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Abstract
In this work, we propose a 3D fully convolutional architecture for video saliency prediction that employs hierarchical super-
vision on intermediate maps (referred to as conspicuity maps) generated using features extracted at different abstraction
levels. We provide the base hierarchical learning mechanism with two techniques for domain adaptation and domain-specific
learning. For the former, we encourage the model to unsupervisedly learn hierarchical general features using gradient reversal
at multiple scales, to enhance generalization capabilities on datasets for which no annotations are provided during training.
As for domain specialization, we employ domain-specific operations (namely, priors, smoothing and batch normalization)
by specializing the learned features on individual datasets in order to maximize performance. The results of our experiments
show that the proposed model yields state-of-the-art accuracy on supervised saliency prediction. When the base hierarchical
model is empowered with domain-specific modules, performance improves, outperforming state-of-the-art models on three
out of five metrics on the DHF1K benchmark and reaching the second-best results on the other two. When, instead, we test
it in an unsupervised domain adaptation setting, by enabling hierarchical gradient reversal layers, we obtain performance
comparable to supervised state-of-the-art. Source code, trained models and example outputs are publicly available at https://
github.com/perceivelab/hd2s.

Keywords Video saliency Prediction · Conspicuity networks · Conspicuity maps · Domain adaptation · Gradient reversal
layer · Domain specific learning

1 Introduction

Video saliency prediction is the task of predicting human
gaze fixation when perceiving dynamic scenes, and it is
typically carried out by estimating spatio-temporal saliency
maps from an input video sequence. Saliency prediction,
in general, can be seen as the upstream processing step of
multiple applications that include object detection (Girshick
2015), behavior understanding (Lim et al. 2014; Lu et al.
2017), video surveillance (Li and Lee 2007; Mark et al.
2018; Guraya et al. 2010; Yubing 2011) and video captioning
(Nguyen et al. 2013; Wang et al. 2018a; Yangyu et al. 2018).
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Existing video saliency prediction methods generally apply
single-image saliency estimation on individual frames, and
combine the results with recurrent layers to model tempo-
rally frame-level features.However, the two separate analysis
stages in these models make them unable to fully cap-
ture spatio-temporal features simultaneously. Recently, 3D
fully-convolutional models have addressed this limitation
by progressively aggregating spatio-temporal cues, achiev-
ing state-of-the-art performance on standard benchmarks.
For example, TASED-Net (Min and Corso 2019) adopts a
standard encoder-decoder architecture, as largely used in
semantic segmentation tasks (Ronneberger et al. 2015;Badri-
narayanan et al. 2017; Noh et al. 2015), that learns a compact
spatio-temporal representation, and feeds it to a decoder sub-
network to perform saliency prediction.While thesemethods
performwell, saliency prediction is constrained by the aggre-
gated representation learned at the model’s bottleneck.

To overcome this limitation, and following the success
of 3D convolutional architectures, in this paper we propose
Hierarchical Decoding for Dynamic Saliency prediction—
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Fig. 1 HD_2S overview. Our proposed model generates multiple
intermediate saliency maps by using features extracted at different
abstraction levels, and combines them to predict the output map. We
refer to the intermediate saliency maps as conspicuity maps

HD2S—model that, instead of using a compact spatio-
temporal representation as in (Min and Corso 2019), gen-
erates multiple saliency maps by using features learned at
different abstraction levels and then combines them to com-
pute the final output. We refer to the intermediate saliency
maps as conspicuity maps, as the employed architecture
recalls the multi-scale model proposed in (Itti et al. 1998).
Using representations extracted at different abstraction lev-
els (from shallow to deeper) allows the model to learn both
generic (and more dataset-independent) and dataset-specific
features. The twofold advantage we obtain is to enhance
performance on a specific dataset and, at the same time, to
improve adaptation capabilities.

Our approach takes inspiration from DVA (Wang et al.
2018e), but extends it to the video domain by learning spatio-
temporal cues for predicting visual saliency. More specif-
ically, HD2S, shown in Fig. 1, is a 3D fully-convolutional
network that employs an ensemble of multiple prediction
models, each producing a conspicuity-like map at a specific
abstraction level, for better saliency estimation.

As an additional contribution, we tackle the problem of
generalization for video saliency prediction. Indeed, state-
of-the-art methods lack domain adaptation capabilities and
require a mandatory fine-tuning step to perform well on
datasets that they were not trained on. As the deep learning
community is moving to build more generalizable models,
we argue that this holds, even more so, for saliency predic-
tion research, given its fundamental nature in an artificial
vision pipeline. To address this issue, our saliency predic-
tion network is provided with a multi-scale domain adaption

mechanism, based on gradient reversal (Ganin 2016), that
encourages the model to learn domain-independent features.
In particular, each abstraction level of HD2S is provided with
a gradient reversal layer that prevents the learned represen-
tation from becoming dataset-specific.

We also address the opposite problem, i.e., domain-
specific learning, by adding to the model some dataset-
specific modules whose parameters are learned in order to
maximize performance on a given dataset.

We carry out extensive experiments testing of HD2S
on multiple video saliency benchmarks (DHF1K (Wang
et al. 2018c), UCF Sports (Marszalek et al. 2009; Soomro
et al. 2014), Hollywood2 (Mathe and Sminchisescu 2014))
obtaining state-of-the-art performance and outperforming
existing models. Furthermore, performance is boosted, as
expected, when domain-specific learning is enabled.We also
test thoroughly the domain adaptation capabilities of HD2S
to datasets for which no annotations are available during
training. Ourmodel shows remarkable results, achieving per-
formance comparable to state-of-the-art models that, instead,
are trained (or fine-tuned) on those datasets in a standard
supervised fashion.

2 RelatedWork

Saliency prediction has been long investigated in AI and
computer vision research. In general, saliency models can be
categorized in: saliency prediction (Wang 2019) approaches
that attempt to predict the fixation points of a human observer
during free-viewing (e.g., they aim to predict where people
look at in a scene), and salient object detection (Liu 2010)
methods that, instead, focus on assessing the saliency of pix-
els w.r.t. objects of interest (e.g., they aim to separate the
salient objects from the background). Saliency methods can
be further categorized according to whether they process still
images (static saliency) or videos (dynamic saliency).

