
Distribution-aware Margin Calibration for Semantic Segmentation in Images
Litao Yu1∗ , Zhibin Li2∗ , Min Xu1 , Yongsheng Gao3 , Jiebo Luo4 and Jian Zhang1

1University of Technology Sydney
2CSIRO

3Griffith University
4Rochester University
* Equally contributed.

{Litao.Yu, Min.Xu, Jian.Zhang}@uts.edu.au, Zhibin.Li@csiro.au, yongsheng.gao@griffith.edu.au,
jluo@cs.rochester.edu

Abstract
The Jaccard index, also known as Intersection-
over-Union (IoU), is one of the most critical evalua-
tion metrics in image semantic segmentation. How-
ever, direct optimization of IoU score is very diffi-
cult because the learning objective is neither dif-
ferentiable nor decomposable. Although some al-
gorithms have been proposed to optimize its surro-
gates, there is no guarantee provided for the gener-
alization ability. In this paper, we propose a margin
calibration method, which can be directly used as a
learning objective, for an improved generalization
of IoU over the data-distribution, underpinned by
a rigid lower bound. This scheme theoretically en-
sures a better segmentation performance in terms
of IoU score. We evaluated the effectiveness of the
proposed margin calibration method on seven im-
age datasets, showing substantial improvements in
IoU score over other learning objectives using deep
segmentation models.

1 Introduction
Semantic segmentation in images is a fundamental yet chal-
lenging problem in computer vision. The task is to build
a computational model to accurately assign a class label to
every pixel. Semantic segmentation has drawn a broad re-
search interest for many applications such as robotic sens-
ing [Cadena and Košecká, 2014] and auto-navigation [Xiao
and Quan, 2009]. Recently, the development of deep con-
volutional neural networks has led to remarkable progress in
semantic segmentation due to their powerful feature repre-
sentation ability to describe the local visual properties. Deep
parsing networks are often fine-tuned based on the pre-trained
classification networks, e.g., deep residual networks [He et
al., 2016].

To train a reliable deep learning model for semantic seg-
mentation, the learning objective is one of the most critical
ingredients. The most straightforward way is to treat the
semantic segmentation as a dense classification task, which
examines each pixel in images individually, comparing the
class-predictions to the one-hot encoded ground truth. As

a surrogate relaxation of the mis-classification rate, cross-
entropy becomes the most intuitive loss function in training
deep semantic segmentation models. The minimization of
cross-entropy is directly related to the maximization of pixel
accuracy. In the training process, cross-entropy loss averages
over all pixels in images, which is essentially asserting equal
learning to each pixel in an image batch. This is problem-
atic in semantic segmentation if the actual classes are imbal-
anced in the image corpus, as training can be dominated by
the most prevalent class, e.g., the small foreground interest
regions are submerged by large background areas. Although
applying a cost-sensitive re-weighting scheme [Wong et al.,
2018] to alleviate the data imbalance and emphasize the “im-
portant” pixels, it is unclear how to determine the weights for
the best IoU scores [Ma et al., 2021], because the pixels of
minority class do not necessarily mean they are difficult to
be classified (see the ablation study in Section 4.3). Further-
more, the measure of cross-entropy on the validation set is a
poor indicator of the model quality [Berman et al., 2018], as
minimizing the pixel-wise loss cannot guarantee a higher IoU
score, which is more commonly used in semantic segmenta-
tion and can better sketch the contours of interest regions. To
address these issues, some recently proposed loss functions
have been proposed, e.g., Focal loss [Lin et al., 2017] and
Lovász-softmax [Berman et al., 2018]. The focal loss is an
improved cross-entropy loss that tries to handle the class im-
balance problem by assigning more weights to hard or easily
misclassified examples and down-weight easy examples. The
Lovász-softmax is a Lovász surrogate that mimics the IoU,
making it consistent with the evaluation metric in semantic
segmentation.

A “better” machine learning model should feature a better-
generalized performance, i.e., the performance measured on
the underlying data distribution, where the unknown in-
stances are sampled from. Clearly, there is a gap between
the empirical performance on the training dataset and the
generalized performance regarding IoU, i.e., there always
exists the IoU differences between training and validation
datasets. This gap is commonly called the generalization er-
ror. Even though some regularization schemes have been ap-
plied to the training of neural networks, their influence on
the generalization error of IoU still remains unclear. In this

ar
X

iv
:2

11
2.

11
55

4v
1 

 [
cs

.C
V

] 
 2

1 
D

ec
 2

02
1



work, we explicitly show how this generalization error is re-
lated to label distribution and can be controlled by adding
some class-dependent bias terms in the output of the deep
semantic segmentation network. These bias terms are con-
nected to the margins among multiple classes, where we
are inspired by the idea of margins from the well-known
Support Vector Machines (SVMs) [Boser et al., 1992]. In
[Blaschko and Lampert, 2008], the authors proposed to ap-
ply the structured regression to predict the bounding box for
object localization. For data-imbalanced learning problems,
uneven margins can be applied to well calibrate the impor-
tance of specific classes [Li et al., 2002; Khan et al., 2019;
Cao et al., 2019]. In semantic segmentation, class imbalance
widely exists in most image datasets, which hinders the gen-
eralization ability of the model, because the IoU score for
each class is jointly optimized with others. The power of the
“uneven” margins inspires us to develop a proper margin cal-
ibration scheme for a better generalization ability of semantic
segmentation models.

In this paper, we propose a novel distribution-aware margin
calibration method, to optimize the IoU in semantic segmen-
tation. The margins across multiple classes are pre-computed
based on the label distribution, which can well calibrate the
distance between foreground and background classes. Our
method has the following three compelling advantages over
other learning objectives: (1) it provides a lower bound for
data-distribution IoU, which means the model has a guaran-
teed generalization ability; (2) the margin-offsets can be effi-
ciently computed, which is readily pluggable into deep seg-
mentation models; (3) the proposed learning objective is di-
rectly related to IoU scores, i.e., it is consistent with the evalu-
ation metric. Due to the high discriminative power and stabil-
ity, it is worth using the proposed margin calibration method
as a learning objective in the challenging semantic segmenta-
tion tasks. We conduct extensive experiments on seven pub-
lic image datasets, which indicates our method can achieve a
considerable improvement compared to other learning objec-
tives.

