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Abstract— Nonnegative matrix factorization is usually power-

ful for learning the parts-based “shallow” representation, however 

it fails to discover deep hidden information within both the basis 

concept and representation spaces. In this paper, we therefore pro-

pose a new Dual-constrained Deep Semi-Supervised Coupled Fac-

torization Network (DS2CF-Net) for learning hierarchical repre-

sentations. DS2CF-Net is formulated as the joint partial-label and 

structure-constrained deep factorization network using multi-lay-

ers of linear transformations, which coupled updates the basis con-

cepts and new representations in each layer. An error correction 

mechanism with feature fusion strategy is also integrated between 

consecutive layers to improve the representation ability of features. 

To improve the discriminating abilities of both representation and 

coefficients in feature space, we clearly consider how to enrich the 

prior knowledge by the coefficients-based label prediction, and in-

corporate the enriched prior knowledge as the additional label and 

structure constraints. To be specific, the label constraint enables 

the intra-class samples to have the same coordinate in the feature 

space, while the structure constraint forces the coefficients in each 

layer to be block-diagonal so that the enriched prior knowledge 

are more accurate. Besides, we integrate the adaptive dual-graph 

learning to retain the locality structures of both the data manifold 

and feature manifold in each layer. Finally, a fine-tuning process 

is performed to refine the structure-constrained matrix and data 

weight matrix in each layer using the predicted labels for more ac-

curate representations. Extensive simulations on public databases 

show that our method can obtain state-of-the-art performance.  

Keywords— Deep semi-supervised coupled factorization network; 

representation learning; dual constraints; clustering; enriched prior; 

error correction; fine-tuning of features 

I.  INTRODUCTION 

For high-dimensional data analysis in emerging computer vision 

applications and, one core problem is how to obtain the compact 

expression with strong representation ability from complex and 

high-dimensional data [55-58]. To compute strong and effective 

representations, different algorithms can be used, among which 

Matrix Factorization (MF) is one of the widely-used techniques 

for representation [1-5][48-52]. Classical MF methods include 

Singular Value Decomposition (SVD) [2], Vector Quantization 

(VQ) [3], Nonnegative Matrix Factorization (NMF) [4] and 

Concept Factorization (CF) [5], etc. It is noteworthy that NMF 

and CF use the nonnegative constraints on the factorization ma-

trices, which enables them to obtain parts-based representations 

that correspond to the useful distinguishing features for subse-

quent clustering and classification [4-5]. Specifically, NMF and 

CF aim at decomposing a given data matrix X into two or three 

nonnegative matrix factors whose product is the approximation 

to X [4-5], where one factor contains the basis vectors capturing 

the high-level features and each sample is reconstructed by a lin-

ear combination of the basis vectors. The other nonnegative fac-

tor corresponds to the learnt new representation.  

CF offers an obvious advantage over NMF, i.e., it can be per-

formed in kernel space and any other representation space, how-

ever they both cannot encode the local geometry of features and 

also fail to apply the label information even if available. To han-

dle the locality preserving issue, some graph regularized meth-

ods have been proposed, e.g., Graph Regularized NMF (GNMF) 

[6], Graph-Regularized LCF (GRLCF) [8], Locally Consistent 

CF (LCCF) [7], Graph-Regularized CF with Local Coordinate 

(LGCF) [9], Dual Regularization NMF (DNMF) [12] and Dual-

graph regularized CF (GCF) [13]. These algorithms usually use 

the graph Laplacian to smooth the representation and encode the 

geometry information of the data space. Different from GNMF 

and LCCF, both DNMF and GCF can not only retain the geo-

metrical structures of the data manifold but also the feature man-

ifold using the dual-graph regularization strategy [10-13]. Alt-

hough the above algorithms have obtained encouraging cluster-

ing results by considering the locality properties, they still suffer 

from some shortcomings: 1) high sensitivity and tricky optimal 

determination of the number k of nearest neighbors [14-15]; 2) 

separating the graph construction from the matrix factorization 

by two independent steps cannot ensure the pre-encoded weights 

to be optimal for subsequent representation; 3) they cannot take 

advantage of the label information to improve the representation 

and clustering due to the unsupervised nature, similarly as NMF 

and CF. To improve the discriminating ability of the MF, some 

semi-supervised algorithms have been proposed, such as Con-

strained Nonnegative Matrix Factorization (CNMF) [16], Con-

strained Concept Factorization (CCF) [17] and Semi-supervised 

GNMF (SemiGNMF) [6]. SemiGNMF incorporates partial label 

information into the graph construction, while CNMF and CCF 

obtain the representations consistent with the known label infor-

mation by defining an explicit label constraint matrix, so that the 

original labeled samples sharing the same label can be mapped 

into the same class in the feature space. Although CNMF, Semi-

GNMF and CCF can use the label information of labeled sam-

ples clearly, they still fail to fully utilize the unlabeled samples. 

Since they did not consider predicting the labels of the unlabeled 

samples and mapping them into their respective subspaces in the 
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Figure 1: The flowchart and learning principle of our proposed DS2CF-Net framework.  

feature space as well by learning an explicit label indicator ma-

trix for the unlabeled data. In addition, CNMF, SemiGNMF and 

CCF also cannot self-express the input data in a recovered fea-

ture space. Although preserving the local geometrical structures 

and incorporating the supervised prior information can improve 

the representation abilities of NMF and CF effectively, however 

all aforementioned MF-based models still suffer from a common 

drawback, i.e., they use a single-layer mode so that they can only 

discover the “shallow” features while cannot discover deep hid-

den features and hierarchical information that have been proved 

to be important and useful for representation learning.  

In this paper, we propose a novel deep semi-supervised self-

expressive coupled MF strategy that can represent the input data 

more appropriately using partially labeled data and a deep struc-

ture. The main contributions of this work are shown below:   

(1) Technically, a novel supervised prior enrichment guided 

Dual-constrained Deep Semi-Supervised Coupled Factorization 

Network (shortly, DS2CF-Net) is proposed. To learn the hierar-

chical coupled representation and extract hidden deep features, 

we seamlessly integrate the deep coupled semi-supervised con-

cept factorization, prior knowledge enrichment, self-expressive 

discriminating representation, and the joint label/structure con-

straints into a unified framework. To encode the deep features 

accurately, we design a novel updating strategy for the deep MF, 

i.e., it coupled optimizes the basis vectors and representation 

matrix in each layer by learning with partial labeled data. Fig.1 

illustrates the flowchart of our DS2CF-Net.  

(2) For discriminating representation, the innovations of our 

DS2CF-Net are twofold; 1) it clearly considers enriching the su-

pervised prior knowledge by the joint coefficients-based label 

prediction; 2) it incorporates the enriched label information as 

the additional dual label and structure constraints. To enrich the 

prior knowledge, DS2CF-Net tries to make full use of the unla-

beled data by propagating and predicting the labels of unlabeled 

data using a robust label predictor learned from the labeled data. 

The dual-constraints are included to improve the discriminating 

power of the learned representations. Specifically, the enriched 

prior knowledge based label constraint can enable the originally 

labeled samples of one class and the unlabeled data with the pre-

dicted same label to have the same coordinate in feature space. 

The enriched prior knowledge based structure constraint forces 

the self-expressive coefficients matrix to be block-diagonal in 

each layer so that the manifold is more smooth and accurate for 

label prediction. Besides, to make full use of the predicted labels, 

we also consider refining the structure constraint matrix and the 

data weight matrix to further make the learned representations 

better using the obtained soft labels in each layer.   

(3) To obtain neighborhood-preserving higher-level represen-

tations, DS2CF-Net presents a self-weighted dual-graph learning 

strategy in each layer, i.e., optimizing the graph weights jointly 

with the MF. Specifically, in each layer, DS2CF-Net performs 

an adaptive weight learning over the deep basis vector graph and 

deep feature graph through minimizing the reconstruction errors 

based on the deep basis vectors and deep features at the same 

time. The self-weighted dual-graph learning can also avoid the 

tricky issue of selecting the optimal number of the nearest neigh-

bors, which is suffered in most existing locality preserving MF 

models. More importantly, such operation can enable the model 

to obtain adaptive neighborhood preserving deep basis vectors 

and deep features for enhancing the representations.  

(4) When the number of layers increases, to obtain more sta-

ble and reliable representation and clustering results, we incor-

porate an error analysis mechanism and a feature fusion strategy 

into our framework. Specifically, when the clustering result on 

the features obtained in the current layer is lower than that of the 

previous layer, a feature fusion will be operated. Note that such 

operation can effectively prevent the issue that the performance 

decreases fast with the increase of layers.  

We outline the paper as follows. Section II briefly reviews 

the related work. We present DS2CF-Net in Section III. In Sec-

tion IV, we show the optimization procedures of our DS2CF-Net. 

Section V describes the simulation settings and results. Finally, 

the paper is concluded in Section VI.   

 

II. RELATED WORK 

In this section, we introduce the related single-layer and multi-

layer frameworks to our proposed DS2CF-Net.  

A. Realted Single-layer CF based Frameworks 

We first show the closely-related single-layer CF and its variants.  

