-ID tasks, we introduce a baseline ResNet-
34-det which only trains the detection branch (re-ID branch
is randomly initialized). We can see from Table 4 that the

Table 6 Evaluation of re-ID feature dimensions of JDE and FairMOT
on the validation set of MOT17. The best results of the same method
are shown in bold.

Method Dim MOTA Y1 IDF1{1 IDs| APt TPRT FPStT
JDE 512 59.9 64.1 536 733 768 222
JDE 64 60.3 65.0 474 73.6 82.0 244
FairMOT 512 68.5 73.7 312 809 946 24.1
FairMOT 64 69.2 73.3 283 813 943 268

detection result measured by AP improves by 1 point if we
do not train the re-ID branch which shows the conflict be-
tween the two tasks. In particular, ResNet-34-det even gets
higher MOTA score than ResNet-34 because the metric fa-
vors better detection than tracking results. In contrast, DLA-
34, which adds multi-layer feature fusion over ResNet-34,
achieves better detection as well as tracking results. It means
multi-layer feature fusion helps alleviate the feature conflict
problem by allowing each task to extract whatever it needs
for its own task from the fused features.

5.3.4 Feature Dimension

The previous one-shot trackers such as JDE (Wang et al.,
2020b) usually learns 512 dimensional re-ID features fol-
lowing the two-step methods without ablation study. How-
ever, we find in our experiments that the feature dimension
actually plays an important role in balancing detection and
tracking accuracy. Learning lower dimensional re-ID fea-
tures causes less harm to the detection accuracy and im-
proves the inference speed. We conduct experiments on dif-
ferent one-shot trackers and find it is a generic rule that low-
dimensional (i.e. 64) re-ID features achieves better perfor-
mance than high-dimensional (i.e. 512) re-ID features.

We evaluate multiple choices for re-ID feature dimen-
sion of JDE and FairMOT in Table 6. For JDE, we can
see that 64 achieves better performance than 512 on all the
metrics. For FairMOT, we can see that 512 achieves higher
IDF1 and TPR scores which indicates that higher dimen-
sional re-ID features lead to stronger discriminative ability.
However, the MOTA score improves when we decrease the
dimension from 512 to 64. This is mainly caused by the con-
flict between the detection and re-ID tasks. In particular, we
can see that the detection result (AP) improves when we de-
crease the dimension of re-ID features. Different from the
re-ID task, low-dimensional re-ID features achieves better
performance and efficiency on the MOT task.

5.3.5 Data Association Methods

This section evaluates the three ingredients in the data asso-
ciation step including bounding box IoU, re-ID features and
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Target Image

ResNet-34-det + Center

ResNet-34 + Center DLA-34 + Center

DLA-34 + POS-Anchor

DLA-34 + ROI-Align

DLA-34 + Center

DLA-34 + Center-BI DLA-34 + Two-Stage

Fig. 3 Visualization of the discriminative ability of the re-ID features. Query instances are marked as red boxes and target instances are marked
as green boxes. The similarity maps are computed using re-ID features extracted based on different strategies (e.g., Center, Center-BI, ROI-Align
and POS-Anchor as described in Section 5.3.1) and different backbones (e.g., ResNet-34 and DLA-34). The query frames and target frames are

randomly chosen from the MOT17-09 and the MOT17-02 sequence.

Kalman Filter (Kalman, 1960). These are used to compute
the similarity between each pair of detected boxes. With that
we use Hungarian algorithm (Kuhn, 1955) to solve the as-
signment problem. Table 7 shows the results. We can see
that only using box IoU causes a lot of ID switches. This
is particularly true for crowded scenes and fast camera mo-
tion. Using re-ID features alone notably increases IDFI and
decreases the number of ID switches. In addition, adding

Kalman filter helps obtain smooth (reasonable) tracklets which

further decreases the number of ID switches. When an object
is partly occluded, its re-ID features become unreliable. In
this case, it is important to leverage box IoU, re-ID features
and Kalman filter to obtain good tracking performance.

