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Abstract The 3D CAD shapes in current 3D

benchmarks are mostly collected from online model

repositories. Thus, they typically have insufficient

geometric details and less informative textures,

making them less attractive for comprehensive and

subtle research in areas such as high-quality 3D

mesh and texture recovery. This paper presents 3D

Furniture shape with TextURE (3D-FUTURE): a

richly-annotated and large-scale repository of 3D

furniture shapes in the household scenario. At the time

of this technical report, 3D-FUTURE contains 20,240

clean and realistic synthetic images of 5,000 different

rooms. There are 9,992 unique detailed 3D instances
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of furniture with high-resolution textures. Experienced

designers developed the room scenes, and the 3D CAD

shapes in the scene are used for industrial production.

Given the well-organized 3D-FUTURE, we provide

baseline experiments on several widely studied tasks,

such as joint 2D instance segmentation and 3D object

pose estimation, image-based 3D shape retrieval, 3D

object reconstruction from a single image, and texture

recovery for 3D shapes, to facilitate related future

researches on our database.

Keywords 3D-FUTURE · Furniture Shapes ·
Textures · Interior Designs · Synthetic Images

1 Introduction

The rapid progress of modern machine learning

methods, such as deep neural models, has led to

various impressive breakthroughs towards 2D computer

vision and natural language processing (NLP). One key

to facilitating the advancement of these approaches

is the availability of large-scale labeled benchmarks.

Mirroring this pattern, the computer graphics and 3D

vision communities have put tremendous efforts in

establishing 3D datasets over the past years, expecting

to enable and innovate the avenues of future research

(Chang et al., 2015; Wu et al., 2015; Xiao et al., 2013;

Song et al., 2015; Xiao et al., 2016; Sun et al., 2018a;

Xiang et al., 2014, 2016; Silberman et al., 2012; Dai

et al., 2017; Hua et al., 2016). For example, the largest

3D repositories, like ShapeNet (Chang et al., 2015)

and ModelNet (Wu et al., 2015), collected massive

3D shapes from online repositories and organized

them under the WordNet taxonomy. Relying on the

repositories, several works, such as Pascal 3D+ (Xiang

et al., 2014), ObjectNet3D (Xiang et al., 2016), Pix3D
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2 Huan Fu et al.

(Sun et al., 2018a), and Stanford Cars (Krause et al.,

2013), further provided images and shapes associations

or alignments with fine-grained pose annotations. Other

works like NYU Depth Dataset (Silberman et al., 2012),

SUN RGB-D (Song et al., 2015), ScanNet (Dai et al.,

2017), SceneNN (Hua et al., 2016), and Matterport3D

(Chang et al., 2017) introduced RGB-D scans of

real-world indoor environments with many estimated

and manually verified annotations. Considering that

there are rich 3D benchmarks, why do we need one

more?

In contrast to the 2D counterparts (Krizhevsky

et al., 2012; Lin et al., 2014; Geiger et al., 2012),

we realize that there is still a big gap between 3D

academic research and industrial productions. For

instance, the 3D CAD models in existing datasets

mainly come from public online repositories like

Trimble 3D Warehouse1 and Yobi3D2. These 3D

shapes typically have fewer geometry details and

uninformative textures or even no textures. Specific

to shapes in the household scenario, most of them

are outdated and dull furniture deprecated by modern

professional designers. Therefore, the current 3D

shapes are inadequate for comprehensive and subtle

research in areas such as industry closely related

fine-grained 3D shape understanding and texture

recovery. Besides, existing benchmarks only provide

pseudo image or shape alignments, and the estimated

camera pose annotations. Namely, the benchmark

designers manually choose a roughly matched 3D CAD

model from available 3D shape benchmarks according

to the object in the image. Thus, annotators may

largely ignore some local shape details, which prevents

the progress of fundamental data-driven studies such as

high-quality 3D reconstruction from real-world images

and high-accuracy image-based 3D shape retrieval. Last

but not least, there is no well-organized benchmark

that offers realistic synthetic indoor images with both

instance-level semantic annotations and the involved

3D shapes with textures.

Motivated by the observations, we present 3D

Furniture shape with TextURE (3D-FUTURE): a

richly-annotated, large-scale repository of 3D furniture

shapes specific to the household scenario as shown

in Figure 1. At this time, 3D-FUTURE provides

20,240 realistic indoor images and the associated 9,992

unique 3D furniture models with rich geometry details

and informative textures. We render these images via

one of the most advanced industrial 3D rendering

engines based on 5,000 exquisite room scenes developed

by experienced designers. The 3D furniture shapes

1 https://3dwarehouse.sketchup.com
2 https://yobi3d.com

are used for modern industrial productions and have

fine-grained geometry and texture related attributes

such as category, style, theme, and material. Further,

3D-FUTURE offers instance segmentation annotation

and the rendering information, including six degrees

of freedom (6DoF) pose and camera field of view

(FoV). Apart from these highlight features, another

compelling part of 3D-FUTURE is that it enables many

fundamental studies and new research opportunities

such as furnishing composition, texture recovery, and

other interior understanding subjects.

It is, however, nontrivial to collect thousands

of aesthetic interior designs. To the best of our

knowledge, it takes a designer several days to complete

a house’s interior design. Thus, we considered two main

research questions when establishing 3D-FUTURE:

1) can we develop a framework that allows creators

to design delicate rooms efficiently? 2) can we

automatically create some aesthetic designs based on

the professional layout information? To investigate the

former question, we build a furnishing suit composition

(FSC) platform3. The system recurrently recommends

visually matched furniture by considering instance

aesthetics and compatibility during the design progress.

For the latter one, we reuse the expert layouts, generate

multiple furnishing suit candidates with some rules and

the FSC approach, render the scene, and manually

select visually appealing ones. These AI-created designs

will also be reviewed by designers to ensure good

quality.

The remainder of this paper is organized as follows.

First, we briefly review the public 3D benchmarks and

discuss their imperfections. Second, we present the data

acquisition process and the FSC pipeline. Third, we

introduce the properties and statistics of 3D-FUTURE.

Finally, we conduct various experiments leveraging on

the properties. These experiments can serve as baselines

for subsequent research on 3D-FUTURE.

2 Related Work

Lots of 3D benchmarks have been established and made

publicly available over the past decades (Chang et al.,

2015; Wu et al., 2015; Xiao et al., 2013; Song et al.,

2015; Xiao et al., 2016; Sun et al., 2018a; Xiang et al.,

2014, 2016; Silberman et al., 2012; Dai et al., 2017;

Hua et al., 2016; Choi et al., 2016; Shilane et al.,

2004). These datasets can be mainly divided into two

groups, including 3D models and RGB-D scenes. We

will briefly review some representative 3D benchmarks

in the following.

