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Abstract
The Average Mixing Kernel Signature is a novel spectral signature for points on non-rigid three-dimensional shapes. It is
based on a quantum exploration process of the shape surface, where the average transition probabilities between the points
of the shape are summarised in the finite-time average mixing kernel. A band-filtered spectral analysis of this kernel then
yields the AMKS. Crucially, we show that opting for a finite time-evolution allows the signature to account for a mixing of
the Laplacian eigenspaces, similar to what is observed in the presence of noise, explaining the increased noise robustness of
this signature when compared to alternative signatures. We perform an extensive experimental analysis of the AMKS under a
wide range of problem scenarios, evaluating the performance of our descriptor under different sources of noise (vertex jitter
and topological), shape representations (mesh and point clouds), as well as when only a partial view of the shape is available.
Our experiments show that the AMKS consistently outperforms two of the most widely used spectral signatures, the Heat
Kernel Signature and the Wave Kernel Signature, and suggest that the AMKS should be the signature of choice for various
compute vision problems, including as input of deep convolutional architectures for shape analysis.

Keywords Shape representation · Shape analysis · Partial Matching · Quantum walks

1 Introduction

Shape descriptors are used in a variety of shape analysis
tasks (Aubry et al. 2011a; Gasparetto et al. 2015; Cosmo
et al. 2016a, 2017; Rodolà et al. 2017a, b; Vestner et al.
2017; Huang et al. 2018), from surface registration to shape
retrieval, and as such they have long been the subject of
intense research in the computer vision community. A good
descriptor (also known as signature) is able to effectively
characterize the local and global geometric information
around each point on the surface of a shape while remaining
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invariant to rigid transformations, stable against non-rigid
ones, and robust to various sources of noise. However, the
variety and high complexity of 3D shape representations, as
well as the type of transformations they can undergo, make
the development of such a descriptor particularly challeng-
ing. A further issue is that of potential incompleteness of
the shape as a result of occlusions or partial view during the
shape acquisition process (Rodolà et al. 2017a). In this case,
an ideal signature would still be able to capture the local
shape topology while accounting for the partiality induced
by the missing parts.

Traditionally, the Heat Kernel Signature (HKS) (Sun et al.
2009) and the Wave Kernel Signature (WKS) (Aubry et al.
2011b) are two of the most widely used descriptors for shape
analysis. Both signatures attempt to capture the local shape
topology by analysing the eigenvalues and eigenfunctions of
the Laplace–Beltrami operator of a shape. They are part of a
broader family of descriptors known as spectral descriptors.
From the perspective of physics, the HKS characterizes the
points of a shape by the way heat dissipates over its surface.
The WKS, in contrast, measures the probability of a quan-
tum particle with a certain energy distribution to be located
at a given point on the shape. Compared to the HKS, the
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(a) T = 1 (b) T = 102 (c) T = 104

Fig. 1 The average transition probability of a quantum walk starting
from one point and spreading to the rest of the shape for increasing
values of the stopping time T (left to right), for a full shape (top row),
partial shape (second row), range maps (third row), and point cloud
(bottom row). More (less) intense shades of red correspond to higher
(lower) probability. This is the information contained in the row of the
average mixing matrix (Eq. 18) indexed by the starting point. Note the
presence of grey bands when T = 1 (corresponding to points with zero
probability of being visited) which are a result of the interference effects
typical of quantum walks

WKS has been shown to exhibit superior feature localization.
Indeed, by exploiting interference effects, quantumprocesses
can detect the presence of new structures when compared to
classical diffusion processes (Rossi et al. 2012, 2013; Bai
et al. 2015; Rossi et al. 2015; Minello et al. 2019).

The Average Mixing Kernel Signature (AMKS) (Rossi
et al. 2016; Cosmo et al. 2020) bears similarities with both
the HKS and the WKS, as it is based on a quantum mechani-
cal analogue of the heat kernel, known as the average mixing
kernel (Cosmo et al. 2020). Like the WKS, the AMKS is
based on the idea of letting a quantum system evolve accord-
ing to the Schrödinger equation, and band-filters are used to
compute the signature for a selected set of energies. However,
unlike the WKS, the AMKS is not based on the infinite-time
average of a single particle evolution, and the band filter is
not determined by the initial state. Crucially, theAMKSnatu-
rally accounts for the noise-induced mixing of the Laplacian
eigenspaces, and it outperforms both the HKS and the WKS
in a shape matching task.