Concept Factorization (CF) [5]. Given a nonnegative data
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Figure 2: Architecture comparison of existing multilayer MF framework, including (a) Traditional multilayer CF model (e.g., MNMF, MCF and GMCF); (b) 

DSCF-Net model; (c) Our proposed DS2CF-Net.   

matrix  1 2, ,..., D N

NX x x x =  , where ix  is a sample vector, N is 

the number of samples and D denotes the original dimension of 

the input space. Denote by  D rU  and  N rV two 

nonnegative matrices whose product T D NUV  denotes the 

approximation to X , where r is the rank. By representing each 

basis by a linear combination of ix , i.e., 
1=

N

ij ii
w x , where 0ijw  , 

then CF proposes to solve the following minimization problem:  

2

,   . . , 0= − T

F
O X XWV s t W V ,                    (1) 

where  =  
N r

ijW w , XW approximates the bases, VT is the 

learned representation of X, which can be applied for clustering, 

and VT is the transpose of the representation matrix V.   

Self-Representative Manifold CF (SRMCF) [24]. SRMCF 

integrates the adaptive neighbor structure and manifold regular-

izer into the CF framework. Specifically, it considers WVT in CF 

as the coefficient matrix based on the dictionary of the raw data 

matrix X. Then, it incorporates the self-representation with the 

adaptive neighbor structure to assign neighbors for all samples. 

The objective function of SRMCF is defined as 

( ) ( )

( )
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,  (2) 

where 1  is an all-ones column vector,  is a positive trade-off 

parameter, and 
ij denotes the probability of  1 2, ,...,j Nx x x x

(excluding itself) being connected to ix  as a neighbor. 1N

i

 

is a vector with the j-th element as 
ij . Note that the constraints 

1T

i =1 and 0 1i  are used to ensure the probability property 

of i . L is the Laplacian matrix of   and VL is a predefined 

Laplacian matrix by 0-1 weight based on the Euclidean distances 

between each sample  1 2, ,...,j Nx x x x as [47]. 1  and 2  are two 

parameters. Note that SRMCF still suffers from the tough choice 

of the number of nearest neighbors of each sample.  

Dual-graph regularized CF (GCF) [13]. GCF introduces the 

graph regularizers of both the data manifold and feature mani-

fold into CF simultaneously by constructing a k nearest neighbor 

data graph GV and a k nearest feature graph GU. Then, GCF uses 

the 0-1 weighting scheme for GV and GU and defines the corre-

sponding weight matrices SV and SU as follows:  

( )
( )

( )
( )
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s k jV

js

T T

s k jU

js

if x N x
S j s N

otherwise

if x N x
S j s M

otherwise

,            (3) 

where Nk(xj) denotes the set of the k nearest neighbors of xj. The 

graph Laplacian over GV and GU are defined as LV=DV-SV and 

LU=DU-SU, where DV and DU are diagonal matrices with entries 

being ( ) ( )=V V

sjj js
D S and ( ) ( )=U U

sjj js
D S . Finally, the objec-

tive function of GCF is formulated as 

( ) ( )
2

 = − + +T T V T W

F
O X XWV tr V L V tr W L W ,          (4) 

where
W T UL X L X= , and  are parameters. Clearly, GCF has 

the difficulty issue to choose the optimal k on various datasets.  

Constrained CF (CCF) [17]. To improve the discriminating 

power, CCF extends CF to the semi-supervised scenario by us-

ing label information of the labeled data as an additional con-

straint. Suppose that the data matrix X contains a labeled sample 

set  D l

LX and an unlabeled set  D u

UX , that is, + =l u N   

and ( )
[ , ]

 +
= 

D l u

L UX X X , where l and u are the numbers of la-

beled and unlabeled samples respectively, then CCF guides the 

constrained CF by defining a label constraint matrix A. Denote 

by  l c
LA   the class indicator matrix defined on labeled data, 

where c is the number of classes. The element ( )L ij
A  is defined 

as 1 if ix is labeled as the j-th class, and 0 otherwise. Since CCF 

did not define an explicit class indicator for UX  and simply used 

an identity matrix u uI  of dimension u u  for unlabeled data. 

Thus, the overall label constraint matrix A is defined as 

( ) ( ) ( )0

0

+  +



 
=  
  

L l u c ul c

u u

A
A

I
.                  (5) 

To ensure the data points sharing the same label to be mapped 

into the same class in low-dimensional space (i.e., same vi), CCF 

imposes the label constraints by an auxiliary matrix Z:  

=V AZ .                                       (6) 

By substituting V=AZ into CF, CCF finds a non-negative ma-

trix  N rW and a non-negative auxiliary matrix ( )+ 


c u r
Z  

from the following objective function:  



2

, . . , 0= − T T

F
O X XWZ A   s t  W Z .                  (7) 

B. Related Deep/Multilayer MF Frameworks 

We then introduce the architectures of several related deep/mul-

tilayer matrix factorization algorithms.  

Traditional multilayer MF. The multilayer MF methods of 

this category usually use the output of the previous layer (i.e., 

intermediate representation V) as the input of subsequent layer 

directly, without properly considering to optimize the represen-

tation and basis vectors in each layer. Classical methods include 

MNMF, MCF and GMCF, etc. These methods aim to minimize 

the objective function in each layer independently and simply 

use 1mV − ( 2m  ) obtained in the (m-1)-th layer as the input of 

the M-th layer. That is, they cannot ensure the intermediate rep-

resentation to be a good representation for subsequent layers, 

which may cause the degraded performance. We show the mul-

tilayer structure of this category methods in Fig.2(a).  

Optimized deep MF models. The recent fast developments 

of deep learning have led to a renewed interest in designing the 

deep or multi-layer MF [18-23][49-51] for deep representation 

learning and clustering. One of the most widely-used approach 

to extend the single-layer model to the deep model of M-layers 

is to iteratively take the outputted representation of the last layer 

as the inputs of the next layer directly for further MF [18-21], 

where M denotes the number of layers, such as Multilayer NMF 

(MNMF) [18], Multilayer CF (MCF) [19], Spectral Unmixing 

using Multilayer NMF (MLNMF) [20] and Graph regularized 

multilayer CF (GMCF) [21]. However, such a strategy may be 

invalid and even unreasonable in practice, because in this case 

the learned representation of the first layer determines the learn-

ing abilities of the whole framework, while most existing mod-

els cannot ensure this issue. In other words, one cannot ensure 

that the output of the last layer is already a good representation, 

so directly feeding it to the next layer may mislead and degrade 

the learning power of subsequent layers. To address these issues, 

the other popular and optimized way is to discover hidden deep 

feature information by adopting multiple layers of linear trans-

formations and updating the basis vectors or feature representa-

tions in each layer [22-23], such as Weakly-supervised Deep 

MF (WDMF) [22], Deep Semi-NMF (DSNMF) [23] and Deep 

Self-representative Concept Factorization Network (DSCF-Net) 

[43]. In general, WDMF aims at fixing the basis vectors and 

optimizes the representations in each layer, while DSCF-Net ar-

gues that learning a set of optimal basis vectors will be more 

important and accurate for reconstructing given data by a linear 

combination of the bases, which aims at optimizing the basis 

vectors to update the representation matrix in each layer. It is 

noted that WDMF mainly focuses on the social image under-

standing tasks, i.e., tag refinement, tag assignment and image 

retrieval, and the initial input of WDMF is the tagging matrix F 

rather than the data matrix X as other MF models. In addition, 

DSCF-Net also incorporates the subspace recovery process and 

adaptive locality-preserving power into a united framework for 

enhancing the feature representations. Different from WDMF 

and DSCF-Net, DSNMF is just a two-stage approach, where the 

strategy in the first stage is the same as traditional MNMF, MCF, 

MLNMF and GMCF, i.e., directly feeding the learned represen-

tation matrix of the last layer into the next layer for further MF, 

and the second stage refines the representation matrices and ba-

sis vectors directly based on the outputs of each layer in the first 

stage using an independent step. It is clear that the refining step 

can obtain deep features, but the learned deep features are di-

rectly based on the first stage. As such, DSNMF will suffer 

from the same performance-degrading issue as traditional 

MNMF, MCF, MLNMF and GMCF. In addition, DSNMF also 

cannot preserve the manifold structures of samples, especially 

in an adaptive manner, and it also cannot use supervised prior 

information for the discriminant data representations. Note that 

we illustrate the multilayer structure of DSCF-Net for uncover-

ing hidden features in Fig.2(b). For comparison, we also illus-

trate the deep coupled factorization network of our DS2CF-Net 

in Fig.2(c), from which we can see that DS2CF-Net coupled op-

timizes the basis vectors and representation matrix in each layer.  

III. DEEP SEMI-SUPERVISED COUPLED FACTORIZATION 

NETWORK (DS2CF-NET) 

We introduce the formulation of DS2CF-Net. Given a partially 

labeled data matrix   ( )
,

 +
= 

D l u

L UX X X , DS2CF-Net performs 

the semi-supervised representation-based clustering over the 

whole dataset. As a classical semi-supervised learning setting, 

the labeled set contains a small proportion of samples, while the 

unlabeled set contains a large proportion of samples. The base 

model of DS2CF-Net is built based on the semi-supervised for-

mulation of CCF, i.e., incorporating a label constraint matrix A 

and approximating the representation matrix V with AZ. How-

ever, to enhance the data representation and clustering abilities, 

DS2CF-Net designs a hierarchical and coupled factorization 

framework that has M layers. Technically, DS2CF-Net is mod-

eled as the formulation of learning M updated pairs of represen-

tation matrices and basis vectors 1 MXW W , and M updated label 

constraint matrices A. That is, the label constraint matrix A in 

our DS2CF-Net is alternately updated and enriched over unla-

beled data, instead of fixing it as CCF does.  

