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Abstract Semantic edge detection (SED), which aims

at jointly extracting edges as well as their category infor-

mation, has far-reaching applications in domains such as

semantic segmentation, object proposal generation, and

object recognition. SED naturally requires achieving two

distinct supervision targets: locating fine detailed edges

and identifying high-level semantics. Our motivation comes

from the hypothesis that such distinct targets prevent

state-of-the-art SED methods from effectively using deep

supervision to improve results. To this end, we propose

a novel fully convolutional neural network using diverse

deep supervision (DDS) within a multi-task framework

where bottom layers aim at generating category-agnostic

edges, while top layers are responsible for the detection of

category-aware semantic edges. To overcome the hypothe-

sized supervision challenge, a novel information converter

unit is introduced, whose effectiveness has been exten-

sively evaluated on SBD and Cityscapes datasets.
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1 Introduction

The aim of classical edge detection is to detect edges

and object boundaries in natural images. It is category-

agnostic, in that object categories need not be recog-

nized. Classical edge detection can be viewed as a pixel-

wise binary classification problem, whose objective is to

classify each pixel as belonging to either the class indi-

cating an edge, or the class indicating a non-edge. In this

paper, we consider more practical scenarios of semantic

edge detection (SED), which jointly achieves edge detec-

tion and edge category recognition within an image. SED

(Bertasius et al. 2015b; Hariharan et al. 2011; Maninis

et al. 2017; Yu et al. 2017) is an active computer vision re-

search topic due to its wide-ranging applications, includ-

ing object proposal generation (Bertasius et al. 2015b),

occlusion and depth reasoning (Amer et al. 2015; Bian

et al. 2021), 3D reconstruction (Shan et al. 2014), object

detection (Ferrari et al. 2008, 2010), and image-based lo-
calization (Ramalingam et al. 2010).

In the past several years, deep convolutional neural

networks (DCNNs) reign undisputed as the new de-

facto method for category-agnostic edge detection (Hu

et al. 2018; Liu et al. 2019, 2017; Xie & Tu 2015, 2017),

where near human-level performance has been achieved.

However, deep learning for category-aware SED, which

jointly detects visually salient edges as well as recogniz-

ing their categories, has not yet witnessed such vast pop-

ularity. Hariharan et al. (2011) first combined generic

object detectors with bottom-up edges to recognize se-

mantic edges. Yang et al. (2016) proposed a fully con-

volutional encoder-decoder network to detect object con-

tours but without recognizing specific categories. More re-

cently, CASENet (Yu et al. 2017) introduces a skip-layer

structure to enrich the top-layer category-aware edge ac-
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(a) Original image (b) Ground truth

Person
Motorbike

Person+Motorbike

(c) Color codes

(d) Side-1 (e) Side-2 (f) Side-3

(g) Side-4 (h) Side-5 (i) DDS

Fig. 1 An example of our DDS algorithm. (a) shows the original
image from the SBD dataset (Hariharan et al. 2011). (b)-(c)
show its semantic edge map and corresponding color codes. (d)-
(g) display category-agnostic edges from Side-1 ∼ Side-4. (h)-
(i) show semantic edges of Side-5 and DDS (DDS-R) output,
respectively.

tivation with bottom-layer features, improving previous

state-of-the-art methods with a significant margin. How-

ever, CASENet imposes supervision only at the Side-5

and final fused classification and uses feature maps from

Side-1 ∼ Side-3 without deep supervision. After unsuc-

cessfully trying various ways of adding deep supervision,

CASENet claims that imposing deep supervision at bot-

tom network sides (Side-1 ∼ Side-4) is unnecessary. This

conclusion has also been widely accepted by recent SED

works (Acuna et al. 2019; Hu et al. 2019; Yu et al. 2018).

SED naturally requires achieving two distinct super-

vision targets: i) locating fine detailed edges by captur-

ing discontinuity among image regions, mainly using low-

level features; and ii) identifying abstracted high-level se-

mantics by summarizing different appearance variations

of the target categories. While it may be intuitive and

straightforward to impose category-agnostic edge super-

vision at bottom network sides for low-level edge details

and impose category-aware edge supervision at top sides

for semantic classification, directly doing this as in CASENet

(Yu et al. 2017) even degrades the performance com-

pared with directly learning semantic edges without deep

supervision or category-agnostic edge guidance. We hy-

pothesize that distinct supervision targets prevent state-

of-the-art SED methods (Acuna et al. 2019; Hu et al.

2019; Yu et al. 2017, 2018) from successfully applying

deep supervision (Lee et al. 2015). Specifically, we ob-

serve that the success stories of deep supervision, includ-

ing image categorization (Szegedy et al. 2015), object de-

tection (Lin et al. 2020), visual tracking (Wang et al.

2015), and category-agnostic edge detection (Liu et al.

2017; Xie & Tu 2017), usually adopt the same type of

supervision for all network sides. In contrast, CASENet

directly imposes distinct supervision targets to bottom

and top network sides. Therefore, we consider achieving

such distinct supervision using some buffers, i.e., in an

indirect manner, to prevent the backbone network from

being directly influenced by distinct targets.

In this paper, we propose a diverse deep super-

vision (DDS) method, which employs deep supervision

with different loss functions for high-level and low-level

feature learning, as shown in Fig. 2(b). To this end, we

propose an information converter unit to change the

backbone DCNN features into different representations,

for training category-agnostic or semantic edges, respec-

tively. Hence, information converters act as buffers, mak-

ing distinct supervision targets indirectly affect top and

bottom convolution (i.e., conv layers. The existence of

information converters separates the information content

in conv layers by assigning unique sets of parameters

and imposing separate losses to each network side. This

makes a single backbone network be effectively trained

end-to-end towards different targets. An example of DDS

is shown in Fig. 1. The bottom sides of the neural net-

work help Side-5 to find fine details, thus making the fi-

nal fused semantic edges (Fig. 1(i)) smoother than those

coming from Side-5 (Fig. 1(h)).

In summary, our main contributions include:

– We analyze the reason why state-of-the-art SED meth-

ods cannot apply deep supervision to improve results,

i.e., due to the distinct supervision targets in SED

(Section 3).

– We propose a new SED method, called diverse deep

supervision (DDS), which uses information convert-

ers to separate the information content in backbone

conv layers and thus achieve distinct supervision in

an indirect manner (Section 4).

– We provide detailed ablation studies to further under-

stand the proposed method (Section 5.2).

We extensively evaluate DDS on SBD (Hariharan et al.

2011) and Cityscapes (Cordts et al. 2016) datasets. DDS

achieves state-of-the-art performance, demonstrating the

reasonability of our analyses and thus opening up a new

path for future SED research.

2 Related Work

An exhaustive review of the abundant literature on this

topic is out of the scope of this paper. Instead, we first



Semantic Edge Detection with Diverse Deep Supervision 3

summarize the most important threads of research to

solve the problem of classical category-agnostic edge de-

tection, followed by the discussions of deep learning-based

approaches, semantic edge detection (SED), and the tech-

nique of deep supervision.

Classical category-agnostic edge detection. Edge

detection is conventionally solved by designing various fil-

ters (e.g., Sobel (Sobel 1970) and Canny (Canny 1986)) or

complex models (Mafi et al. 2018; Shui & Wang 2017) to

detect pixels with highest gradients in their local neigh-

borhoods (Hardie & Boncelet 1995; Henstock & Chelberg

1996; Trahanias & Venetsanopoulos 1993). To the best of

our knowledge, Konishi et al. (2003) proposed the first

data-driven edge detector in which, unlike previous model

based approaches, edge detection was posed as statistical

inferences. Pb features consisting of brightness, color and

texture are used in (Martin et al. 2004) to obtain the

posterior probability of each boundary point. Pb is fur-

ther extended to gPb (Arbeláez et al. 2011) by computing

local cues from multi-scale and globalizing them through

spectral clustering. Sketch tokens are learned from hand-

drawn sketches for contour detection (Lim et al. 2013),

while random decision forests are employed in (Dollár &

Zitnick 2015) to learn the local structure of edge patches,

delivering competitive results among non-deep-learning

approaches.

Deep category-agnostic edge detection. The num-

ber of success stories of machine learning has seen an

all-time rise across many computer vision tasks recently.

The unifying idea is deep learning which utilizes neural

networks with many hidden layers aimed at learning com-

plex feature representations from raw data (Chan et al.

2015; Liu et al. 2018; Tang et al. 2017). Motivated by this,

deep learning based methods have made vast inroads into

edge detection as well (Deng et al. 2018; Wang et al. 2019;

Yang et al. 2017). Ganin et al. (2014) applied deep neural

network for edge detection using a dictionary learning and

nearest neighbor algorithm. DeepEdge (Bertasius et al.