In this paper we go beyond the seminal work of Cosmo
et al. (2020) and we present a thorough discussion and anal-
ysis of the properties and performance of the AMKS. We
start by discussing the quantum nature of this signature and
we propose a simple yet effective way to modify it in order
to cope with shape partiality. We perform an extensive anal-
ysis of this signature under a variety of previously untested
problem scenarios, ranging from the presence of topological
noise to the use of alternative shape representations (point
clouds). Our experiments show that the AMKS consistently
outperforms both the HKS and the WKS on all these prob-
lems, with nearly a 100% performance improvement with
respect to these signatures when applied on partial shapes.

The remainder of this paper is organised as follows. Sec-
tion 2 provides a brief overview of the relatedwork. Section 3
discusses the quantum mechanical background necessary to
then introduce the proposed signature in Sect. 4. Section 5
explains the relation between the AMKS and the noise-
induced mixing of the Laplacian eigenspaces, while Sect. 6
discusses the computationof the signature. InSect. 7we show
how theAMKS can be adapted towork on partial shapes, and
in Sect. 8 we perform an extensive set of experiments to test
the AMKS in a wide range of problem scenarios. Finally,
Sect. 9 concludes the paper.

2 RelatedWork

We divide existing contributions in two main categories:
(1) spectral-based descriptors, to which the proposed signa-
ture belongs, and (2) learning-based signatures, which have
been gaining increasing popularity. While presenting a com-
prehensive review of spectral and learning-based signatures
is beyond the scope of this paper, we refer the reader to the
excellent surveys of Masci et al. (2015) and Rostami et al.
(2019) for a more in-depth discussion of both categories of
signatures.

2.1 Spectral-Based Signatures

As the name suggests, spectral-based signatures attempt to
capture the topology of a shape by looking at the eigenfunc-
tions ofmeshoperators such as the discreteLaplace–Beltrami
operator. These signatures can be further separated into
two main categories, local and global. Local descriptors are
defined on each point of a shape and try to characterise the
local structure around these. Global descriptors, on the other
hand, are defined on the entire shape and can be often com-
puted by aggregating local descriptors over it.

Shape-DNA (Reuter et al. 2006) is one of the simplest and
first examples of spectral descriptor and it corresponds to the
truncated sequence of the Laplacian eigenvalues, sorted in
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ascending order. This is a global descriptor and, as such,
cannot be used for local or partial shape analysis. Global
Point Signature (GPS) (Rustamov 2007) is defined as a vec-
tor of scaled Laplace–Beltrami eigenfunctions evaluated at a
given point on the shape surface. Unfortunately, it has been
shown that eigenfunctions corresponding to pairs of eigen-
values with close values can switch, meaning that the GPS
of points across different shapes is not easily comparable.

The Heat Kernel Signature (HKS) (Sun et al. 2009) over-
comes this problem by taking an exponentialy weighted sum
of the squares of the eigenfunctions. The underpinning idea
is to describe each point of a shape with the amount of heat
retained over time. More precisely, the HKS can be seen as
performing a low-pass filtering of the spectral information
parametrized by the diffusion time t . The result is a signa-
ture that is invariant to isometric transformations, robust to
small perturbations, andwhere theHKSof points on different
shapes are commensurable.

The HKS is dominated by low frequency information,
which corresponds to macroscopic properties of the shape.
This means missing out on highly discriminative small-scale
information that can be crucial in matching tasks. The Wave
Kernel Signature (WKS) (Aubry et al. 2011b) solves this
problem by replacing the low-pass filter with a band-pass fil-
ter, that better separates the frequency information related
to different spatial scales. Stated otherwise, the WKS is
parametrised using frequency rather than time (as in the
HKS), allowing it to access and control high frequency infor-
mation as well.

2.2 Learning-Based Signatures

While spectral signatures remain widely used in the shape
analysis community due to their efficacy and ease of com-
putation, researchers have recently started turning their
attention to learning-based or data-driven descriptors.

Litman and Bronstein (2013) introduced a family of spec-
tral descriptors that generalizes the HKS and the WKS, and
proposed a learning scheme to construct the optimal descrip-
tor for a given task. Corman et al. (2014) learn optimal
descriptors from a given set of shape correspondences. In
particular, they use a functional maps representation where
spectral signatures (e.g., HKS or WKS) are used as probe
functions that are meant to constrain the degree of deforma-
tion between corresponding points.