A. Factorization Model 

Before presenting the factorization model, we first describe the 

initial optimization problem of DS2CF-Net as follows:  

( )

 

2

2

2 3 1

1,2,

0 0

...,

... ... +

. . 0,  0 

  



−
= − + +
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T T

M MDS CF Net

i

F

ii M

O W W ZX X J J J

s t

Z A

W Z
, (8) 

where XW0…WM corresponds to the set of deep basis vectors, 

(Z0…ZM)TAT denotes the learned deep low-dimensional repre-

sentation, ( )0 0

2

... ...−
T

M M
F

TW W Z Z AX X denotes the deep recon-

struction error, J1, J2 and J3 will be shown shortly. W0 and Z0 

are included to facilitate the description and optimization, and 

both are fixed to be the identity matrices. The overall label con-

straint matrix A in our network is defined as follows:  

( ) ( )0
,   ,

0

l u c cL l c u c

L U

U

A
A A A

A

  +   
=    
 

,       (9) 

where LA  is a class indicator matrix for labeled data, which can 

be easily defined as [17], i.e., (AL)i,j=1 if sample xi is labeled as 



the class j, and else 0. However, DS2CF-Net also computes an 

explicit class indicator AU for the unlabeled data to enrich the 

supervised prior rather than fixing it to be an identity matrix as 

CCF, which can well group the representations of both the la-

beled and unlabeled samples based on the enriched supervised 

prior guided dual label and structure constraints.  

According to the self-expressive properties on the coefficient 

matrix [24], the reconstruction error can be rewritten as 

( )0

2

0... ...,− =M M

T T

M MF
WX XR where Z ZR W A ,         (10) 

where RM can be regarded as the meaningful coefficient matrix 

self-expressing X. Then, the proposed multi-layer factorization 

model can be presented as follows:  

1 1

2 1 2 2 1 2

1 1 1 1

and

− −



= =

= =

= =

T

M M

M M M M M M

X U V

U U W V V Z

U U W V V Z

U XW V AZ

,                 (11) 

where Um (m=1, 2,.., M) is the set of basis vectors of the m-th 

layer, T

mV (m=1, 2,.., M) is the low-dimensional representation, 

Wm (m=1, 2,.., M) is the intermediate matrix for updating basis 

vectors and  Zm (m=1, 2,.., M) is the intermediate auxiliary ma-

trix for updating the representations. It is noteworthy that the 

factorization model of DS2CF-Net does not need to initialize 

the network using the traditional multi-layer model as DSNMF 

that initializes the network by directly feeding the learnt repre-

sentation matrix of the last layer into the next layer for MF. And 

the deep factorization process of DSNMF completely depends 

on the intermediate outputs of traditional multi-layer model.  

B. Enriched Prior based Dual-constraints 

We first describe how to enrich the supervised prior information. 

DS2CF-Net learns a robust label predictor D cP  over labeled 

data by minimizing a label fitness error 
2

T

L L F
A X P− , where c is 

the number of classes, which can map each sample xi into a label 

space in terms of PTxi. In addition, DS2CF-Net also considers 

preserving the neighborhood information of the embedded soft 

labels PTXi in the projective label space by self-expressing it 

with the coefficient matrix RM. The formulation of learning the 

label predictor P can then be defined as follows:  

( )( )

2 2

2,1

22

0 0 2,1

1

... ...

− + − +

− + − +

=

=

T T T

L L F F

TT T T T

L L M MF F

MA X P P X P X P

A X P P X P X W W Z Z A P

J R

,(12) 

where L2,1-norm based regularization can enable the label pre-

dictor to be robust against the outliers and error in data. In ad-

dition, L2,1-norm can enable the discriminative labels to be pre-

dicted and estimated in a latent sparse feature subspace.  

Enriched prior based label constraint. After the label pre-

dictor P is obtained, we can easily predict the soft label of each 

unlabeled sample i Ux X as T

ix P . Then, we obtain AU by using 

the normalized soft labels that are described as follows:  

 ( ) ( ) ( )
1

cT T

U U Uij jij ij
A X P X P

=
=  .                      (13) 

That is, the normalized soft labels meet the column-sum-to-

one constraint AU1=1, where 1c1  is a column vector of ones. 

Note that one recent related work is called Robust Semi-Super-

vised Adaptive Concept Factorization (RS2ACF) [42] has also 

discussed the partially labeled CF model and considered learn-

ing a class indicator AU for unlabeled data, but our DS2CF-Net 

is different from it in three aspects. First, DS2CF-Net is a deep 

MF model, while RS2ACF is a single-layer model. Second, the 

manifold smoothness for label prediction in DS2CF-Net is de-

fined based on the self-expressive deep coefficient matrix in 

each layer, while RS2ACF encodes the manifold smoothness by 

learning an extra weight matrix and is performed in a single-

layer mode. Third, DS2CF-Net defines the class indicator AU 

based on the normalized soft labels of unlabeled data rather than 

directly embedding XU into P. Since the predicted soft label 

value (AU)ij indicates the probability of each xi belonging to the 

class j, forcing AU1=1 may be more accurate and reasonable.  

   Enriched prior based structure constraint. Since the coef-

ficients W0…WM(Z0…ZM)TAT can characterize the locality of the 

features, it should have a good block-diagonal structure, where 

each block corresponds to a subspace or a class. As such, each 

sample can be reconstructed more accurately by the samples of 

the same class as much as possible. Thus, we introduce a block-

diagonal structure constraint matrix Q to constrain the coeffi-

cient matrix by minimizing the approximation error between Q 

and W0…WM(Z0…ZM)TAT  in each layer:  

( ) ( )
2

2 0

2

0 0 0... ... ... ...= − +
F

T TT T

M M
F

M MW W Z Z W Z ZJ A W AQ ,  (14) 

where the structure constraint matrix Q is defined as follows:  

( ) ( )

1

+ + 2

0 0 0

0 0 0 0
,   

0 0 0 ... 0

0 0 0

 

 
 

   =  =     
 
 

l u l uL l l

L

U

c

Q

Q Q
Q Q

Q

Q

,  (15) 

where QL and QU are the structure constraint matrices defined 

based on the labeled data XL and unlabeled data XU. Since the 

samples of XL are originally labeled, LQ  is a strict block-diag-

onal matrix, where each block Qi (i=1,2,…,c) is an i il l  matrix 

of all ones, defined according to the labeled samples, and li is 

the number of samples in class i in XL. For example, if we have 

9 labeled samples, where x1 and x2 are from the class 1, x3, x4, 

x5 and x6 are from class 2 and the remaining ones are from class 

3, the sub-matrices Q1, Q2 and Q3 can be defined as 

1 2 3

1 1 1 1
1 1 1

1 1 1 1 1 1
, , 1 1 1

1 1 1 11 1
1 1 1

1 1 1 1

 
  

    = = =          
 

Q Q Q .  

It should be noted that we initiate QU by the cosine similari-

ties over the samples in XU and update QU  in M-th (M>1) layer 

using the cosine similarity matrix defined on the new represen-

tation of XU, i.e., (Vm)i,  1,...,i l N + . In this way, we can ensure 

the overall coefficient matrix W0…WM(Z0…ZM)TAT to have a 

good structure for the representation learning.  



C. Self-weighted Dual-graph Learning 

To obtain the locality preserving representation, we further add 

a self-weighted dual-graph learning into DS2CF-Net, which can 

preserve the neighborhood information of both the deep basis 

vectors XW0…WM and representations (Z0…ZM)TAT in an adap-

tive manner at the same time. Specifically, we compute the data 

weight matrix V N NS  over the deep representations and the 

feature weight matrix U D DS over the deep basis vectors 

adaptively by solving the following reconstructive loss:  

( ) ( )

( )( ) ( )( )

2

3

2

0 0

0 0 , . .

... ...

... .  0, 0..

= −

+ −  

M M

T TT T

M

T T

V U V

M

U

F

F

J S

S s

XW W XW W

Z Z A Z Z SA t S

. (16) 

Clearly, the nonnegative dual-graph weights of DS2CF-Net 

are different from those of GCF [13] in two aspects. First, GCF 

is a single-layer model that defines the weights over the “shal-

low” basis vectors and features, while our DS2CF-Net encodes 

the locality based on the deep basis vectors and features. Second, 

our DS2CF-Net does not need to specify the number of nearest 

neighbors, suffered in GCF, since the neighbors of each sample 

are determined automatically in DS2CF-Net by directly mini-

mizing the reconstruction error. In addition, the dual-graph 

weights are adaptive, and are also updated with the factorization 

process, which can enable DS2CF-Net to be adaptive to differ-

ent datasets and produce accurate feature representations.  