3 https://3d.shejijia.com/
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Benchmarks Shapes Texture Categories Shape Source Scene Images Instances Alignments
PrincetonSB (Shilane et al., 2004) 6,670 × 161 Online × × ×
ShapeNetCore (Chang et al., 2015) 51,300

√∗ 55 Online × × ×
ShapeNetSem (Chang et al., 2015) 12,000

√∗ 270 Online × × ×
ModelNet (Wu et al., 2015) 151,128 × 660 Online × × ×

ObjectScans (Choi et al., 2016) ∼1,900 × 44 Scans × × ×
IKEA (Lim et al., 2013) 219 × 11 Industry 759 - pseudo

PASCAL3D+ (Xiang et al., 2014) 79 × 12 ShapeNet × 30,899 raw
ObjectNet3D+ (Xiang et al., 2016) 44,161 × 100 ShapeNet 90,127 201,888 raw

Pix3D (Sun et al., 2018a) 395
√∗ 5 ShapeNet × 10,069 pseudo

Standford Cars (Krause et al., 2013) 134
√∗ 1 ShapeNet × 16,185 pseudo

Comp Cars (Yang et al., 2015) 98
√∗ 1 ShapeNet × 5,696 pseudo

ScanNet (Dai et al., 2017) 296
√∗ 17 ShapeNet 1513 scans ∼9,600 pseudo

InteriorNet (Li et al., 2018) N/A × N/A N/A 20M† × ×
Structured3D (Zheng et al., 2019) N/A × N/A N/A 20M† × ×

3D-FUTURE (ours) 9,992
√

34 Industry 20,240† 102,972 precise

Table 1 Statistics of some representative 3D benchmarks. Instances: images with saliency objects (like images in ImageNet
(Krizhevsky et al., 2012)). Alignments: 2D to 3D alignment annotations.

√∗: The shapes are with uninformative textures, and
only part of shapes comes with textures. ∼: about. †: synthetic images. “Raw” and “pseudo” mean that the 3D shapes are
usually not the exact the ones corresponding to the 2D objects. Note that, our 3D-FUTURE is specific to household scenario,
and all the 3D shapes are industrial used furniture shapes. See Figure 4, Figure 5, and Figure 7 for more details of our highlight
features.

2.1 3D Models

One of the large and exhaustively studied 3D shape

repositories is ShapeNet (Chang et al., 2015). It

collected millions of raw 3D CAD models from

public online repositories such as Warehouse3D

and Yobi3D. By re-organizing the datasets, the

subsets ShapeNetCore and ShapeNetSem have been

made available, including 51,300 and 12,000 models.

ShapeNet assigned rich semantic annotations to part of

the shapes, such as synsets in the WordNet taxonomy,

functional patterns, parts, keypoints, and categories.

3D shape repositories like ModelNet (Wu et al., 2015)

and Princeton Shape Benchmark (Shilane et al., 2004)

also share similar content as ShapeNet. Several other

works like (Choi et al., 2016) and ScanObjectNN (Uy

et al., 2019) create the datasets of 3D scans of real

objects based on state of the art (SOTA) RGB-D

reconstruction approaches. These benchmarks have

largely driven the fundamental 3D studies, including

3D representation, 3D shape recognition, 3D object

reconstruction, and part segmentation. However, since

the 3D shapes are collected online, many may lack

geometry details and have dreamlike or no textures.

Relying on these large-scale 3D shape databases,

the community also builds benchmarks with image

and shape associations to facilitate the research of

3D object understanding from images. For example,

PASCAL3D+ (Xiang et al., 2014) and ObjectNet3D

(Xiang et al., 2016) aligned objects in the 2D

images with the 3D shapes and provided raw 3D

pose annotation. Further, Pix3D (Sun et al., 2018a)

contributed more accurate 2D-3D alignment for 395

3D shapes of nine object categories. Unluckily, these

pseudo alignments may largely ignore some local shape

details. Moreover, the expensive labor efforts make it

difficult to build a large-scale benchmark with precise

pixel-level 2D-3D alignment.

2.2 RGB-D Scenes

In recent years, the community has put significant

efforts into building RGB-D datasets to expand

researches on 3D scene understanding. For example,

NYU Depth V2 (Silberman et al., 2012) captured

464 short Kinect RGB-D sequences from 464 different

indoor scenes, where 1,449 images are with dense

per-pixel labeling, including depth, surface normal,

and semantic labels. SUN RGB-D (Song et al., 2015)

followed the pattern by annotating 10,335 RGB-D

frames, and offered 3D bounding boxes. To capture

the full 3D extent of indoor environments, SUN3D

(Xiao et al., 2013) obtained 415 long sequences in

254 unique spaces with comprehensive views. Further,

Dai et al. established ScanNet (Dai et al., 2017), an

RGB-D video dataset containing 2.5M views in 1513

scenes annotated with estimated 3D camera poses,

surface reconstructions, semantic segmentation, and a

broad set of CAD model alignments. Later, a more

extensive dataset Matterport3D (Chang et al., 2017)

was made publicly available, contributing to panoramic

HDR color images with 3D scene annotations. Different

from these RGB-D real-world databases, we focus on

experienced exquisite interior designs used in industrial

productions.
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Fig. 1 3D-FUTURE. Top: Exquisite interior designs obtained from Alibaba Topping Homestyler design platform. Bottom:
An overview of the properties of 3D-FUTURE. All the interior designs are developed or reviewed by experienced designers to
ensure their quality. The photo-realistic synthetic scenes are rendered by the advanced rendering engine V-ray. The statistics
of 3D-FUTURE are presented in Sec. 4.

The works most closely related to ours are

InteriorNet (Li et al., 2018) and Structured3D (Zheng

et al., 2019), which also offer photorealistic images by

rendering professional house designs. However, there

are two significant differences. First of all, we provide

furniture shapes with textures in the scenes. The 6DoF

pose and camera FoV are shared in 3D-FUTURE.

Second, 3D-FUTURE additionally expects to foster

studies of exquisite interior design understanding.

Thus, for each room, the camera viewpoints are

suggested by designers, so that the captured images

contain the whole design idea.

3 Data Acquisition Process

In this section, we introduce the pipeline of our dataset

construction procedure. We mainly address the two

issues, i.e., designing efficiency and aesthetic design

creation, as stated in Sec. 1.

3.1 Large-scale Interior Database

We construct a 3D pool containing a large amount of

industrial 3D computer-aided design (CAD) furnishing

and interior finish models. We associate each shape
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Fig. 2 DFSM. An illustration of the deep furnishing suit model (DFSM) for deep visual embedding in Sec. 3.2.1. The
development of the framework borrows the concepts from Bert (Devlin et al., 2018). We construct two tasks here, including
mask prediction and compatibility scoring, as explained in Sec. 3.2.1. There is only one visual embedding network (VEN)
which is shared in both the two tasks. The deep visual embedding (“orange”) for a specific item is captured by the trained
VEN.

with multiple textures and materials, resulting in

enlarged shape repositories. The models are richly

annotated with diverse attributes, including theme

color, style, material, brand, real-world size, and

category in the WordNet taxonomy. There are 500

fine-grained categories in five levels of the taxonomy.

High-resolution 2D rendering for each textured model

is also available in the database. Based on these objects,

hundreds of experienced designers have created∼60,000

decorative houses for different scenarios in several

years, where ∼30,000 homes have been evaluated

as excellent or brilliant designs. A design sample is

shown in Figure 1. The large-scale interior data is

offered by Alibaba Topping Homestyler4. We set up a

project based on the large-scale interior data to build

3D-FUTURE.

3.2 Furnishing Suit Composition (FSC)

One of the main challenges in establishing

3D-FUTURE is how to collect many exquisite interior

designs in an acceptable project cycle. To address

4 https://www.tangping.com/
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Fig. 3 Realistic Renderings of Aesthetic Interior Designs. Left: experienced design templates. Right: created aesthetic
interior designs. These AI generated designs are reviewed by designers. Zoom in for better view.

this issue, we develop a high-performing furnishing

suit composition framework. We mainly borrow the

concepts of attribute-based interpretable compatibility

methods (Yang et al., 2019; Wang et al., 2018b; Chen

et al., 2019a) in fashion outfit compatibility learning.