Fang et al. (2015) use a deep autoencoder to construct a
global descriptor for shape retrieval. In this framework, one
of the first processing steps is the extraction of the HKS,
which is then fed to the autoencoder itself. Masci et al.
(2015) extend convolutional neural networks (CNNs) to non-
Euclidean manifolds, where a local geodesic patch is defined
around each point and a filter is convolved with vertex-level
functions (e.g., HKS and WKS). Huang et al. (2018) omit

this preprocessing step by designing a 2D CNN architec-
ture where each point on the shape surface is rendered using
multi-scale 2D images.

Finally, while the success of CNNs in computer vision
has certainly shifted the interest of the community toward
learning-based descriptors, it should be noted that spectral-
based signatures are still often used as the first processing
step in a modern (deep) learning framework (Huang et al.
2018; Rostami et al. 2019).

3 QuantumMechanical Background

In this section we introduce the quantum mechanical con-
cepts underpinning our signature, i.e., continuous-time quan-
tum walks and the average mixing kernel.

3.1 Quantum States

Quantum mechanics differs from classical mechanics in that
a system can be in a superposition of states, which is repre-
sented through a complex linear combination of the classical
states of the system. For example, let S = {s1, . . . , sn} be a
(discrete) domain where si are the possible classical states,
the quantum state over the same domain is represented by a
vector of amplitudes a ∈ C

n , such that a†a = 1 and |ai |2
represents the probability of observing the system in the state
si . This can be generalized to a continuous domain by sub-
stituting a with a function f : S → C such that

∫
S
f (x)∗ f (x) dx = 1 . (1)

The Dirac notation (also known as bra-ket notation) is a
standard notation used for describing quantum states. Here a
ket vector |a〉 denotes a pure quantum state and is a complex
valued column vector (function) of unit Euclidean length, in
a Hilbert space. Its conjugate transpose is a bra (row) vector,
denoted as 〈a|. As a result, the inner product between two
states |a〉 and |b〉 is written 〈a|b〉, while their outer product
is |a〉 〈b|.

3.2 QuantumMeasurements

Another notable difference between classical and quantum
systems is the observation process.

First, the observation is statistical in nature, with the wave
function, which represents all the information we can have
about a quantumsystem, dictating the probabilities of observ-
ing a particular value from a measurement on the system.
Further, the statistical nature of the system cannot be reduced
to an unknown hidden value, as quantum systems do not sat-
isfyBell’s inequality (Bell 1987), an inequality satisfiedbyall
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classical hidden-value systems. Second, observations change
the system state by collapsing the wavefunction on the states
compatible with the observed value.

Consider a quantum system in a state |ψ〉. While in clas-
sical mechanics an observable (i.e., a measurable physical
quantity) is a real-valued function of the system state, in
quantum mechanics an observable is a self-adjoint opera-
tor acting on |ψ〉, such that the possible outcomes of an
observation correspond to the eigenvalues of the associated
self-adjoint operator, while the eigenvectors (or eigenfunc-
tions if the domain is continuous) form a basis of the states
consistent with each outcome.

In this context, observing a state corresponds to perform-
ing aprojectivemeasurement of |ψ〉,where thewave function
collapse results in an orthogonal projection on the space
spanned by the eigenvectors corresponding to the eigenvalue
associated with the outcome. Given the observable O , we
consider its spectral decomposition O = ∑

λ λPλ, where

Pλ = �λ�
†
λ =

∑
i

φλi (φλi )
† (2)

is the projector on the subspace spanned by the eigenvectors
associated with eigenvalue λ, and φλi refers to the i-th eigen-
vector associated with eigenvalue λ. Then, the outcome λ is
observed with probability p(λ) = 〈ψ | Pλ |ψ〉 and after such
observation, the state of the quantum system changes to

∣∣ψ̄ 〉 = Pλ |ψ〉
‖Pλ |ψ〉 ‖ , (3)

where ‖ |ψ〉 ‖ = √〈ψ |ψ〉 denotes the norm of |ψ〉.

3.3 The Schrödinger Equation

We adopt the Schrödinger picture of the dynamics of a quan-
tum system, inwhich themeasurement operators are constant
and thewave function varies in time.Here, time is a parameter
external to the system and thus this is a non-relativistic model
thatworks in the low-speed limit.According to this picture, in
absence of ameasurement, thewave function evolves accord-
ing to the well-known Schrödinger equation

d

dt
|ψ〉 = − i

h̄
H |ψ〉 . (4)

The solution to this equation is given by

|ψ(t)〉 = U (t) |ψ(0)〉 , (5)

where U (t) = exp(− i
h̄ tH) is a unitary operator. Note that

U (t) shares the same eigenvectors ofH, and for each eigen-

value λ of H there exists a corresponding eigenvalue e− i
h̄ tλ

of U (t).