We also present a detailed runtime breakdown of differ-
ent components including detection, re-ID matching, Kalman
Filter and IoU matching. We test runtime on sequences with
different density (average number of pedestrians per frame).
The results are shown in Fig 4. The time spent on joint de-
tection and re-ID is minimally affected by density. The time
spent on Kalman Filter and IoU matching are around 1ms
or 2ms and can be ignored. The time spent on re-ID match-
ing increases linearly with the increase of density. This is
because a large amount of time is cost on updating the re-ID
feature of each tracklet.

Table 7 Evaluation of the three ingredients in the data association
model. The backbone is DLA-34. The best results are shown in bold.

Box IoU Re-ID Features Kalman Filter MOTA 1 IDF1 1 IDs |

v 67.8 67.2 648
v 68.1 70.3 435
v v 68.9 71.8 342
v v v 69.1 72.8 299

5.3.6 Visualization of Re-ID Similarity

We use re-ID similarity maps to demonstrate the discrim-
inative ability of re-ID features in Figure 3. We randomly
choose two frames from our validation set. The first frame
contains the query instance and the second frame contains
the target instance that has the same ID. We obtain the re-
ID similarity maps by computing the cosine similarity be-
tween the re-ID feature of the query instance and the whole
re-ID feature map of the target frame, as described in Sec-
tion 5.3.1 and Section 5.3.3 respectively. By comparing the
similarity maps of ResNet-34 and ResNet-34-det, we can
see that training the re-ID branch is important. By compar-
ing DLA-34 and ResNet-34, we can see that multi-layer fea-
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Fig. 4 Time spent on different parts of our whole MOT system. We run
tracking on sequences with different density from the MOT17 dataset
and the MOT?20 dataset.

ture aggregation can get more discriminative re-ID features.
Among all the sampling strategies, the proposed Center and
Center-BI can better discriminate the target object from sur-
rounding objects in crowded scenes.

5.4 Single Image Training

We first pre-train FairMOT on the CrowdHuman dataset (Shao

et al., 2018). In particular, we assign a unique identity label
for each bounding box and train FairMOT using the method
described in section 4.4. Then we finetune the pre-trained
model on the target dataset MOT17.

Table 8 shows the results. First, the pre-trained model
can be directly used as a tracker and get acceptable results on
MOT datasets such as MOT17. This is because the Crowd-
Human dataset can boost the human detection performance
and also has strong domain generalization ability. Our train-
ing of the re-ID features further enhances the association
ability of the tracker. Second, pre-training on CrowdHuman
outperforms directly training on the MOT17 dataset by a
large margin. Third, the single image training model even
outperforms the model trained on the “MIX” and MOT17
datasets with identity annotations. The results validate the
effectiveness of the proposed single image pre-training, which
saves lots of annotation efforts and makes FairMOT more
attractive in real applications.

5.5 Results on MOTChallenge

We compare our approach to the state-of-the-art (SOTA)
methods including both the one-shot methods and the two-
step methods.

Table 8 Effects of single image training on the validation set of
MOT17. “CH” and “MIX” stand for CrowdHuman and the composed
five datasets introduced in Section 5.1, respectively. * means no iden-
tity annotations are used. The best results are shown in bold.

Training Data MOTA {1 IDF1{ IDs| APt TPR?Y
CH" 64.1 64.9 476  80.5 799
MOT17 67.5 69.9 408 79.6 934
CH"+MOT17 71.1 75.6 327 830 93.6
MIX+MOT17 69.1 72.8 299 812 %44

Table 9 Comparison of the state-of-the-art one-shot trackers on the
2DMOT15 dataset. “MIX” represents the large scale training dataset
and “MOT17 Seg” stands for the 4 videos with segmentation labels
in the MOT17 dataset. The best results of the same training data are
shown in bold.

Training Data Method MOTAT IDF11 IDs| FP|] FNJ FPSt

MIX JDE 67.5 66.7 218 1881 2083 26.0
FairMOT(ours) 77.2 798 80 757 2094 30.9
MOT17 Seg Track R-CNN  69.2 494 294 1328 2349 2.0
FairMOT(ours) 70.2 64.0 96 1209 2537 30.9

5.5.1 Comparing with One-Shot SOTA MOT Methods

There are two published works of JDE (Wang et al., 2020b)
and TrackRCNN (Voigtlaender et al., 2019) that jointly per-
form object detection and identity feature embedding. We
compare our approach to both of them. Following the previ-
ous work (Wang et al., 2020b), the testing dataset contains
6 videos from 2DMOT15. FairMOT uses the same train-
ing data as the two methods as described in their papers.
In particular, when we compare to JDE, both FairMOT and
JDE use the large scale composed dataset described in Sec-
tion 5.1. Since Track R-CNN requires segmentation labels to
train the network, it only uses 4 videos of the MOT17 dataset
which has segmentation labels as training data. In this case,
we also use the 4 videos to train our model. The CLEAR
metric (Bernardin and Stiefelhagen, 2008) and IDF1 (Ris-
tani et al., 2016) are used to measure their performance.