Static saliency has been studied for decades. Initial mod-
els, biologically-inspired (Itti et al. 1998) and employing
hand-crafted features, were followed by recent CNN-based
attempts (Huang et al. 2015; Pan et al. 2016, 2017; Kum-
merer et al. 2017; Wang et al. 2018e; Fan et al. 2018;
Cornia 2018; Che 2019; Kroner 2020; Jia et al. 2020) that
yield superior performance, rapidly becoming state of the
art for static saliency prediction. To overcome the lack of
large eye fixation datasets, CNN-based static methods rely
mainly on image classification models, as backbone, exploit-
ing their capability to extract features useful for other visual
tasks. Different encoder-decoder architectures with various
strategies to combine the extracted features have then been
proposed. The release of larger dataset for saliency, such as
MIT300 (Judd et al. 2012), SALICON (Jiang et al. 2015),
and CAT2000 (Borji et al. 2015), led to a performance gain.
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DeepGaze II (Kummerer et al. 2017) investigated the benefit
of employing low- and high-level features in saliency pre-
diction. Similarly, ML-NET (Cornia et al. 2016) proposed
to combine low- and high-level features at the bottleneck,
while (Kroner 2020) concatenates the outputs from several
layers and processes them with multiple convolutional lay-
ers with different dilation rates. Another approach is to use
a two-stream encoder architecture as in (Huang et al. 2015),
where the image at different spatial scales is fed as input to
the model, in order to extract low and high resolution infor-
mation. (Fan et al. 2018), based on (Huang et al. 2015), used
a similar network adding, after feature extraction, a channel
weighting subnetwork that encodes contextual information.
Differently from the above models, other works exploit
adversarial training (Goodfellow et al. 2014) for saliency
prediction, such as SalGAN (Pan et al. 2017) and GazeGAN
(Che 2019). Compared to saliency models for still images,
saliency prediction in videos is an even more complex prob-
lem, due to the presence of the temporal dimension and to
the additional computational effort it requires. Static saliency
models have been adapted to dynamic saliency by using them
in frame-by-frame mode, but they are outperformed by the
dynamicmodels that jointly process the temporal dimension.

In recent years, a common strategy has been to extend
static saliency models to the video scenario by incorporating
motion features (Wang et al. 2017; Shokri et al. 2020; Sun
2018). For example, (Wang et al. 2017) proposes a two-model
architecture to exploit spatio-temporal features: thefirstmod-
ule performs frame-level saliency prediction; the second
module, instead, takes pairs of frameswith saliency predicted
by the first module, and generates a dynamic saliency map.
(Shokri et al. 2020) basically employs the same architecture
as (Wang et al. 2017) and self-attention, through non-local
operations (Wang et al. 2018d). SalEMA (Linardos et al.
2019), instead, proposes a 2D encoder-decoder architecture
with a recurrent module added to the bottleneck for integrat-
ing temporal information provided by the previous frames.
Motion cues have been also included in saliency prediction
through either recurrent neural networks applied to spatial
feature encodings or convolutional recurrent networks. OM-
CNN (Jiang et al. 2017) is a dual-streamnetwork that extracts
spatial and temporal features using YOLO (Redmon et al.
2016) and FlowNet (Dosovitskiy et al. 2015), whose respec-
tive objectness and motion features are then combined via
a two-layer ConvLSTM. Similarly, ACLNet (Wang et al.
2018c) performs static saliency prediction through attention
module that performs a global spatial operation on learned
features. These features are then given to a ConvLSTM
to model temporal information. The recent SalSAC model
(Wu et al. 2020), leveraging the success of self-attention
for saliency prediction (Cornia 2018; Wang et al. 2018c),
proposes an architecture with a shuffled attention mecha-
nism on multi-level features for better modeling of spatial

saliency. Correlation features between multi-level features
and shuffled attention on the same features are provided to a
ConvLSTM for learning temporal cues.

With the recent availability of a large-scale saliency
benchmark, i.e., DHF1K (Wang et al. 2018c), 3D fully-
convolutional models (Bazzani et al. 2016; Min and Corso
2019), jointly extracting spatial and temporal features, have
been proposed. RMDN (Bazzani et al. 2016) processes
video clips with a 3D convolutional neural network based
on C3D (Tran et al. 2015), and then employs LSTMs to
enforce temporal consistency among the segments. TASED-
Net (Min and Corso 2019) is a 3D fully-convolutional
network, based on a standard encoder-decoder architecture,
for video saliency prediction without any additional fea-
ture processing steps. Similarly to the above approaches, our
HD2S model is a 3D fully-convolutional network extending
the multi-abstraction level analysis, proposed in (Wang et al.
2018e) for static saliency, to the video domain by learning
spatio-temporal cues.

Multi-level feature learning has been already applied in
several application domains, most notably in object detec-
tion through the use of feature pyramid networks (FPN) (He
2020). Most relevant to our approach are the works that carry
out salient object detection using multi-level feature hierar-
chies, such as Amulet (Zhang et al. 2017) and DSS (Hou
2019). However, beside targeting static saliency prediction in
images (and not in videos), those approaches apply an early-
fusion mechanism of multi-level features, that are combined
(through different concatenation schemas) before being fur-
ther processed. Our method, instead, performs a late fusion
of features: we encourage each decoding path to indepen-
dently extract information from a certain abstraction layer,
making sure that no inter-branch “contamination” may hap-
pen except at the very last layer, and thus pushing it to learn
scale-specific and complementary saliency features.

HD2S can also be used in a domain adaption scenario to
generalize across datasets without the need to be fine-tuned.
Indeed, in all prediction tasks, shifts in train and test data dis-
tributionsmay lead to a significant degradation of themodel’s
performance. Trying to train a predictor capable of handling
these shifts is commonly referred to as domain adaptation.
Among the different domain adaptation settings,1 we focus
on unsupervised domain adaptation, which is the task of
aligning features extracted from the model across source and
target domains, without any labelled samples from the lat-
ter. Several techniques have been proposed (though not for
saliency prediction), such as regularizing themaximummean
discrepancy (Long et al. 2015), minimizing correlation (Sun
et al. 2016) or domain discriminability (Ganin 2016; Tzeng

1 An extensive review of domain adaptation approaches is out of the
scope of this paper and can be found in (Pan et al. 2009;Wang and Deng
2018b).
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et al. 2017). An effective approach to transfer the feature dis-
tribution from source to target domains is proposed in (Ganin
2016) through the use of the gradient reversal layer, treating
domain invariance as a binary classification problem. This
approach addresses domain adaptation by adversarially forc-
ing a model to solve a given task while learning features that
are non-discriminative across datasets. In HD2S we apply
this strategy on multi-level features (unlike typical single-
branch usage), in order to support the generalization of the
saliency prediction task to datasets for which no annotations
are available during training. While unsupervised domain
adaptation has been applied to image classification (Ganin
2016; Tzeng et al. 2017), face recognition (Kan et al. 2015),
object detection (Tang 2016), semantic segmentation (Zhang
et al. 2020) and video action recognition (Li et al. 2018)
(among others), our work is, to our knowledge, the first to
deal with unsupervised domain adaptation on video saliency
prediction. It is worthwhile to note that this is technically and
fundamentally different from the form of domain adaptation
proposed inUNISAL (Droste et al. 2020), that, instead, learns
domain-specific parameters. This means that, at inference
time, UNISAL requires to know the source dataset of a given
input in order to select domain-specific learned parameters.
Our approach, instead, is domain-agnostic as it employs the
learned parameters on any tested domain. It is also differ-
ent from unsupervised salient object detection (Zhang et al.
2018),which, instead, attempts to predict saliency by exploit-
ing large unlabelled or weakly-labelled samples. However,
we alsoprovideHD2Swith domain-specific learning capabil-
ities as in (Droste et al. 2020), showing how this mechanism
improves performance but cannot be applied in unsupervised
domain adaptation scenarios.