2015a) first extracts candidate contour points and then

classifies these candidates. HFL (Bertasius et al. 2015b)

uses SE (Dollár & Zitnick 2015) to generate candidate

edge points in contrast to Canny (Canny 1986) used in

DeepEdge. Compared with DeepEdge which has to pro-

cess input patches for every candidate point, HFL turns

out to be more computationally feasible as the input im-

age is only fed into the network once. DeepContour (Shen

et al. 2015) partitions edge data into subclasses and fits

each subclass using different model parameters. Xie et

al. (2015; 2017) leveraged deeply-supervised nets to build

a fully convolutional network for image-to-image predic-

tion. Their deep model, known as HED, fuses the infor-

mation from the bottom and top conv layers. Kokkinos

(2016) proposed some training strategies to retrain HED.

Liu et al. (2019; 2017) introduced the first real-time edge

detector, which achieves higher F-measure scores than av-

erage human annotators on the popular BSDS500 dataset

(Arbeláez et al. 2011).

Semantic edge detection. By virtue of their strong ca-

pacity for semantic representation learning, DCNNs based

edge detectors tend to generate high responses at object

boundary locations, e.g., Fig. 1 (d)-(g). This has inspired

research on simultaneously detecting edge pixels and clas-

sifying them based on associations with one or more ob-

ject categories. This so-called “category-aware” edge de-

tection is highly beneficial to a wide range of vision tasks

including object recognition, stereo vision, semantic seg-

mentation, and object proposal generation.

Hariharan et al. (2011) proposed the first principled

way of combining generic object detectors with bottom-

up contours to detect semantic edges. Yang et al. (2016)

proposed a fully convolutional encoder-decoder network

for object contour detection. HFL (Bertasius et al. 2015b)

produces category-agnostic binary edges and assigns class

labels to all boundary points using deep semantic seg-

mentation networks. Maninis et al. (2017) coupled their

convolutional oriented boundaries (COB) with semantic

segmentation generated by dilated convolutions (Yu &

Koltun 2016) to obtain semantic edges. A weakly super-

vised learning strategy is introduced in (Khoreva et al.

2016), where bounding box annotations alone are suffi-

cient to produce high-quality object boundaries without

any object-specific annotations. Gated-SCNN (Takikawa

et al. 2019) converts the semantic edge representation

from different ResNet layers to a representation suitable

for segmentation, improving semantic segmentation sub-

stantially.

Yu et al. (2017) proposed a novel network, CASENet,

which has pushed SED performance to a new state-of-the-

art. In their architecture, low-level features are only used

to augment top classifications. After several failed exper-

iments, they reported that imposing deep supervision at

bottom sides is unnecessary for SED. More recently, Yu

et al. (2018) introduced a new training approach, SEAL,

to train CASENet (Yu et al. 2017). This approach can si-

multaneously align ground-truth edges and learn seman-

tic edge detectors. However, the training of SEAL is very

time-consuming due to the heavy CPU computation load.

For example, it needs over 16 days to train CASENet on

the SBD dataset (Hariharan et al. 2011), despite that

we have used a powerful CPU (Intel Xeon(R) CPU E5-

2683 v3 @ 2.00GHz × 56). Hu et al. (2019) proposed a

novel dynamic feature fusion (DFF) strategy to assign

different fusion weights for different input images and
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locations adptively in the fusion of multi-scale DCNN

features. Acuna et al. (2019) focused on semantic thin-

ning edge alignment learning (STEAL). They presented

a simple new layer and loss to train CASENet (Yu et al.

2017), so that they can learn sharp and precise semantic

boundaries. However, all above methods give up apply-

ing deep supervision to bottom layers due to the distinct

supervision targets in SED. In this work, we aim to solve

this problem, so our method is compatible with previ-

ous methods, including SEAL (Yu et al. 2018), DFF (Hu

et al. 2019), and STEAL (Acuna et al. 2019).

Deep supervision. Deep supervision has been demon-

strated to be effective in many vision and learning tasks

such as image classification (Lee et al. 2015; Szegedy

et al. 2015), object detection (Lin et al. 2017, 2020; Liu

et al. 2016), visual tracking (Wang et al. 2015), category-

agnostic edge detection (Liu et al. 2017; Xie & Tu 2017),

salient object detection (Hou et al. 2019), and so on. The-

oretically, the bottom layers of deep networks can learn

discriminative features so that classification/regression at

top layers is easier. In practice, one can explicitly in-

fluence the hidden layer weight/filter update process to

favor highly discriminative feature maps using deep su-

pervision. However, traditional deep supervision usually

adopts the same type of supervision at all layers, so it

may be suboptimal for SED to directly apply distinct su-

pervision of category-agnostic and category-aware edges

to bottom and top network sides, respectively. In the fol-

lowing sections, we will first analyze the problem of dis-

tinct supervision targets of SED and then introduce a

new semantic edge detector with successful diverse deep

supervision.

3 Distinct Supervision Targets in SED

Before expounding the proposed method, we first analyze

the problem caused by the distinct supervision targets of

SED.

3.1 A Typical Deep Model for SED

To introduce previous attempts for using deep supervision

in SED, without loss of generality, we take a typical deep

model as an example, i.e., CASENet (Yu et al. 2017). As

shown in Fig. 2(a), this typical model is built on the well-

known backbone network of ResNet (He et al. 2016). It

connects a 1×1 conv layer after each of Side-1 ∼ Side-3 to

produce a single-channel feature map F (m). The top Side-

5 is connected to a 1× 1 conv layer to output K-channel

class activation map A(5) = {A(5)
1 , A

(5)
2 , · · · , A(5)

K }, where

K is the number of categories. Then, the shared concate-

nation replicates bottom features F (m) to separately con-

catenate each channel of the class activation map:

F f = {F (1), F (2), F (3), A
(5)
1 , · · · , F (1), F (2), F (3), A

(5)
K }.

(1)

Next, a K-grouped 1 × 1 conv is performed on F f to

generate a semantic edge map with K channels, in which

the k-th channel represents the edge map for the k-th

category. Other SED models (Hu et al. 2019; Yu et al.

2018) have similar network designs.

3.2 Discussion

Previous SED models (Bertasius et al. 2015b; Hu et al.

2019; Yu et al. 2017, 2018) only impose supervision on

Side-5 and the final fused activation. In CASENet, the au-

thors have tried several deeply supervised architectures.

They first separately used all of Side-1 ∼ Side-5 for SED,

with each side connected with a semantic classification

loss. The evaluation results are even worse than the ba-

sic architecture that directly applies 1 × 1 convolution

at Side-5 to obtain semantic edges. It is widely accepted

that the bottom layers of DCNNs contain low-level, less-

semantic features such as local edges, which are less ef-

fective for semantic classification because semantic cate-

gory recognition needs abstracted high-level features that

mainly appear in the top layers of neural networks. Thus,

they would obtain poor classification results at bottom

sides. Unsurprisingly, simply connecting each low-level

feature layer and high-level feature layer with a classi-

fication loss and deep supervision for SED results in a

clear performance drop.

Yu et al. (2017) also attempted to impose deep su-

pervision of binary edges at Side-1 ∼ Side-3 in CASENet

but observed divergence in the semantic classification at

Side-5. Here, we provide an intuitive and reasonable ex-

planation for this phenomenon. With the top supervision

of semantic edges, the top layers of the network will be su-

pervised to learn abstracted high-level semantics that can

summarize different appearance variations of object cate-

gories. Since bottom layers are the bases of top layers for

the representation power of DCNNs, bottom layers will be

supervised to serve top layers for obtaining high-level se-

mantics through back propagation. Conversely, with bot-

tom supervision of category-agnostic edges, bottom lay-

ers are taught to focus on distinction between edges and

non-edges, rather than visual representations for seman-

tic classification. Hence, bottom layers have two conflict

supervision targets. Compared to traditional deep super-

vision applications that usually adopt the same type of
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conv1 res2c res3b res4b22 res5c

1×1-1 conv
upsample shared 

concatenation

K-grouped 1×1 conv

… … … …

conv1 res2c res3b res4b22 res5c

… … … …

Semantic Supervision
1×1-1 conv
upsample

1×1-1 conv
upsample

1×1-1 conv
upsample

1×1-K conv
upsample

1×1-1 conv
upsample

1×1-1 conv
upsample

1×1-1 conv
upsample

1×1-K conv
upsample

shared 
concatenation

Semantic Supervision

K-grouped 1×1 conv

Edge Supervision
Information Converter

(a) CASENet

(b) DDS

Fig. 2 A comparison between two SED models: CASENet (Yu et al. 2017) and our DDS. CASENet only adds top supervision
on the Side-5 activation, and the authors claimed that deep supervision was not necessary in their architecture. However, our
proposed DDS network adds deep supervision at all network sides. Note that information converters are crucial for resolving the
distinct supervision targets of category-agnostic and category-aware edges.

supervision, we believe that such distinct supervision tar-

gets of SED lead to the failure of previous attempts to

apply deep supervision for SED. Our motivation of this
work comes from this hypothesis by trying to resolve such

distinct supervision targets.