The rest of the paper is organized as follows. Section 2
introduces related work. Section 3 elaborates the proposed
margin calibration method. Experimental results and analysis
are presented in Section 4. Finally, Section 5 concludes the
paper.

2 Related work
2.1 Deep learning-based semantic segmentation

models
Deep learning-based image segmentation models have
achieved significant progress on large-scale benchmark
datasets [Zhou et al., 2017; Cordts et al., 2016] in recent
years. The deep segmentation methods can be generally
divided into two streams: the fully-convolutional networks
(FCNs) and the encoder-decoder structures. The FCNs [Long
et al., 2015] are mainly designed for general segmentation
tasks, such as scene parsing and instance segmentation. Most
FCNs are based on a stem-network (e.g., deep residual net-
works [He et al., 2016]) pre-trained on a large-scale dataset.
These classification networks usually stack convolution and

down-sampling layers to obtain visual feature maps with rich
semantics. The deeper layer features with rich semantics are
crucial for accurate classification, but lead to the reduced res-
olution and in turn spatial information loss. To address this
issue, the encoder-decoder structures such as U-Net [Ron-
neberger et al., 2015] have been proposed. The encoder
maps the original images into low-resolution feature repre-
sentations, while the decoder mainly restores the spatial in-
formation with skip-connections. Another popular method
that has been widely used in semantic segmentation is the di-
lated (atrous) convolution [Yu and Koltun, 2015], which can
enlarge the receptive field in the feature maps without adding
more computation overhead, thus more visual details are pre-
served. Some methods, such as DeepLab v3+ [Chen et al.,
2018], just combine the encoder-decoder structure and dilated
convolution, to effectively boost the pixel-wise prediction ac-
curacy.

2.2 Learning objectives for semantic segmentation
As a dense prediction task, the commonly used cross-entropy
is a natural learning objective in training a semantic segmen-
tation model. However, the classification accuracy is incon-
sistent with the evaluation metric IoU. In recent years, var-
ious learning objectives have been proposed specifically for
semantic segmentation, and most of them can be used in a
plug-and-play way. For example, the distribution-based loss
functions (e.g., weighted cross-entropy loss [Ronneberger et
al., 2015] and focal loss [Lin et al., 2017]), the region-based
loss functions (e.g., IoU loss [Rahman and Wang, 2016], Dice
loss [Eelbode et al., 2020] and Tversky loss [Salehi et al.,
2017a]) and boundary-based loss functions (e.g., Hausdorff
distance loss [Karimi and Salcudean, 2019] and Boundary
loss [Kervadec et al., 2019]). In medical image segmenta-
tion, Ma et al. presented a comprehensive review of 20 gen-
eral loss functions [Ma et al., 2021]. These loss functions
can also be jointly used in model optimization [Abraham and
Khan, 2019]. In deep learning based segmentation methods,
the model outputs continuous class probabilities of all pix-
els, which are indirectly related to IoU scores. To deal with
this problem, Maxim et al. proposed to use submodular mea-
sures to readily optimize the segmentation model in the con-
tinuous setting [Berman et al., 2018]. In many real applica-
tion scenarios, especially scene parsing, the pixel-labels are
highly imbalanced, so we prefer to balance the label weights
among different classes. By adding down-weights to the well-
classified records and assign large weights to misclassified
records, focal loss can effectively boost the performance of
dense prediction.

On the other hand, design proper surrogates as learning
objectives is also applicable to mimic the IoU in semantic
segmentation. For example, Nowozin proposed a statistical
approximation based on parametric linear programming as a
tractable decision making process [Nowozin, 2014]. Ahmed
et al. combine the expected-intersection over expected-union
(EIoEU) with optimizing the expected-IoU (EIoU) for a set
of candidate solutions [Ahmed et al., 2015]. For the deep
learning based semantic segmentation, Nagendar et al. pro-
posed to plug a surrogate network into the deep segmenta-
tion model for the approximation of IoU [Nagendar et al.,



2018], while such a scheme can be also extended to other non-
decomposable evaluation metrics, e.g., miss-classification
rate (MCR) and Average Precision (AP), in universal machine
learning tasks [Grabocka et al., 2019].

However, the above methods are mainly to minimize the
empirical risk in the model training procedure, without the
consideration of the generalization of IoU. In deep learning
based segmentation tasks, one may directly use some general
methods such as l2-norm, weight-decay, drop-out or exten-
sive data augmentation to improve the generalization ability,
but it is unclear how or whether these methods are correlated
to the generalization of IoU. As one of the critical objective
in design machine learning models, optimizing the general-
ized performance can be achieved through (1) optimizing the
empirical performance approximated by a surrogate loss as-
sociated with the performance metric [Berman et al., 2018;
Grabocka et al., 2019], e.g. IoU; and (2) controlling the gen-
eralized error. In our work, we design a margin calibration
scheme with a proper loss function to overcome this diffi-
culty, which provides a better learning objective for semantic
segmentation compared to other learning metrics, both theo-
retically and practically.

3 Method
3.1 Problem setup and notations
Semantic segmentation in images is essentially a dense classi-
fication problem, where a model predicts the one-hot labels to
distinguish each foreground class from the background class,
using the definition of true positive (TP ), false positive (FP )
and false negative (FN ). The Jaccard index (IoU) is defined
as the size of intersection divided by the size of the union of
the sample sets:

IoU =
TP

TP + FP + FN
. (1)

In semantic segmentation, IoU is measured from the pixel-
wise classifications, which differs from object localization,
where IoU is calculated by the regression of bounding boxes
[Blaschko and Lampert, 2008]. In this paper, we do not con-
sider the regression case.

A similar metric to IoU is Dice Similarity Coefficient
(DSC), which is equivalent to F1-score:

DSC =
2× TP

2× TP + FP + FN
. (2)

However, the above two metrics are count-based measures,
whereas the outputs of deep segmentation models are proba-
bility values representing the likelihood of the pixels belong-
ing different classes. Therefore, neither IoU score nor DSC
can be directly and accurately measured from the output of
the network.

For a multi-class semantic segmentation problem, we for-
mally define an input spaceX ∈ Rw×h×c and the target space
Y = {1, . . . ,K}w×h, where w, h, c are the width, height
and numbe of channels of an input image, and K is the to-
tal number of classes to be segmented. For simplicity, we
use M = w × h to represent the total number of pixels in

an image. The function θ ∈ Θ : X 7→ Y is a complex non-
linear projection from images to masks (pixel labels). In deep
learning-based semantic segmentation methods, Θ can be a
learning framework with trainable parameters.