3 Method

3.1 Architecture Overview

The proposed architecture is a fully-convolutional multi-
branch encoder-decoder network for saliency prediction,
illustrated in Fig. 2. An input sequence of consecutive video
frames is first processed by a feature extraction path, which
computes spatio-temporal features at different scales and
abstraction levels. The extracted features serve as input to
separate network branches that estimate a set of conspicuity
maps at the corresponding points in the model, while at the
same time providing skip paths to ease gradient flow during
training. At the output of the model, conspicuity maps are
combined to predict the saliency map for the last frame in
the input sequence.

Our model is trained in a supervised way on a source
dataset, for which saliency annotations are available.

Furthermore, the base model is provided with two addi-
tional mechanisms (that can be both disabled or enabled
exclusively):

– Domain Adaptationmodules that aim to make the model
learn, in an unsupervisedway, generalizable features (see
red items in Fig. 2). In particular, each conspicuity sub-
network forks to a domain classification path, that is
trained to classifywhether an input video sequence (more
precisely, the corresponding features at that abstraction
level) is taken from the source domain or from a target
domain, which cannot be employed for training through
direct supervision since annotations are not available. In
order to perform this adaptation, we apply the gradient
reversal technique: the feature extraction layer, shared
by the conspicuity networks and the domain classifiers,
is trained in an adversarial way, in order to force the
model to learn features that are both discriminative and
predictive—saliency-wise—as well as domain-invariant,
in order to achieve satisfactory results even on the target
domain.

– Domain-Specific Learning mechanism that learns spe-
cific parameters to enhance the prediction on a given
dataset. More specifically, we add modules (shown as
light gray items in Fig. 2), used in a multi-source training
scenario (i.e., when using in training multiple datasets
at the same time), whose parameters are optimized on
each individual dataset. These modules aim to modulate
features shared across multiple datasets based on the test
data domain and include: domain-specific priors, batch-
normalization and prediction smoothing.

At inference time, saliency maps are predicted for each
frame by applying the model in a sliding window fashion,
as in (Min and Corso 2019); the saliency map St at time t is
predicted from a sequence Vt = {It−T+1, . . . , It }, where It
is the video frame at time t . To predict the first T −1 frames,
we reverse the chronological order of the corresponding input
clips: each St for 1 ≤ t ≤ T − 1 is predicted from the
sequence Vt = {It+T−1, . . . , It }. As a final post-processing
step, we apply a Gaussian filter (σ = 5) for smoothing the
output saliency map.

In the following, we describe each of the components of
our architecture.

3.2 Feature Extractor

The employed feature extractor performs spatio-temporal
encoding of an input videoclip (16 frames of size 128×192),
using S3D (Xie et al. 2018) as a backbone. It then progres-
sively reduces the dimensions of the feature maps through
3D max pooling to 2×4×6 (time × height × width), while
increasing the number of channels to 1024.However, in order
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Fig. 2 HD_2S architecture: Our multi-branch decoder predicts four
conspicuity maps at different feature abstraction levels, which are then
integrated into the final saliency prediction, on which KL-divergence
loss Ls is minimized. As for unsupervised domain adaption, each
decoder branch is equippedwith a gradient reversal layer (see red items)
that encourages the model to learn features that generalize to a target

data domain in an unsupervised way, by maximizing the classification
error Ld on the prediction of an input sample’s domain. Finally, HD2S
is also provided with domain-specific priors added to encoded features,
with removed temporal dimension, and domain-specific smoothing as
a last final layer

to exploit the full potential of the learned hierarchical repre-
sentations, we select feature maps at different levels of the
extractor, corresponding to different abstraction details, in

order to build a skip architecture able to capturemulti-headed
saliency responses. In our implementation, we select feature
maps from the S3D backbone at the output of the second,
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third and fourth pooling layers and at the input of the last
average pooling layer.

3.3 Conspicuity Networks

After feature encoding, we learn several conspicuity maps
from the partial information produced at different levels of
the feature extraction stack through multiple decoder net-
works (referred as conspicuity networks in Fig.2).

Each conspicuity network in the model processes one
of the spatio-temporal feature blocks coming from the fea-
ture extractor and returns a single-channel saliency map,
encoding the conspicuity of spatial locations at that level
of abstraction. In detail, the temporal dimension of the input
feature maps is gradually removed, by applying a cascade of
spatially point-wise convolutions (i.e., with kernel 3× 1× 1
and stride 2 × 1 × 1) that halve the temporal dimension at
each step. The number of point-wise convolutions varies for
each conspicuity network, depending on the size of the input
feature maps.

After that, the (now purely spatial) set of feature maps is
processed by a stack of 2D convolutional layers, interleaved
with bilinear upsampling blocks, each of which doubles the
spatial size of the feature maps until the original resolution
of each frame is recovered.

3.4 Saliency Prediction

The four conspicuity maps produced by the above sub-
networks are finally fused to predict saliency on the last
frame of the input video. The global fusion layer consists
of concatenating the four maps and performing pixel-wise
1×1 convolution followed by logistic activation.

At training time, the whole model (feature extractor,
conspicuity networks and saliency predictor) is trained super-
visedly on the source dataset in order to minimize the
Kullback-Leibler (KL) divergence (Min and Corso 2019;
Huang et al. 2015), between the predicted saliency map and
conspicuity maps, and the correct target. More formally,
given the predicted output saliency map St , the four con-
spicuity maps Ct,i with i = 1, 2, 3, 4 and the ground-truth
map Gt for a given target frame, all normalized over pixels
appropriately, our multi-level saliency loss Ls is computed
as follows:

Ls (St ,Ct ,Gt ) =
4∑

j=1

∑

i

Gt,i log
Gt,i

Ct, j,i

+
∑

i

Gt,i log
Gt,i

St,i
(1)

where index i iterates over all pixels, index j iterates over the
four conspicuity maps, Gt,i , St,i and Ct,i, j are correspond-

ing pixels of, respectively, the ground truth map, the output
saliency map and the j-th conspicuity map.

3.5 Domain Adaptation

In addition to training the model in a supervised way on the
source domain, we also encourage the feature extractor to
generalize over a target domain, without any supervision.
Our unsupervised domain adaptation strategy relies on the
gradient reversal layer (GRL) approach.

In particular, we integrate domain adaptation by inserting,
in all of the conspicuity subnetworks, a branchwith a gradient
reversal layer and a domain classifier after the temporal-
dimension removal layer (see Fig. 2). More formally and
generally, given an input video clip Vt with associate binary
domain label d ∈ {0, 1} (source or target, respectively),
we compute a set of associated domain classification losses{Ld,1, . . . ,Ld,4

}
from 4 domain classifiers attached to the

conspicuity networks. If we indicate by d̂i the probability of
the input being from the target domain estimated by the i-th
classifier, the corresponding negative log-likelihood loss is
defined as:

Ld,i

(
d, d̂i

)
= −d log d̂i − (1 − d) log

(
1 − d̂i

)
(2)

The overall domain classification loss is simply computed
as the sum of the individual contributions, since the interac-
tion between saliency prediction and domain adaptation is
controlled by the λ hyperparameter in the gradient reversal
layers. As a result, the comprehensive loss for model training
with domain adaptation is the following:

L = Ls +
4∑

i=1

Ld,i (3)

During training, we alternately pass a batch of videos from
the source domain and a batch of videos from the target
domain: on the former, we compute and backpropagate both
the saliency prediction loss Ls and the domain classification
loss Ld (with target d = 0); on the latter, we can only com-
pute and backpropagate the domain classification loss Ld

(with target d = 1), since no saliency annotation is available
on the target domain. Minimizing the domain classification
loss has the effect to train the classifiers to better discriminate
between the source and the target domains, while at the same
time adversarially training the feature extractor (and the ini-
tial temporal-removal layers in the conspicuity networks) to
produce features that confuse the classifier, and hence that
are domain-independent.