An overview of this framework is presented in Figure 2.

Our training set for FSC has the form as

{X 1,X 2, ...,XN}, and X i = {xi1, xi2, ..., ximi
}. Here, N

is the total number of experienced house designs. mi is

the number of items in house Xi, and xij is a specific

furnishing item contained in house X i. Note that the

elements in X i are in order, which means xij is a former

furnishing item selected by designers followed by xij+1.

3.2.1 Deep Visual Embedding

As aforementioned, we have rich attribute annotations

for each furnishing item. These interpretable attributes

show significance in understanding the item’s content

and are thus beneficial to FSC learning. However,

we can not expect a limited number of attributes

to represent an item comprehensively. Therefore, we

propose a Deep Furnishing Suit Model (DFSM), which

consists of a visual embedding network (VEN ) and two

transformer encoders (TransEnc1 and TransEnc2 ), to

learn representative deep visual embedding leveraging

on the large-scale excellent house designs. DFSM is

driven by a margin ranking loss with hard sample

mining and a variant of classification loss.

In specific, given a furnishing suit X i, we randomly

capture a subset Xi
j∼k = {xij , xij+1, ..., x

i
k}, where

1 ≤ j ≤ k < mi. Our goal is to predict xik+1 given

Xi
j∼k. According to the category label of Xi

j∼k, we

randomly choose three negative examples from the

furnishing pool to construct a candidate set C =

{xik+1, z
0
xi
k+1

, z1
xi
k+1

, z2
xi
k+1
} in an online manner. We also

ensure that the negative examples z0 / z1 / z2 have the

same style / color / material as xik+1. We feed both
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Fig. 4 2D-3D Alignments. We provide precise 6DoF pose annotations for most of furniture shapes involved in each scene.
zoom in for better view.

Xi
j∼k and the candidate images into VEN to extract

visual features. In our paper, we take the CNN part of

MobileNetV2 followed by a projection layer as VEN,

and pre-train it via the unsupervised learning strategy

stated in (Wu et al., 2018).

After obtaining the image features, we construct two

tasks, i.e., mask prediction and compatibility scoring,

based on the impressive transformer architecture in

NLP (Devlin et al., 2018; Vaswani et al., 2017). For

the former one, we have a sequence of feature vectors

F i ={VEN (Xi
j∼k), [Mask ]} with dimension d, where

[Mask ] denotes a particular mask embedding. The

task is to predict the masked item given the previous

ones. We thus feed F into TransEnc1 to capture the

enhanced feature F̃ i, and optimize the model via the

following loss:

Lmp = − 1

N

N∑
i=1

log(P(xik+1|F̃ i;Θ,Φ)), (1)

P(xik+1|F̃ i;Θ,Φ)) =
exp(f̃ imaskf

T
xi
k+1

)∑
c exp(f̃

i
maskf

T
c )
, (2)

where Θ and Φ are the learnable parameters of VEN

and TransEnc1, respectively; c ∈ C is a candidate; fTx is

the transpose of fx; fx denotes the visual embedding of

item x, i.e., fx = VEN (x); and f̃ imask ∈ F̃ i represents

the feature vector of the [Mask] token from TransEnc1.

For the second task, we take the candidate suits

as inputs and directly learn their compatibility scores.

Let F(Xi
j∼k,c)

= {[Start], VEN (Xi
j∼k), fc} be the

visual feature vectors of a candidate suit O(Xi
j∼k,c)

,

where [Start] is a particular start token embedding.

To estimate the compatibility score of a suit, we need

to first capture an embedding that can represent it.

We thus employ TransEnc2 to acquire F̃(Xi
j∼k,c)

, and

use the feature vector of the [Start] token as the

representation of suit O(Xi
j∼k,c)

(denoted as r(Xi
j∼k,c)

).

Further, we utilize two fully connected layers and

a sigmoid function to secure a score (s(Xi
j∼k,c)

),

which is the measure of the quality of the suit. For

conventional presentation, s(Xi
j∼k,c)

is abbreviated as

s(xik+1) hereafter. Since the ground truth compatibility

scores are not available, we minimize a margin ranking

loss with a simple hard sample mining policy. The

objective is expressed as:

Lcs = − 1

N

N∑
i=1

max(0,−s(xik+1) + s(zxi
k+1

) + α), (3)

s(zxi
k+1

) = max(s(z0xi
k+1

), s(z1xi
k+1

), s(z2xi
k+1

)), (4)
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Fig. 5 Samples of the high-quality 3D shapes and their informative textures in 3D-FUTURE.
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Fig. 6 An illustration of decision tree based FSC presented
in Sec. 3.2.2. Orange: The visual embedding for each item
is obtained from the trained DFSM in Figure 2. Blue: The
attribute embedding obtained from the attribute labels for
each furniture item.

where α is set to 0.1 in our experiments. The trained

visual embedding network (VEN) is used to extract the

visual feature for each furniture item.

3.2.2 Decision Tree Based FSC

The main goal here is to infer attribute-based matching

patterns, i.e., attribute crosses, for FSC. Considering

both interpretability and scalability, we utilize GBDT

(Friedman, 2001) to automatically construct attribute

crosses as shown in Figure 6. We will not introduce the

details of GBDT here, but only present some facts in

training the decision trees.

We employ six attributes to represent a specific

item, including theme color, style, material, real-world

size, the second-level category, and visual information

(the learned visual embedding). Here, we denote the

learned visual embedding as an attribute. For the

discrete attributes (style, material, and the second-level

category), we directly convert them to one-hot vectors.

For theme color and real-world size, we first adopt

k-Means Clustering (Kanungo et al., 2002) to discretize

real values and then transform them into one-hot

vectors. By further considering the visual embedding,

we can represent each item as a feature vector. We

assign a label (positive or negative) to each specific

furnishing suit to train the decision trees. Both the
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Fig. 7 Top: samples of photo-realistic synthetic images and their corresponding instance-level annotations from 3D-FUTURE.
Bottom: natural images from the widely studied large-scale scene parsing benchmark ADE20K (Zhou et al., 2017). Zoom in
for better view.

positive and negative suits are constructed similarly in

Sec. 3.2.1.

3.2.3 Re-training via Hard Sample Mining

The negative furnishing suits construction strategy

may return some naive negative samples, due to the

large-scale furnishing pool, causing some inaccuracies

in both the deep embedding networks and the decision

trees. We fine-tune the visual embedding network and

re-train the decision tree model via a straightforward

hard sample mining strategy to address the issue.

Specifically, given Xi
j∼k, we can have the TopK

recommendations using the trained DFSM. We then

randomly select negative samples from the TopK pool.

After the re-training stage, we fix VEN’s parameters

and establish an automatically re-training system to

update the decision tree model daily using continuously

enlarged online designs.

3.3 Topping Homestyler Design Platform

Our DFSM is integrated into the online Topping

Homestyler Design Platform5 to improve the house

design efficiency. There are also other highlight features

that can facilitate the design procedure, such as the

large-scale shape pool, image-based furniture retrieval,

2D display, 3D Roaming, various professional design

templates, texture and item replacement, and online

rendering.