Fine-tuning of the structure-constrained matrix QU and 

data weight matrix SV using AU. In this process, we consider 

how to refine QU and SV after obtaining the soft labels AU for 

XU, so that the learned representations are better. Specifically, 

in each iteration, we first obtain the hard labels *

UA by setting 

the maximum value in each column of  AU  to 1 and otherwise 

setting it to 0. The fine-tuning process can then be performed 

as follows: if ( )* 0U ij
A = , then (QU)ij=0 and (SV)ij=0. This is easy 

to understand, since ( )* 0U ij
A =  means that the unlabeled sam-

ples xi and xj are not in the same class. Hence, the structure 

constraint information and the data weight between them shall 

be ideally zeros for the consideration of discrimination.   

D. Error Correction Mechanism and Feature Fusion 

For a multi-layer model, it is important to ensure that the per-

formance will not decrease fast with the increasing number of 

layers. In order to avoid this potential risk for our DS2CF-Net, 

we clearly incorporate an error correction mechanism and a fea-

ture fusion strategy into our framework. Specifically, between 

two consecutive layers, we include a clustering evaluation mod-

ule to evaluate the clustering performance over the features in 

each layer. Specifically, for the new representation Vi in the i-

th (i >1) layer, we input it into the clustering evaluation module, 

i.e., we perform the clustering evaluations by K-means algo-

rithm based on Vi, and then we can obtain the clustering accu-

racy ACi. To avoid fast degradation as the number of layers in-

creases, the error correction and feature fusion are performed as 

follows. If ACi is larger than ACi-1, then directly moving to the 

(i+1)-th layer, otherwise performing the feature fusion over Vi, 

i.e., adding Vi and the features of the first i-1 layers together to 

update Vi =V1+…+Vi. In this way, DS2CF-Net can deliver more 

stable and reliable results in the multi-layer case. Note that these 

strategies will be verified by extensive simulations.  

E. Objective Function 

Based on the above analysis, the final objective function of our 

DS2CF-Net method can be formulated as  
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,(17) 

where 0= MM XWU W   , ( )0 .= .. MM A Z ZV and 0...
T

MMM WR W V= .  

IV. OPTIMIZATION AND COMPUTATIONAL COMPLEXITY 

A. Optimization 

From the objective function of DS2CF-Net, we can easily find 
that the involved variables Wm, Zm (  1,2,...,m M ), SU, SV and 
P depend on each other, so they cannot be solved directly. Fol-
lowing the common procedures, we present an iterative optimi-
zation strategy using the Multiplicative Update Rules (MUR) 
method [44-45] for obtaining local optimal solutions. Specifi-
cally, we solve the problem by updating the variables alternately 
and optimize one of them each time by fixing the others. The 
detailed optimization procedures are showed as follows:  

1) Fix others, update the factors Wm and Zm: 

We first show how to optimize Wm and Zm. For the m-th layer, 
W1,…,Wm-1 , Z1,…, Zm-1 and P are all known as the constants. By 
defining 1 0 1...− − =m mW W  and 1 0 1...− − =m mZ Z , the reduced sub-
problem associated with Wm and Zm can be defined as 

( )

( ) ( )
1 1

,

2 22 2

min

,

+

. . 0,

 



− −−

+ − + + − −

+ −
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

m m F

T T U V

M M M

T T

m m m

M M MF F F F

W Z

T

M m

T

m

m

X X

Q R R U U S V V S

P X P X

W

WR s Zt

Z A

, (18) 

where
1= −mM mU X W , 

1= −mM mV A Z and ( )1 1− − =M

T T

m m m mW Z AR . 

Let w
ik and z

ik be the Lagrange multipliers for the constraints 

( ) 0m ik
W   and ( ) 0m ik

Z ,   =
 

w
w ik  and z

z ik  =
 

, then the 

Lagrange function can be constructed as 
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( ) ( ) ( ) ( )
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,(19) 

where ( )( )= − −
T

U U

u SH I I S , ( )( )= − −
T

V V

v SH I I S  and I denotes 

an identity matrix. Then, Wm and Zm can be alternately updated 

by fixing others. Let = T

XK X X , = T

AK A A  and = T T

PK X PP X , 

the derivatives w.r.t. Wm and Zm can be obtained as 
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where 1m m mW− = , and m is known when updating Zm. By us-

ing the KKT conditions ( ) 0 =m
w
i ikk

W   and ( ) 0 =m
z
i ikk Z , we can 

obtain the updating rules for Wm and Zm:  

( ) ( )
( )
( )
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2
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where ( )1 1 1=4 − − −  +  +  +T T T T T

W m uM m mum M H HQ W V V X X W   

1 12 − − T T

m P m m M MK W V V , 
1 1 1=4 − − −    + T T T T

Z m A m m m m mK Z W Q  

( ) 1 1 12− − −+  +  T T T T T

m m A m A m m Mv Mv Z K K UH PPH Z U , 
1=2 T

W m PK − 

MV  and 
1=2 −  T T

Z m P mA K  are auxiliary matrices.  

2) Fix others, update the weight matrices SU and SV:  

When other variables are computed, we can use them to update 

the dual-graph weights SU and SV by removing the irrelevant 

terms to SU and SV from the objective function. Let 
u
ik  and 

v
ik

denote the Lagrange multipliers for the constraints 0U
ikS   and

0V
ikS  ,   =

 
u

u ik and   =
 

v
v ik , then the Lagrange function of 

the reduced problem can be similarly defined as 

( ) ( ) ( )
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= + − − +  + 
TT T U T T V U V

M M M M uF

T

vF
U U S V S trSrV St , (24) 

where 
1= −mM mU X W  and 

1= −mM mV A Z  are known variables in 

this step. Based on the KKT conditions 0 =U
ii k

u
k
S  and 0 =V

ii k
v
k
S , 

we can obtain the updating rules for SU and SV: 
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3) Fix others, update the robust label predictor P:  

Finally, we solve the projection P from Eq.(17), with Wm, Zm, 

SU and SV known. By the properties of L2,1-norm [38-41], we 

have ( )
2,1

2= TP tr P BP , where B is a D D diagonal matrix 

with entries ( )
2

1 / 2= i

iib p , where pi is the i-th row of P. Thus, 

we can infer the label predictor P from the following problem:  

Algorithm 1: Optimization procedures of DS2CF-Net 
Inputs: Partially labeled data matrix X=[XL, XU], constant r and 
tunable parameters , ,   .  
Initializations:  
Initialize W and Z to be the random matrices;  
Initialize the diagonal matrix B as the identity matrix; 
Initialize the linear label predictor as ( )

1
T

L L L LP X X I X A
−

= + , use 
P to predict the soft labels of unlabeled data as T

UX P , and then 
apply the normalized soft labels by Eq.(13) to initialize the label 
constraint matrix A by using Eq.(9);  
Initialize QU by the cosine similarities over XU;  
Initialize SU using the cosine similarities over X and initialize SV 
using the semi-supervised weights, i.e., supervised ones for XL 
and the cosine similarities for XU;   
Initial clustering accuracy AC0=0; t=0; Initialize m=1.  

For each fixed number m of layers:  

While not converged do 

1. Update the matrix factors 1+t

mW  and 1+t

mZ by Eqs.(22-23), and 

then we can obtain 1 1

0...
+ +=t t

m mV AZ Z ;  

2. Update the weights ( )
1t

US
+

 and ( )
1+t

VS  by Eqs.(25-26);  

3. Update the linear label predictor 1+tP  by Eq.(28), update the 

soft labels of XU as 1T t

UX P + , and then update AU by Eq.(13);  

4. Update the full label-constraint matrix A by Eq.(9); 

5. Update QU by the cosine similarities defined based on ( )1+t

m i
V , 

 1,..., +i l N , and update the structure-constraint matrix Q;  

6. Fine-tuning of SV and Q based on the soft labels AU; 

7. Check for convergence: if 
2

1 + − t t

m m F
W W  and 

2
1 + − t t

m m F
V V , 

stop; else t=t+1.  

End while 

8. Clustering evaluation on Vm by K-means and obtain ACm.;  

9. Error correction and feature fusion: If ACm < ACm-1, then ob-
taining the fused features as

1...m mV V V= + + ; else go to step 1.  

End for 
Output: Deep representation *

mV  and clustering result ACm.  

 

( ) ( )
2

,

2

min − + − +T T T

L L MF FP B
A X P P X I R tr P BP ,          (27) 

where each 0ip . By seeking the derivative of the above prob-

lem w.r.t. P, we can infer P in each layer as follows:  

( )
-1

= + +T T

L L M L LP X X XH X B X A ,                   (28) 

where HM=(I-RM)(I-RM)T. After P is obtained, we can use it to 

update the diagonal matrix B and predict the labels of unlabeled 

samples. After that, we can use the normalized soft labels to 

optimize the label constraint matrix A for representation.  