Given an image x ∈ X with a corresponding mask y ∈
Y , we denote the discrete predicted label for i-th pixel is ŷi.
Then, given a ground truth y and a prediction ŷ, the empirical
IoU regarding the k-th foreground class is:

IoUk =
Pk − Pk0

Pk + P0k
. (3)

where Pk0 denotes the empirical probability that a foreground
class k pixel is observed but is predicted as the background
class by θ, i.e.,

Pk0 =
1

M

M∑
i=1

I(yi = k ∧ ŷi 6= k), (4)

with I(·) an indicator function. Similarly, P0k denotes the
empirical probability that a pixel of the background class is
observed but is predicted as the foreground class k, i.e.,

P0k =
1

M

M∑
i=1

I(yi 6= k ∧ ŷi = k). (5)

We use Pk to denote the empirical probability that a class
k foreground pixel is observed, i.e.,

Pk =
1

M

M∑
i=1

I(yi = k). (6)

In the evaluation of the segmentation performance, IoU is
computed globally over an image dataset, in which the total
number of pixels is N , where N � M . From the statistical
perspective, we assume that the image samples in the whole
dataset are independently and identically distributed (i.i.d) ac-
cording to some unknown distribution D over X ×Y , and let
DY denote the projection of D over Y . Note that we do not
assume the pixels in an image are i.i.d. The IoU of k-th class
over the whole data distribution is:

IoUk =
Pk − Pk0

Pk + P0k
. (7)

Note that we use P and IoU of the normal font to represent
the empirical probability and IoU on the finite image dataset,
while use P and IoU of the calligraphic font to represent the
probability and IoU over the whole data distribution.

When there are K classes presented, the empirical mean

IoU (mIoU) is defined as mIoU = 1
K

K∑
k=1

IoUk, and sim-

ilarly, the mIoU over the data distribution D is defined as

mIoU = 1
K

K∑
k=1

IoUk.

Ideally, a function θ should produce a high mIoU over the
data distribution to ensure the stable performance of θ on any
data sampled from D. Unfortunately, the data distribution D
is usually fixed but unknown. Thus, we can only optimize
the empirical mIoU, so that with a high probability it can



lead to a high mIoU over D. The problem here is that how
mIoU and mIoU are close to each other. Next, we present
our method to minimize the error bound between mIoU and
mIoU, which can theoretically support the proposed margin
calibration method.

3.2 Method overview
In semantic segmentation tasks, the label imbalance is an in-
herent issue for dense prediction, so equally treating all pixel
labels in the model training may lead to the biased IoU scores
towards the majority classes. Since in deep semantic seg-
mentation models, the one-hot pixel labels of multiple classes
are simultaneously optimized, the minority class may be still
under-fitted when the majority class is already over-fitted. An
intuitive approach is to set different weights to the loss func-
tion based on the number of pixels of each objective class,
e.g., weighted cross-entropy. However, it is unclear if the
weights of the loss functions based on the number of total
pixels of the objective classes are optimal, because the “hard-
ness” of segmenting the minority classes is not directly re-
lated to the number of training pixels. In our own experi-
ence, we found that weighted cross-entropy barely improves
the model performance in terms of IoU.

In our approach, we instead set different margins for the
pixel classes, which differs from the weight loss functions.
Specifically, we would derive an optimal margin setting for
a small error bound between mIoU and mIoU. Denote the
output score of i-th pixel in the image dataset regarding the
k-th foreground class by sik. Here we define the margin for
the i-th pixel with regard to class k in the whole image set as:

λik = sik −max
j 6=k

sij . (8)

If the i-th pixel belongs to k-th foreground class, it is prefer-
able to have a large positive value of λik. Otherwise, we ex-
pect it to be a negative value. We then combine the margin
λik with a ρ-margin loss function φρ(·) defined in [Mohri et
al., 2018, Definition 5.5], to build the relationship between
IoU score and the margin λik. The ρ-margin loss is defined
as:

φρ(λ) = min

(
1,max

(
0, 1− λ

ρ

))
, (9)

which encourages the margin λ to be larger than ρ and pro-
vides an upper bound for 0-1 loss, as is illustrated in Fig. 1.
We call the parameter ρ margin-offset. We can then bound
the empirical probabilities Pk0 and P0k in Eq.(3) as:

Pk0(θ) <
1

N

∑
i∈Yk

φρk0
(λik) = `k0(θ, ρk0),

P0k(θ) <
1

N

∑
i∈Y \Yk

φρ0k(−λik) = `0k(θ, ρ0k),
(10)

where we use Yk and Y \ Yk to denote the index set of the
foreground pixels of k-th class and background pixels, re-
spectively. ρ0k and ρk0 are pre-defined margin-offsets. Then,
we can give a lower bound for Eq.(3) as:

IoUk =
Pk − `k0(θ, ρk0)

Pk + `0k(θ, ρ0k)
, (11)

0
0

1

( ) = log2(1 + 2 + ) 
( ) = min(1, max(0, 1 ))

Figure 1: The ρ-calibrated log-loss (blue dotted line) and ρ-margin
loss (orange solid line) functions. The ρ-margin loss is a upper
bound for 0-1 loss. For the ρ-calibrated log-loss, ϕρ(ρ) = 1 and
it upper bounds the ρ-margin loss.

and the corresponding lower bound for mIoU is:

mIoU =
1

K

K∑
k=1

IoUk. (12)

3.3 Theoretical motivation
We can derive a generalization error bound regarding IoU
with the margin-offsets ρk0 and ρ0k, based on the following
theorem:
Theorem 1. For any function θ ∈ Θ, define µk = ρk0

ρ0k

and F = C(Θ) + σ( 1
η ). C(Θ) is some proper com-

plexity measure of the hypothesis class Θ and σ( 1
η ) ,

ρmax

4K

√
2M log 2K

η is typically a low-order term in 1
η with

ρmax = max{ρk0, ρ0k}Kk=1. Given a training dataset of N
image pixels including Nk pixels of class k, with each image
consisting of M pixels, then for any η > 0, with probability
at least 1− η,

mIoU ≥ mIoU − ε, (13)
where

ε =
1

K

K∑
k=1

√
N −Nk +

√
Nk

µk

Nk

4KF ρ0k −
√
N −Nk

. (14)