3.4 Create Aesthetic Interior Design

We have collected 5,000 exquisite interior room designs

in the 3D-FUTURE project. We do not plan to provide

several synthetic images in different viewpoints for each

5 http://3d.shejijia.com
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Fig. 8 The statistics of the attribute annotations of the 9,992 shapes in 3D-FUTURE. Furniture shapes with the attributes
such as “Modern”, “Japanese”, “Smooth Net”, “Texture Mark”, “Rough Cloth”, and “Wood” may be more welcomed by
designers when designing the rooms. Besides, except for some special cases, each attribute category has at least 90 shapes.

room. Instead, we expect to deliver more superlative

designs to bring more research possibilities. Thus, we

take these experienced designs as templates and create

several aesthetic interior designs for each template.

For example, given a template room with

professional design information, we first replace the

interior finishing according to the materials, room

style, and other descriptions. Second, we choose

a furniture seed (e.g., bed) based on the interior

finishing information. Third, we iteratively perform

recommendations based on our DFSM and other rules

to generate a furnishing list. Finally, we put the items

contained in the furnishing list into their corresponding

positions. In the third step, we also learn one-to-one

visual compatibility models (e.g, bed-nightstand and

sofa-coffee table) as additional rules to improve the

robustness.

With the pipeline, we can automatically create

many interior designs as shown in Figure 3. To ensure

the quality, we render an image for each design and

manually select 15,240 visually appealing designs. Our

experienced designers further review these designs to

assure good quality.

The 3D designs are rendered by one of the

most advanced computer-generated imagery rendering

software applications, V-Ray6. To ensure reality, we

enable as many functions as possible supported by

V-Ray.

4 Properties of 3D-FUTURE

In this section, we summarize the properties of

our 3D-FUTURE database. Compared to previous

3D benchmarks, 3D-FUTURE has some prominent

properties that can bring more possibilities for future

3D research.

4.1 Photo-realistic Synthetic Images

3D-FUTURE offers 20,240 photo-realistic synthetic

images corresponding to 20,240 interior designs. As

6 https://www.chaosgroup.com/
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Fig. 9 The shape number of the 34 categories in 3D-FUTURE. These categories are verified and used by experienced designers
in their daily works. The figure also implies the frequency of furniture selected by designers to design the room scenes. There are
only 7 dressing chairs because designers commonly choose other chairs as the replacements of dressing chairs when designing
a room. For example, Classic Chinese Chair and Chaise Longue Sofa only appear in some special designs.

Fig. 10 The percentile plot of the number of vertices and faces over ShapeNetCore (Chang et al., 2015), ModelNet40 (Wu
et al., 2015) and 3D-FUTURE. While other datasets have some extremely low-resolution shapes, 3D shapes in 3D-FUTURE
show uniformed distributions on both vertices and faces.

aforementioned, we have 5,000 experienced designs

and 15,240 automatically created aesthetic designs.

We render one image for each design. Previous

datasets, such as Structured3D (Zheng et al., 2019)

and InteriorNet (Li et al., 2018), also provide realistic

indoor images and scene parsing annotations. However,

they put cameras in random positions and capture

redundant images for each house. These images were

not manually verified, thus suffer from unexpected

viewpoints.

In contrast, 3D-FUTURE focuses more on inspiring

the understanding of exquisite interior designs. Thus,

the camera positions are suggested by professional

designers to obtain the best viewpoint for each room.

Besides, 3D-FUTURE provides instance semantic

labels of 34 categories and ten supper-categories.

Moreover, the images contained in 3D-FUTURE are

visually more appealing and realistic compared to

previous ones.
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Fig. 11 The confusion matrices obtained by MVCNN (Su et al., 2015) and PointNet++ (Qi et al., 2017b) for 3D Object
Recognition on 3D-FUTURE.

Fig. 12 Histograms of the instance segmentation AP and rotation estimation AOS of the 34 categories on the test set. The
closer AOS is to AP, the better the rotation estimation.

4.2 2D-3D Alignments

Previous benchmarks only provide pseudo 2D-3D

alignment annotations (Xiang et al., 2016; Sun et al.,

2018a; Dai et al., 2017; Krause et al., 2013; Xiang

et al., 2014). Namely, they manually choose a roughly

matched 3D CAD model from public 3D shape

benchmarks according to the object contained in an

image. Annotators thus may largely ignore some local

shape details. As a result, these benchmarks offer a

small number of matched 3D shape and 2D image

pairs. Besides, previous benchmarks with alignment

annotations do not come with scene images. In contrast,

3D-FUTURE provides precious 2D-3D alignments and

3D pose annotations. It contains 9,992 unique 3D

shapes and 20,240 scene images. By cropping instances

from the scene images, we can further secure 37,441

image and shape pairs with slight occlusions, as

reported in Table 3. Some samples are presented in

Figure 4.
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Fig. 13 An illustration of the network for joint instance segmentation and pose estimation. B: region proposals. C: object
recognition. H: network head. M: mask prediction. R&T: pose estimation. Seg: the network in the instance segmentation
branch. Pose: the network in the pose estimation branch.

Category MVCNN PointNet++
Children Cabinet 72.0% 32.1%

Nightstand 75.0% 71.8%
Bookcase 66.7% 52.3%
Wardrobe 56.7% 82.0%

Coffee Table 69.7% 82.6%
Corner/Side Table 64.5% 74.7%

Side Cabinet 49.7% 65.2%
Wine Cabinet 62.9% 67.1%

TV Stand 73.5% 73.6%
Drawer Chest 67.5% 55.2%

Shelf 51.9% 48.4%
Round End Table 52.2% 75.0%

Double/Queen/King Bed 78.6% 91.2%
Bunk Bed 57.1% 77.8%
Bed Frame 93.8% 93.8%
Single Bed 69.7% 68.9%
Kids Bed 12.5% 14.3%

Dining Chair 50.5% 63.9%
Lounge/Office Chair 60.3% 60.5%

Classic Chinese Chair 57.1% 62.5%
Barstool 32.0% 66.7%

Dressing Table 73.7% 68.2%
Dining Table 84.3% 61.1%

Desk 54.0% 20.4%
Three-Seat Sofa 71.7% 82.6%

Armchair 72.5% 68.0%
Loveseat Sofa 62.9% 60.4%
L-shaped Sofa 83.3% 85.9%

Lazy Sofa 66.7% 50.0%
Stool 91.9% 75.8%

Pendant Lamp 89.8% 90.9%
Ceiling Lamp 63.0% 70.7%

mean 69.2% 69.9%

Table 2 Classification accuracy on 3D-FUTURE. MVCNN:
12 view + ResNet50 backbone. PointNet++: 1024 points +
MSG + normal.