For complete presentation, we summarize the optimization 

procedures of DS2CF-Net in Algorithm 1, where the diagonal 

matrix B is initialized as an identity matrix. We initialize the 

linear label predictor ( )
1

T

L L L LP X X I X A
−

= +  as [42] and predict 

the soft labels of unlabeled data as T

UX P , and then we normal-

ize the soft labels by Eq.(13). Based on the normalized soft la-

bels of unlabeled data, we can initialize the label constraint ma-

trix A. Since DS2CF-Net jointly optimizes the basis vectors and 

representation matrices that are two major variables, to ensure 

the proposed algorithm to converge, the stopping condition can 

be simply set to 
2

1 + − t t

m m F
W W  and 

2
1 + − t t

m m F
V V  ( 310 −= ) in 

the m-th layer, where 1 1

0= ...+ +t t

m mV AZ Z  is the computed represen-

tation matrix in the m-th layer and the approximation errors 



measure the difference between two sequential sets of basis 

vectors and representation matrices, which can make sure that 

the representation learning result will not change drastically. 

Note that an early version was presented in [54]. This paper has 

also incorporated an error analysis mechanism and a feature fu-

sion strategy, so that more stable and reliable representation and 

clustering results can be obtained. In addition, a new fine-tuning 

process is performed to refine the structure-constrained matrix 

and data weight matrix in each layer for obtaining more accu-

rate representations. Besides, this paper also provided the time 

complexity analysis and conducted a thorough evaluation on 

the tasks of representation learning and clustering by including 

visual image analysis and adding more real-world databases.  

B. Computational Complexity Analysis 

We discuss the time complexity of DS2CF-Net. We use the big 

O notation to show the complexity of our algorithm as [53]. For 

each layer, according to the updating rules of our DS2CF-Net, 

we need to perform the extra computation of AU, SU, SV, Q, and 

P over the CCF algorithm. We can find that the big O of each 

updating operation for each variable is not more than O(N3) in 

the optimization procedure if N is larger than the dimensionality 

D. Since the number of layers and the number of iteration times 

are all constants, they are negligible when calculating the com-

putational complexity. Overall, the time complexity of our 

DS2CF-Net is O(N3). Note that we also report the actual runtime 

performance comparison to other methods in Section V.   

V. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, we mainly conduct simulations to examine the 

data representation and clustering performance of our DS2CF-

Net. The experimental results of our DS2CF-Net are compared 

with those of 5 deep ML models (i.e., MNMF [18], MCF [19], 

GMCF [21], DSNMF [23] and DSCF-Net [43]), 3 single-layer 

MF models (i.e., DNMF [12], GCF [13] and SRMCF [24]), and 

four semi-supervised MF models (i.e., SemiGNMF [6], CNMF 

[16], CCF [17] and RS2ACF [42]). Note that SemiGNMF adds 

class information of labeled data into the graph structures by 

modifying the graph weight matrix [6][17]. In this study, 6 pub-

lic image databases are involved, including two face image da-

tabases (i.e., AR [25] and MIT CBCL [26]), two object image 

databases (i.e., COIL100 [27] and ETH80 [28]), three handwrit-

ten image datasets (i.e., USPS [29], EMNIST Letters [53] and 

EMNIST Digits [53]), and one fashion products database (i.e., 

Fashion MNIST [46]). Some sample images of the evaluated 

datasets are shown in Fig.3, and the detailed information about 

the used databases are described in Table 1, where we show the 

total number of samples, dimension and number of classes. For 

each face or object image, we follow the common procedures 

[30-31] to resize it into 32×32 pixels, forming a 1024-dimen-

sional sample vector. Finally, we can obtain a data matrix with 

the vectorized representations of all the images as columns. The 

vectorized process for USPS, EMNIST Letters, EMNIST Dig-

its and Fashion MNIST databases are similar. In this work, we 

normalize each column of the input data matrix to have unit 

norm for each database. We perform all experiments on a PC 

with Intel Core i5-4590 CPU @ 3.30 GHz 3.30 GHz 8G.  

Table 1: List of evaluated databases and database information. 

Data Type Name #sample #class #dim 

Face images 
AR [25] 2600 100 1024 

MIT CBCL [26] 3240 10 1024 

Object images 
COIL100 [27] 7200 100 1024 
ETH80 [28] 3280 80 1024 

Handwriting 
USPS [29] 9298 10 256 

EMNIST Letters [53] 145600 26 784 
EMNIST Digits [53] 280000 10 784 

Fashion products Fashion MNIST [46] 70000 10 784 

A. Visual Image Analysis by Visualization 

Visualization of the adaptive weight matrix SV. The obtained 

representation ( )0...=M MV A Z Z is the final output of our model,  

we first evaluate the representation ability of MV by visualizing 

the adaptive weights SV on MV . AR face database and COIL100 

object database are used in this study. For the AR database, we 

randomly choose 2 categories to construct the adjacency graph 

SV for clear observation, with 10 labeled images per class (that  

is, 20 labeled samples and 32 unlabeled samples in total). For 

COIL100 database, we randomly choose 4 categories to con-

struct SV, with 28 labeled samples per category (i.e., 28 labeled 

and 44 unlabeled). The weight matrices SV are shown in Fig.4, 

where we show the adaptive weights obtained by DS2CF-Net in 

the first four layers on each database. Note that the green box 

contains the weights on labeled data and the yellow box con-

tains those on unlabeled data. We see that the weight matrices 

have approximate block-diagonal structures in each layer. Spe-

cifically, the structures of the adaptive weights get clearer with 

less noise and inter-class connections as the number of layers 

increases, which means that the learned new representation MV

has a strong representation ability and moreover our deep model 

can potentially improve the similarity measure.  

Visualization of the structure constraint matrix Q. Since the 

structure constraint matrix Q determines the structures of the 

self-expressive coefficient matrix to encode the smoothness of 

manifolds in the process of label propagation, we also visualize 

its structures for observation. AR face database and COIL100 

database are used. For AR, we randomly choose 2 categories 

for the test with 10 labeled images per class; For COIL100, we 

randomly choose 4 categories for the test, with 28 labeled sam-

ples per category. The structure constraint matrices Q are shown 

in Fig.5, where we show the results obtained in the first four 

layers over each database, the green box and the yellow box 

contains the parts QL and QU on the labeled and unlabeled data, 

respectively. QL is defined according to the known labels, while 

QU is the cosine similarity defined based on the new represen-

tation of unlabeled samples. We find that the constraint matrix 

Q has a clear block-diagonal structure, and moreover the struc-

tures become better with the increasing number of layers, which 

implies that the structure constraint matrix Q in each layer has 

a strong discriminative representation power.  

B. Convergence Analysis and Runtime Comparison 

(1) Convergence Analysis. The involved variables of our algo-

rithm are optimized alternately in each layer, while the actual 

runtime performance of each iterative algorithm is closely re-

lated to the number of iterations in reality, so we would like to 

present some convergence analysis results. The MIT CBCL and 

Fashion MNIST databases, with 40% samples labeled, are used 



             
(a) AR                                              (b) MIT CBCL                                             (c)  ETH80                                             (d) COIL100 

             
(e) USPS                                           (f)  EMNIST Letters                                 (g) EMNIST Digits                                (h) Fashion MNIST 

Figure 3: Sample images of the evaluated real image databases.  

 
(a1) Layer 1 on AR                                  (b1) Layer 2 on AR                                   (c1) Layer 3 on AR                                  (d1) Layer 4 on AR    

 
      (a2) Layer 1 on COIL100                          (b2) Layer 2 on COIL100                      (c2) Layer 3 on COIL100                        (d2) Layer 4 on COIL100   

Figure 4: Visualization of the data weight matrix SV obtained by our DS2CF-Net in the first four layers over AR and COIL100 databases.  

   
(a1) Layer 1 on AR                                  (b1) Layer 2 on AR                                   (c1) Layer 3 on AR                                  (d1) Layer 4 on AR    

   
      (a2) Layer 1 on COIL100                          (b2) Layer 2 on COIL100                      (c2) Layer 3 on COIL100                        (d2) Layer 4 on COIL100   

Figure 5: Visualization of the structure constraint matrix Q obtained by our DS2CF-Net in the first four layers over AR and COIL100 databases.  



   
    (a) Layer 1 on MIT CBCL                                          (b) Layer 2 on MIT CBCL                                        (c)  Layer 3 on MIT CBCL 

 
    (d) Layer 1 on Fashion MNIST                               (e) Layer 2 on Fashion MNIST                               (f)  Layer 3 on Fashion MNIST 

Figure 6: Convergence analysis of our proposed DS2CF-Net algorithm on the MIT CBCL face database and Fashion MNIST database.   

     
(a) AR (26 samples/class)                                     (b) MIT CBCL (324 samples/class)                                (c) COIL100 (72 samples/class) 

     
(d) USPS (300 samples/class)                           (e) EMNIST Letters (5600 samples/class)                          (f) ETH80 (41 samples/class) 

Figure 7: Averaged runtime performance comparison of each method based on the six databases.    

to train our method in this study. We show the convergence re-

sults of our DS2CF-Net in the first three layers in Fig.6, where 

the X-axis shows the number of iterations and Y-axis denotes 

the difference between two consecutive basis vectors (i.e., 1tW +

and tW ) and two consecutive representations (i.e., 1tV + and tV ) 

respectively, i.e.,
2

1t t

F
W W+ − and 

2
1t t

F
V V+ − . We see that: 1) 

DS2CF-Net converges rapidly in each layer; 2) with the increas-

ing number of layers, our DS2CF-Net converges more rapidly 



due to the effects of deep representation, which usually con-

verges within 5 iterations in the 3rd layer. Note that as a multi-

layer model, this is beneficial for the efficiency.  