Architecturally, each domain classifier consists of a stack
of 1×1 spatial convolutions aimed at reducing the number
of features, followed by fully-connected layers, the last of
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which provides binary classification prediction of the input
video’s domain.

3.6 Domain-Specific Learning

In certain multi-source training scenarios (e.g., as done in
(Droste et al. 2020)), one may assume that annotations are
available for all employed datasets, thus enabling super-
vised training on all of them. When applying our saliency
prediction model to this scenario, we provide it with domain-
specific operations (Droste et al. 2020), which address the
domain shift among different datasets. Unlike the unsu-
pervised domain adaption setting, where we attempt to
unsupervisedly learn features that generalize over multiple
datasets, we here explicitly tailor learned features to the spe-
cific characteristics of each dataset.

In practice, we adopt a set of domain-specific techniques
which have demonstrated to be effective as in (Droste et al.
2020):
Domain-Specific Priors. (Droste et al. 2020) thoroughly ana-
lyzed multiple video saliency benchmarks, identifying the
sources of data shift among them and encoding these sources
into a set of Gaussian prior maps. We employ the same strat-
egy by initializing domain priors as in (Droste et al. 2020),
and then letting the model learn the most suitable filters to
weight the encoded spatio-temporal features depending on
the input data domain. Domain priors are used to modulate
the encoded features, after removing the temporal dimension
(see light gray blocks in Fig. 2).
Domain-Specific Smoothing. The optimal way in which the
output map should be smoothed varies between different
datasets and depends mostly on how ground truth is created.
To address this issue, we learn a different Gaussian kernel
(i.e, with a different value of σ ) for each input data domain.
Unlike (Droste et al. 2020), our layer is parameterized by σ

only, with convolution coefficients computed accordingly to
make the filter Gaussian, while (Droste et al. 2020) initial-
ize domain-specific convolutional filters to be Gaussian, but
they may drift to non-Gaussian as the network updates its
parameters. This smoothing is applied to the global saliency
map (see Fig. 2).
Domain-Specific Batch Normalization aims at mitigating the
impact of data distribution shift on the statistics estimated by
batch normalization for inference, which may become inac-
curate when computed over different benchmarks (Li et al.
2016; Chang et al. 2019; Droste et al. 2020). Thus, we learn
batch normalization statistics for each dataset independently
and accordingly apply them at inference time, depending on
the input domain, as in (Droste et al. 2020).

4 Experimental Results

4.1 Datasets

This section describes briefly the datasets commonly
employed for benchmarking video saliency prediction meth-
ods:

– DHF1K (Wang et al. 2018c) consists of 1,000 high-
quality videos with a large diversity of scenes, objects,
types of motion, complexity of backgrounds. In total, it
includes 582,605 frames annotated with fixation points
from 17 observers during a free-viewing experiment. The
dataset is split into 600/100/300 videos for training, val-
idation and test sets, respectively. The test set is not
released and the results are maintained by the dataset
curators.2

– UCF Sports (Marszalek et al. 2009) contains 150 videos
taken from the UCF Sports Action Dataset (Soomro et al.
2014). Fixations are collected from 16 subjects while
attempting to identify the action that occurred in the
video. The dataset is split into 103 videos for training,
and the remaining 47 for test, for a total of around 6,500
frames for training and 3,000 frames for test. The length
of the videos varies between 20 and 140 frames.

– Hollywood2 (Mathe and Sminchisescu 2014) contains
6,659video sequences andderives, likeUCFSports, from
a dataset for action recognition (Marszalek et al. 2009).
The videos are collected from 69 Hollywood movies
divided into 33 training movies and 36 test movies. Sim-
ilarly to UCF Sports, the annotations are collected in a
task-driven way. The videos are split into 3,100 clips for
training and 3,559 clips for testing.

– LEDOV (Jiang et al. 2018) includes 538 videos of daily
action, sports, social activity and art performance; we
employ this dataset only as a target dataset for unsuper-
vised domain adaptation.

Figure 3 provides statistics on the training splits of the
datasets employed for training our model: (1) UCF Sports
is the smallest one in terms of available videos and average
number of frames per video, thus it seems to be unsuitable
for models with high capacity as they likely overfit it; (2)
Hollywood2 contains the highest number of videos but the
majority has a very short number of frames (see the right
histogram in Fig. 3), thus it may disadvantage methods that
model temporal cues; (3) DHF1K is the most balanced in
terms of videos and number of frames per videos.

2 The DHF1K benchmark is available at https://mmcheng.net/
videosal/.
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Fig. 3 Statistics of the training sets of DHF1K, Hollywood and UCF Sports

4.2 Training Procedure

In our experiments, we pre-train the S3D backbone on the
Kinetics-400 (Kay et al. 2017) dataset; backbone parameters
are not frozen, so they are updated during saliency prediction
training. After empirically testing different hyperparame-
ter configurations in order to find the best combination, the
networks are trained for 2500 iterations, using Adam as opti-
mizer (Kingma and Ba 2014) with learning rate of 10−3. To
reduce overfitting, L2 regularization is applied, with aweight
decay factor of 2 × 10−7. The λ parameter of the gradient
reversal layers during training gradually varies from 0 to 1:

λ = 2

1 + e−10·p − 1 (4)

where p linearly goes from 0 to 1 according to the formula:

p = current_iteration

total_iterations
(5)

Gradually increasing λ also acts as an additional regular-
izer, since it prevents the model from focusing too much on
the saliency prediction objective as training goes on. During
training, sequences of T = 16 consecutive frames are ran-
domly sampled from the dataset’s videos, and each frame is
spatially resized to 128 × 192. We employed a batch size
of 200, although for memory limitations we forward batches
of 8 samples at each time, which accumulating gradients
and updating the model’s parameters every 25 such forward
steps. When training with domain adaptation, we also for-
ward a batch of samples from the source domain and one of
samples from the target domain, and use them to update the
domain classifier only.

To evaluate performance, we use each dataset training/test
splitwhen available,with 10%of the trainingdata used as val-
idation split. An exception is represented by DHF1K, since
ground-truth annotations for the test set are not provided for
blind assessment: in this case, when comparing to state-of-
the-art methods (Table 1), we report the test accuracy as
computed by the dataset curators; while for ablation study

(Tables 4 and 5) and domain adaptation analysis (Tables 7
and 9), we employ the original validation set as test set.

Validation results are used to perform model selection for
inference on the test set.When evaluating test performance in
single-dataset experiments, the training, validation and test
sets all come from the same domain.

In domain adaptation experiments (with labeled source
and unlabeled target datasets), training and validation splits
are from the source domain (whose annotations can be used
at training time), while the test set is from either an unseen
portion of the target domain or from a different dataset alto-
gether.