Note that this theorem involves a complexity measure F =
C(Θ) + σ( 1

η ), where C(Θ) is derived from the Rademacher
complexity. The Rademacher complexity typically scales in√

C(Θ)
Nk

[Mohri et al., 2018]. Such a scale has been used in
related works (see [Cao et al., 2019; Neyshabur et al., 2018]
and the references therein) to imply a connection between
Rademacher complexity and number of pixels Nk. See the
proof of the theorem in the appendix. This theorem enables us
to maximize the mIoU on the data distribution by maximiz-
ing a lower bound mIoU for the empirical IoU on a training
dataset with a high probability. Meanwhile, we would prefer
a small error bound ε so that the lower bound mIoU on the
empirical IoU could be a reliable estimation for mIoU. This
scheme guarantees the performance of associated function θ
on the unseen image data.



Remark. At first glance, the relationship between N , Nk
and ε seems complicated. However, ε decreases if we increase
N andNk proportionally, as can be inferred from Eq. (14), so
decreasing ε would need more these pixels accordingly. The-
orem 1 indicates that a smaller ε requires more foreground
class pixels, and a simple fit function for a smallerC(Θ). An-
other important factor is that we can adjust the margin-offset
ρ0k to minimize the error bound ε. Note that increasing ρ0k

also increases the C(Θ) implicitly, because a larger margin-
offset may require more complex hypothesis class Θ. Other-
wise, mIoU may decrease due to the under-fitting. Besides,
the direct calculation of the optimal margin-offsets in The-
orem 1 is difficult because it is related the complexity mea-
sure C(Θ), which is measured by the structure of deep neural
networks. Nevertheless, we can give the optimal ρ0k that is
irrelevant to C(Θ), by the following corollary:

Corollary 1. Assume
K∑
k=1

ρ0k = some constant. Let µk =

Pk

√
Nk

υ(N−Nk)−Pk

√
N−Nk

with υ (υ > 0) being a hyper-
parameter. Then the minimum of the error bound ε in The-
orem 1 is attained given the following condition:

ρ0i

ρ0j
=
Nj
Ni

√
N −Ni√
N −Nj

,
ρk0

ρ0k
= µk, ∀i, j, k ∈ [1,K].

(15)
See the proof of the corollary in the appendix. Corollary 1

provides a theoretical guarantee for setting the margin-offsets
towards a smaller error bound ε. The margin-offset ρ0k is
proportional to

√
N−Nk

Nk
, which indicates a larger margin is

required for k-th class, with comparably fewer pixels. We
introduce a hyper-parameter τ (τ > 0) to scale the margin-
offsets, which can be tuned on the validation dataset. Note
that another margin ρk0 = µkρ0k is usually small compared
to ρ0k in practice with a well-tuned υ, so we can mainly focus
on ρ0k here. A proper setting of τ and υ can provide a balance
between ε and mIoU for the maximization of mIoU. Empir-
ically, just setting τ = 10 and υ = 1 can obtain a satisfactory
result.

3.4 A practical implementation with ρ-calibrated
log-loss function

Based on the above statistical analysis of label distribution,
the learning objective needs to compute the margin-offsets
from the whole pixel label set before optimizing the network.
Given a pixel label set with K classes, the computation of
margin-offsets is summarized in Algorithm 1.

The learning objective of semantic segmentation is to max-
imize mIoU for the best performance. Ideally, we should
maximize its lower bound mIoU with a small error bound
ε, because the margin-offset can provide a guarantee for its
generalization. However, in the training of deep neural net-
works, the direct optimization of mIoU is impractical be-
cause the network is trained in a mini-batch manner. Unlike
other decomposable evaluation metrics, such as classification
accuracy, where the expectation of the metric on a mini-batch
sample is equivalent to the metric on the whole dataset, the
expectation of the mini-batch mIoU is an estimation to the

Algorithm 1 Margin-offsets calculation
Input: Labels for all pixels of size N . Number of pixels in
each class given by N1, ..., NK . Hyper-parameter υ, τ > 0.
Output: The margin-offsets ρ0k, ρk0, ∀k ∈ [1,K]

1: for class k = 1, 2, . . . ,K do
2: Pk = Nk

N ;
3: µk = Pk

√
Nk

υ(N−Nk)−Pk

√
N−Nk

;

4: ρ0k = τ ×
√
N−Nk

Nk
;

5: ρk0 = µkρ0k.
6: end for

overall mIoU on the whole dataset, i.e., the empirical IoU on
the training dataset may be sub-optimal.

For a practical implementation, we instead minimize the
sum of ρ-margin losses lk0 and l0k involved mIoU , with the
optimal margin-offset. So for a mini-batch images, the loss
L(θ) is calculated by:

L(θ) =

K∑
k=1

(`k0(θ, ρk0) + `0k(θ, ρ0k))

=
1

Ns

K∑
k=1

∑
i∈Yk

φρk0
(λik) +

∑
i∈Y \Yk

φρ0k(−λik)

 ,

(16)

with λik defined in Eq.(8), and Ns is the number of pixels in
a mini-batch. In the forward pass of training, the network θ
outputs a batch of pixel-wise scores, in which the i-th pixel
with regard to class k is sik. Then sik is used to calculate λik
by Eq.(8).

In practice, the non-smoothness of ρ-margin loss function
may bring instability in the optimization. As is shown in
Fig. 1, the gradient regarding the ρ-margin loss can be pro-
hibitively large when ρ is very small, while the gradients out-
side the interval (0, ρ) is zero. Thus, we substitute the ρ-
margin loss φρ(λ) used in Eq.(16) with ρ-calibrated log-loss
ϕρ(λ) = log2(1 + 2−λ+ρ). The relationship between the
ρ-margin loss φρ(λ) and the ρ-calibrated log-loss ϕρ(λ) is il-
lustrated in Fig. 1. Now we apply the margin-offsets to get a
biased score s̄ik for ρ-margin loss. The computation of s̄ik is
described in Algorithm 2.

Algorithm 2 ρ-margin calibration
Input: Prediction scores s = {sik}, ground truth yi, the
margin-offset ρ0k, ρk0, ∀k ∈ [1,K] and ∀i ∈ [1, Ns].
Output: ρ-margin calibrated prediction scores s̄ = {s̄ik}.