Note that Side-4 is not used in CASENet. We think

that it is a naive way to alleviate the supervision con-

flicts by regarding the whole res4 block as a buffer unit

between bottom and top sides. Indeed, when adding Side-

4 to CASENet (see Section 5.2), the new model (CASENet

+S4 ) achieves a 70.9% mean F-measure, compared to

71.4% of original CASENet. This suggests that our hy-

pothesis about the buffer function of res4 block may be

reasonable. Moreover, the classical 1× 1 conv layer after

each side (Xie & Tu 2017; Yu et al. 2017) is too weak to

buffer the conflicts. We therefore propose an information

converter unit to try to separate the information content

in the backbone layers by assigning unique sets of param-

eters and imposing separate losses to each network side.

In this way, we tackle the distinct supervision targets of

SED in an indirect manner, rather than the previous di-

rect manner.

4 Methodology

Intuitively, by employing different but “appropriate” ground

truths for bottom and top sides, the learned intermediate

representations of the different levels may contain com-

plementary information. However, directly imposing deep

supervision does not seem to be beneficial. In this section,

we propose a new network architecture for the comple-

mentary learning of bottom and top sides for SED.

4.1 Diverse Deep Supervision

Based on the above discussion, we hypothesize that the

bottom sides of neural networks may not be directly ben-

eficial to SED. However, we still believe that bottom sides



6 Yun Liu et al.

encode fine details complementary to the top side (Side-

5). With appropriate architecture re-design, maybe they

can be used for category-agnostic edge detection to im-

prove the localization accuracy of semantic edges gen-

erated by the top side. To this end, we design a novel

information converter to assist low-level feature learn-

ing, making it consistent with high-level feature learning.

This is essential as this enables bottom layers to learn

find-grained details and serve top layers to favor highly

discriminative features simultaneously.

Our proposed network architecture is presented in

Fig. 2(b). We follow CASENet to use ResNet (He et al.

2016) as our backbone network. After each information

converter (Section 4.2) in Side-1 ∼ Side-4, we connect a

1× 1 conv layer with a single output channel to produce

an edge response map. These predicted maps are then

upsampled to the original image size using bilinear in-

terpolation. These side-outputs are supervised by binary

category-agnostic edges. We perform K-channel 1×1 con-

volution on Side-5 to obtain semantic edges, where each

channel represents the binary edge map of one category.

We adopt the same upsampling operation as for Side-1 ∼
Side-4. Semantic edges are used to supervise the training

of Side-5.

We denote the produced binary edge maps from Side-

1 ∼ Side-4 as E = {E(1), E(2), E(3), E(4)}. The seman-

tic edge map from Side-5 is still represented by A(5).

A shared concatenation is then performed to obtain the

stacked edge activation map:

Ef = {E,A(5)
1 , E,A

(5)
2 , E,A

(5)
3 , · · · , E,A(5)

K }. (2)

Note that Ef is a stacked edge activation map, while F f

in CASENet is a stacked feature map. Finally, we apply

K-grouped 1×1 convolution on Ef to generate the fused

semantic edges. The fused edges are supervised by the

ground truth of the semantic edges. As shown in HED

(Xie & Tu 2017), the 1×1 convolution can fuse the edges

from bottom and top sides well.

4.2 Information Converter

From the above analyses, the core for improving SED is

the existence of the information converter. In this pa-

per, we try a simple design for information converter

to validate our hypothesis. Recently, residual networks

have been proved to be easier to optimize than plain net-

works (He et al. 2016). The residual learning operation

is embodied by a shortcut connection and element-wise

addition. We describe a residual conv block in Fig. 3,

which consists of two alternatively connected ReLU and

conv layers, and the output of the first ReLU layer is

R
eL

U

3×
3 

co
nv

R
eL

U

3×
3 

co
nv

SU
M

Residual conv

R
es

id
ua

l c
on

v

R
es

id
ua

l c
on

vInformation Converter

Fig. 3 Schematic of our information converter unit (illustrated
in the orange box in Fig. 2).

added to the output of the last conv layer. Our pro-

posed information converter combines two residual mod-

ules and is connected to each side of the DDS network

to transform the learned representation into the proper

form. This operation is expected to avoid the conflicts

caused by the discrepancy in different losses.

The top supervision of semantic edges will guide top

layers in learning semantic features, while the bottom su-

pervision of category-agnostic edges will guide bottom

layers in learning category-agnostic features. Hence, bot-

tom layers would have two distinct supervision through

back propagation if the distinct supervision is directly im-

posed as discussed in Section 3. Our information convert-

ers can separate the information content in the backbone

layers by assigning unique sets of parameters and impos-

ing separate losses to each network side, playing a buffer-

ing role. In this way, the distinct supervision targets are

imposed to the backbone network in an indirect manner,

rather than the previous direct manner (Bertasius et al.

2015b; Hu et al. 2019; Yu et al. 2017, 2018). Note that

this paper mainly claims the importance of the existence

of the information converter, not its specific format, so

we only adopt a simple design. In the experimental part,

we will demonstrate different designs for the information

converter achieve similar performance.

Our proposed network can successfully combine the

fine details from bottom sides and the semantic informa-

tion from top sides. Our experimental results demonstrate

that this method solves the problem of conflicts caused by

diverse deep supervision. Unlike CASENet, our semantic

classification at Side-5 can be well optimized without any

divergence. The produced binary edges from bottom sides

help Side-5 make up fine details. Thus, the final fused se-

mantic edges can achieve better localization quality.

We use binary edges of single pixel width to supervise

Side-1 ∼ Side-4 and thick semantic boundaries to super-

vise Side-5 and the final fused edges. One pixel is viewed

as a binary edge if it belongs to the semantic boundaries

of any category. We obtain thick semantic boundaries by
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seeking the difference between a pixel and its neighbors

in ground-truth semantic segmentation, as in CASENet

(Yu et al. 2017). A pixel with label k is regarded as a

boundary of class k if at least one neighbor with a label

k′ (k′ 6= k) exists.

4.3 Multi-task Loss

Two different loss functions, which represent category-

agnostic and semantic edge detection losses, respectively,

are employed in our multi-task learning framework. We

denote all layer parameters in the network as W . Sup-

pose an image I has a corresponding binary edge map

Y = {yi : i = 1, 2, · · · , |I|}. The reweighted sigmoid

cross-entropy loss function for Side-1 ∼ Side-4 can be

formulated as

L
(m)
side(W ) =−

∑
i∈I

[β · (1− yi) · log(1− P (E
(m)
i ;W ))

+ (1− β) · yi · log(P (E
(m)
i ;W ))],

(m = 1, · · · , 4),

(3)

where we have β = |Y +|/|Y | and 1 − β = |Y −|/|Y |. Y +

and Y − represent edge and non-edge ground-truth label

sets, respectively. E
(m)
i is the produced activation value

at pixel i for the m-th side. P (·) is the standard sigmoid

function.

For an image I, suppose the semantic ground-truth

label is {Ȳ 1, Ȳ 2, · · · , Ȳ K}, in which Ȳ k = {ȳki : i =

1, 2, · · · , |I|} is the binary edge map for the k-th cate-

gory. Note that each pixel may belong to the boundaries

of multiple categories. We define the reweighted multi-

label loss for Side-5 as

L
(5)
side(W ) =−

∑
k

∑
i∈I

[β · (1− ȳki ) · log(1− P (A
(5)
k,i ;W ))

+ (1− β) · ȳki · log(P (A
(5)
k,i ;W ))],

(4)

in which A
(5)
k,i is the Side-5’s activation value for the k-

th category at pixel i. The loss of the fused semantic

activation map is denoted as Lfuse(W ), which can be

similarly defined as

Lfuse(W ) =−
∑
k

∑
i∈I

[β · (1− ȳki ) · log(1− P (Af
k,i;W ))

+ (1− β) · ȳki · log(P (Af
k,i;W ))],

(5)

where Af is the final fused semantic edge map. The total

loss is formulated as

L(W ) =
∑

m=1,··· ,5
L
(m)
side(W ) + Lfuse(W ). (6)

Using this total loss function, we can optimize all param-

eters in an end-to-end way. We denote DDS trained using

the reweighted loss L(W ) as DDS-R.