In multi-dataset experiments, we combine the training
splits of DHF1K, UCF Sports and Hollywood2 datasets
into a single training set; as validation set, we employ only
DHF1K’s validation split (because of its better balance com-
pared to the other datasets, as mentioned in Sect. 4.1),
while inference is carried out on each dataset’s test split.
In this setting, in order to support domain-specific learning
and correctly update domain-specific modules, each training
mini-batch contains videos from a dataset at a time, alternat-
ing between datasets to deal with different dataset sizes.

To compare the results obtained by themodels, we use five
commonly used evaluationmetrics for video saliency predic-
tion (Bylinskii 2018): Normalized Scanpath Saliency (NSS),
LinearCorrelationCoefficient (CC),Area under theCurve by
Judd (AUC-J), Shuffled-AUC (s-AUC) and Similarity (SIM).
Higher scores on each metric mean better performance.

4.3 Video Saliency Prediction Performance

We first test the performance of our base model (without
any form of adaptation) in the supervised scenario on the
DHF1K test benchmark, to evaluate its capabilities in the
video saliency prediction task. We then integrate domain
adaptation by means of GRL layers (as shown in Fig. 2),
using the LEDOV dataset as a target domain, due to its wider
subject variability thanHollywood2 andUCFSports. Finally,
we compute the performance of HD2S when using domain-
specific learning, which is the form of adaptation that is most
suitable with supervised learning settings and that can lever-
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Table 1 Comparison of HD2S,
with domain adaptation
(HD2SDA) and with
domain-specific learning
(HD2SDSL using LEDOV as
target dataset), with other
state-of-the-art methods on the
DHF1K test set

DHF1K
NSS CC SIM AUC-J s-AUC

GBVS (Harel et al. 2007) 1.474 0.283 0.186 0.828 0.554

STSConvNet (Bak 2017) 1.632 0.325 0.197 0.834 0.581

Deep Net (Pan et al. 2016) 1.775 0.331 0.201 0.855 0.592

SALICON (Huang et al. 2015) 1.901 0.327 0.232 0.857 0.590

OM-CNN (Jiang et al. 2017) 1.911 0.344 0.256 0.856 0.583

DVA (Wang et al. 2018e) 2.013 0.358 0.262 0.860 0.595

SalGAN (Pan et al. 2017) 2.043 0.370 0.262 0.866 0.709

ACLNet (Wang et al. 2018c) 2.354 0.434 0.315 0.890 0.601

SalEMA (Linardos et al. 2019) 2.574 0.449 0.466 0.890 0.667

STRA-Net (Lai 2019) 2.558 0.458 0.355 0.895 0.663

TASED-Net (Min and Corso 2019) 2.667 0.470 0.361 0.895 0.712

SalSAC (Wu et al. 2020) 2.673 0.479 0.357 0.896 0.697

UNISAL (Droste et al. 2020) 2.776 0.490 0.390 0.901 0.691

HD2S 2.781 0.497 0.406 0.901 0.699

HD2S_DA 2.709 0.491 0.381 0.902 0.709

HD2S_DSL 2.812 0.503 0.406 0.908 0.702

Our variant with domain-specific learning outperforms all state-of-the-art methods on three out of five metrics
(NSS, CC, AUC-J), while ranking second-best on SIM and s-AUC

age all available annotated datasets (DHF1K, Hollywood2,
UCF Sports).

Table 1 shows the performance of our approach compared
to the state of the art. HD2S, without domain adapta-
tion (referred to in Table 1 simply as HD2S), outperforms
all state-of-the-art methods on three out of five metrics
(NSS, AUC-J, CC) and ranks second-best on SIM and
third-best on s-AUC. Note that this variant also outper-
forms UNISAL (Droste et al. 2020), which already employs
domain-specific learning, on four out of five metrics. When
we also enable domain-specific learning modules HD2S
(HD2SDSL), performance (especially NSS, CC and AUC-J)
increases sensibly, and it outperforms UNISAL on all met-
rics, demonstrating better representational and specialization
capabilities. When using HD2S, with the hierarchical gradi-
ent reversal mechanism for domain adaptation(HD2SDA),
performance slightly degrades as themodel attempts to adapt
the learned features to the target datasets (in this case, UCF
Sports, Hollywood2 and LEDOV). However, remarkably,
despite this adaption mechanism, the model yields perfor-
mance comparable with state-of-the-art ones.

Comparing HD2S with TASED-Net (Min and Corso
2019), which also employs S3D (Xie et al. 2018) as back-
bone, it is possible to notice that our method (with and
without adaptation) significantly outperforms TASED-Net
in four out of five metrics using only half of the frames
employed by TASED-Net (16 versus 32). TASED-Net
slightly outperforms HD2S on s-AUC only, a metric that
measures performance at the peripheral areas of the image,
where a larger temporal context may allow to better capture

the motion of an object. The generally better performance
obtained by our method w.r.t TASED-Net demonstrates the
importance of hierarchical feature learning, with equal back-
bone features. While our model yields the highest video
saliency performance on DHF1K, and performance compa-
rable to the state of the art on Hollywood2, its performance
on UCF Sports is lower than UNISAL (Droste et al. 2020)
and SalSAC (Wu et al. 2020), as reported in Table 2. This
is explained first with the smaller size of UCF Sports w.r.t.
DHF1K and Hollywood2. Indeed, during training, although
we use all three datasets, UCF Sports accounts to about 1%
of the total number of training video frames (DHF1K: 62%,
Hollywood2: 37%, UCF Sports 1%). This imbalance causes
the model to overfit UCF Sports.

However, the suitability of Hollywood2 and UCF Sports
for saliency prediction deserves a further discussion. Indeed,
both datasets’ saliency annotations are collected in task-
driven experiments (i.e., action recognition) and, as such,
human observers tend to mainly observe specific actions
rather than focusing on the salient objects themselves, which
defeats the very purpose of saliency prediction. An exam-
ple is given in Fig. 4 where our model fails to match the
ground truth: indeed, it focuses on the girl’s face at the front
(correctly, as it is the most salient area), but the ground truth
mostly highlights the action of the person behind the girl. Fur-
thermore, both datasets show a huge center bias (Droste et al.
2020) and have a rather limited variability of spatio-temporal
features, especiallyHollywood2,where themajority of video
clips is very short in time. Analogously, UCF Sports is sig-
nificantly smaller in terms of video frames, making it hard
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Table 2 Comparison ofHD2S and its variants (with domain adaptation:
HD2SDA; with domain-specific learning: HD2SDSL ) with other state-
of-the-art methods on Hollywood2 and UCF Sports datasets