4.3 High-quality Shapes with Informative Textures

The 3D shapes contained in previous large-scale shape

repositories (Chang et al., 2015; Shilane et al., 2004;

Wu et al., 2015) are mainly collected from online

Fig. 14 An illustration of the baseline method of
cross-domain image-based 3D shape retrieval. We use
instance-level non-parametric softmax loss (Wu et al., 2018)
so that the network can capture shape similarity among
furniture instances.

train test Occ. Ratio
NO 17,638 3,506 < 0.1

Slight 8,637 1,545 0.1 ∼ 0.2
Standard 5,169 943 0.2 ∼ 0.3

Total Image 31,444 5,997 -
CAD Shape 6,699 3,293 + 6,699 -

Table 3 The train and test sets for the subject of
cross-domain image-based 3D shape retrieval. Object labeled
as “NO” means the occluded ratio for the object is less than
10%. In our setting, the final retrieval pool consists of the
CAD models from both the test set and the train set.

repositories. These 3D CAD models usually contain few

geometry details and low informative textures. Luckily,

3D-FUTURE provides high-quality 3D furniture shapes

with rich details in various styles, including European

furniture, which often contains intricate carvings. All

the shapes come with informative textures and have

been used for modern industrial productions. We

show some samples in Figure 5. We believe these

features can potentially facilitate innovative research on
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Fig. 15 The retrieval sequences for several query images. 3D-FUTURE contains fine-grained shapes for each furniture category.

high-quality 3D shape understanding and generation.

In Figure 10, we compare the proportion of different

number of vertices and faces over ShapeNetCore

(Chang et al., 2015), ModelNet40 (Wu et al., 2015) and

our dataset. While other datasets have some extremely

low-resolution shapes, 3D shapes in 3D-FUTURE show

uniform distributions in both vertices and faces.

4.4 Fine-Grained Attributes

Previous 3D benchmark provides functional attribute

annotations in WordNet taxonomy for 3D shapes

(Chang et al., 2015). However, these attributes are not

well organized and do not have corresponding textures.

In contrast, for each textured shape in 3D-FUTURE,

we provide four types of attributes verified by

professional designers. We have 34 shape categories, 8

super-categories, 19 styles, 15 materials, and 16 themes.

These attributes have been demonstrated valuable

for interior designs and content understanding by

industrial productions. We present the statistics of

these attributes in Figure 9 and Figure 8. These figures

imply the preferences of experienced modern designers

when designing the rooms.

5 Baseline Experiments

In the section, we conduct several baseline experiments

by leveraging the properties of 3D-FUTURE, including

shape recognition, joint 2D instance segmentation and

3D pose estimation, image-based shape retrieval, 3D

object reconstruction, and texture synthesis. We split

our 3D shapes into a training set with 6,699 models,

and a test set with 3,293 models. The scene images are

divided according to the training and test splits of 3D

shapes. There are 14,761 images for training and 5,479

images for test. We will briefly present the experimental

details for each task and report the scores.

5.1 Fine-grained 3D Object Recognition

Over the past years, most 3D object recognition

methods extend deep convolutional neural networks

(DCNNs) to modeling 3D data. Because 3D CNNs

are too memory intensive (Ji et al., 2012), some

researchers prefer to either develop special deep

learning operations on point clouds and mesh surfaces

(Qi et al., 2017a,b; Hanocka et al., 2019; Feng et al.,

2019), or project 3D shapes to several 2D images and

then apply 2D convolutional networks (Su et al., 2015).
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Fig. 16 Instance segmentation results. The images are captured under suggested viewpoint (by designer) for design exhibition.
Zoom in for better view.

Category Top1@R Top3@R F-score
Children Cabinet 26.9 53.4 29.7

Nightstand 37.4 64.1 32.6
Bookcase 8.7 8.7 23.9
Wardrobe 21.7 43.3 42.2

Coffee Table 27.7 57.1 31.3
Corner/Side Table 32.0 49.8 32.4

Wine Cabinet 4.9 7.3 22.1
TV Stand 16.4 27.5 37.1

Drawer Chest 15.0 31.8 44.6
Shelf 19.4 27.3 35.6

Round End Table 20.0 21.1 26.1
Double/Queen/King Bed 23.8 48.7 78.8

Bunk Bed 13.0 26.1 50.0
Bed Frame 26.0 47.1 52.6
Single Bed 16.5 34.7 63.2
Kids Bed 18.2 45.5 65.5

Dining Chair 16.1 38.4 50.5
Lounge/Office Chair 33.7 64.7 56.4

Classic Chinese Chair 20.0 80.0 49.8
Barstool 52.8 58.3 22.1

Dressing Table 53.9 65.4 31.8
Dining Table 13.9 21.5 26.0

Desk 13.2 27.9 18.6
Three-Seat Sofa 5.6 10.5 59.8

Armchair 45.6 68.7 56.9
Loveseat Sofa 6.7 17.5 56.1

Lazy Sofa 19.4 48.4 51.7
Chaise Longue Sofa 16.7 16.7 31.4

Stool 31.6 63.3 48.9
Pendant Lamp 29.4 56.4 48.8
Ceiling Lamp 31.4 59.1 37.6

mean 23.4 40.6 47.1

Table 4 Numerical retrieval results on 3D-FUTURE for
category level. We train a single model and perform retrieval
in the full 3D-FUTURE pool. F-score here represents Top5
average F-score.

However, it is nontrivial to extend the projection-based

methods to high-resolution 3D scene understanding.

Moreover, point and mesh-based approaches suffer from

computation bottlenecks and are thus limited to sparse

point clouds and a small number of surfaces.

In contrast to ShapeNet (Chang et al., 2015) and

ModelNet (Wu et al., 2015), 3D-FUTURE enables

the study of fine-grained 3D furniture recognition,

which requires the networks to capture more local

and global geometric details. Here we consider the

well-known MVCNN (Su et al., 2015) and PointNet++

(Qi et al., 2017b) as the baselines. In specific, we train

a 12-view MVCNN with ResNet50 as the backbone.

For PointNet++, we sample 1024 points for each shape

instance and adopt the multi-scale grouping (MSG)

strategy (Qi et al., 2017b) and normal vectors to

secure the best performance. We train the networks

using 6,699 shapes and evaluate the trained models

via the remaining 3293 shapes. The classification

accuracy for each category is presented in Table 2

and Figure 11. While these methods can reach 90%

accuracy on ModelNet40 and ShapenetCore, they do

not perform well (69.2% ∼ 69.9%) on 3D-FUTURE,

due to the presence of fine-grained furniture categories.

This observation would motivate researchers to exploit

more efficient 3D representation learning approaches for

deeper 3D shape analysis.

5.2 Image-based 3D Shape Retrieval

Cross-domain image-based 3D shape retrieval (IBSR)

is to identify the CAD models of the objects contained

in query images. The primary issue in IBSR is the

large appearance gaps between 3D shapes and 2D

images. To tackle this challenge, early works made

efforts to map cross-domain representations into a
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Category AP AR AP50 AR50 AP75 AR75 AOS AVP RMSE
Children Cabinet 0.69 0.75 0.83 0.86 0.79 0.83 0.53 0.54 0.38

Nightstand 0.68 0.75 0.94 0.97 0.81 0.86 0.47 0.48 0.83
Bookcase 0.25 0.41 0.52 0.68 0.21 0.43 0.17 0.17 0.93
Wardrobe 0.80 0.86 0.93 0.96 0.90 0.94 0.60 0.60 0.43

Coffee Table 0.59 0.67 0.94 0.96 0.64 0.75 0.41 0.40 0.26
Corner/Side Table 0.37 0.49 0.74 0.82 0.32 0.49 0.30 0.29 0.29

Side Cabinet 0.55 0.65 0.81 0.88 0.60 0.71 0.43 0.43 0.28
Wine Cabinet 0.58 0.65 0.86 0.90 0.65 0.74 0.42 0.42 0.52