1: for pixel i = 1, . . . , Ns do
2: for class k = 1, 2, . . . ,K do
3: λik = sik −max

j 6=k
sij ,

4: s̄ik =

{
λik − ρk0 if yi = k,

λik + ρ0k else.
5: end for
6: end for



For the use of the ρ-calibrated log-loss ϕρ(λ), we first cal-
ibrate the output {sik} via Algorithm 2, then the ρ-calibrated
log-loss bounds the ρ-margin loss from above and leads to:

`k0(θ, ρk0)<
1

Ns

∑
i∈Yk

log2(1+2−s̄ik) = `k0(θ, ρk0), (17)

and

`0k(θ, ρ0k)<
1

Ns

∑
i∈Y \Yk

log2(1+2s̄ik) = `0k(θ, ρ0k). (18)

Based on the above two inequalities, we simply use
`k0(θ, ρk0) and `0k(θ, ρ0k) to replace `k0(θ, ρk0) and
`0k(θ, ρ0k) in Eq.(16) as the final learning objective.

3.5 Complexity analysis
Given the output scores {sik}Ns×K of Ns pixels in an im-
age batch, with the parallel computation provided by GPUs,
calculating the margin λik needs O(Ns) time and O(NsK)
space, and the subsequent calibrated log-loss incursO(NsK)
time complexity. So compared to the cross-entropy loss, the
calibration method requires extra O(Ns + NsK) time and
O(NsK) space complexities overhead in computing the cali-
brated log-loss.

3.6 Discussions
How to optimize non-decomposable loss like IoU is an open
problem. This problem becomes far more challenging in the
mini-batch training setting because in this case, we optimize
the mini-batch IoU, which is an estimation of the overall IoU
on the whole dataset. In our method, we mainly deal with
a ratio distribution (both denominator and numerator of IoU
are random variables regarding data distribution), where the
central limit theorem can not be applied. As such, currently,
no method can deal with this mini-batch setting accurately
including lovász-softmax, which claims to be a surrogate for
optimizing IoU. We also compromise on the learning objec-
tives to optimize a related ρ-margin calibrated log-loss, which
is independent of the margin calibration process. This makes
our IoU on the training set a more reliable indicator for the
IoU over the underlying distribution than other methods.

In the deep learning based semantic segmentation settings,
directly applying margin calibration incurs additional space
and time complexities. Consequently, the computation may
be slower and more memory-consuming. To alleviate this,
the network parameters can be initialized via training with
cross-entropy, the most efficient but not the “perfect” learning
objective, then fine-tuned with margin-calibration.

4 Experiment
In this section, we use the deep segmentation models to con-
duct the experiments on five publicly available datasets. Un-
like the proposal of deep learning architectures that aims to
achieve the best segmentation performance in some recent
works [Wang et al., 2020c; Shen et al., 2020; Ding et al.,
2020], our contribution is mainly on the design of a novel
learning method for better IoU scores when the learning
framework is fixed. Given a deep segmentation model, we

mainly compare the final performance when applying com-
monly used learning objectives and our margin calibration
method.

4.1 Datasets
We conducted the experiment of semantic segmentation on
seven datasets: Robotic Instrument [Allan et al., 2019],
COCO-Stuff 10K [Caesar et al., 2018], PASCAL VOC2012
[Everingham et al., 2015], MIT SceneParse150 [Zhou et al.,
2019], Cityscapes [Cordts et al., 2016], BDD100K [Yu et al.,
2020] and Mapillary Vistas [Neuhold et al., 2017].

The Robotic Instrument dataset provides 8 robotic surgical
videos, in which 225 frames are sampled from each video.
In the frames, each part is manually annotated by a trained
team. Here we conduct the instrument part segmentation as
an ablation study, in which we aim to correctly segment each
articulating part of the instrument.

The COCO-Stuff 10K contains 9,000 images for training
and 1,000 images for validation (testing). Following [Ding
et al., 2018], we evaluate the IoU performance on 171 cate-
gories (80 objects and 91 stuff) to each pixel.

The PASCAL VOC 2012 semantic benchmark contains 20
foreground object classes and one background class. The
original dataset has 1,464 and 1,449 images for training and
validation, respectively. To augment the training dataset,
we also use extra annotations provided by [Hariharan et al.,
2011]. The model is not pre-trained with MS COCO dataset.

The MIT SceneParse150 dataset is built based on ADE20K
[Zhou et al., 2017] as a scene parsing benchmark. It contains
more than 20K scene images, annotated by 150 classes of
dense labels. Here we use 2,000 validation images for quali-
tative evaluation.

The Cityscapes, BDD100K and Mapillary Vistas are
three different street-view datasets. The data in Cityscapes
were taken from 50 European cities, which provides fine-
grained pixel-level annotations of 19 classes including
buildings, pedestrians, bicycles, cars, etc. The train-
ing/validation/testing splits are with 2,975, 500 and 1,525 im-
ages, respectively. It also has 20,000 coarsely-labelled im-
ages, which can be used to pre-train the segmentation model.

Different from the Cityscapes dataset comes from Ger-
many, the images of BDD100K are mainly from the US cities,
and there is a dramatic domain shift between the two datasets
for semantic segmentation models, although their labels are
the same.

The Mapillary Vistas dataset contains 25,000 high-
resolution images annotated into 66 fine-grained object cat-
egories, featuring locations from all around the world, and
taken from a diverse source of image capturing devices.

4.2 Settings
We implemented the segmentation model based on PyTorch1.
For the experiment on the Robotic Instrument dataset, we ap-
plied the recently proposed COPLE-Net [Wang et al., 2020a],
a variant of U-Net [Ronneberger et al., 2015] for medical im-
age segmentation. COPLE-Net has much fewer trainable pa-
rameters compared to FCN, thus it is quite suitable for the

1See our PyTorch implementation at https://github.com/
yutao1008/margin calibration for more details.

https://github.com/yutao1008/margin_calibration
https://github.com/yutao1008/margin_calibration


segmentation tasks in a simple yet fixed application scenario.
On the rest four datasets for general semantic segmentation
tasks, we used DeepLab v3+ [Chen et al., 2017] backend on
SEResNeXt-50 [Hu et al., 2018], with the output stride 8.
We employed the AdamW optimizer [Loshchilov and Hut-
ter, 2019] with the initial learning rate 10−4 in the training
process. We used the mixed precision and gradient check-
point, which allow to set a larger mini-batch size and can
effectively save the GPU memory usage without hurting the
batch normalization layers. Our experiments were conducted
on a server equipped with a single NVIDIA Tesla V100 GPU
card.