3.4 From Classical to QuantumWalk and Diffusion

Let G = (V , E) denote an undirected graph with vertex
set V and edge set E ⊆ V × V . Classical and quantum
walks on G are both defined as vertex visiting processes
where the movements of the walker are constrained by the
edge structure of the graph. Crucially, despite some apparent
similarities in their definition, the dynamics of continuous-
time quantum walks and continuous-time random walks are
fundamentally different (Kempe 2003).

Looking at the continuous domain counterparts, given a
manifoldM, a diffusion process governed by the heat equa-
tion determines how a classical distribution evolves overM,
while a quantumevolution evolves thewave function over the
same domain. Again, the two processes share some apparent
similarities, but provide fundamentally different dynamics.

3.4.1 Classical RandomWalks and the Heat Equation

In the classical case, the state of the walk is described by a
time-varying probability distribution, representing the prob-
ability of locating the walker at the various vertices of the
graph over time. In the case of a continuous diffusion pro-
cess, the distribution is substituted by a probability density
function.

Let M denote a manifold, the dynamics of the diffusion
process follow the heat equation

∂

∂t
f (t) = −�M f (t) , (6)

where f (t) : M → R denotes the heat distribution at time
t and �M is the Laplace–Beltrami operator associated with
M.

When the graph is obtained by discretizing an underlying
continuous domain, as in the case of the mesh representation
of shapes, and a suitable discretization of the Laplace–
Beltrami operator is used, the continuous-time random walk
corresponds to an approximation of the heat diffusion pro-
cess on the shape surface, with the only difference that the
continuous-domain heat distribution f (t) is replaced by the
discrete state vector p(t) ∈ R

n , with n denoting the number
of vertices of the graph. For this reason, wewill analyze them
together and use the formalism interchangeably throughout,
with the only caveat that the discretization induces a corre-
sponding dot-product over the states taking into account the
variation in sizes of the discretization domains.

Given an initial heat distribution f (0) (or, similarly, an
initial state vector p(0)), the heat kernel

H(t) = exp(−t�M) (7)
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allows one to determine the heat distribution at time t , i.e.,

f (t) = H(t) f (0) . (8)

Assuming at time t = 0 all the heat is concentrated on a single
point v ofM, the heat operator kernel (Sun et al. 2009) H(t)
determines the amount of heat transferred from v to the other
points ofM during the time t . Similarly, in the discrete case
of a graph, H(t) is a doubly-stochastic matrix and its entries
H(t) = (hu,v) measure the probability of a transition from
v to u in t units of time.

Most importantly, from H(t) = e−t�M we see that the
heat operator and the Laplace–Beltrami operator share the
same eigenfunctions and if λ is an eigenvalue of �M then
e−λt is an eigenvalue of H(t), allowing one to compute the
amount of heat (or probability, in the discrete case of random
walks) transferred from one point of the surface to the other
as

kuv =
∞∑
i=0

e−λi tφi (u)φi (v) , (9)

where λi and φi denote the i-th eigenvalue and eigenfunction
of �M, respectively.

From this we can clearly see that the process has station-
ary distributions on the kernel of �M, i.e., the subspace
spanned by the eigenfunctions of �M corresponding to the
zero eigenvalue.

3.4.2 QuantumWalks and the Schrödinger Equation

Moving to the quantum realm, continuous-time quantum
walks bear many similarities with their classical counterpart,
yet they behave profoundly differently. The probability den-
sity function f (t) is replaced by the complex valued wave
function of the quantumparticlemoving freely over the graph
or the manifold. An important consequence of this is that the
state of the walker does not lie in a probability space, but on
a complex hyper-sphere, which in turns allows interference
to take place (Portugal 2013).

LetMdenote themanifold representing the shape surface.
The state of a quantum particle at time t is given by the wave
function |ψ(t)〉, defined as an element of the Hilbert space of
functionsmappingpoints inM toC, such that 〈ψ(t)|ψ(t)〉 =
1 for all times t .