Method NSS CC SIM AUC-J s-AUC

Hollywood2

SALICON 2.013 0.452 0.321 0.856 0.711

DVA 2.459 0.482 0.372 0.886 0.727

ACLNet 3.086 0.623 0.542 0.913 0.757

SalEMA 3.186 0.613 0.487 0.919 0.708

STRA-Net 3.478 0.662 0.536 0.923 0.774

TASED-Net 3.302 0.646 0.507 0.918 0.768

SalSAC 3.356 0.670 0.529 0.931 0.712

UNISAL 3.901 0.673 0.542 0.934 0.795

HD2S 3.426 0.668 0.558 0.927 0.797

HD2S_DA 3.139 0.653 0.520 0.927 0.774

HD2S_SL 3.352 0.670 0.551 0.936 0.807

UCF Sports

Method NSS CC SIM AUC-J s-AUC

SALICON 1.838 0.375 0.304 0.848 0.738

DVA 2.311 0.439 0.339 0.872 0.725

ACLNet 2.567 0.510 0.406 0.897 0.744

SalEMA 2.638 0.544 0.431 0.906 0.740

STRA-Net 3.018 0.593 0.479 0.910 0.751

TASED-Net 2.920 0.582 0.469 0.899 0.752

SalSAC 3.523 0.671 0.534 0.926 0.806

UNISAL 3.381 0.644 0.523 0.918 0.775

HD2S 3.001 0.594 0.493 0.913 0.773

HD2S_DA 2.756 0.579 0.478 0.905 0.759

HD2S_DSL 3.114 0.604 0.507 0.904 0.768

In bold the best results, in italic the second-best results. In the domain
adaptation scenario, we use, respectively, UCF Sports/Hollywood2 as
source domain, DHF1K as target domain, and we test the performance
on UCF Sports/Hollywood2

to train 3D convolutional models (or deep learning models
in general). For all above reasons, we believe that both Hol-
lywood2 and UCF Sports should not be used for saliency
prediction.

Table 3 compares our model with state-of-the-art tech-
niques in terms of processing times and model size. Ref-
erence values for compared approaches are from (Droste
et al. 2020). UNISAL is the most resource-efficient approach
(thanks to its MobileNetV2 (Sandler et al. 2018) backbone);
our approach achieves average values on thosemetrics, while
performing better than the others in terms of prediction accu-
racy, as shown in the previous section.

5 Ablation Studies

To validate the importance and effectiveness of the HD2S
architectural design choices, we test some model variants

Table 3 Size (inMB) and processing time (in seconds) for the proposed
model and state-of-the-art approaches

Model Size (MB) Runtime (s)

Deep Net (Pan et al. 2016) 103 0.080

SALICON (Huang et al. 2015) 117 0.500

DVA (Wang et al. 2018e) 96 0.100

SalGAN (Pan et al. 2017) 130 0.020

ACLNet (Wang et al. 2018c) 250 0.020

SalEMA (Linardos et al. 2019) 364 0.010

STRA-Net (Lai 2019) 641 0.020

TASED-Net (Min and Corso 2019) 82 0.060

UNISAL (Droste et al. 2020) 16 0.009

HD2S 116 0.027

Best values in bold

(without any domain adaptation or domain-specific learning)
on the validation set of the DHF1K:

1. We first investigate the performance of our network,
adding the different conspicuity nets one at a time;

2. We quantitatively and qualitatively evaluate the individ-
ual contribution of each conspicuity net, testing them in
simple encoder-decoder architecture.

For the ablation study, we define as Baseline our network
in a simple encoder-decoder configuration, i.e., without the
intermediate conspicuity maps and multi-level loss. More
specifically, in the baseline model, the feature extractor
remains unchanged, but only the deepest decoder branch
(Conspicuity-net 4) is used.

The model variants and their performance are reported
in Table 4. The results show that: a) each conspicuity net
makes its own contribution to improving the final perfor-
mance; b) multi-level loss on conspicuity maps enhances
saliency prediction too. Overall, these results clearly verify
the effectiveness of all important design features in HD2S.

In our control experiments, we also evaluate the individual
contribution of each conspicituity net by testing the perfor-
mance of the model when the other decoder streams are
ablated. For example, when testing the contribution of the
first conspicuity map, we use only Feature 1 (see Fig. 2)
from the encoder stream and the related decoder stream
(Conspicuity-net 1 in Fig. 2) and so on for the other con-
spicuity nets. Results, reported in Table 5, indicate that
individually the third conspicuity net performs better than
the others.

To further elucidate this behavior, Fig. 5 shows the (nor-
malized) weights learned by the fusion layer of HD2S model
when integrating the four conspicuity maps for final predic-
tion on the DHF1K dataset. The obtained values confirm that
in the base and domain-adaptation settings, all the four maps
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Table 4 Comparison of various HD2S (without DA and DSL) config-
urations

NSS CC SIM AUC-J s-AUC

Consp-net4(Baseline) 2.602 0.468 0.355 0.902 0.697

+ Consp-net3 2.612 0.474 0.373 0.897 0.706

+ Consp-net2 2.699 0.482 0.374 0.901 0.706

+ Consp-net1 2.743 0.491 0.378 0.904 0.704

+multi loss (HD2S) 2.806 0.489 0.403 0.904 0.705

TheConsp-net4 configuration refers to the network in a simple encoder-
decoder configuration, i.e., with Conspicuity-net 4 only. The full model
includes all four conspicuity networks with multi-level loss on con-
spicuity and saliency maps, defined in Eq. 3

Table 5 Individual contribution of each conspicuity net

NSS CC SIM AUC-J s-AUC

Only Consp-net1 2.191 0.392 0.301 0.871 0.689

Only Consp-net2 2.605 0.461 0.359 0.893 0.690

Only Consp-net3 2.663 0.480 0.359 0.902 0.697

Only Consp-net4 2.602 0.468 0.355 0.902 0.697

All Consp-nets 2.743 0.491 0.378 0.904 0.704

HD2S 2.806 0.489 0.403 0.904 0.705

Each configuration refers to a simple encoder-decoder architecture with
different sets of encoded features. With All consp-nets, we refer to the
model with all decoding branches but without multi-loss, while HD2S
is the final model including multi-loss

Fig. 4 An example of failure, taken from Hollywood2. Despite a good
prediction, HD2S misses to match the ground truth, as it is collected in
a task-driven experiment (action recognition), thus highlighting more
actions than salient objects

contribute almost equally, with Map 3 slightly more. In the
domain-specialization setting, instead, the fourth (deepest)
map has a larger weight: this may indicate that domain-
specialized blocks focus mostly on higher-level features to
achieve good performance.

A qualitative interpretation of this behavior and on the
contribution of each conspicuity map in the hierarchy is
shown in Fig. 6. When comparing the behaviour of the dif-
ferent decoder branches on the standard, domain adaption,
and domain-specific learning regimes, the following consid-
erations can be drawn: in standard training case (top line
in Fig. 6), Map 4 contains similar information to that of
Map 3; in the domain adaptation scenario (middle line in
Fig. 6), all feature maps appear to contribute equally; in
the domain specific learning case (bottom line in Fig. 6),

Fig. 5 Normalizedweights learned by the fusion layerwhen integrating
the four conspicuity maps on DHF1K dataset: Full HD2S model (left
block), HD2S model with domain adaptation (middle block), HD2S
model with domain specific learning (right block). For the HD2Smodel
with domain adaptation, we use LEDOV as a target dataset

Map 4 provides additional (motion) information to Map 3.
This provides an interpretation to the parameters learned by
the fusion layers, reported in Fig. 5. Analyzing the inter-
mediate maps in the domain specific learning (bottom line
in Fig. 6), we can observe that the four intermediate maps
encode saliency at different levels of detail: Map 1 extracts
small backgroundmotion,Map 2 focusesmainly on the bull,
Map 3 starts highlighting the bullfighter and, finally, Map
4 puts more emphasis on the bullfighter. Furthermore, we
can also observe that, in the domain adaptation scenario, pre-
dicted salient regions are larger than in the other two settings
(no adaptation and domain-specific learning). This is due to
the domain adaptation strategy that enforces the model to
make less crisp estimations in its attempt to learn common
features between datasets; in the domain-specific learning
scenario, instead, the model specializes its parameters to
the characteristics of each dataset, thus learning more spe-
cific features for matching the ground truth more precisely.
The same happens, of course, in the no-adaptation scenario,
where the model can focus on a single training dataset.