(2) Runtime Comparison. In addition to presenting the com-

putational time complexity analysis of our DS2CF-Net, we also 

would like to show the actual running time of each method (in 

second and averaged based on 10 runs) for the fair comparison.  

It is worth noting that we have compared 6 multi-layer methods, 

so to facilitate the comparison, we report the averaged runtime 

of different layers for these multi-layer models. In this study, 

we employ six databases, including AR, MIT CBCL, COIL100, 

USPS, EMNIST Letters, and ETH80 for evaluations. For each 

database, we randomly select 2, 5 and 8 categories to train each 

model. The runtime performance comparison results are given 

in Fig.7. We see that: 1) the needed running time is increased 

with the increasing number of samples, i.e., from small-scale to 

large-scale; 2) DSNMF needs more time for AR, ETH80 and 

COIL100 databases, while needing less time for large-scale da-

tabases relatively, since it spends most of the running time in 

initialization. SRMCF needs the most time for several databases. 

CNMF, CCF and GCF also needs more time than other methods 

in most cases, especially on the large-scale databases. The main 

reason may be because they need more time for the convergence 

of the algorithm; 3) our proposed DS2CF-Net needs comparable 

time to RS2ACF based on each database, which spend slightly 

more time than other methods. Overall, in most cases the actual 

running time of our DS2CF-Net is acceptable due to fast con-

vergence, although it is a multi-layer model.  

C. Quantitative Clustering Evaluation 

(1) Clustering evaluation process. For the quantitative cluster-

ing evaluations, we perform the K-means algorithm with cosine 

distance on the representation obtained by each model. Follow-

ing the procedures in [17] [34], for each number K of clusters, 

we choose K categories from each database randomly and use 

the samples of K categories to form the data matrix X. The value 

of K is tuned from 2 to 10 in our study. The rank of the repre-

sentation is set to K+1 for clustering as [17]. The clustering re-

sults are averaged based on 10 random selections of the K cat-

egories. For fair comparison, we choose 40% labeled samples 

per class for each semi-supervised algorithm (i.e., SemiGNMF, 

CNMF, CCF, RS2ACF and our DS2CF-Net). For fair compari-

son to the existing multi-layer matrix factorization methods (i.e., 

MNMF, MCF, GMCF, DSNMF and DSCF-Net), we report the 

highest clustering scores in their first 10 layers of each method, 

rather than fixing the number of layers.  

(2) Clustering evaluation metric. We employ two widely-used 

evaluation methods, i.e., Accuracy (AC) and F-measure [35-36]. 

AC is the percentage of the cluster labels to the true labels pro-

vided by the original data corpus, defined as follows:  
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where N is the number of samples, and the function ( )imap p  is 

the permutation mapping function that maps the cluster label ip  

obtained by the clustering method to the true label ir  provided 

by the data corpus, and the best mapping can be obtained by the 

Kuhn-Munkres algorithm [37] according to [35]. The clustering 

F-measure is defined as follows:  
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where we set the parameter 1 = . Note that both values of the 

AC and F-measure range from 0 to 1, i.e., the higher the value 

is, the better the clustering result will be.   

(3) Clustering evaluation results 

Face Clustering. We first use face images to evaluate the clus-

tering ability of learned representation by each method.  AR and 

MIT CBCL face database are evaluated. The clustering perfor-

mance in terms of AC and F-measure over varied K numbers is 

tested.  The clustering curves on the AR and MIT CBCL data-

bases are shown in Figs.8(a-b), respectively. The averaged AC 

and F-scores according to the curves in Figs.8(a-b) are summa-

rized in Tables 2-3, respectively. We can see that: (1) the ob-

tained AC and F-measure of each method go down as the num-

ber of categories is increased, which is easy to understand, since 

clustering data of less categories is relatively easier than clus-

tering more categories; (2) our DS2CF-Net delivers higher val-

ues of AC and F-measure than other compared methods in the 

investigated cases. Both RS2ACF and DSCF-Net performs bet-

ter than other remaining methods in most cases. CNMF also de-

livers promising results over the MIT CBCL database.  

   Object Clustering. We then evaluate each method for repre-

senting and clustering the object image data. In this experiment, 

COIL100 and ETH80 object databases are evaluated. The clus-

tering curves on ETH80 and COIL100 databases are shown in 

Figs.8(c-d), respectively. The averaged AC and F-scores ac-

cording to the curves in Figs. 8(c-d) are summarized in Tables 

2-3, respectively. We can see that the increasing number of se-

lected categories clearly decreases the performance of each 

method due to the fact that clustering data of less categories is 

relatively easier. It can also be found that DS2CF-Net delivers 

higher values of AC and F-measure than other evaluated meth-

ods in most cases. In addition, the semi-supervised SemiGNMF, 

CNMF, CCF and RS2ACF and methods can perform better than 

other algorithms using partially labelled data, where RS2ACF is 

the best method in this case. DSCF-Net also delivers relatively 

better clustering performance than other multilayer methods.  

   Handwritten Digit Clustering. We also examine the perfor-

mance of each method for clustering the handwritten digits of 

the USPS, EMNIST Letters and EMNIST Digits databases. For 

USPS, we train each model based on the first 3000 samples. For 

EMNIST Digits database, we randomly choose 10000 samples 

per class to form training set due to memory limit. The cluster-

ing curves under different numbers of the selected categories on 

USPS database are shown in Figs.8(e-g), and Tables 2-3 de-

scribe the averaged AC and F-scores according to the curves in 

Figs.8(e-g). Similar observations can be found from the results. 

That is, the AC and F-measure of each algorithm go down as 

the number of categories increases. It can also be found that 

SemiGNMF, CNMF and RS2ACF deliver promising clustering 

results by using partial labeled data. Among the multilayer MF 

models, DSCF-Net obtains relatively better performance than 



 
 

   

(a) AR face database                                                                                       (b) MIT CBCL face database    

   

  (c) ETH80 object database                                                                                       (d) COIL100 objet database 

   

(e)  USPS                                                                                                           (f) EMNIST Letters 

   

(g)  EMNIST Digits                                                                                          (h) Fashion MNIST 

Figure 8: Clustering performance over varied K values based on the eight evaluated databases.  



 

Table 2: Averaged clustering accuracies (AC) of the algorithms based on the eight evaluated image databases. 

Methods 
AR MIT CBCL ETH80 COIL100 

Mean±std Best Mean±std Best Mean±std Best Mean±std Best 

MNMF 0.4127±0.1032 0.6406 0.4856±0.1461 0.7335 0.6251±0.1005 0.8021 0.6493±0.0801 0.7461 

MCF 0.4277±0.1088 0.6807 0.4906±0.1651 0.7621 0.6430±0.1033 0.8176 0.6274±0.0710 0.7352 

GMCF 0.4672±0.1367 0.7980 0.5179±0.1711 0.8078 0.6727± 0.1003 0.8462 0.7696± 0.0922 0.9492 
DSNMF 0.4850±0.1483 0.7981 0.5640±0.1773 0.8550 0.6965±0.1055 0.8628 0.6855±0.0734   0.8019 

DSCF-Net 0.5142±0.1476 0.8181 0.5721±0.1700 0.8491 0.7240±0.1094 0.8980 0.7846±0.0899    0.9516 

DNMF 0.4539±0.1140 0.6820 0.5351±0.1595 0.8526 0.6790±0.1047 0.8596 0.6632±0.0712 0.7502 

GCF 0.4882±0.1285 0.7265 0.5451±0.1802 0.8460 0.7003±0.0956 0.8663 0.6949±0.0904 0.8483 

SRMCF 0.5300±0.1455 0.8449 0.5414±0.1389 0.7888 0.6807±0.0923 0.8337 0.6888±0.0913 0.8325 

SemiGNMF 0.5289±0.1727 0.9231 0.5452±0.1575 0.8249 0.7335±0.1160 0.9355 0.7313±0.1061 0.9351 
CNMF 0.5060±0.1404 0.8231 0.5650±0.1841 0.8479 0.7088±0.1109 0.8850 0.6721±0.0510 0.7640 

CCF 0.5444±0.1693 0.9112 0.5733±0.1906 0.8550 0.7316±0.1228 0.9244 0.7044±0.0485 0.7842 

RS2ACF 0.5779±0.1648 0.9303 0.6134±0.1704 0.8848 0.7498±0.1266 0.9426 0.8126±0.0897 0.9578 

Our method 0.6107±0.1610 0.9520 0.6654±0.1713 0.9355 0.7782±0.1386 0.9920 0.8479±0.0952 0.9889 

Methods 
USPS EMNIST Letters EMNIST Digits Fashion MNIST 

Mean±std Best Mean±std Best Mean±std Best Mean±std Best 

MNMF 0.5077±0.1399 0.7601 0.4619±0.1304 0.7356 0.4676±0.0669 0.5915 0.4465±0.1183 0.6692 

MCF 0.5173±0.1350 0.7479 0.4527±0.1225 0.7113 0.4595±0.0815 0.6050 0.5214±0.1377 0.7313 

GMCF 0.5369±0.1324 0.7739 0.4583±0.1210 0.7086 0.4811±0.0871 0.6422 0.5770±0.1486 0.8935 

DSNMF 0.5583±0.1315    0.7950 0.4929±0.1581 0.8522 0.4719±0.0703 0.5822 0.5254±0.1204 0.7756 

DSCF-Net 0.5772±0.1346   0.8129 0.5070±0.1571 0.8416 0.4946±0.0943 0.6643 0.5784±0.1523 0.8759 