In the discrete domain, the state of the walker at time t is
denoted as

|ψ(t)〉 =
∑
u∈V

αu(t) |u〉 , (10)

where |u〉 denotes the state corresponding to the vertex u and
αu(t) ∈ C is the corresponding amplitude. Moreover, we

have that αu(t)α∗
u(t) gives the probability that at time t the

walker is at the vertex u, and thus
∑

u∈V αu(t)α∗
u(t) = 1 and

αu(t)α∗
u(t) ∈ [0, 1], for all u ∈ V , t ∈ R

+.
The evolutionof thewalker is governedby theSchrödinger

equation

∂

∂t
|ψ(t)〉 = −i�M |ψ(t)〉 , (11)

where the Laplace–Beltrami operator plays the role of a time-
independent Hamiltonian. Note that for simplicity here we
assume units that guarantee h̄ = 1.

The solution to this equation, as we have seen before, is
given by

|ψ(t)〉 = exp(−it�M) |ψ(0)〉 . (12)

The dynamics of the classical and quantum processes
described above, albeit apparently similar in the definition,
are fundamentally different. While in the classical case heat
dissipates with time and the walker reaches a steady state, in
the quantum case the wave function propagates through the
domain and the walker state keeps oscillating.

3.5 AverageMixingMatrix

Godsil (2013) introduces the concept of mixing matrix
MG(t) = (muv) as the probability that a quantum walker
starting at node v is observed at node u at time t . Given the
eigenvalues λ of the Hamiltonian and the associated projec-
tors Pλ, the unitary operator inducing the quantum walk can
be rewritten as

U (t) =
∑
λ∈3

e−iλt Pλ , (13)

where 3 is the set of unique eigenvalues of the Hamiltonian.
Given Eq. 13, we canwrite themixing kernel for themani-

foldM in terms of the Schur-Hadamard product (also known
as entry-wise product and denoted by the symbol ◦) of the
projectors

MM(t) =
∑
λ1∈3

∑
λ2∈3

e−i(λ1−λ2)t Pλ1 ◦ Pλ2 . (14)

Recall that, while in the classical case the probability dis-
tribution induced by a random walk converges to a steady
state, this does not happen in the quantum case. However,
we will show that we can enforce convergence by taking a
time-average even if U (t) is norm-preserving. Let us define
the average mixing kernel (Godsil 2013) at time T as
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M̂M;T = 1

T

∫ T

0
MM(t) dt

=
∑
λ1∈3

∑
λ2∈3

Pλ1 ◦ Pλ2

1

T

∫ T

0
e−i(λ1−λ2)t dt, (15)

which has solution

M̂M;T =
∑
λ1∈3

∑
λ2∈3

Pλ1 ◦ Pλ2

i(1 − eiT (λ2−λ1))

T (λ2 − λ1)
. (16)

In the limit T → ∞, Eq. 16 becomes

M̂M;∞ =
∑
λ∈3

Pλ ◦ Pλ . (17)

Finally, we note that the average mixing kernel can be
rewritten as follows, i.e.,

M̂M;T =
∑
λ1∈3

∑
λ2∈3

Pλ1 ◦ Pλ2

i(1 − eiT (λ2−λ1))

T (λ2 − λ1)

=
∑
λ1∈3

∑
λ2∈3

Pλ1 ◦ Pλ2

sin(T (λ2 − λ1))

T (λ2 − λ1)

=
∑
λ1∈3

∑
λ2∈3

Pλ1 ◦ Pλ2 sinc(T (λ2 − λ1)), (18)

where sinc(x) = sin(x)
x is the unnormalized sinc function. In

Sect. 4 we will show that the noise robustness of our signa-
ture is closely related to the rate of mixing of the eigenspaces
given by the sinc component when we take a finite time aver-
age as in Eq. 18, instead of an infinite time average as in
Eq. 17. In Fig. 1wevisualize the entries of the averagemixing
matrix computed according to Eq. 18 on a mesh of n vertices
sampled from an underlying shape, for different choices of
the stopping time T .

4 AverageMixing Kernel Signature

The average mixing matrix provides observation probabil-
ities on node j for a particle starting at node i . In doing
so, it integrates contributions at all energy levels. In order
to construct a signature, we decompose the spectral contri-
butions to the matrix into several bands so as to both limit
the influence of the noise-dominated high-frequency compo-
nents, and create a more descriptive signature as a function
of energy level, as first proposed by Aubry et al. (2011b). We
do this selectively reducing the spectral components at fre-
quency λ according to an amplitude fE (λ) for a given target

energy level E , obtaining the band-filtered average mixing
matrix

AMM(E) =
∑
λ1,λ2

Pλ1 ◦ Pλ2 sinc(T (λ2 − λ1)) fE (λ1) fE (λ2),

(19)

where fE (λ) = e
−(E−log λ)2

2σ2 , with E being a band parameter
as in the WKS.