The results are shown in Table 9. We can see that our ap-
proach remarkably outperforms JDE (Wang et al., 2020b).
In particular, the number of ID switches reduces from 218
to 80 which is big improvement in terms of user experience.
The results validate the effectiveness of the anchor-free ap-
proach over the previous anchor-based one. The inference
speed is near video rate for the both methods with ours being
faster. Compared with Track R-CNN (Voigtlaender et al.,
2019), their detection results are slightly better than ours
(with lower FN). However, FairMOT achieves much higher
IDF1 score (64.0 vs. 49.4) and fewer ID switches (96 vs.
294). This is mainly because Track R-CNN follows the “de-
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Table 10 Comparison of the state-of-the-art methods under the “private detector” protocol. It is noteworthy that FPS considers both detection and
association time. The one-shot trackers are labeled by “*”. The best results of each dataset are shown in bold.

Dataset Tracker MOTA® IDF11 MTY MLJ IDs| FPS?T
MOT15 MDP_SubCNN(Xiang et al., 2015) 47.5 55.7 30.0% 18.6% 628 <1.7
CDA_DDAL(Bae and Yoon, 2017) 51.3 54.1 36.3% 22.2% 544 <1.2
EAMTT(Sanchez-Matilla et al., 2016) 53.0 54.0 35.9% 19.6% 7538 <4.0
AP_HWDPL/(Chen et al., 2017) 53.0 522 29.1% 20.2% 708 6.7
RARI15(Fang et al., 2018) 56.5 61.3 45.1% 14.6% 428 <34
TubeTK" (Pang et al., 2020) 58.4 53.1 39.3% 18.0% 854 5.8
FairMOT (Ours)” 60.6 64.7 47.6 % 11.0% 591 30.5
MOT16 EAMTT(Sanchez-Matilla et al., 2016) 52.5 533 19.9% 34.9% 910 <55
SORTwHPD16(Bewley et al., 2016) 59.8 53.8 25.4% 22.7% 1423 <8.6
DeepSORT_2(Wojke et al., 2017) 614 62.2 32.8% 18.2% 781 <64
RAR16wVGG(Fang et al., 2018) 63.0 63.8 39.9% 22.1% 482 <14
VMaxx(Wan et al., 2018) 62.6 49.2 32.7% 21.1% 1389 <39
TubeTK" (Pang et al., 2020) 64.0 594 33.5% 19.4% 1117 1.0
JDE" (Wang et al., 2020b) 64.4 55.8 35.4% 20.0% 1544 18.5
TAP(Zhou et al., 2018) 64.8 73.5 38.5% 21.6% 571 <8.0
CNNMTT(Mahmoudi et al., 2019) 65.2 62.2 32.4% 21.3% 946 <53
POI(Yu et al., 2016) 66.1 65.1 34.0% 20.8% 805 <5.0
CTrackerV 1" (Peng et al., 2020) 67.6 57.2 32.9% 23.1% 1897 6.8
FairMOT (Ours)” 74.9 72.8 44.7 % 15.9% 1074 25.9
MOT17 SST(Sun et al., 2019) 524 49.5 21.4% 30.7% 8431 <39
TubeTK" (Pang et al., 2020) 63.0 58.6 31.2% 19.9% 4137 3.0
CTrackerV 1™ (Peng et al., 2020) 66.6 57.4 32.2% 24.2% 5529 6.8
CenterTrack”(Zhou et al., 2020) 67.8 64.7 34.6% 24.6% 2583 17.5
FairMOT (Ours)” 73.7 72.3 43.2% 17.3% 3303 25.9
MOT20 FairMOT (Ours)” 61.8 67.3 68.8 % 7.6 % 5243 13.2

tection first, re-ID secondary” framework and use anchors
which also introduce ambiguity to the re-ID task.