DNMF 0.6247±0.1459 0.8400 0.4968±0.1726 0.8822 0.4982±0.1010 0.6722 0.5782±0.1609 0.9265 

GCF 0.5734±0.1649 0.8530 0.5682±0.1705 0.9471 0.5367±0.1223 0.7567 0.5930±0.1759 1.000 

SRMCF 0.5969±0.1425 0.8501 0.5419±0.1412 0.8343 0.5254±0.1103 0.7034 0.6268±0.1778 0.9531 
SemiGNMF 0.6596±0.1524 0.8885 0.4995±0.1425 0.7963 0.5142±0.1149 0.7401 0.6361±0.1714 0.9220 

CNMF 0.5954±0.1458  0.8252 0.4996±0.1318 0.7682 0.4796±0.0840 0.6291 0.5498±0.1622 0.8188 

CCF 0.6425±0.1499 0.8668 0.5122±0.1346 0.7815 0.4967±0.0894 0.6566 0.5821±0.1739 0.8620 
RS2ACF 0.6780±0.1493 0.9016 0.5502±0.1611 0.9010 0.5306±0.1252 0.7822 0.6537±0.1643 0.9335 

Our method 0.7276±0.1482 0.9355 0.6031±0.1776 0.9902 0.5800±0.1343 0.8375 0.7026±0.1707 1.000 

Table 3: Averaged F-score values of the algorithms based on the eight evaluated real databases.  

Methods 
AR MIT CBCL ETH80 COIL100 

Mean±std Best Mean±std Best Mean±std Best Mean±std Best 

MNMF 0.3787±0.1423 0.6210 0.4132±0.1520 0.6388 0.6211±0.0906 0.7634 0.6379±0.0724 0.7277 
MCF 0.3653±0.1345 0.6094 0.4033±0.1354 0.6150 0.6329±0.0950 0.7875 0.6124±0.0649 0.6935 

GMCF 0.3967±0.1582 0.7117 0.4423±0.1246 0.6420 0.6559±0.1043 0.8322 0.7428±0.1038 0.9263 

DSNMF 0.4205±0.1476 0.6956 0.4654±0.1596 0.7485 0.6764±0.1112 0.8452 0.6814±0.0819 0.7885 
DSCF-Net 0.4559±0.1689 0.7881 0.4860±0.1580 0.7522 0.7091±0.1138 0.8835 0.7515±0.0848 0.8848 

DNMF 0.3701±0.1561 0.6498 0.4705±0.1696 0.7882 0.6541±0.0942 0.8284 0.7072±0.0927 0.8655 

GCF 0.3937±0.1959 0.7942 0.4887±0.1713 0.8173 0.6757±0.0986 0.8530 0.7270±0.0994 0.9109 

SRMCF 0.4326±0.1777 0.7934 0.4490±0.1483 0.6633 0.6678±0.0996 0.8488 0.6918±0.0856 0.8214 

SemiGNMF 0.4855±0.1801 0.8541 0.4925±0.1477 0.7496 0.7268±0.1251 0.9210 0.7672±0.1040 0.9478 

CNMF 0.4344±0.1636 0.7338 0.4962±0.1748 0.7876 0.6976±0.1134 0.8629 0.6810±0.0394   0.7488 

CCF 0.4412±0.1544 0.7269 0.5140±0.1789 0.8169 0.7232±0.1211 0.8980 0.7037±0.0442 0.7875 

RS2ACF 0.5061±0.1816 0.8617 0.5509±0.1781 0.8460 0.7408±0.1269 0.9310 0.7874±0.0972 0.9578 

Our method 0.5414±0.1817 0.8923 0.6047±0.1879 0.9262 0.7612±0.1355 0.9626 0.8144±0.1010 0.9762 

Methods 
USPS EMNIST Letters EMNIST Digits Fashion MNIST 

Mean±std Best Mean±std Best Mean±std Best Mean±std Best 

MNMF 0.5165±0.1136 0.7162 0.4075±0.1572 0.7250 0.3853±0.1199 0.5944 0.4564±0.1384 0.6960 

MCF 0.5272±0.1171 0.7479 0.4135±0.1587 0.7341 0.3761±0.1206 0.5795 0.4750±0.1562 0.7658 

GMCF 0.5386±0.1186 0.7539 0.4212±0.1585 0.7364 0.3865±0.1346 0.6101 0.4930±0.1613 0.7878 
DSNMF 0.5510±0.1201 0.7774 0.4404±0.1742 0.7877 0.4012±0.1116 0.5835 0.5044±0.1673 0.8270 

DSCF-Net 0.5799±0.1170 0.7829 0.4699±0.1766 0.8182 0.4252±0.1175 0.6402 0.5354±0.1792 0.8833 

DNMF 0.6560±0.1281 0.8370 0.4743±0.1785 0.8054 0.4022±0.1081 0.5801 0.5357±0.1873 0.9490 
GCF 0.6268±0.1396 0.8551 0.5313±0.2106 0.9446 0.4835±0.1547 0.7593 0.6013±0.1802 0.9525 

SRMCF 0.6050±0.1393 0.8501 0.5089±0.1803 0.8460 0.4650±0.1315 0.6736 0.6233±0.1841 0.9662 

SemiGNMF 0.6607±0.1332 0.8600 0.4715±0.1874 0.8348 0.4478±0.1516 0.7315 0.6305±0.1719 0.9538 
CNMF 0.6034±0.1335 0.8055 0.4572±0.1827 0.8150 0.4181±0.1290 0.6273 0.5606±0.1695 0.8856 

CCF 0.6489±0.1399 0.8662 0.4709±0.1830 0.8263 0.4404±0.1383 0.6835 0.5939±0.1721 0.9238 

RS2ACF 0.6841±0.1319 0.8962 0.5093±0.1990 0.8848 0.4652±0.1585 0.7650 0.6570±0.1766 0.9752 
Our method 0.7160±0.1401 0.9455 0.5625±0.2190 0.9806 0.5111±0.1512 0.7800 0.7045±0.1721 1.000 



other methods. By further enriching the supervised prior by pre-

dicting the labels of unlabeled data, and designing a more rea-

sonable dual-constrained deep structures, our DS2CF-Net out-

performs all its competitors by delivering better results.  

   Fashion Products Clustering. Finally, we test each method 

for representing the fashion product images of Fashion MNIST 

database. We train each model by a subset of Fashion MNIST, 

i.e., totally 10,000 samples from 10 classes. The clustering re-

sults in terms of AC and F-measure are evaluated and shown in 

Fig.8(h). Tables 2-3 describe the statistics in terms of averaged 

AC and F-scores according to Fig.8(h). From the results, we can 

similarly see that: 1) our DS2CF-Net delivers enhanced perfor-

mance than other competitors in most cases, especially when 

the number of K is relatively small. We also find that semi-su-

pervised methods can generally deliver enhanced performance 

than unsupervised ones. But note that SRMCF also obtains the 

promising results, which implies that the self-expression prop-

erty is also important to improve the representation ability. It 

should be noted that our DS2CF-Net also employs the self-ex-

pression scheme in the proposed multilayer structures. In addi-

tion, one can also find that the results of the multilayer MNMF, 

MCF and GMCF models are worse than those of the single-

layer models, which verifies that their multilayer structures of 

directly feeding the learnt representation from the last layer to 

the next layer is indeed not reasonable.   

D. Ablation Study 

(1) Clustering with different proportions of labeled samples. 

We first evaluate each semi-supervised factorization model, i.e., 

CNMF, CCF, SemiGNMF, RS2ACF and our DS2CF-Net, by 

using different numbers of labeled data in each class.  In this 

study, for each database the proportion of labeled samples var-

ies from 10% to 90%, and we randomly choose three categories 

for this test. We average the results over 10 random selections 

of categories and 30 initializations for the K-means clustering 

for each MF approach to avoid the randomness. For comparison, 

we also report the clustering results of four representative un-

supervised methods (i.e., MCF, DSNMF, GMCF, and DSCF-

Net) as baselines using the flat dashed lines. The clustering re-

sults based on the evaluated databases are reported in Fig.9. We 

see that: (1) the increasing number of labeled samples can 

greatly improve the clustering performance of each method. It 

can also be found that the improvement by our DS2CF-Net over 

other compared methods is more obvious, especially when the 

proportion of label data is relatively small; (2) our DS2CF-Net 

delivers better results across different labeled proportions by 

fully mining the intrinsic relations between the labeled and un-

labeled data, and predicting the labels of unlabeled samples to 

enrich the supervised prior knowledge. RS2ACF also performs 

well by delivering better results than other remaining methods. 