4.3 Ablation study on Robotic Instrument dataset
We sequentially split the Robotic Instrument dataset into
1,200, 200 and 400 images according to the frame index for
training, validation and testing, respectively. For this task, we
aim to accurately label four instrument parts, including shaft,
wrist, claspers and probe. The pixel ratios in the 4 parts are
4.9%, 1.4%, 1.6% and 0.8%, respectively, while the back-
ground class occupies 91.2% of the total pixels, making the
label distribution extremely imbalanced.

We used categorical cross-entropy as the baseline, as se-
mantic segmentation can be treated as a dense prediction for
each image pixel. In addition, we tested several recently pro-
posed methods, including focal loss [Lin et al., 2017] (with
the scale factor 0.4), lovász-softmax [Berman et al., 2018],
generalized dice loss [Sudre et al., 2017] and Tversky loss
[Salehi et al., 2017b]. All these methods were used as in-
dependent learning objectives in the medical segmentation
tasks, and the segmentation networks were all trained from
the random state.

We recorded all the intermediate results during the training
process, as is shown in Fig. 2. By observing these figures,
we can see directly using the two count-based loss functions,
Dice loss and Tversky loss, the segmentation network fails
to converge, as they are not differentiable to pixel-wise cat-
egories and can only work in conjunction with distribution-
based loss functions. The rest four methods show similar
mIoU and loss curves. However, although lovász-softmax
can utilize the sub-modular property to minimize the Jaccard
loss, it is more likely to over-fit. The proposed margin cali-
bration method can generally act as a plug-and-play learning
objective like cross-entropy and focal loss in training a se-
mantic segmentation network.

In the model inference, we did not use horizontal flipping,
multi-scale prediction or CRF post-processing to augment
the segmentation performance. The quantitative results are
shown in Table 1 and 2. The two evaluation metrics, pixel ac-
curacy and IoU score, although have a very high correlation in
terms of the absolute values, the best one single metric cannot
guarantee the other. For example, simply using cross-entropy
achieve a better pixel accuracy compared to the focal loss and
lovász-softmax, but its IoU score is the worst. In semantic
segmentation, the IoU score is usually a better evaluation to
quantify the percent overlap between the pixel-label output
and target mask. Using Dice loss as the learning objective, the
model fails to segment shaft and claspers. Similarly, using
Tversky loss cannot segment probe. Compared with cross-

Table 1: The overall segmentation performance on the Robotic In-
strument test set.

Method Pixel Acc. mIoU
Cross-entropy 81.1 66.2

Dice loss 38.3 27.3
Tversky loss 59.7 43.8

Focal loss 80.0 69.5
Lovász-softmax 80.1 68.9

Margin calibration 81.5 72.5

Table 2: Per-class IoU on the Robotic instrument test set.

Method Shaft Wrist Claspers Probe
Cross-entropy 81.1 55.3 55.5 72.9

Dice loss 0.0 58.1 0.0 72.6
Tversky loss 83.5 60.1 52.9 0.0

Focal loss 86.5 62.9 56.5 72.0
Lovász-softmax 86.3 64.4 55.5 69.3

Margin calibration 88.2 67.1 61.1 73.4

entropy, focal loss and Lovász-softmax, the proposed margin
calibration method obtains the best pixel accuracy and IoU
scores on this dataset. Specifically, as a single learning ob-
jective, margin calibration outperforms the second-best, with
3.0% performance gain in terms of the mIoU score. Although
margin calibration is not specifically designed to optimize the
pixel accuracy, it can also benefit from the generalization abil-
ity.

We illustrate the segmentation examples in Fig. 3. By ob-
serving the results, we can see that applying the proposed
margin calibration method can effectively reduce the false
positives, forming more smooth contours and obtaining more
accurate results.

4.4 Results on COCO-Stuff 10K and PASCAL
VOC2012 datasets

In the training of the segmentation model, we re-scaled
the shorter image size to 400 then randomly cropped it to
384×384. In the inference, we used the single-scale inference
without flipping or any other augmentations. The compar-
isons on the two validation sets with the three baseline meth-
ods are reported in Table 3 and Table 4, respectively. Results
show that when fixing the deep neural network, both focal
loss and Lovász-softmax and improve the mIoU scores. By
pre-computing the margin-offsets and applying the proposed
margin calibration method, a single segmentation model can
achieve a further 0.4% of the mIoU score on the COCO-Stuff
10K, while on the PASCAL VOC2012 dataset, the mIoU
score with margin calibration is only 0.1% higher than the
second-best.

By observing the two datasets, we found that they have dif-
ferent properties regarding pixel-label annotations. The dense
prediction on the COCO-Stuff 10K dataset aims to auto-label
all pixel classes, while on the PASCAL VOC 2012 the task is
to distinguish one or two foreground objects from the unique
background class. Also, the label imbalance in COCO-Stuff
10K is much more imminent than PASCAL VOC 2012, lead-
ing to the significant difference in margin calibrations. On the
PASCAL VOC 2012 dataset, the background class void occu-
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Figure 2: Training mIoU and loss curves on Robotic Instrument dataset.

Table 3: The segmentation performance on the COCO-Stuff 10K
validation set.

Method mIoU
Cross-entropy 34.1

Focal loss 34.9
Lovász-softmax 35.1

Margin calibration 35.5

Table 4: The segmentation performance on the PASCAL VOC2012
validation set.

Method mIoU
Cross-entropy 78.2

Focal loss 78.3
Lovász-softmax 78.5

Margin calibration 78.6

pies 80% of the total pixels in the image corpus, while each
foreground class has a very similar number of pixels (around
1%). So applying the ρ-margin calibration in Algorithm 2,
the learning objective is more like a scaled log-loss.