5.5.2 Comparing with Other SOTA MOT Methods

We compare our approach to the state-of-the-art trackers in-
cluding the two-step methods in Table 10. Since we do not
use the public detection results, the “private detector” pro-
tocol is adopted. We report results on the testing sets of the
2DMOT15, MOT16, MOT17 and MOT20 datasets, respec-
tively. Note that all of the results are directly obtained from
the official MOT challenge evaluation server.

Our approach ranks first among all online and offline
trackers on the four datasets. In particular, it outperforms
other methods by a large margin. This is a very strong re-
sult especially considering that our approach is very sim-
ple. In addition, our approach achieves video rate inference.
In contrast, most high-performance trackers such as (Fang
et al., 2018; Yu et al., 2016) are usually slower than ours.
Our approach also ranks second under a very recent local
MOT metric ALTA (Valmadre et al., 2021), which further
indicates that our approach achieves very high tracking per-
formance (Table 10).

Table 11 Results of the MOT17 test set when using different datasets
for training. “MIX” represents the large scale dataset mentioned in part
4.1 and “CH” is short for the CrowdHuman dataset. All the results are
obtained from the MOT challenge server. The best results are shown in
bold.

Training Data ‘Images Boxes Identities‘MOTAT IDF11 IDs)

MOT17 5K 112K 0.5K 69.8 699 3996
MOT17+MIX 54K 270K 8.7K 729 732 3345
MOT17+MIX+CH| 73K 740K 8.7K 73.7 723 3303

5.5.3 Training Data Ablation Study

We also evaluate the performance of FairMOT using differ-
ent amount of training data in Table 11. We can achieve 69.8
MOTA when only using the MOT17 dataset for training,
which already outperforms other methods using more train-
ing data. When we use the same training data as JDE (Wang
et al., 2020b), we can achieve 72.9 MOTA, which remark-
ably outperforms JDE. In addition, when we perform sin-
gle image training on the CrowdHuman dataset, the MOTA
score improves to 73.7. The results suggest that our approach
is not data hungry which is a big advantage in practical ap-
plications.
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Fig. 5 Example tracking results of our method on the test set of MOT17. Each row shows the results of sampled frames in chronological order
of a video sequence. Bounding boxes and identities are marked in the images. Bounding boxes with different colors represent different identities.
Best viewed in color.
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5.6 Qualitative Results

Figure 5 visualizes several tracking results of FairMOT on
the test set of MOT17 (Milan et al., 2016). From the results
of MOT17-01, we can see that our method can assign cor-
rect identities with the help of high-quality re-ID features
when two pedestrians cross over each other. Trackers using
bounding box IoUs (Bewley et al., 2016; Bochinski et al.,
2017) usually cause identity switches under these circum-
stances. From the results of MOT17-03, we can see that our
method perform well under crowded scenes. From the re-
sults of MOT17-08, we can see that our method can keep
both correct identities and correct bounding boxes when the
pedestrians are heavily occluded. The results of MOT17-06
and MOT17-12 show that our method can deal with large
scale variations. This mainly attributes to the using of multi-
layer feature aggregation. Our method can detect small ob-
jects accurately as shown in the results of MOT17-07 and
MOT17-14.

6 Summary and Future Work

Start from studying why the previous one-shot methods (Wang

et al., 2020b) fail to achieve comparable results as the two-
step methods, we find that the use of anchors in object de-
tection and identity embedding is the main reason for the de-
graded results. In particular, multiple nearby anchors, which
correspond to different parts of an object, may be responsi-
ble for estimating the same identity which causes ambigui-
ties for network training. Further, we find the feature unfair-
ness issue and feature dimension issue between the detec-
tion and re-ID tasks in previous MOT frameworks. By ad-
dressing these problems in an anchor-free single-shot deep
network, we propose FairMOT. It outperforms the previous
state-of-the-art methods on several benchmark datasets by a
large margin in terms of both tracking accuracy and infer-
ence speed. Besides, FairMOT is inherently training data-
efficient and we propose single image training of multi-object
trackers only using bounding box annotated images, which
both make our method more appealing in real applications
(Zhang et al., 2021b).
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