TV Stand 0.73 0.79 0.95 0.96 0.89 0.91 0.61 0.62 0.38
Drawer Chest 0.69 0.77 0.83 0.89 0.79 0.86 0.57 0.58 0.45

Shelf 0.11 0.35 0.25 0.55 0.03 0.17 0.06 0.06 0.09
Round End Table 0.35 0.43 0.80 0.84 0.20 0.37 0.32 0.32 0.22

Double/Queen/King Bed 0.85 0.92 0.95 0.98 0.91 0.96 0.68 0.69 0.24
Bunk Bed 0.60 0.68 0.85 0.93 0.78 0.88 0.45 0.46 0.21
Bed Frame 0.79 0.87 0.94 0.99 0.89 0.94 0.70 0.71 0.20
Single Bed 0.67 0.79 0.79 0.88 0.73 0.84 0.60 0.61 0.28
Kids Bed 0.32 0.59 0.47 0.76 0.36 0.65 0.28 0.28 0.33

Dining Chair 0.41 0.50 0.79 0.84 0.37 0.53 0.30 0.29 0.14
Lounge/Office Chair 0.60 0.72 0.85 0.93 0.71 0.83 0.49 0.49 0.43

Dressing Chair 0.58 0.65 0.92 0.94 0.68 0.78 0.11 0.11 0.07
Classic Chinese Chair 0.37 0.40 0.77 0.81 0.28 0.33 0.35 0.36 0.07

Barstool 0.09 0.19 0.35 0.51 0.02 0.11 0.06 0.05 0.05
Dressing Table 0.43 0.50 0.91 0.93 0.30 0.50 0.38 0.38 0.22
Dining Table 0.19 0.32 0.63 0.76 0.06 0.22 0.14 0.13 0.11

Desk 0.28 0.43 0.72 0.82 0.15 0.35 0.23 0.23 0.15
Three-Seat Sofa 0.73 0.84 0.90 0.98 0.88 0.96 0.66 0.66 0.28

Armchair 0.79 0.86 0.91 0.95 0.89 0.93 0.61 0.60 0.26
Loveseat Sofa 0.64 0.79 0.77 0.91 0.73 0.87 0.49 0.48 0.35
L-shaped Sofa 0.67 0.79 0.80 0.91 0.79 0.90 0.58 0.59 0.59

Lazy Sofa 0.86 0.88 0.90 0.91 0.89 0.91 0.81 0.82 0.18
Chaise Longue Sofa 0.66 0.76 0.84 0.91 0.84 0.91 0.56 0.52 0.42

Stool 0.76 0.82 0.90 0.93 0.85 0.89 0.54 0.52 0.22
Pendant Lamp 0.33 0.47 0.70 0.79 0.28 0.47 0.22 0.21 0.21
Ceiling Lamp 0.55 0.65 0.84 0.87 0.63 0.73 0.36 0.35 0.28

mean 0.55 0.65 0.79 0.87 0.58 0.69 0.43 0.43 0.30

Table 5 Quantitative results of the Cascade-Mask R-CNN baseline for joint instance segmentation and 3D pose estimation.
AOS and AVP: Higher is better. RMSE: Lower is better.

unified constrained embedding space via adaptation

techniques such as weight-sharing constraints, metric

learning, and distance matching (Li et al., 2015; Aubry

et al., 2014; Lee et al., 2018; Massa et al., 2016; Tasse

and Dodgson, 2016; Girdhar et al., 2016). Recent works

(Sun et al., 2018a; Huang et al., 2018; Wu et al., 2017;

Bansal et al., 2016; Bachman, 1978; Grabner et al.,

2018, 2019) predict 2.5D sketches from images, such

as surface normal, depth, and location field, to bridge

the gaps between 3D and 2D domains. However, the

performance of state-of-the-art IBSR methods show a

large gap than its 2D counterpart, i.e., content-based

image retrieval. This is because there are no large-scale

benchmarks that offer large amounts of precious 2D-3D

alignment annotations.

In this experiment, we train the baseline using

31,444 image-shape pairs and evaluate the retrieval

algorithm via the other 5,994 image-shape pairs. Then

we crop the furniture instances with occlusion levels of

“NO”, “Slight” and “Standard” from the scene images

Fig. 17 The pose estimation results. Zoom in for better view.

to produce the image-shape pairs. The statistics of

the train and test sets are presented in Table. 3. We

develop a DCNN based metric learning network to

study the cross-domain shape similarities, as shown in

14. Specifically, we first project the selected 3D shapes
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Category
IoU (%) CD (×10−3) F-score (%)

Pixel2Mesh ONet DISN Pixel2Mesh ONet DISN Pixel2Mesh ONet DISN
Children Cabinet 65.54 35.96 67.50 64.00 172.36 100.56 43.19 13.76 34.96

Nightstand 53.42 40.75 60.10 69.95 177.66 134.67 41.01 18.60 30.86
Bookcase 52.74 18.15 50.89 33.04 132.13 46.14 59.03 15.76 52.06
Wardrobe 64.65 34.10 66.63 47.69 147.30 79.37 46.19 15.20 38.71

Coffee Table 42.74 15.77 41.89 58.55 165.69 92.69 49.24 17.24 38.93
Corner/Side Table 38.08 17.55 42.37 51.02 213.03 123.63 79.26 17.78 35.00

Side Cabinet 60.10 30.47 66.31 44.34 121.10 60.33 47.49 15.86 43.86
Wine Cabinet 64.77 26.41 58.66 18.76 119.21 27.12 68.70 19.39 59.33

TV Stand 63.81 20.87 68.45 43.36 133.34 41.67 51.02 14.61 53.41
Drawer Chest 59.99 35.19 65.12 39.93 128.75 59.92 59.55 21.19 53.30

Shelf 29.71 1.62 15.59 17.47 170.99 23.86 70.46 12.03 60.87
Round End Table 24.88 7.49 27.15 45.24 186.17 82.00 66.47 14.93 50.10

Double/Queen/King Bed 52.63 19.02 45.85 13.08 131.75 28.42 83.82 23.74 68.75
Bunk Bed 39.75 23.20 35.08 19.70 58.83 40.44 69.06 38.23 50.25
Bed Frame 50.92 11.20 41.58 75.69 359.99 164.11 75.38 4.62 36.15
Single Bed 55.32 16.70 48.72 11.97 192.22 24.52 83.86 16.47 68.04
Kids Bed 42.21 16.45 36.57 17.22 145.30 38.55 74.68 22.13 56.00

Dining Chair 40.76 15.87 40.80 11.73 109.80 30.77 86.13 27.18 69.33
Lounge/Office Chair 45.65 23.85 47.31 12.89 100.45 31.15 82.75 29.76 65.17

Dressing Chair 39.47 23.20 31.63 23.22 107.77 50.03 64.97 21.79 45.94
Classic Chinese Chair 23.77 13.88 31.90 21.30 108.05 52.32 71.11 24.55 50.90

Barstool 23.32 6.85 37.43 20.28 162.84 57.72 76.95 14.28 59.33
Dressing Table 42.18 18.57 44.51 29.53 152.15 49.97 58.61 17.79 47.50
Dining Table 43.07 10.36 40.39 56.83 171.71 85.80 49.81 16.51 42.71

Desk 41.41 12.18 37.92 67.41 170.40 96.82 43.51 16.03 36.12
Three-Seat Sofa 59.60 24.39 59.06 12.16 89.77 16.24 83.81 33.43 77.42