Recently, Yu et al. (2018) proposed to simultaneously

align and learn semantic edges. They found that the un-

weighted (regular) sigmoid cross-entropy loss performed

better than reweighted loss with their alignment train-

ing strategy. Due to the heavy computational load on

the CPU, their approach was very time-consuming (over

16 days for SBD dataset (Hariharan et al. 2011) with

28 CPU kernels and an NVIDIA TITAN Xp GPU) to

train a network. We use their method (SEAL) to align

ground-truth edges only once prior to training and ap-

ply unweighted sigmoid cross-entropy loss to train the

aligned edges. The loss function for Side-1 ∼ Side-4 can

thus be formulated as

L′
(m)
side(W ) =−

∑
i∈I

[(1− yi) · log(1− P (E
(m)
i ;W ))

+ yi · log(P (E
(m)
i ;W ))],

(m = 1, · · · , 4).

(7)

The unweighted multi-label loss for Side-5 is

L′
(5)
side(W ) =−

∑
k

∑
i∈I

[(1− ȳki ) · log(1− P (A
(5)
k,i ;W ))

+ ȳki · log(P (A
(5)
k,i ;W ))].

(8)

L′fuse(W ) can be similarly defined as

L′fuse(W ) =−
∑
k

∑
i∈I

[(1− ȳki ) · log(1− P (Af
k,i;W ))

+ ȳki · log(P (Af
k,i;W ))].

(9)

The total loss is the sum across all sides:

L′(W ) =
∑

m=1,··· ,5
L′

(m)
side(W ) + L′fuse(W ). (10)

We denote DDS trained using the unweighted loss L′(W )

as DDS-U.

4.4 Implementation Details

We implement our method using the well-known deep

learning framework of Caffe (Jia et al. 2014). The pro-

posed network is built on ResNet (He et al. 2016). We

follow CASENet (Yu et al. 2017) to change the strides of

the first and fifth convolution blocks from 2 to 1, so that

the output scales of five convolution blocks are 1, 1/2,

1/4, 1/8, and 1/8 compared to the input image, respec-

tively. The atrous algorithm is used to keep the receptive

field sizes the same as original ResNet. Specifically, from

the second convolution block to the fourth, we use dilated
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convolutions with a dilation rate of 2; for the fifth block,

we use a dilation rate of 4. We also follow CASENet to

pre-train the convolution blocks on the COCO dataset

(Lin et al. 2014).

The network is optimized with stochastic gradient de-

scent (SGD). Each SGD iteration chooses 10 images at

uniformly random and crops a 352×352 patch from each

of them. The weight decay and momentum are set to

0.0005 and 0.9, respectively. We use the learning rate

policy of “poly”, where the current learning rate equals

the base one multiplying (1 − curr iter/max iter)power.

The parameter of power is set to 0.9. We run 25k/80k

iterations (max iter) of SGD for SBD (Hariharan et al.

2011) and Cityscapes (Cordts et al. 2016), respectively.

For DDS-R training, the base learning rate is set to 5e-

7/2.5e-7 for SBD and Cityscapes, respectively. For DDS-

U training, the loss at the beginning of training is very

large. Therefore, for both SBD and Cityscapes, we first

pre-train the network with a fixed learning rate of 1e-8 for

3k iterations and then use the base learning rate of 1e-7

to continue training with the same settings as described

above. The upsampling operation is implemented with

deconvolution layers by fixing the parameters to perform

bilinear interpolation. All experiments are performed us-

ing an NVIDIA TITAN Xp GPU.

5 Experiments

5.1 Experimental Settings

Datasets. We evaluate our method on the SBD (Har-

iharan et al. 2011) and Cityscapes (Cordts et al. 2016)

datasets. SBD (Hariharan et al. 2011) comprises 11,355

images and corresponding labeled semantic edge maps

for 20 object classes. It is divided into 8498 training and

2857 testing images. We follow (Yu et al. 2017) to use

the training set to train our network and the test set for

evaluation. The Cityscapes dataset (Cordts et al. 2016) is

a large-scale semantic segmentation dataset with stereo

video sequences recorded in street scenarios from 50 dif-

ferent cities. It consists of 5000 images divided into 2975

training, 500 validation, and 1525 testing images. The

ground truth of the test set has not been published be-

cause it is an online competition for semantic segmenta-

tion labeling and scene understanding. Hence, we use the

training set for training and the validation set for testing.

Evaluation metrics. For performance evaluation, we

adopt several standard metrics with the recommended

parameter settings in the original papers. The first met-

ric is the benchmark protocol in (Hariharan et al. 2011)

It calculates the class-wise F-measure score that is the

harmonic mean of the precision and recall. We follow the

default settings with the matching distance tolerance of

0.02 for all datasets. The maximum F-measure at the op-

timal dataset scale (ODS) for each class and mean max-

imum F-measure across all classes are reported.

We also follow (Yu et al. 2018) to evaluate semantic

edges with stricter rules than the benchmark in (Hariha-

ran et al. 2011). The ground-truth maps are instance-

sensitive edges for (Yu et al. 2018). This differs from

(Hariharan et al. 2011) which uses instance-insensitive

edges. Besides, (Hariharan et al. 2011) thins the predic-

tion before matching by default. (Yu et al. 2018) further

proposes to match the raw predictions with unthinned

ground truths. This mode and the above conventional

mode are referred as “Raw” and “Thin”, respectively. In

this paper, we report both the “Thin” and “Raw” scores

for the benchmark protocol in (Yu et al. 2018). We follow

(Yu et al. 2018) to set the matching distance tolerance of

0.02 for the original SBD dataset (Hariharan et al. 2011),

0.0075 for the re-annotated SBD dataset (Yu et al. 2018),

and 0.0035 for the Cityscapes dataset (Cordts et al. 2016).

The image borders of 5-pixels width are ignored for the

SBD dataset, while not for the Cityscapes dataset.

We follow (Yu et al. 2018) to generate both “Thin”

and “Raw” ground truths for both instance-sensitive and

instance-insensitive edges. The produced edges can be

viewed as the boundaries of semantic objects or stuff in se-

mantic segmentation. We downsample the ground truths

and predicted edge maps of Cityscapes dataset to half

the original dimensions to speed up evaluation as in pre-

vious works (Acuna et al. 2019; Hu et al. 2019; Yu et al.

2017, 2018). For the performance comparison with base-

line methods, we use the default code and pre-trained

models released by the original authors to produce edges.

5.2 Ablation Studies

We first perform ablation studies on the SBD dataset (Yu

et al. 2018) to investigate various aspects of the proposed

DDS before comparing it with existing state-of-the-art

methods. To this end, we propose seven DDS variants:

– Softmax, which only adopts the top side (Side-5)

with a 21-class softmax loss function, such that the

ground-truth edges of each category do not overlap

and thus each pixel has one specific class label.

– Basic, which employs the top side (Side-5) for multi-

label classification, meaning that we directly connect

the loss function of L
(5)
side(W ) on res5c to train the

detector.

– DSN, which directly applies the deeply supervised

network architecture, in which each side of the back-

bone network is connected to a 1× 1 conv layer with
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Table 1 ODS F-measure (%) of DDS-R/DDS-U and ablation methods on the SBD dataset (Hariharan et al. 2011) using the
original benchmark protocol in (Hariharan et al. 2011). The best performance of each column is highlighted in bold.

Methods aer. bike bird boat bot. bus car cat cha. cow tab. dog hor. mot. per. pot. she. sofa train tv mean

Softmax 74.0 64.1 64.8 52.5 52.1 73.2 68.1 73.2 43.1 56.2 37.3 67.4 68.4 67.6 76.7 42.7 64.3 37.5 64.6 56.3 60.2
Basic 82.5 74.2 80.2 62.3 68.0 80.8 74.3 82.9 52.9 73.1 46.1 79.6 78.9 76.0 80.4 52.4 75.4 48.6 75.8 68.0 70.6
DSN 81.6 75.6 78.4 61.3 67.6 82.3 74.6 82.6 52.4 71.9 45.9 79.2 78.3 76.2 80.1 51.9 74.9 48.0 76.5 66.8 70.3
CASENet+S4 84.1 76.4 80.7 63.7 70.3 81.3 73.4 79.4 56.9 70.7 47.6 77.5 81.0 74.5 79.9 54.5 74.8 48.3 72.6 69.4 70.9
DDS\Convt 83.3 77.1 81.7 63.6 70.6 81.2 73.9 79.5 56.8 71.9 48.0 78.3 81.2 75.2 79.7 54.3 76.8 48.9 75.1 68.7 71.3
DDS\Convt† 83.6 75.4 78.9 59.9 69.7 79.7 71.9 77.2 54.7 72.0 42.8 75.5 77.1 71.9 79.1 53.4 76.4 46.9 72.6 66.9 69.3
DDS\DeSup 82.5 77.4 81.5 62.4 70.8 81.6 73.8 80.5 56.9 72.4 46.6 77.9 80.1 73.4 79.9 54.8 76.6 47.5 73.3 67.8 70.9
CASENet 83.3 76.0 80.7 63.4 69.2 81.3 74.9 83.2 54.3 74.8 46.4 80.3 80.2 76.6 80.8 53.3 77.2 50.1 75.9 66.8 71.4
DDS-R 85.4 78.3 83.3 65.6 71.4 83.0 75.5 81.3 59.1 75.7 50.7 80.2 82.7 77.0 81.6 58.2 79.5 50.2 76.5 71.2 73.3
DDS-U 87.2 79.7 84.7 68.3 73.0 83.7 76.7 82.3 60.4 79.4 50.9 81.2 83.6 78.3 82.0 60.1 82.7 51.2 78.0 72.7 74.8

Table 2 Ablation studies for the design of the information converter on the SBD dataset (Hariharan et al. 2011). The results are
ODS F-measure (%) scores using the original benchmark protocol in (Hariharan et al. 2011). The best performance of each column
is highlighted in bold.