4.5 Results on MIT SceneParse150 dataset
We experimented on the large-scale MIT SceneParse150
dataset to verify the effectiveness of the margin calibration
method. Unlike the multi-task learning framework such as
[Xiao et al., 2018] to use multiple supervised information
for the best segmentation performance, we only use the 150
scene labels and compare different single learning objectives
in training the semantic segmentation model. The images
were rescaled to 384 × 384. On this dataset, we first used
cross-entropy as the default learning objective to train the

DeepLab v3+ model, then fine-tuned the network with fo-
cal loss, Lovász-softmax and the proposed margin calibration
independently, to see the performance improvement of mIoU
scores. The ground truth of the testing set has not been re-
leased, so we use the 2,000 validation images for qualitative
evaluation. In the model inference, we adopted horizontal
flipping and multi-scale prediction to augment the segmenta-
tion performance.

The comparisons on the validation set with the three base-
line methods are reported in Table 5. Results show that when
fixing the deep neural network, just using the proposed mar-
gin calibration method as a single learning objective, can
boost the mIoU in very complex scene parsing tasks. When
applying the flipping and multi-scale prediction, fine-tuning
with focal loss and Lovász-softmax can improve the mIoU
by 0.7% and 0.5%, respectively, while using the proposed
margin calibration can achieve a further 0.9% of performance
gain compared to categorical cross-entropy. Some example
segmentation results in both indoor and outdoor environments
are illustrated in Fig. 4. We can see compared to other learn-
ing objectives, applying margin calibration can better anno-
tate the pillow, building exterior and sidewalk in these exam-
ples.

4.6 Results on Cityscapes, BDD100K, and
Mapillary Vistas datasets

We experimented the DeepLab v3+ model with different
learning objectives on three street-view datasets. Similar
to the training on the MIT SceneParse150 dataset, we fine-
tuned the network parameters based on the pre-trained model
obtained from the best checkpoint using categorical cross-
entropy. The models on these datasets were independently
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Figure 3: Segmentation examples on the Robotic Instrument test set.

Table 5: The segmentation performance on the MIT SceneParse150
validation set.

Method Flipping Multi-scale mIoU
37.7

Cross-entropy 3 37.9
3 3 39.1

37.9
Focal loss 3 38.4

3 3 39.8
37.9

Lovász-softmax 3 38.3
3 3 39.6

38.5
Margin calibration 3 38.8

3 3 40.2

trained. On BDD100K and Mapillary Vistas datasets, the
images were re-scaled to 1280 × 720 with the crop-size
720 × 720. On the Cityscapes dataset, the images were not
re-scaled but with the crop-size 800× 800. The ground-truth
of test images of the three datasets are withheld by the orga-
nizers. However, the model performance of Cityscapes can
be tested by submitting the segmentation results to their eval-
uation server.

Table 6, 7 and 8 show that using focal loss, Lovász-softmax
and margin calibration can all lead to higher mIoU scores
on the three validation sets. Specifically, using margin cal-
ibration to fine-tune the pretraind segmentation model can
beat the second-best by 0.5%, 0.3%, 0.5% on Cityscapes,
BDD100K and Mapillary Vistas datasets, respectively. Fo-
cal loss is essentially a kind of dynamically scaled cross-
entropy, where the scaling factor decays to zero as confidence
in the correct class increases. This scaling factor can auto-
matically down-weight the contribution of easy pixels during
training and rapidly focus the model on hard pixels. So focal
loss can generally replace cross-entropy in dense classifica-
tion tasks. In our case, focal loss has a similar performance

Table 6: The segmentation performance on the Cityscapes validation
set (fine labels only).

Method Flipping Multi-scale mIoU
78.7

Cross-entropy 3 78.9
3 3 79.4

78.9
Focal loss 3 79.3

3 3 80.6
79.6

Lovász-softmax 3 79.9
3 3 80.5

80.0
Margin calibration 3 80.2

3 3 81.1

with Lovász-softmax, which is specifically designed for IoU
optimization. However, thanks to the theoretical guarantee of
the error bound and the explicit consideration of label imbal-
ance, our method can achieve even higher mIoU compared to
focal loss and Lovász-softmax.

We submitted the prediction with defferent settings to the
evaluation server of Cityscapes2. The overall comparisons of
our model with some recently proposed methods are summa-
rized in Table 9. Note that our method mainly aims to op-
timize the mIoU measure named Class IoU in Cityscapes.
From the table, we can see that training with margin cal-
ibration, a single deep segmentation model achieves very
promising results. Without the pre-training using the 20,000
coarsely labelled images, simply replacing the cross-entropy
with the proposed margin calibration, the mIoU can be im-
proved by 1%. If the model is pre-traind with the coarsely
labelled data then finetuned, the final mIoU can be further
boosted by 0.6%. Compared to the original implementation
of DeepLab v3+ in [Chen et al., 2018], our segmentation

2https://www.cityscapes-dataset.com/method-details/
?submissionID=10089

https://www.cityscapes-dataset.com/method-details/?submissionID=10089
https://www.cityscapes-dataset.com/method-details/?submissionID=10089
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Figure 4: Scene parsing examples on MIT SceneParse150 validation set.

Table 7: The segmentation performance on the BDD100K validation
set.

Method Flipping Multi-scale mIoU
64.4

Cross-entropy 3 64.6
3 3 65.7

64.5
Focal loss 3 64.5

3 3 65.8
64.6

Lovász-softmax 3 64.6
3 3 65.8

64.8
Margin calibration 3 65.0

3 3 66.1

model backend on SEResNeXt-50, which is a shallower net-
work pre-traind on ImageNet-1K [Russakovsky et al., 2015]
but not the much larger JFT-300M [Sun et al., 2017]. Even
so, with the margin calibration as a better learning objective,
the final performance of our implementation is slightly better
than the Deeplab v3+ backend on Aligned Xception. Some
examplar segmentation results for the scene parsing visual-
ization are illustrated in Fig. 5. We can see that fine-tuning
with margin calibration can generally reduce false positives

Table 8: The segmentation performance on the Mapillary Vistas val-
idation set.

Method Flipping Multi-scale mIoU
49.1

Cross-entropy 3 49.3
3 3 49.8

49.8
Focal loss 3 49.9

3 3 50.6
49.7

Lovász-softmax 3 49.8
3 3 50.2

50.2
Margin calibration 3 50.4

3 3 51.1

and lead to finer details.