We also quantify the level of similarity among the different
conspicuitymaps by computing theKLdivergence among all
pairs of maps over the entire DHF1K test set, and results are
reported in Table 6. In particular, Map 1 is the one encoding
the most different information w.r.t. to the other maps, while
Map 3 and Map 4 encode similar cues (as also shown in
Fig. 6), although Map 4 contains additional saliency infor-
mation (indeed, KL between Map 4 and Map 3 is higher
than the one between Map 3 and Map 4), possibly encod-
ing more details about object motion. However, the highest
gap among consecutivemaps is in the transition from Map 2
to Map 3. Indeed, Map 3 includes most of the information
available in Map 2 (KL div between Map 2 and Map 3 is
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Fig. 6 Qualitative interpretation of the contribution of hierarchical decoding used under different settings. HD2S (Top line), HD2S with domain
adaptation (Middle line) and HD2S with domain-specific learning (Bottom Line)

Table 6 KL divergence among all pairs of conspicuity maps

� Map 1 Map 2 Map 3 Map 4

Map 1 0 1.110 1.017 1.015

Map 2 1.090 0 0.772 0.806

Map 3 1.531 1.253 0 0.390

Map 4 1.974 1.545 0.531 0

0.772), but complements it with additional visual details that
tend to appear also in Map 4 (see again Fig. 6).

6 Domain Adaptation Performance

When testing domain adaption performance, we distinguish
two cases: a) the capabilities of the model to address domain
shift issues, i.e., the case of reducing the shift between train-
ing and test data; and b) the capabilities of the model to
learn generalizable features that can be employed, without
any additional tuning.
Domain-Shift. To assess the performance of our hierarchi-
cal domain adaptation approach in tackling the problem of
domain shift, we run a set of experiments by selecting dif-
ferent combinations of datasets to be employed as source
domain (used in a supervised way during training) and target
domain, used in an unsupervised way during training; as test
set, an unseen portion from the target domain is used. The
assumption in these experiments is to perform unsupervised
learning on the test domain through our hierarchical gradient
reversal approach before testing on it (on the appropriate test
split not used for unsupervised learning).

In particular, we compare the performance of our base
model in the three scenarios:

– No Domain Adaptation, how well the model general-
izes to new domains, i.e., the model trained supervisedly
on the source domain and directly tested on the target
domain,with no additional information on the test dataset
used during training;

– Domain Adaptation, i.e., the model trained with unsuper-
vised adaptation on the target domain, enabled through
the hierarchy of GRL layers as in our full model in Fig. 2;

– Transfer Learning, i.e., the model (with gradient reversal
disabled) trainedon the source dataset and thenfine-tuned
(in a supervised way) on the target dataset. This scenario
represents the upper bound of the evaluation and is, of
course, out of the scope of pure domain adaptation, since
target domain labels are available at training time.

Table 7 shows the results for different combinations of
source and target domains. Two main patterns of results can
be identified, depending on whether DHF1K is employed
as source domain or not. In the former case (top block of
Table 7), it can be noticed that the employment of gra-
dient reversal layers improves performance over all target
datasets, compared to simply training on the source dataset.
When instead DHF1K is employed as target domain (sec-
ond and third blocks in Table 7), the use of gradient reversal
layers degrades performance. This may be due to the spe-
cific characteristics of Hollywood2 and UCF Sports, which
were collected in a task-driven experiments while DHF1K
in a free-viewing one: as a consequence, training on Holly-
wood2/UCF Sports encourages the model to focus on visual
features that are more indicative of the action being per-
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Table 7 Analysis of
domain-shift capabilities

Target dataset Approach NSS CC SIM AUC-J s-AUC

Source dataset: DHF1K

UCF sports No adaptation 2.483 0.537 0.442 0.890 0.744

Domain adaptation 2.514 0.539 0.448 0.893 0.750

Transfer learning 3.001 0.594 0.493 0.913 0.773

Hollywood2 No Adaptation 3.063 0.625 0.505 0.925 0.779

Domain adaptation 3.101 0.632 0.510 0.925 0.785

Transfer learning 3.426 0.668 0.558 0.927 0.797

Source dataset: UCF Sports

DHF1K No adaptation 2.237 0.405 0.325 0.880 0.658

Domain adaptation 2.160 0.392 0.309 0.877 0.658

Transfer learning 2.688 0.477 0.374 0.896 0.700

Hollywood2 No Adaptation 2.469 0.517 0.433 0.899 0.727

Domain adaptation 2.386 0.503 0.422 0.896 0.727

Transfer learning 3.298 0.657 0.533 0.925 0.794

Source dataset: Hollywood2

DHF1K No adaptation 2.467 0.445 0.338 0.893 0.690

Domain adaptation 2.461 0.447 0.338 0.894 0.696

Transfer learning 2.753 0.487 0.384 0.898 0.697

UCF sports No Adaptation 2.476 0.538 0.442 0.885 0.756

Domain adaptation 2.389 0.522 0.431 0.882 0.746

Transfer learning 2.780 0.576 0.486 0.887 0.762

Performance evaluation in the no adaptation (supervised training on source; testing on target) and domain
adaptation (supervised training on source; unsupervised training and test on target) scenarios. Upper-bound
performance is measured by the transfer learning scenario (supervised training on source and fine-tuning on
target)

formed than of visual saliency per se, and that may not
correspond to visual saliency cues highlighted in DHF1K.
Furthermore, the limited variability of spatio-temporal fea-
tures from videos in Hollywood2, as shown in Fig. 3, makes
it harder for themodel tomove clustered features and to learn
more general representations. Similarly, when UCF Sports is
used as source domain, the small size of the dataset makes
it easier for the model to focus on the supervised saliency
prediction task (on which it can easily achieve a low train-
ing loss), rather than minimizing the domain adaptation loss.
Overall, as expected, the highest performance are obtained
in the transfer learning regime.