Further discussion between semi-supervised and unsu-

pervised CF-based clustering. As shown in Fig.9, unsuper-

vised methods (such as DSCF-Net) obtain better results than 

DS2CF-Net when the proportion of labeled samples is low (such 

as 10%), especially on the AR, ETH80, COIL100 and USPS 

datasets. The major reasons are twofold. First, although DSCF-

Net is an unsupervised method and cannot preserve the locality 

in feature space compared with DS2CF-Net, it clearly incorpo-

rates the noise removal process in its model. That is, DSCF-Net 

performs the factorization in the noise-removed clean data 

space, while DS2CF-Net performs in the original space; Second, 

even though the formulation of our DS2CF-Net looks like that 

of DSCF-Net when DS2CF-Net does not exploit labeled data, 

note that there are several obvious differences between them: 1) 

although they both are deep matrix factorization methods, their 

factorization mechanisms are totally different. Specifically, 

DSCF-Net uses a single-channel mode, which optimizes the ba-

sis vectors to update the representation matrix indirectly in each 

layer. While DS2CF-Net designs a two-channel factorization 

model, which can jointly update the basis vectors and represen-

tation matrix in each layer; 2) DSCF-Net can only retain the 

local information of the data space, while our DS2CF-Net can 

preserve the local manifold structures of both the data space and 

feature space. Therefore, DSCF-Net and DS2CF-Net are totally 

different two methods. In other words, DS2CF-Net is not a sim-

ple extension of DSCF-Net. As a result, DSCF-Net has a poten-

tial to outperform DS2CF-Net in some cases, for example when 

the proportion of labeled samples is relatively low. 

(2) Clustering with different numbers of layers. We in-

vestigate the effects of the number of layers on the representa-

tion learning and clustering abilities of each multilayer model, 

including MNMF, MCF, GMCF, DSNMF, DSCF-Net and our 

DS2CF-Net. In this simulation, we vary the number of layers 

from 1 to 10 with step 1. For each database, we randomly 

choose 3 categories for the clustering evaluations. The averaged 

clustering ACs are illustrated in Fig.10, from which we see that: 

1) our DS2CF-Net delivers the highest accuracies than other 

methods in most cases; 2) the increase of the number of layers 

can generally improve the clustering results, which implies that 

discovering hidden deep features can indeed improve the per-

formance. However, the clustering results of MNMF, DSNMF, 

MCF and GMCF go down apparently when the number of lay-

ers passes 4 in most cases, which maybe because MNMF, MCF 

and GMCF cannot ensure the intermediate representation from 

the previous layer to be a good representation for subsequent 

layers. Note that the first stage of DSNMF is performed simi-

larly as MNMF, MCF and GMCF, thus it also suffers from the 

degrading issue as the number of layers is increased to a high 

level. This observation can once again show that the multilayer 

structures of directly feeding the learnt representation from the 

last layer to the next layer is not reasonable.  By updating the 

basis vectors to optimize the low-dimensional representation in 

each layer, DSCF-Net also perform well by delivering higher  

and more stable results than the other remaining methods, i.e., 

MNMF, DSNMF, MCF and GMCF. By this analysis, we can 

choose a proper number of layers for each multilayer MF model 

for the representation and clustering tasks in the experiments. 

(3) Hyperparameter sensitivity analysis. We investigate 

the effects of the hyper-parameters of each compared method 

on the representation and clustering abilities. For the compared 

methods, five methods (MNMF, MCF, DSNMF, CNMF and 

CCF) have no hyper-parameter in their models; two methods 

(GMCF and SemiGNMF) have one hyper-parameter  in their 

models; three methods (DNMF, GCF and SRMCF) contain two 



hyper-parameters  and  in their models; last two algorithms 

(DSCF-Net and RS2ACF), have three hyper-parameters  ,   

and  in their models. Note that we uniformly use  ,   and 

  to represent the first, the second and the third hyper-param-

eters of each method if have, and all hyper-parameters will be 

selected from the same candidate set {10-5, 10-4,…,105} for fair 

comparison. Specifically, for the method with only one param-

eter  , we directly tune it from the candidate set and evaluate 

the performance. For the methods with two parameters   and 
 , we adopt the commonly-used grid search strategy [32-33] 

to tune them from the candidate set. For the methods with three 

hyper-parameters, we first fix 1 = and tune   and   using 

the grid search strategy, and then fix the selected  and   to 

tune  . For RS2ACF, a fixed parameter setting, i.e.,  = 104,

 = 10-4 and  = 104, was provided in [42], so we directly use 

this setting in our experiments. For each database, we choose 

the samples of three categories to train each method, set the 

number of layers is set to 3 for each multi-layer method and the 

proportion of labeled data is still set to 40% for each semi-su-

pervised method. The results are averaged over 30 random ini-

tializations of the cluster centers for the K-means clustering al-

gorithm. The hyper-parameters sensitivity analysis results of 

each method over AR and COIL100 databases are displayed in 

Figs.11-13 as examples. Finally, we report the best choice of 

the hyperparameters of each method in Table 4, which have also 

been used in the clustering evaluations of this paper. 
   

  
(a) AR                                                    (b) MIT 

  
(c) ETH80                                        (d) COIL100 

  
(e) USPS                                        (f) Fashion MNIST 

Figure 9: Clustering accuracies vs. varied proportions of labeled samples 

based on the evaluated image databases.  

                                                                                                                                                   

 
(a) AR                                                    (b) MIT 

  
(c) ETH80                                            (d) COIL100 

   
(e) USPS                                       (f) Fashion MNIST 

Figure 10: Clustering accuracies vs. varied number of layers based on the eval-

uated image databases. 

Table 4. Settings of parameters for each algorihtm based on the evaluated image databases.  

Method AR MIT CBCL ETH80 COIL100 USPS 
EMNIST 
 Letters 

EMNIST 
Digits 

Fashion 
MNIST 

GMCF (α) 1 10 1 10 1 1 1 0.1 

DNMF (α,β) 10-4, 1 105, 10-4 10, 10 1, 1 1, 10 10-4, 1 10-4, 1 1, 10 

GCF (α,β) 103, 1 105, 105 1, 102 105, 10-5 105, 10-5 103, 1 103, 1 105, 102 

SRMCF (α,β) 10-3, 103 10-5, 105 10-5, 105 10-5, 105 10-5, 105 10-3, 103 10-3, 103 10-5, 105 

SemiGNMF (α) 10 10 1 102 10 10 10 1 

DSCF-Net (α,β,γ) 10-4, 1, 103 10-5, 10, 102 10-3, 10, 103 10, 10-1, 10-2 10-1, 1, 103 10-4, 10, 103 10-4, 10, 103 10-2, 10, 10 

DS2CF-Net (α,β,γ) 10-4, 102, 10-4 1, 102, 10-3 1, 1, 10-2 10-3, 10, 10-1 10-1, 1, 10-2 10-2, 10-2, 10-2 10-2, 10-2, 10-2 10-2, 10, 1 



 

    
(a) GMCF                                                                                                                (b) SemiGNMF 

Figure 11: Clustering accuracies of GMCF and SemiGNMF under various parameters over AR database and COIL100 database.  

 

(a) DNMF on AR database                                        (b) GCF on AR database                                    (c) SRMCF on AR database 

 

(d) DNMF on COIL100 database                             (e) GCF on COIL100 database                        (f) SRMCF on COIL100 database 

Figure 12: Clustering accuracies of DNMF, GCF and SRMCF under various parameters over AR database and COIL100 database. 

 

(a) DSCF-Net on AR database                                                                               (b) DS2CF-Net on AR database 

 

(c) DSCF-Net on COIL100 database                                                                    (d) DS2CF-Net on COIL100 database 

Figure 13: Clustering accuracies of DSCF-Net and DS2CF-Net under various parameters over AR database and COIL100 database. 



VI. CONCLUDING REMARKS 

We proposed a new enriched prior knowledge guided dual-con-
strained deep semi-supervised coupled factorization model for 
discovering hierarchical information. To capture hidden deep in-
formation, our DS2CF-Net designs a joint label and structure-
constrained factorization network using multiple layers of linear 
transformations of basis vectors and representations. An error 
correction mechanism with a feature fusion strategy is also inte-
grated between consecutive layers to improve the representation.  

To improve the discrimination of deep representation and coef-

ficients, DS2CF-Net clearly considers enriching the supervised 

prior knowledge by the joint deep coefficients-regularized label 

prediction, and incorporates enriched prior information as addi-

tional label and structure constraints. Moreover, DS2CF-Net also 

proposes to keep the locality structures in both the data and fea-

ture spaces by adopting an adaptive dual-graph weighting strat-

egy. A fine-tuning process is finally included to refine the struc-

ture-constrained matrix and the data weight matrix in each layer 

using the predicted labels for more accurate representations.  

We have evaluated our DS2CF-Net for image representation 

and clustering, and the results are compared with several related 

single-layer and multilayer frameworks. Both the visual image 

analysis and quantitative clustering evaluation demonstrate the 

effectiveness of our framework. In future, we will evaluate our 

method for the other related application areas, such as document 

retrieval and recommended system. More efficient coupled fac-

torization strategy will also be investigated for the consideration 

of scalability. In addition, we will explore how to integrate the 

factorization model with the deep convolutional neural network 

for handling the large-scale vision tasks.  
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