Methods aer. bike bird boat bot. bus car cat cha. cow tab. dog hor. mot. per. pot. she. sofa train tv mean

1 conv unit 85.2 78.1 82.8 66.0 71.8 83.2 75.6 80.9 58.7 75.5 49.8 79.9 82.4 76.6 81.2 57.5 79.2 49.9 76.2 71.2 73.1
3 conv unit 85.8 78.7 83.5 66.0 71.8 83.6 75.4 81.4 58.9 76.9 49.5 80.4 83.0 76.7 81.7 58.3 80.2 51.3 76.0 71.5 73.5

w/o residual 85.3 79.0 83.7 65.5 70.9 83.6 75.2 81.1 58.6 75.5 49.9 79.3 82.3 76.8 81.3 57.7 79.3 50.6 76.6 70.9 73.1
DDS-R× 1/16 85.7 77.9 83.9 65.2 72.0 83.7 75.5 81.1 58.9 76.9 49.4 80.5 82.3 77.2 81.2 58.3 80.4 50.6 76.5 71.6 73.4
DDS-R× 1/4 85.4 78.1 83.5 65.1 71.7 83.2 74.8 81.5 59.0 75.3 49.0 79.5 82.3 76.3 81.2 57.8 80.3 50.3 76.6 70.5 73.1
DDS-R× 4 85.5 77.9 83.3 65.8 71.4 83.1 75.2 81.4 58.6 77.1 48.6 79.9 83.1 76.6 81.3 57.2 80.9 51.0 76.2 70.6 73.2
DDS-R 85.4 78.3 83.3 65.6 71.4 83.0 75.5 81.3 59.1 75.7 50.7 80.2 82.7 77.0 81.6 58.2 79.5 50.2 76.5 71.2 73.3

Table 3 Class-agnostic evaluation results on the SBD dataset
(Hariharan et al. 2011). The results are ODS F-measure (%)
scores using the original benchmark protocol in (Hariharan
et al. 2011).

Methods DSN CASENet DDS-R

ODS 76.6 76.4 79.3

K output channels for SED, and the resulting activa-

tion maps from all sides are fused to generate the final

semantic edges.

– CASENet+S4, which is similar to CASENet but

takes into consideration Side-4 by connecting it to a

1 × 1 conv layer to produce a single-channel feature

map, while CASENet only uses Side-1 ∼ Side-3 and

Side-5.

– DDS\Convt, which removes the information con-

verters in DDS, such that deep supervision is directly

imposed after each side.

– DDS\Convt†, which not only removes the information

converters in DDS but also applies a progressive train-

ing strategy, i.e., each block of the ResNet (He et al.

2016) along with their corresponding side-outputs is

trained separately and then frozen, to simulate the

effect of information converters.

– DDS\DeSup, which removes the deep supervision

from Side-1 ∼ Side-4 of DDS but retains the informa-

tion converters.

All these variants are trained using the reweighted loss

function Eq. (6) (except Softmax ) and the original SBD

dataset for a fair comparison.

We evaluate these variants and the original DDS and

CASENet (Yu et al. 2017) on the SBD dataset using the

original benchmark protocol in (Hariharan et al. 2011).

The evaluation results are shown in Table 1. We can see

that Softmax suffers from significant performance degra-

dation. Because the predicted semantic edges of neural

networks are usually thick and overlap with other classes,

it is improper to assign a single label to each pixel. Hence,

we apply multi-label loss in this paper. The Basic vari-

ant achieves an ODS F-measure of 70.6%, which is 0.3%

higher than DSN. This further verifies our hypothesis

presented in Section 3 that features from bottom layers

are not sufficiently discriminative for semantic classifica-

tion. Furthermore, CASENet+S4 performs better than

DSN, demonstrating that bottom convolutional features

are more suitable for binary edge detection. Moreover,

the F-measure of CASENet+S4 is lower than original

CASENet.

Why does DDS work well? The improvement from

DDS\DeSup to DDS-R shows that the success of DDS

does not arise due to more parameters (conv layers) but

instead from the coordination between deep supervision

and information converters. On the contrary, adding more

conv layers but without deep supervision may make net-

work convergence more difficult. Our conclusion is consis-

tent with (Yu et al. 2017), when comparing DDS\Convt
with the results of CASENet, namely that there is no

value in directly adding binary edge supervision to bot-

tom sides.
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Table 4 ODS F-measure (%) of DDS-R/DDS-U and other competitors on the SBD dataset (Hariharan et al. 2011). The best
performance of each column is highlighted in bold.

Methods aer. bike bird boat bot. bus car cat cha. cow tab. dog hor. mot. per. pot. she. sofa train tv mean

With the evaluation metric in (Hariharan et al. 2011)
InvDet 41.5 46.7 15.6 17.1 36.5 42.6 40.3 22.7 18.9 26.9 12.5 18.2 35.4 29.4 48.2 13.9 26.9 11.1 21.9 31.4 27.9
HFL-FC8 71.6 59.6 68.0 54.1 57.2 68.0 58.8 69.3 43.3 65.8 33.3 67.9 67.5 62.2 69.0 43.8 68.5 33.9 57.7 54.8 58.7
HFL-CRF 73.9 61.4 74.6 57.2 58.8 70.4 61.6 71.9 46.5 72.3 36.2 71.1 73.0 68.1 70.3 44.4 73.2 42.6 62.4 60.1 62.5
BNF 76.7 60.5 75.9 60.7 63.1 68.4 62.0 74.3 54.1 76.0 42.9 71.9 76.1 68.3 70.5 53.7 79.6 51.9 60.7 60.9 65.4
WS 65.9 54.1 63.6 47.9 47.0 60.4 50.9 56.5 40.4 56.0 30.0 57.5 58.0 57.4 59.5 39.0 64.2 35.4 51.0 42.4 51.9
DilConv 83.7 71.8 78.8 65.5 66.3 82.6 73.0 77.3 47.3 76.8 37.2 78.4 79.4 75.2 73.8 46.2 79.5 46.6 76.4 63.8 69.0
DSN 81.6 75.6 78.4 61.3 67.6 82.3 74.6 82.6 52.4 71.9 45.9 79.2 78.3 76.2 80.1 51.9 74.9 48.0 76.5 66.8 70.3
COB 84.2 72.3 81.0 64.2 68.8 81.7 71.5 79.4 55.2 79.1 40.8 79.9 80.4 75.6 77.3 54.4 82.8 51.7 72.1 62.4 70.7
CASENet 83.3 76.0 80.7 63.4 69.2 81.3 74.9 83.2 54.3 74.8 46.4 80.3 80.2 76.6 80.8 53.3 77.2 50.1 75.9 66.8 71.4
SEAL 85.2 77.7 83.4 66.3 70.6 82.4 75.2 82.3 58.5 76.5 50.4 80.9 82.2 76.8 82.2 57.1 78.9 50.4 75.8 70.1 73.1
DDS-R 85.4 78.3 83.3 65.6 71.4 83.0 75.5 81.3 59.1 75.7 50.7 80.2 82.7 77.0 81.6 58.2 79.5 50.2 76.5 71.2 73.3
DDS-U 87.2 79.7 84.7 68.3 73.0 83.7 76.7 82.3 60.4 79.4 50.9 81.2 83.6 78.3 82.0 60.1 82.7 51.2 78.0 72.7 74.8