5 Conclusion
We have presented a versatile distribution-aware margin cal-
ibration method as a better learning method, to optimize the
Jaccard index in image semantic segmentation. With the con-
sideration of both empirical performance and the error bound,
the scheme can increase the discriminative power with a bet-
ter generalization ability. We gave both theoretical and ex-
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Figure 5: Semantic segmentation examples on the Cityscapes validation set.

perimental analysis to demonstrate its effectiveness, substan-
tially improving the IoU scores by inserting it into a deep
semantic segmentation network.
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A Appendix
A.1 Proof of Theorem 1
We first prove with probability 1− η

K , the following inequality
holds:

IoUk ≥ IoUk − εk. (19)
Assume the following inequality holds for non-negative

εk0 and ε0k:

IoUk =
Pk − Pk0

Pk + P0k
≥ Pk − (Pk0 − εk0)

Pk + (P0k − ε0k)
− εk. (20)

Solving the above inequality, we can get:

εk = (
ak
bk
ε0k + εk0)(bk − ε0k)−1, (21)

where ak = Pk − Pk0 and bk = Pk + P0k.
Next, we should get the values of εk0 and ε0k to calculate

εk, which should satisfy the following inequality:

Pk − (Pk0 − εk0)

Pk + (P0k − ε0k)
≥ IoUk =

Pk − `k0(θ, ρk0)

Pk + `0k(θ, ρ0k)
, (22)

so we can simply substitute (22) into (20) to complete the
proof.

The empirical label distribution Pk is irrelevant to the
model θ and we assume it is an accurate estimation of the
label distribution DY , i.e.,

Pk = Py∼DY (y = k) ≈ Pk =
1

N

N∑
i=1

I(yi = k). (23)

Based on the above approximation, a sufficient condition
for (22) regarding ε0k and εk0 is:

Pk0 − εk0 ≤ `k0(θ, ρk0),

P0k − ε0k ≤ `0k(θ, ρ0k) (24)

Following the margin-based generalization bound in [Mohri
et al., 2018, Theorem 9.2], for theNk foreground class pixels,
with the probability at least 1− η

2K , we have:

Pk0 − `k0(θ, ρk0) ≤ Nk
N

(
4K

ρk0
RNk

(Θ) +

√
2M log 2K

η

Nk
),

(25)
where RNk

(Θ) is the Rademacher complexity for the hypoth-
esis class Θ over the Nk pixels of the k-th foreground class.
For an input data batch with M pixels, we first apply the Mc-
Diarmid’s inequality for M -dependent data [Liu et al., 2019]
to the proof of [Mohri et al., 2018, Theorem 3.3]. Then we
use it in the proof of [Mohri et al., 2018, Theorem 9.2] to get
the formulation of (25).

The Rademacher complexity RNk
(Θ) typically scales in√

C(Θ)
Nk

with C(Θ) being the a proper complexity measure

of Θ [Neyshabur et al., 2018], and such a scale has also been
used in related work (see [Cao et al., 2019] and the references
therein). We can then rewrite (25) as:

Pk0(θ)− `k0(θ, ρk0) ≤
√
Nk
N

4K

ρk0
F , (26)

where σ( 1
η ) , ρmax

4K

√
2M log 2K

η is typically a low-order

term in 1
η .

Similarly, for the N − Nk pixels of the background class,
with the probability at least 1− η

2 ,

P0k(θ)− `0k(θ, ρ0k) ≤
√
N −Nk
N

4K

ρ0k
F (27)

for the N −Nk background class pixels.
We then combine (26), (27), (24) and take a union bound

over εk0 and ε0k, to get following equations, with which (24)
holds with the probability at least 1− η/K:

εk0 =

√
Nk
N

4K

ρk0
F ,

ε0k =

√
N −Nk
N

4K

ρ0k
F . (28)

Then we substitute above equations into (21). Let µk =
ρk0

ρ0k
, we have:

εk =

ak
bk

√
N −Nk +

√
Nk

µk

bkN
4KF ρ0k −

√
N −Nk

, (29)

so that with the probability at least 1 − η/K the inequality
(13) holds.

In practice, we do not know the values of ak and bk so that
Eq.(29) has its own limitations. However, we know ak

bk
≤ 1

and bk ≥ Pk so we can get a very useful bound:

εk ≤
√
N −Nk +

√
Nk

µk

Nk

4KF ρ0k −
√
N −Nk

. (30)

Averaging the union bound Eq.(13) over all classes, we can
obtain the following inequality with probability at least 1−η:

mIoU ≥ mIoU − ε, (31)
with

ε =
1

K

K∑
k=1

√
N −Nk +

√
Nk

µk

Nk

4KF ρ0k −
√
N −Nk

, (32)

where we complete the proof.

A.2 Proof of Colollary 1
We substitute µk in (32) with

√
Nk

r(N/Nk−1)−
√
N−Nk

, where r is
a hyper-parameter, we can get:

ε =
1

K

K∑
k=1

(
r(N −Nk)

Nk
)(

Nk
4KF

ρ0k −
√
N −Nk)−1

=
1

K

K∑
k=1

(
r(N −Nk)

N2
k

)(
1

4KF
ρ0k −

√
N −Nk
Nk

)−1.

(33)



Let xk = r(N−Nk)
N2

k
and yk = 1

4KF ρ0k−
√
N−Nk

Nk
. According

to Cauchy-Schwarz inequality we have:(
K∑
k=1

√
xk
yk
· √yk

)2

≤ (

K∑
k=1

xk
yk

)(

K∑
k=1

yk), (34)

so that

ε ≥ 1

K
·

(
K∑
k=1

√
xk

)2

(

K∑
k=1

yk)−1

=
r

K
·

(
K∑
k=1

√
N−Nk

Nk

)2

1
4KF

K∑
k=1

ρ0k −
K∑
k=1

√
N−Nk

Nk

. (35)

The RHS of the equality is a constant because r is a given

hyper parameter and we assume
K∑
k=1

ρ0k = some contant.

The equality holds when
√
x1

y1
= . . . =

√
xK

yK
, which yields

Corollary 1.
Note that µk =

√
Nk

r(N/Nk−1)−
√
N−Nk

, while in Corollary 1

µk = Pk

√
Nk

υ(N−Nk)−Pk

√
N−Nk

. These two conditions are essen-
tially equivalent when r and υ are hyper-parameters. To see
this, simply let r = Nυ and notice that Pk = Nk

N .
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