Armchair 51.27 33.34 50.63 16.01 87.83 33.13 76.77 32.94 59.18
Loveseat Sofa 56.53 29.01 57.14 13.31 72.93 17.77 81.55 37.11 75.03
L-shaped Sofa 61.79 20.13 35.21 9.74 125.71 29.81 85.34 28.06 68.38

Lazy Sofa 45.21 33.80 54.93 17.57 106.72 30.54 75.89 30.15 64.28
Chaise Longue Sofa 52.57 21.69 40.85 19.94 117.47 34.11 69.22 26.60 57.92

Stool 44.74 39.51 61.92 20.82 96.18 39.55 78.61 39.51 61.92
Pendant Lamp 25.37 4.73 20.64 30.52 215.87 54.45 69.97 16.73 53.06
Ceiling Lamp 50.94 22.44 50.03 45.70 170.39 71.14 57.71 20.14 46.74

Mean 47.32 21.32 46.50 32.35 144.76 57.33 65.69 21.42 53.46

Table 6 Numerical comparison of our several baselines for single image 3D reconstruction on our 3D-FUTURE dataset.
Metrics are IoU (%), CD (×10−3, computed on 2,048 points) and F-score (thresholds is 1%, the reconstruction volume side
length defined in (Tatarchenko et al., 2019)). IoU and F-score: Higher is better. CD: Lower is better.

into 2D planes using the toolbox7 to bridge the 3D and

2D gaps. Given a query image and its corresponding 3D

shape, we randomly sample a negative 3D shape from

the 3D pool to construct a triplet. We then feed the

triples (2D images) into a ResNet-34 feature extractor

and adopt a margin ranking loss to push the query

image close to its corresponding 3D shape.We utilize a

category classification loss and an instance classification

loss (Wu et al., 2018) such that the network can capture

shape similarity among furniture instances.

We take TopK Recall (TopK@R) and Top5 average

F-score (mean F-score) as our metrics. The latter is

used to measure the retrieval sequences. The retrieval

results for each category are reports in Table. 4. We also

show some qualitative retrieval sequences in Figure 15.

We can see that while the captured Top1@R for a large

portion of categories is less than 30.0%, the retrieval

7 https://github.com/3D-FRONT-FUTURE

sequences seem to be visually acceptable. Besides, there

is a remarkable gap between Top1@R (23.4%) and

Top3@R (40.6%). The observations demonstrate that

our large 3D pool contains many furniture with similar

shape characteristics, which would provide potential

opportunities for fine-grained shape retrieval studies.

5.3 Jointly 2D Instance Segmentation and 3D Pose

Estimation

Image-based 6DoF pose estimation is a fundamental

3D vision task that can benefit many intelligent

applications such as autonomous driving, augmented

reality, and robotic manipulation. Typical methods

6DoF pose estimation first build point-wise

correspondences between 3D models and 2D images,

followed by the Perspective-n-Point (PnP) algorithm

to compute pose parameters (Collet et al., 2011;
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Fig. 18 Sample reconstruction results on our 3D-FUTURE benchmark. The SOTA methods cannot model the local geometric
details.

Rothganger et al., 2006). These approaches perform

well for objects with rich textures but are not robust

to featureless or occluded cases. Recent works thus

employ RGB-D sensors and deep learning to improve

keypoints detection or directly predict 6DoF pose

from images (Kehl et al., 2016; Brachmann et al.,

2014; Bo et al., 2014; Hinterstoisser et al., 2012; Xiang

et al., 2017; Peng et al., 2019; Song et al., 2020; Tekin

et al., 2018; Rad and Lepetit, 2017; Park et al., 2020).

Nevertheless, the main issues such as occlusion and

clutter, scalability to multiple objects, and symmetries

have not been well addressed.

Instance segmentation is the task of detecting and

delineating each distinct object of interest appearing

in an image. Current instance segmentation methods

can be roughly categorized into two paradigms:

segmentation-based methods and detection-based

methods. The former category of approaches group

the predicted category labels via techniques such as

clustering (Dhanachandra et al., 2015), metric learning

(Fathi et al., 2017), and watershed algorithms (Najman

and Schmitt, 1994), to form instance segmentation

results. The latter predicts the mask for region

instances detected by SOTA object detectors. Methods

such as Mask R-CNN series (He et al., 2017; Huang

et al., 2019; Cai and Vasconcelos, 2019) have achieved

impressive performance for daily objects.

In this experiment, we learn to predict instance

segmentation in 2D images and estimate their 6DoF

poses in a unified framework. In contrast to the

well-studied benchmarks such as ObjectNet3D (Xiang

et al., 2016), PASCAL3D+ (Xiang et al., 2014), and

Pix3D (Sun et al., 2018a), 3D-FUTURE encourages

estimating pose parameters for multiple objects with

occlusions in diverse indoor scenes. We provide 3D pose

annotations for 100K+ objects in the scene images. The

objects are further divided into five occlusion levels,

including “NO”, “Slight”, “Standard”, “Heavy”, and

“N/A”. Here, an object labeled as “N/A” means that

its corresponding 3D shape is not available, or a part
of the object is out of the camera view. We train our

model on the 14,761 training images and test it on the

remaining 5,479 test images.

Category
Train Test

Image Shape Image Shape
Sofa 49,056 1,533 8,460 705
Bed 20,032 626 3,912 326

Chair 26,208 819 4,152 346
Table 12,320 385 2,700 225
Total 107,616 3,363 19,224 1,602

Table 7 The statistics of the training and test sets for the
subject of texture synthesis for 3D shapes.

We modify Cascade Mask-RCNN (Cai and

Vasconcelos, 2019; He et al., 2017) as our baseline.

The network architecture is shown in Figure. 13.

Specifically, we take ResNeXt-101 (Xie et al., 2017)

with the setting of 64-4d (group number: 64, width of

group: 4) as the backbone, and adopt FPN (Lin et al.,
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Fig. 19 An illustration of our BicycleGAN++ baseline. The input are rendered images from 3D shapes. E: Texture Encoder.
G: Generator.

2017) to extract the dense features. Then, we utilize a

three-stage cascade architecture to perform bounding

box regression and object classification. Finally, we add

two branches that consist of several fully connected

layers to predict the instance masks and their 6DoF

poses simultaneously. We cast rotation estimation as a

viewpoint classification problem. In detail, we convert

the rotation matrices to Euler angles and divide

the 360-degree azimuth, 180-degree elevation, and

360-degree in-plane rotation into 18 bins, 9 bins, and

18 bins, respectively. For translation estimation, we use

L1 smooth loss to regress the translation parameters

directly.

For 2D instance segmentation, we report Average

Precision (AP) and Average Recall (AR) over different

IoU thresholds following (He et al., 2017). For 3D

pose estimation, we take both Average Viewpoint

Precision (AVP) in PASCAL3D+ (Xiang et al., 2014)

and Average Orientation Similarity (AOS) in KITTI

(Geiger et al., 2012) to measure the rotation predictions

as (Xiang et al., 2016), and employ Root Mean

Square Error (RMSE) to evaluate the translation

predictions. In specific, we define the difference between

an estimated rotation matrix R and its ground truth

Rgt as ∇(R,Rgt) = 1√
2
‖ log(RTRgt) ‖F . In AVP, a

correct estimation should satisfy ∇(R,Rgt) <
π
6 . The

cosine similarity between rotations in AOS is computed

as cos(∇(R,Rgt)).