With the “Thin” evaluation metric in (Yu et al. 2018)
CASENet 83.6 75.3 82.3 63.1 70.5 83.5 76.5 82.6 56.8 76.3 47.5 80.8 80.9 75.6 80.7 54.1 77.7 52.3 77.9 68.0 72.3
SEAL 84.5 76.5 83.7 64.9 71.7 83.8 78.1 85.0 58.8 76.6 50.9 82.4 82.2 77.1 83.0 55.1 78.4 54.4 79.3 69.6 73.8
STEAL 85.2 77.3 84.0 65.9 71.1 85.3 77.5 83.8 59.2 76.4 50.0 81.9 82.2 77.3 81.7 55.7 79.5 52.3 79.2 69.8 73.8
Gated-SCNN 81.6 70.5 73.9 60.2 64.1 82.5 72.9 78.0 51.8 67.3 42.2 74.6 74.3 71.4 77.6 49.3 72.3 46.6 73.7 57.0 67.1
DDS-R 85.6 77.1 82.8 64.0 73.5 85.4 78.8 84.4 57.7 77.6 51.9 81.2 82.4 77.1 82.5 56.3 79.5 54.5 80.3 70.4 74.1
DDS-U 86.5 78.4 84.4 67.0 74.3 85.8 80.2 85.9 60.4 80.8 53.9 83.0 84.4 78.8 83.9 58.7 81.9 56.0 82.1 73.0 76.0

DFF 86.5 79.5 85.5 69.0 73.9 86.1 80.3 85.3 58.5 80.1 47.3 82.5 85.7 78.5 83.4 57.9 81.2 53.0 81.4 71.6 75.4
DDS-R 86.7 79.6 85.6 68.4 74.5 86.5 81.1 85.9 60.5 79.3 53.5 83.2 85.2 78.8 83.9 58.4 80.8 54.4 81.8 72.2 76.0

With the “Raw” evaluation metric in (Yu et al. 2018)
CASENet 71.8 60.2 72.6 49.5 59.3 73.3 65.2 70.8 51.9 64.9 41.2 67.9 72.5 64.1 71.2 44.0 71.7 45.7 65.4 55.8 62.0
SEAL 81.1 69.6 81.7 60.6 68.0 80.5 75.1 80.7 57.0 73.1 48.1 78.2 80.3 72.1 79.8 50.0 78.2 51.8 74.6 65.0 70.3
STEAL 77.2 66.2 78.9 56.8 63.2 77.8 71.9 75.3 55.0 69.4 43.8 73.1 76.9 69.8 75.5 48.3 76.2 47.7 70.4 60.5 66.7
Gated-SCNN 70.4 56.9 64.8 49.6 54.7 70.5 61.9 66.0 46.9 55.3 36.7 61.0 62.4 59.9 67.6 39.5 68.2 40.1 59.6 49.1 57.1
DDS-R 80.5 68.2 78.6 56.4 67.6 80.9 72.7 77.6 55.4 70.9 47.0 74.9 77.5 70.0 77.4 50.9 75.7 50.7 74.5 65.5 68.6
DDS-U 83.8 71.8 82.1 61.7 70.4 82.9 76.9 80.8 58.5 77.1 49.9 77.8 81.5 73.5 81.0 52.9 81.3 53.0 76.3 69.1 72.1

DFF 77.6 65.7 79.3 57.2 65.5 78.5 72.0 76.2 53.7 71.9 42.5 72.0 77.0 68.8 75.1 50.6 76.6 46.9 71.9 63.6 67.1
DDS-R 79.2 67.6 77.7 58.7 65.9 81.0 72.9 76.6 55.8 70.3 47.6 74.0 76.9 68.8 76.5 52.5 77.0 48.8 72.8 65.7 68.3

Discussion about the proposed DDS. Intuitively,

employing different but “appropriate” ground truths to

bottom and top sides may enhance the feature learning in

different layers. Upon this, the learned intermediate rep-

resentations of different levels will tend to contain comple-

mentary information. However, in our case, it may be use-

less to directly add deep supervision of category-agnostic

edges to bottom sides, because bottom layers would re-

ceive two distinct supervision in the loss function of Eq.

(6), as discussed above. Instead, we show that with proper

architecture re-design, we can employ deep supervision

to significantly boost performance. The information con-

verters adopted in the proposed method play a central

role in guiding bottom layers for category-agnostic edge

detection. In this way, low-level edges from bottom lay-

ers encode more details, which then assist top layers to

better localize semantic edges. They serve as buffers to

separate the information content in the backbone layers.

This is essential, as they enable bottom layers to serve

as the basis of top layers to favor highly discriminative

feature maps for correct semantic classification.

The significant improvement provided by the proposed

DDS-R/DDS-U over CASENet+S4 and DDS\Convt demon-

strates the importance of our design, in which different

sides use different supervision after the information for-

mat conversion. We also note that DDS-U achieves bet-

ter performance than DDS-R by applying the unweighted

loss function and aligned edges (Yu et al. 2018).

Progressive training. DDS\Convt† adopts progressive

training to simulate the effect of information converters,
as suggested by a paper reviewer. However, from Table 1,

we can see that DDS\Convt† performs significantly worse

than other variants. This is because progressive training

cannot optimize DCNNs well. As widely acknowledged, it

is necessary for DCNNs to adopt end-to-end training for

deriving optimal parameters. In fact, progressive training

is an old way for DCNN training (Hinton et al. 2006).

After the invention of ReLU (Nair & Hinton 2010), batch

normalization (Ioffe & Szegedy 2015), and dropout (Sri-

vastava et al. 2014), progressive training has not been

used in the deep learning community due to its poor per-

formance. Hence, DDS\Convt† cannot simulate informa-

tion converters.

Discussion about the design of the information
converter. This paper mainly discusses and resolves the

distinct supervision targets in SED, and the core is the
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existence, not the specific format, of the information con-

verter. Hence we design a simple information converter

that consists of two sequential residual conv units. Here,

we conduct ablation studies for this design. Results are

shown in Table 2. We experiment with three different

converter designs: i) with only one conv unit; ii) with

three conv units; iii) without residual connections in the

conv units (plain conv units). It is easy to observe that

the information converter with three residual conv units

achieves the best performance, but it is only slightly bet-

ter than that with two residual conv units. To make a

trade-off between model complexity and performance, we

use two residual conv units as the default setting.

We also evaluate the effect of the number of parame-

ters of the information converter. Here, we change its size

by simply multiplying a constant to the number of chan-

nels of the default information converter. In this way, the

resulting variants have various model sizes but keep the

same structure. Specifically, we try three constants of 1/4,

1/2, and 2, leading to 1/16, 1/4, and 4 times of the default

model size, respectively. The results are depicted in Ta-

ble 2. It is interesting to find that the proposed method is

quite robust to different model sizes, demonstrating that

the improvement mainly comes from the existence of the

information converter, not its specific format.

Improvement of the edge localization. To demon-

strate if the introduced information converter actually

improves the localization of the semantic edges, we ignore

the semantic labels and perform class-agnostic evaluation

for the proposed DDS and previous baselines. Given an

input image, SED methods generate an edge probabil-

ity map for each class. To generate a class-agnostic edge

map for an image, at each pixel, we view the maximum

edge probability across all classes as the class-agnostic

edge probability at this pixel. For ground truth, at each

pixel, if any class has an edge on this pixel, this pixel is

viewed as a class-agnostic edge pixel. Then, we use the

standard benchmark in (Hariharan et al. 2011) for eval-

uation. From Table 3, we find DDS can significantly im-

prove the edge localization accuracy, which demonstrates

that imposing class-agnostic edge supervision at bottom

network sides can well benefit edge localization. After ex-

ploring DDS with several variants and establishing the

effectiveness of the approach, we summarize the results

obtained by our method and compare it with previous

state-of-the-art methods.

5.3 Evaluation on SBD

In this part, we compare DDS-R/DDS-U on the SBD

dataset (Hariharan et al. 2011) with previous state-of-the-

DSN CASENet DDS-R

Fig. 4 A qualitative comparison of DSN, CASENet and DDS-
R. First row: the original image, ground truth, and category
color codes. This image is taken from the SBD dataset (Har-
iharan et al. 2011). Second row: the semantic edges predicted
by different methods. Third row: an enlarged area of predicted
edges. Fourth row: the predicted horse boundaries only. Last
row: the predicted person boundaries only. Green, red, white,
and blue pixels represent true positive, false positive, true neg-
ative, and false negative points, respectively, at the threshold
of 0.5. Best viewed in color.

art methods, including InvDet (Hariharan et al. 2011),

HFL-FC8 (Bertasius et al. 2015b), HFL-CRF (Bertasius
et al. 2015b), BNF (Bertasius et al. 2016), WS (Khoreva

et al. 2016), DilConv (Yu & Koltun 2016), DSN (Yu

et al. 2017), COB (Maninis et al. 2017), CASENet (Yu

et al. 2017), SEAL (Yu et al. 2018), STEAL (Acuna et al.