Learning Generalizable Features. We also test the capabil-
ities of the model to learn general features by using, in the
domain adaptation stream, a target dataset different from the
one used for test.We specifically compute performancewhen
training onDHF1K, adapting the learned features to LEDOV,
and testing on never seen datasets (UCF Sports and Holly-
wood2). Performance are reported in Table 8, which reports
how the performance gain of HD2S, when empowered with
hierarchical gradient reversal modules, is higher than in the
case of domain-shift experiments (see Table 7). This demon-
strates that our hierarchical domain adaptation mechanism

Table 8 Analysis of generalization capabilities

Test Setting NSS CC SIM AUC-J

Source: DHF1K - target: LEDOV

UCF Sports No Adapt. 2.494 0.536 0.442 0.889

Adaptation 2.584 0.555 0.452 0.900

Hollywood2 No Adapt. 3.011 0.622 0.502 0.922

Adaptation 3.066 0.623 0.505 0.926

Domain adaptation performance, respectively, with source: DHF1K,
target: LEDOV; test: UCF Sports and Hollywood2. Best results in bold

is better at learning salience features that generalize well on
multiple data domains than at addressing the domain-shift
for a given dataset.

6.1 Multi-source Training

A recent trend in video saliency prediction (Droste et al.
2020) proposesmulti-source training as a means for improv-
ing performance by leveraging the larger input variability of
multiple data sources. This setup also allows for the integra-
tion of domain-specific learning capabilities, as mentioned
in Sect. 3.6, that attempt to tune general features to spe-
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Fig. 7 Qualitative evaluation of the proposed model on the DHF1K
validation set. Comparison of the saliency predicted by our model with
the ground truth on some frames: saliency with multiple objects (left

block), saliency on an occluded object (upper-right block), saliency on
moving objects whose appearance changes rapidly among consecutive
frames (lower-right block)

cific datasets. The idea is to have a model that learns shared
features across multiple datasets and then to employ domain-
specific modules to adapt such features to a particular data
domain. Although these domain-specific approaches do not
strictly comply with the standard unsupervised domain adap-
tation formulation, as they go in the exact opposite direction
to learning generalizable features (since they assume that
target domain labels are available at training time), it is inter-
esting to evaluate the impact of domain-specific learning
on our architecture. In Sect. 4.3 and Table 1, we already
showed that the integration of domain-specific capabilities
into the HD2S model achieves state-of-the-art performance
on DHF1K, outperforming (Droste et al. 2020), that intro-
duced those techniques. Here, we complete our analysis by
assessing the impact of domain-specific layers compared to
multi-source domain learning. More specifically, for multi-
source domain learning, we use the integration of DHF1K,
Hollywood2 and UCF Sports, as an unified dataset, for train-
ing and testingourmodel.As for domain specific learning,we
enable the domain-specific modules (described in Sect. 3.6)
and train their parameters using data from each individual
dataset and during inference we provide, as an additional

input to the model, the dataset we want to test it. We also
compute performancewhen using single-source domain, i.e.,
training and test on a single dataset at a time. The results in
Table 9 confirm that multi-source training by itself does not
provide a much larger boost compared to single-source anal-
ysis,while domain-specific learning of dataset characteristics
significantly improves performance, confirming that saliency
prediction models surely benefit from embedding domain-
specific layers from multiple datasets at training time.

7 Qualitative Analysis

Wehere report quantitative analysis of the results obtained by
our model. Figure 7 shows examples of saliency predictions
made by our HD2S model with domain-specific learning on
the DHF1K benchmark. The model is able to effectively face
object occlusion, multiple objects, fast motion, strong cam-
era motion, stationary objects, saliency shift, camera focus
change, low-light condition. Sample videos of howourmodel
works are also given in the GitHub page of the project.
Figure 8, instead, shows example of failures that typically
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Table 9 Performance evaluation
on the multi-source and domain
specific learning scenarios

Test Dataset Approach NSS CC SIM AUC-J s-AUC

Train datasets: DHF1K, UCF Sports, Hollywood2

DHF1K Single-source 2.806 0.489 0.403 0.904 0.705

Multi-source 2.811 0.491 0.403 0.893 0.708

Domain-specific 2.875 0.500 0.406 0.910 0.707

UCF Sports Single-source 2.803 0.589 0.489 0.879 0.759

Multi-source 2.922 0.594 0.498 0.882 0.767

Domain-specific 3.114 0.604 0.507 0.904 0.768

Hollywood2 Single-source 3.235 0.660 0.528 0.919 0.778

Multi-source 3.349 0.665 0.551 0.922 0.797

Domain-specific 3.352 0.670 0.551 0.936 0.807

Fig. 8 Examples of failures. The model struggles with small objects
and small motion: in the first two cases, the model missed the salient
region and highlights a generic prior; in the third example, the model
does not manage to identify the golf ball, focusing instead on a man in
a red shirt, standing out from the surroundings

happen in case of small global motion or small objects. These
failures can be caused by the spatial resolution at which
input images are scaled before being processed by the model
(128×192). Indeed, in the first two cases of Fig. 8 the models
is unable to identify the correct salient region (located in a
lateral region of the scene), and instead predicts a generic
prior-driven center region. In the last case, the model fails to
detect the movement of a golf ball towards the hole (a slow
movement of a small object), and erroneously predicts as
salient the upper-right region of the scene, where a man with
a red shirt significantly stands out from the surroundings.

8 Conclusion

In this work, we propose HD2S, a new fully-convolutional
network for video saliency prediction. The key architectural
elements of our proposed approach include a multi-branch

decoder which acts at different feature abstraction layers to
independently estimate conspicuity maps, which are then
combined into the final prediction, and an unsupervised
domain adaptation mechanism that enables our model to
learn features that, at the same time, allow it to reach state-
of-the-art performance on supervised saliency prediction,
while generalizing to domains for which no annotations
are provided at training time. Additionally, when employ-
ing domain-specific learning techniques, as introduced in
(Droste et al. 2020), our model’s performance on the super-
vised saliency prediction task further improves.

Comparing our approach with state-of-the-art models, we
find that our late-fusion mechanism of multi-level saliency
features provides a significant boost to performance: our
ablation studies show that the gradual integration of multiple
abstraction levels positively affects prediction accuracy. This
is also confirmed by analyzing the learned weights. Interest-
ingly, the impact of each conspicuity map (and, therefore,
of each abstraction level of learned features) seems to vary
depending on the employed domain adaptation mechanism:
high-level features become predominant when domain-
specific learning is applied (possibly due to the larger data
distribution variability introduced by multi-source training,
which causes shallower features to generalize less), while all
conspicuitymaps become similarly importantwhen unsuper-
vised domain adaptation is applied, which can be explained
through the action of gradient reversal layers, which actively
encourage features to become domain-independent and thus
to be equally effective at multiple scales.

While themodel performswell in several complex cases—
e.g., in presence of multiple objects, occlusions and appare-
ance changes—there are certain conditions in which we find
room for improvement. Most of them involve the presence of
small objects and small motion, where the model fails to cor-
rectly locate areas of interest, and the prediction is dominated
by the prior.

These situations could benefit from working at higher
resolution, given sufficient computing resources, or in a
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patch-based fashion, to the detriment of inference times.
However, major failures seem to be related to the specific
characteristics of datasets: Hollywood2 and UCF Sports, for
instance, are annotatedwith task-driven gaze fixations, rather
then free-view the scene. This, of course, negatively affects
methods that instead attempt to predict bottom-up saliency.
Improved dataset availability curation for video saliency pre-
diction may be an enabling factor for the advancement in the
field.
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