We present the instance segmentation and pose

estimation results in Table 5. Here, the metrics for

camera poses are with respect to AP and AR, where

the IoU thresholds range from 0.5 to 0.95. For instance

segmentation, our baseline captures a mean AP of 0.55

on 3D-FUTURE. The score is at a similar level to

those reported on the MSCOCO leaderboard achieved

by recent SOTA methods. For 3D pose estimation,

our baseline yields a mean AVP of 43%. Besides, as

analyzed in (Xiang et al., 2016), AP is an upper bound

of AOS. This means the closer AOS is to AP, the more

accurate the rotation estimation is. By showing the

gaps between AOS and AP in Figure 12, we can see that

the estimated rotation (0.43) can be further improved.

From the observations, we conclude that most objects’

3D poses are not well modeled in our challenging

setting. This suggests that researchers may need to

carefully study 3D pose estimation with different levels

of occlusions based on 3D-FUTURE. Some qualitative

results are shown in Figure 16 and Figure 17 to further

justify our conclusions.

5.4 Single-View 3D Object Reconstruction

Inferring 3D structure from a single image has been an

active research area for a long time. In the supervised

setting, traditional methods investigated shape from

shading (Durou et al., 2008; Zhang et al., 1999)

and defoce (Favaro and Soatto, 2005) to reason the

visible parts of objects. Leveraging on large-scale shape

repositories, various works examined deep architectures

to produce shapes in 3D volume (Choy et al., 2016),

point cloud (Fan et al., 2017), and mesh surface

(Groueix et al., 2018) directly. Recently, several SOTA

methods recovered 3D meshes from initializations using

shape deformation based on deep networks (Wang

et al., 2018a). In the unsupervised setting, 3D recovery

has been recast as a 2D image reconstruction progress

of unobserved views with differentiable rendering (Liu

et al., 2019; Chen et al., 2019b).

In this paper, we examine several SOTA

reconstruction algorithms as the baselines, including
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Category
Texture Field BicyleGAN++

FID SSIM L1 Feat1 FID SSIM L1 Feat1
Sofa 22.01 0.959 0.013 0.168 10.01 0.951 0.019 0.146
Bed 37.22 0.924 0.024 0.190 18.06 0.916 0.030 0.172

Chair 15.36 0.951 0.017 0.131 10.65 0.941 0.022 0.120
Table 29.45 0.964 0.011 0.149 21.78 0.958 0.016 0.137
mean 26.01 0.952 0.016 0.160 15.12 0.942 0.022 0.144

Table 8 Quantitative Evaluation using the FID, SSIM, L1, and Feat1 metrics. FID, L1, Feat1 : lower is better. SSIM: higher
is better.

Fig. 20 The multi-view texture synthesis results. Top: Texture Fields (Oechsle et al., 2019). Bottom: Our BicycleGAN++
based on BicycleGAN (Zhu et al., 2017).

ONet (Mescheder et al., 2019), Pixel2Mesh (Wang

et al., 2018a), and DISN (Xu et al., 2019). We report

the widely studied Intersection over Union (IoU),

Chamfer Distance (CD), and F-score to evaluate these

approaches on 3D-FUTURE. We refer (Xu et al.,

2019) for the definitions of these metrics. We randomly

render 24 different view images each model for training

and a random view image for testing. The resolution

of each image is 256 × 256. As shown in Table 6 and

Figure 18, Pixel2Mesh is more robust in general 3D

object reconstruction. However, all the SOTA methods

cannot recover good-quality shapes when the 3D

shapes contain many geometric details.

5.5 Texture Synthesis For 3D Shapes

Unlike geometry reconstruction, texture reconstruction

of 3D objects has received less attention from the

community. Previous works studied the subject by

learning colored 3D reconstruction on voxels or point

clouds (Sun et al., 2018b; Tulsiani et al., 2017) based

on view synthesis and multi-view geometry. While voxel

representations are limited to the low resolutions, point

representations are sparse and thus ignore geometric

details. Recent approaches alternatively learned a 2D

texture atlas (UV mapping) for 3D meshes to map

a point on the shape manifold to a pixel in the

texture atlas. These methods mainly take advantage

of differentiable rendering to recast the problem as an

unobserved view synthesis problem (Raj et al., 2019;

Oechsle et al., 2019).

Existing 3D repositories contain less dreamlike

or uninformative textures and cannot support

high-quality texture recovery studies. In contrast,

3D-FUTURE provides furniture shapes with

informative textures, which are widely used in

industrial productions. We examine two baselines

for texture synthesis, i.e., Texture Fileds (Oechsle

et al., 2019) and a novel BicycleGAN++ method. Here,
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Fig. 21 A quantitative comparison between Texture Fields and BicycleGAN++ for conditional texture synthesis.

BicycleGAN++ extends BicycleGAN (Zhu et al., 2017)

for texture synthesis. An illustration of the network

is shown in Figure 19. In specific, we incorporate

a texture encoder such that the learned model can

perform controllable texture synthesis. Importantly, by

enlarging the weights of the reconstruction losses and

introducing a texture consistency loss, we find that

the produced multi-view textured images will show

preferable consistency in overlap regions.

We conduct experiments on four super-categories,

including Sofa, Bed, Chair, and Table. The details

of our train and test splits are reported in Table 7.

We randomly render 32 views of images for each

shape to enlarge the training set. For each baseline,

we first train them on the whole train set and

then perform category-specific fine-tuning. Following

(Oechsle et al., 2019), we use structure similarity

image metric (SSIM) (Wang et al., 2004), L1, Frechet

Inception Distance (FID) (Heusel et al., 2017), and

Feat1 as our metrics to evaluate the quality of

the synthetic texture. Here, L1 is the L1 distance

between the ground-truth view rendering and the

produced textured image under the same viewpoint.

Feat1 is a global perceptual measure operated on

the Inception-net (Szegedy et al., 2015) feature space

using the L1 distance. As shown in Table 8, while

BicycleGAN++ earns higher scores on FID and Feat1,

Texture Fields performs better in terms of SSIM and

L1, indicating that BicycleGAN++ produces more

realistic images with higher quality and Texture Fields

focuses more on structured texture details. We also give

some qualitative results in Figure 20 and Figure 21.

We can see that BicylcGAN++ can only learn the

main color information while largely ignores the

semantic parts of objects. Texture Fields can partially

preserve the structured texture details but produces

dreamlike textures. These observations demonstrate

that achieving visually appealing texture recovery for

3D meshes is still very challenging, especially for the

industrial 3D shapes with informative texture details.

6 Conclusion

In this paper, we have built the large-scale

3D-FUTURE benchmark specific to the household

scenario with rich 3D and 2D annotations.

3D-FUTURE contains 20,240 realistic synthetic images

and 9,992 high-quality 3D CAD furniture shapes. The

exciting features include but are not limited to the

exhausting interior designs by experienced designers,

photo-realistic renderings, 2D-3D alignments, and most

significantly the industrial 3D furniture shapes with

informative textures. We conduct several experiments

to show the remarkable properties of 3D-FUTURE. The

experiments can serve as baselines for future research

using our database. We hope that 3D-FUTURE can

facilitate innovative research on high-quality 3D shape

understanding and generation, bring new research
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opportunities for 3D vision, and build a bridge between

academic study and 3D industrial applications.
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