Quantum-mechanically, this is equivalent to the introduc-
tion of a filter or an annihilation process that eliminates
from the ensemble walkers at energy-eigenstate μ with rate
1 − fE (μ), just before the final observation on the vertex
basis |i〉. This is equivalent to an observation on the states
images of the projectors Pμ and I − Pμ, with

1− fE (μ)
〈 j |Pμ| j〉 being

the probability that the particle starting at node j is discarded
from the ensemble if observed in Pμ.

The ensemble at time t of the particle starting at node j
after the annihilation is

∑
λ1,λ2

e−i(λ1−λ2)t
(
I −

∑
μ1

(1 − fE (μ1))Pμ1

)(
Pλ1 | j〉 〈 j | Pλ2

)

(
I −

∑
μ2

(1 − fE (μ2))Pμ2

)

=
∑
λ1,λ2

e−i(λ1−λ2)t fE (λ1) fE (λ2)
(
Pλ1 | j〉 〈 j | Pλ2

)
, (20)

resulting, after time integration, in the band-filtered average
mixing matrix (Eq. 19). To obtain the descriptor, we take the
self-propagation, that is the probability that a particle in state
u is still observed in u after the evolution, as a function of
the energy level E , normalized so that the integral over all
energies is 1, i.e.,

AMKSu(E) = AMM(E)uu∑
λ1,λ2

fE (λ1) fE (λ2)
. (21)

4.1 Relationship withWKS

Our construction bears clear similarities with the WKS,
namely the fact that it is based on the evolution of a quantum
system under the Schrödinger equation, the time average is
taken to move towards a steady-state distribution, and the
fact that we adopt the same energy band-filtering over which
the signature is defined.

However, there are some stark differences as well. First,
band-filtering is not determined by an initial state, like in
WKS, but it is posed as a pre-measurement process on the
particle ensemble, similar to adding filters in front of a light
detector. This is not only cleaner, but physically much easier
to implement. A consequence is that we map initial to final
states, thus defining a kernel as inHKS, in contrast withWKS
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thatmaps energybands to point distributions. This potentially
offers better localization and opens the possibility to a more
descriptive signature.

Mathematically, the way the kernel is defined is different
also in the infinite-time limit: while WKS is fundamentally a
function of the square of the entries of the Laplacian eigen-
vectors, our signature results in their fourth power. This, in
turn, creates a more distinctive descriptor while at the same
time flattening small and possibly noise-induced variations.
Finally, instead of taking the infinite-time average of the evo-
lution of a single particle, we look at the statistical behavior
of the finite time average of an ensemble of particles. This
increases the robustness to noise, as it imposes a mixing of
the eigenspaces at a rate similar to the effect of noise.

5 Perturbation Analysis

In order to understand the advantage of the use of finite-time
averages, we perform a perturbation analysis on the eigen-
decomposition of the Laplace–Beltrami operator, showing
that first order perturbation introduces a mixing of the
eigenspaces similar towhat is obtained in the finite-time aver-
aging of the ensemble.

Recall that that the stability analysis presented by Aubry
et al. (2011b) performs a perturabion analysis on the eigen-
values of the Laplace–Beltrami operator, showing that the
ε-perturbation Ek(ε) of the energy level (eigenvalue) Ek sat-
isfies

log

(
Ek(ε)

Ek

)
= εck + O(ε2) (22)

where ck is a constant. This is what justifies the use of the
lognormal kernel in the definition of the WKS. It is worth
noting that the result does not depend on the signature, but
simply quantifies the perturbative varaibility/indetermination
of the energy levels of the Laplace–Beltrami operator. As
such, the analisys can be taken as is for any spectral signature
gated on the energy distribution. For this reason we are using
the same lognormal kernel for our filters, thus ensuring that
their analysis still holds for our signature.

Here, however, we want to go beyond the perturbative
analysis of the spectrum alone, analyzing the perturbation
of the eigenvectors as well, and showing that the effect of a
perturbation on the Laplace–Beltrami operator causes a mix-
ing of the eignespaces that is dampened by a function of the
inverse difference between the corresponding eigenvalues.
More formally, the eigenvector φi associated with the eigen-
value λi receives a component from the eigenvector φ j that
is proportional to 1/(λi − λ j ). Note that asymptotically this
is the same behavior of the sinc function in our signature,
which can then be seen as one sample from the same distri-

bution over the eigenspace of the Laplace–Beltrami operator.
Note that, just as in the case of the analysis in Aubry et al.
(2011b), the result does not depend on the actual signature
produced, but is true for any spectral signature that mixes the
eigenvector with a weight that is asymptotically equivalent
to 1/(λi − λ j ).