2019), DFF (Hu et al. 2019), and Gated-SCNN (Takikawa

et al. 2019). Among them, DFF (Hu et al. 2019) shares

the same distinct supervision problem as CASENet, so we

also integrate DDS-R into DFF to demonstrate the gen-

eralizability of DDS-R. We adopt the same code imple-

mentation and training strategies for DFF-based DDS-R

as the original DFF. Gated-SCNN (Takikawa et al. 2019)

learns semantic edges for improving the training of se-

mantic segmentation. Hence, we retrain it for semantic

edge detection by removing its segmentation loss and dual

task loss, and the other settings are kept by default.

Results are summarized in Table 4. DDS-U achieves

the state-of-the-art performance across all competitors.
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Table 5 ODS F-measure (%) of DDS-R/DDS-U and other competitors on the re-annotated SBD dataset (Yu et al. 2018). The
best performance of each column is highlighted in bold.

Methods aer. bike bird boat bot. bus car cat cha. cow tab. dog hor. mot. per. pot. she. sofa train tv mean

With the “Thin” evaluation metric in (Yu et al. 2018)
CASENet 74.5 59.7 73.4 48.0 67.1 78.6 67.3 76.2 47.5 69.7 36.2 75.7 72.7 61.3 74.8 42.6 71.8 48.9 71.7 54.9 63.6
SEAL 78.0 65.8 76.6 52.4 68.6 80.0 70.4 79.4 50.0 72.8 41.4 78.1 75.0 65.5 78.5 49.4 73.3 52.2 73.9 58.1 67.0
STEAL 77.1 63.6 76.2 51.1 68.0 80.4 70.0 76.8 49.4 71.9 40.4 78.1 74.7 64.5 75.7 45.4 73.5 47.5 73.5 58.7 65.8
Gated-SCNN 74.8 58.4 65.9 47.1 63.0 74.5 65.6 71.6 41.4 61.6 39.4 70.8 65.0 57.4 72.9 44.1 69.3 44.0 64.5 50.5 60.1
DDS-R 79.7 65.2 74.6 51.8 71.9 81.3 72.5 79.4 49.2 75.1 43.9 77.8 75.3 65.2 78.9 51.1 74.9 54.1 75.1 61.7 67.9
DDS-U 81.4 67.6 77.8 55.7 70.9 82.0 74.5 81.2 52.1 76.5 47.2 79.6 77.3 68.1 80.2 53.4 78.5 56.1 76.6 63.9 70.0

DFF 78.6 66.2 77.9 53.2 72.3 81.3 73.3 79.0 50.7 76.8 38.7 77.2 78.6 65.2 77.9 49.4 76.1 49.7 74.7 62.9 68.0
DDS-R 78.8 68.0 78.3 55.0 71.9 82.4 74.6 80.5 52.0 74.0 42.0 78.3 77.1 66.1 78.5 49.3 77.5 49.3 76.9 64.8 68.8

With the “Raw” evaluation metric in (Yu et al. 2018)
CASENet 65.8 51.5 65.0 43.1 57.5 68.1 58.2 66.0 45.4 59.8 32.9 64.2 65.8 52.6 65.7 40.9 65.0 42.9 61.4 47.8 56.0
SEAL 75.3 60.5 75.1 51.2 65.4 76.1 67.9 75.9 49.7 69.5 39.9 74.8 72.7 62.1 74.2 48.4 72.3 49.3 70.6 56.7 64.4
STEAL 70.9 55.9 71.6 47.6 61.5 72.6 64.6 70.2 47.5 67.4 37.3 70.6 69.4 59.1 69.2 44.3 69.1 42.6 67.7 53.5 60.6
Gated-SCNN 66.8 50.1 59.4 44.2 54.9 64.6 57.9 62.2 39.6 50.9 35.9 59.5 56.5 48.9 64.2 41.3 64.0 35.6 54.2 45.5 52.8
DDS-R 75.6 61.1 71.0 49.5 67.7 76.1 67.2 74.2 48.8 69.1 40.4 72.5 71.7 60.4 73.4 49.6 70.6 49.5 71.9 59.4 64.0
DDS-U 78.4 62.7 75.6 53.4 67.8 78.5 71.4 77.4 51.3 72.8 44.5 74.7 74.8 64.3 76.3 51.9 77.3 51.9 73.7 62.9 67.1

DFF 72.3 58.4 73.4 48.7 65.4 74.8 66.4 72.5 47.8 70.1 34.7 69.2 71.5 58.7 70.2 47.5 71.2 43.7 69.5 59.1 62.3
DDS-R 74.2 61.2 71.3 51.9 65.5 77.3 68.0 73.8 50.0 66.0 39.4 70.8 70.5 58.9 71.8 49.0 72.6 44.7 71.6 62.2 63.5

Table 6 Average runtime per image on the SBD dataset (Har-
iharan et al. 2011).

Methods DSN CASENet SEAL DDS
Time (s) 0.171 0.166 0.166 0.175

The ODS F-measure of the proposed DDS-U is 1.7%

higher than SEAL and 3.4% higher than CASENet in

terms of the metric in (Hariharan et al. 2011), so deliv-

ering a new state-of-the-art. We can observe that DDS-

R can also improve the performance of DFF (Hu et al.

2019). Therefore, the proposed DDS can be viewed as

a general idea to improve SED. The improvement from

CASENet to DDS is also larger than the improvement of

STEAL. Moreover, InvDet (Hariharan et al. 2011) is a

non-deep learning based approach which shows compet-

itive results among other conventional approaches. COB

(Maninis et al. 2017) is a state-of-the-art category-agnostic

edge detection method, and combining it with semantic

segmentation of DilConv (Yu & Koltun 2016) produces

a competitive semantic edge detector. COB’s superiority

over DilConv reflects the effectiveness of its fusion algo-

rithm. The fact that both CASENet and DDS-R/DDS-U

outperform COB illustrates the importance of directly

learning semantic edges, because the combination of bi-

nary edges and semantic segmentation is insufficient for

SED. The average runtime of DSN, CASENet, and DDS

is shown in Table 6. DDS can generate state-of-the-art se-

mantic edges with only a slight reduction in speed.

Yu et al. (2018) discovered that some of the original

SBD labels are a little noisy, so they re-annotated 1059

images from the test set to form a new test set. We com-

pare our method with CASENet (Yu et al. 2017), SEAL

(Yu et al. 2018), STEAL (Acuna et al. 2019), Gated-

DSN-Horse DSN-Person CASENet DDS-R

Side-1

Side-2

Side-3

Side-4 Side5-Horse

Side-5 Side5-Person

Fig. 5 Side activation maps on the input image of Fig. 4. The
first two columns display DSN’s side class classification activa-
tion for the classes of horse and person, respectively. The last
two columns show the side features of Side-1 ∼ Side-3 and class
classification activation of Side-5 for CASENet and our DDS-
R, respectively. These images are obtained by normalizing the
activation to [0, 255]. Note that all activations are directly out-
putted without any non-linearization, e.g., sigmoid function.

SCNN (Takikawa et al. 2019), and DFF (Hu et al. 2019)

on this new dataset. The results are shown in Table 5.

DDS can improve the performance for both CASENet

and DFF in terms of all evaluation metrics. Specifically,

the ODS F-measures of DDS-U is 3.0% and 2.7% higher
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Table 7 ODS F-measure (%) of DDS-R/DDS-U and other competitors on the Cityscapes dataset (Cordts et al. 2016). The best
performance of each column is highlighted in bold.