Let L be the Laplace–Beltrami operator and assume that
we observe a noisy version L̂ = L+E with E being a suitable
additive noise on the operator, and from that an interpolating
function L(t) = L + tE with t ∈ [0, 1]. Clearly, as t = 0 we
obtain the noiseless Laplace–Beltrami operator L(0) = L ,
while for t = 1 we have the noisy operator L(1) = L̂ .
Further, let L� = �� be the eigenvalue equation for L,
where� is the diagonal matrix of eigenvalues such that (�)i i
= λi , while � is the matrix of eigenvectors, so that �·i = φi .

Following (Murthy and Haftka 1988), we can write the
derivatives at t = 0 of the eigenvectorsφi ofL(t) introducing
a matrix B = (bi j ) residing in the tangent space at unity
of the group O(n) of orthogonal transformations such that
�′ = �B, where n is the number of vertices of the mesh.
Under this representation, we can write the eigenvectors of
L̂ as a first order approximation of the expansion of L at 0
through the exponential map of B, obtaining

�L̂ ≈ � exp(B) ≈ �(I + B) , (23)

where �L̂ is the eigenvector matrix of L̂ .
Moreover, noting that both L and E are symmetric, we can

solve the perturbation equations for a self-adjoint operator
obtaining the following:

bi j =
⎧⎨
⎩
0 if λi = λ j ;
φT
i Eφ j

λ j−λi
otherwise.

(24)

From this perturbation analysis we see that, at least to
the first order, the effect of noise is a mixing into the
eigenspace related to eigenvalue λi of a component linked to
the eigenspace of λ j at a rate proportional to the reciprocal
of the difference in eigenvalues 1

λ j−λi
, rate that is asymptot-

ically equivalent to the sinc(T (λ j − λi )) obtained through
finite-time averaging, for T approaching infinity. Hence, we
can see the additive mixing of the finite-time averaging to be
equivalent to a random projection onto the same portion of
subspace induced by the noise process, or equivalently, we
can see the additivemixing noise process as a random projec-
tion onto the subspace spanned by the additional components
in the finite-time averaging.

The end result is a descriptor that already includes and
takes into account part of the deformation introduced by the
noise process.
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5.1 Laplacian Noise

We have seen that adding noise to the Laplacian introduces
a mixing of the eigenvectors that decays linearly with the
distance between the corresponding eigenvalues, however it
is hard to analyze directly the noise in the Laplacian. Here we
would like to experimentally characterize theLaplacian noise
in terms of noise that is more easily encountered in real world
applications: vertex jitter. In particular, we want to show how
Gaussian noise on the location of the vertices in a mesh maps
to noise on the Laplacian. There are two processes to take
into consideration in the mapping from vertices to entries
of the Laplacian and that can alter the distribution: the first
is the local alteration of the metric, while the second is the
discretization of the Laplacian entries, which are non-zero
only in correspondence of adjacent vertices in the mesh, at
least using the widely adopted first-order FEM discretization
(cotangent rule) to create the mesh Laplacian. Both have the
possibility of introducing correlations between the entries
and severely skewing the distribution.

In Fig. 2 we show a histogram of the difference in the
non-zero entries of the Laplacian computed from the origi-
nal meshes and from the meshes with added Gaussian vertex
noise with zero mean and standard deviation 0.01 in each
direction. The superimposed dotted line is the density func-
tion of the Gaussian noise applied to the vertices. This is
accumulated over 800 meshes, specifically 10 noisy versions
of each of the 80 meshes from the TOSCA dataset (see
Sect. 8.1). As we can see, the noise appears to still be a 0
mean Gaussian with a slightly larger variance.

We further tried to characterize how the variance of the
Laplacian noise is related to that of the original vertex noise.
To this end, we applied Gaussian vertex noise of increas-
ing variance to the same meshes as in the previous test, and
computed the variance of the corresponding Laplacian noise.
Figure 3 plots the standard deviation of the vertex noise ver-
sus that of the Laplacian noise. As we can see, within the
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Fig. 2 Histogram of additive noise on the mesh Laplacian, when Gaus-
sian noise with mean 0 and standard deviation 0.01 is added to the mesh
vertex positions (red dashed line) (Color figure online)
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Fig. 3 Average standard deviation (± standard error) of the noise dis-
tribution on the mesh Laplacian for increasing values of the standard
deviation of additive vertex noise. The red line (with slope ∼ 26) high-
lights the linear relation between the two standard deviations

range of interest the relation is approximately linear with a
regression line with a slope of around 26. The observed lin-
ear correspondencebetweenvertexnoise andLaplaciannoise
comforts us in the use of Laplacian noise in our perturbation
analysis.