Methods road sid. bui. wall fen. pole light sign veg. ter. sky per. rider car tru. bus tra. mot. bike mean

With the “Thin” evaluation metric in (Yu et al. 2018)
CASENet 86.2 74.9 74.5 47.6 46.5 72.8 70.0 73.3 79.3 57.0 86.5 80.4 66.8 88.3 49.3 64.6 47.8 55.8 71.9 68.1
SEAL 87.6 77.5 75.9 47.6 46.3 75.5 71.2 75.4 80.9 60.1 87.4 81.5 68.9 88.9 50.2 67.8 44.1 52.7 73.0 69.1
STEAL 87.8 77.2 76.4 49.5 49.2 74.9 73.2 76.3 80.8 58.9 86.8 80.2 69.0 83.2 52.1 67.7 53.2 55.8 72.8 69.7
Gated-SCNN 88.9 78.7 78.3 51.3 52.3 78.6 78.7 78.0 82.2 62.3 87.7 83.5 70.8 90.6 33.1 60.4 31.6 50.9 74.4 69.1
DDS-R 86.1 76.5 76.1 49.8 49.9 74.6 76.4 76.8 80.4 58.9 87.2 83.5 70.7 89.6 52.9 71.5 50.4 61.8 74.4 70.9
DDS-U 89.2 79.2 79.0 51.9 52.9 77.5 79.4 80.3 82.6 61.4 88.8 85.0 74.1 91.1 59.0 76.0 55.7 63.6 76.3 73.8
DFF 89.4 80.1 79.6 51.3 54.5 81.3 81.3 81.2 83.6 62.9 89.0 85.4 75.8 91.6 54.9 73.9 51.9 64.3 76.4 74.1
DDS-R 89.7 79.4 80.4 52.1 53.0 82.4 81.9 80.9 83.9 62.0 89.4 86.0 77.8 92.3 59.8 74.8 55.3 64.4 77.4 74.9

With the “Raw” evaluation metric in (Yu et al. 2018)
CASENet 66.8 64.6 66.8 39.4 40.6 71.7 64.2 65.1 71.1 50.2 80.3 73.1 58.6 77.0 42.0 53.2 39.1 46.1 62.2 59.6
SEAL 84.4 73.5 72.7 43.4 43.2 76.1 68.5 69.8 77.2 57.5 85.3 77.6 63.6 84.9 48.6 61.9 41.2 49.0 66.7 65.5
STEAL 75.8 68.5 69.8 34.9 36.1 73.4 66.7 67.7 73.5 49.7 78.7 72.9 59.1 76.5 35.3 52.8 37.7 43.8 63.7 59.8
Gated-SCNN 77.3 69.7 74.8 38.2 40.1 79.7 72.6 72.4 77.7 54.2 82.0 77.7 62.0 86.1 17.1 37.7 14.3 37.5 66.8 59.9
DDS-R 73.3 65.9 70.9 33.2 37.4 76.8 70.1 70.2 74.6 50.4 80.6 77.9 62.6 82.5 37.1 55.0 32.0 49.4 66.1 61.4
DDS-U 83.5 74.2 76.0 37.5 40.7 79.5 75.6 75.3 79.3 55.7 85.3 81.1 67.1 87.9 44.6 63.4 40.4 52.3 70.0 66.8

DFF 72.8 68.3 72.6 37.2 42.2 79.6 75.0 73.9 75.3 51.4 80.8 78.6 69.4 83.0 44.1 56.7 38.4 52.0 68.8 64.2
DDS-R 80.8 70.8 76.4 38.9 41.1 80.0 78.2 76.3 79.2 53.2 82.5 81.8 72.2 86.2 44.8 59.5 37.6 55.7 71.3 66.7

than recent SEAL (Yu et al. 2018) in terms of the “Thin”

and “Raw” metrics in (Yu et al. 2018), respectively. Note

that SEAL retrains CASENet with a new training strat-

egy: i.e., simultaneous alignment and learning. With the

same training strategy, DDS-R obtains a 4.3% and 8.0%

higher ODS F-measure than CASENet in terms of the

“Thin” and “Raw” metrics in (Yu et al. 2018), respec-

tively.

To better visualize the edge prediction results, an ex-

ample is shown in Fig. 4. We also show the normalized

images of side activation in Fig. 5. All activations are ob-

tained before sigmoid non-linearization. For a simple ar-

rangement of figures, we do not display Side-4 activation

of DDS-R. From Side-1 to Side-3, one can see that the fea-

ture maps of DDS-R are significantly clearer than those

of DSN and CASENet. Clear category-agnostic edges can

be found with DDS-R, while DSN and CASENet suffer

from noisy activation. For example, in CASENet, with-

out imposing deep supervision on Side-1 ∼ Side-3, edge

activation can barely be found. For category classification

activation, DDS-R can separate horse and person clearly,

while DSN and CASENet can not. Therefore, the infor-

mation converters also help to better optimize Side-5 for

category-specific classification. This further verifies the

feasibility of the proposed DDS architecture.

More qualitative examples are displayed in Fig. 6.

DDS-R/DDS-U can produce clearer and smother edges

than other detectors. In the second column, it is interest-

ing to note that most detectors can recognize the bound-

aries of the objects with missing annotations, i.e., the

obscured dining table and human arm. In the third col-

umn, DDS-R/DDS-U can generate strong responses at

the boundaries of the small cat, while all other detectors

only have weak or noisy responses. This demonstrates

that DDS is more robust for detecting small objects. We

also find that DDS-U and SEAL can generate thinner

edges, suggesting that training with regular unweighted

sigmoid cross entropy loss and refined ground-truth edges

is helpful for accurately locating thin boundaries.

5.4 Evaluation on Cityscapes

The Cityscapes dataset (Cordts et al. 2016) is more chal-

lenging than SBD (Hariharan et al. 2011). The images

in Cityscapes are captured in more complicated scenes,

usually in urban street scenes in different cities. There

are more objects, especially overlapping objects, in each

image. Hence, we also adopt Cityscapes for evaluating se-

mantic edge detectors using the “Thin” and “Raw” met-

rics in (Yu et al. 2018). We compare DDS with CASENet

(Yu et al. 2017), SEAL (Yu et al. 2018), STEAL (Acuna

et al. 2019), DFF (Hu et al. 2019), and Gated-SCNN

(Takikawa et al. 2019).

The evaluation results are reported in Table 7. Both

DDS-R and DDS-U significantly outperform other meth-

ods in terms of both “Thin” and “Raw” metrics. With

the same loss function, the ODS F-measure of DDS-R is

2.8% higher than CASENet in terms of the “Thin” metric

in (Yu et al. 2018), and DDS-U is 4.7% higher than SEAL

correspondingly. STEAL and Gated-SCNN achieve simi-

lar performance, and both are much worse than DDS-R

and DDS-U. Note that Gated-SCNN is the state-of-the-

art semantic segmentation model, suggesting that it is

necessary to study semantic edge detection rather than

directly applying existing related techniques. Some qual-

itative comparisons are shown in Fig. 7. We can see that
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aeroplane bicycle bird boat bottle bus car cat chair cow
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Fig. 6 Some examples from SBD dataset (Hariharan et al. 2011). From top to bottom: color codes, original images, ground
truth, DSN, CASENet (Yu et al. 2017), SEAL (Yu et al. 2018), STEAL (Acuna et al. 2019), DFF (Hu et al. 2019), our DDS-R
and DDS-U. We follow the color coding protocol in (Yu et al. 2018).
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road sidewalk building wall fence pole traffic light traffic sign vegetation terrain
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Fig. 7 Some examples from Cityscapes dataset (Cordts et al. 2016). From top to bottom: color codes, original images, ground
truth, CASENet (Yu et al. 2017), SEAL (Yu et al. 2018), STEAL (Acuna et al. 2019), DFF (Hu et al. 2019), our DDS-R and
DDS-U. We follow the color coding protocol in (Yu et al. 2018). The produced edges of DDS are smoother and clearer.
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DDS-R/DDS-U produces smoother and clearer edges in

various complicated scenarios, which is brought by the

low-level binary edge supervision of DDS.

6 Conclusion

In this paper, we study the SED problem. Previous meth-

ods suggest that deep supervision is not necessary (Hu

et al. 2019; Yu et al. 2017, 2018) for SED. Here, we

show that this is false and, with proper architecture re-

design, that the network can be deeply supervised to im-

prove detection results. The core of our approach is the

introduction of the novel information converter, which

plays a central role in resolving the distinct supervision

targets by successfully applying category-aware edges at

the top side and the category-agnostic edges at bottom

sides. The proposed DDS achieves state-of-the-art per-

formance on the popular SBD (Hariharan et al. 2011)

and Cityscapes (Cordts et al. 2016) datasets. Our idea

to leverage deep supervision for training a deep network

opens up a new path towards putting more emphasis uti-

lizing rich feature hierarchies from deep networks for SED

as well as other high-level tasks such as semantic seg-

mentation (Chen et al. 2016; Maninis et al. 2017), object

detection (Ferrari et al. 2008; Maninis et al. 2017), and

instance segmentation (Hayder et al. 2017; Kirillov et al.

2017).

Future Work. Besides category-agnostic edge detection

and SED, relevant tasks commonly exist in computer vi-

sion (Zamir et al. 2018), such as segmentation and saliency

detection, object detection and keypoint detection, edge

detection and skeleton extraction. Building multi-task net-

works to solve relevant tasks is a good way to save com-

putational resources in practical applications (Hou et al.

2018). However, distinct supervision targets usually pre-

vent this goal, as shown in this paper. From this point

of view, the proposed DDS provides a new perspective to

multi-task learning. In the future, we plan to leverage the

idea of information converter for more relevant tasks.
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