6 Computation of the AMKS

Let us consider the discrete setting in which a shape M
is represented as a triangular mesh with n points. We can
approximate the Laplace–Beltrami operator (LBO) using the
cotangent scheme as L = A−1S, where S and A are respec-
tively the stiffness and the mass matrix containing the local
area elements of each vertex. We can compute an approx-
imation of the eigenfunctions of M as the solution of the
generalized eigenvalue problem S� = A��, with � being
the diagonal matrix of eigenvalues. In practice we need to
compute just first d � n smallest eigenvalues and corre-
sponding eigenvectors, since higher eigenvalues encode finer
geometric details of the shape that are mostly dominated by
the noise introduced by sampling.

We can rewrite the equation of the AMKS in terms of
matrix operations, thus exploiting linear algebra computation
capabilities ofmodernhardware andGPUs. Sinceweare only
interested in the diagonal entries of the matrix AMKS(E),
we can expand it as

AMKS(E)=

∑
λ1,λ2

p2λ1◦ p2λ2sinc(T (λ2−λ1)) fE (λ1) fE (λ2)

∑
λ1,λ2

fE (λ1) fE (λ2)
,

(25)

where p2λ = ∑
i φλi ◦ φλi is the diagonal of Pλ.

Assuming k ≤ d unique eigenvalues, we can define the
k × k matrices B(E) = (b(E)uv) and S = (suv) such that
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suv =sinc(T (λu − λv))

b(E)uv = Suv fE (λu) fE (λv)∑
λ1,λ2

fE (λu) fE (λv)
.

We can see that

B(E) =
(
1�(fEfE�)1

)−1
(S ◦ fEfE�),

with fE = [ fE (λ1) . . . fE (λk)]� being a column vector and
1 denoting the column vector of all ones. Let us define Q =
[p2λ1 | . . . |p2λk ] as the matrix composed by concatenating the

column vectors p2λi . Note that, in the special case in which

k = d, we have Q = �◦2 where � is the eigenvector matrix
and ◦2 being the elementwise square of a matrix.

The value of the descriptor at energy level E can be com-
puted as

AMKS(E) = (Q ◦ (QB))1 . (26)

7 Partiality

Let us consider a setup in which we are given a shape M
and a partial version thereofN ⊆ M, possibly under a near-
isometric transformation.

In Rodolà et al. (2017a), it has been shown that there exists
a relation between the eigenbases of M and N . In particu-
lar, up to the noise introduced by the boundary, there is a
one to one correspondence between the eigenfunctions �N
of the partial shape and the eigenfunctions �M localized on
the corresponding part of the full shape. On the other hand,
eigenfunctions of the full shape not localized in the corre-
sponding part are not present in the partial shape. The ratio
with which eigenvectors of the full shape appear in the partial
one roughly followsWeyl’s asymptotic law, and it is directly
related to the ratio between the two eigenvalue sequences.

This behavior is visible in the example shown in Fig. 4.
Here the first three non-null eigenfunctions of the par-
tial shape N roughly correspond to the 4th, 5th and 8th
eigenfunctions on the full shape M. Note that the skipped

N

M

λN,2=17.7

λM,2=6.3

λN,3=26.4

λM,3=11.2

λN,4=34.6

λM,4=18.4

λN,5=72.4

λM,5=27.3

λN,6=83.1

λM,6=28.7

λN,7=97.5

λM,7=31.4

λN,8=121.8

λM,8=36.1

|Φ†
MΦN | =

0 200 400 600 800 1000 1200 1400 1600 1800 2000

1200
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400

200

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

�

Fig. 4 Example showing the relation between eigenvalues and eigen-
vectors of a complete shape and a deformed partial version thereof.
The top figure shows the similarity of the eigenvectors (drawn as a col-
ormap over the surface) corresponding to similar eigenvalues between
the two shapes. The bottom-left matrix shows the correlation between
the eigenvectors of the two shapes according to their index. The 3 black
squares correspond to the three arrows of the top figure. The bottom-

right scatter plot shows the correlation between the eigenvectors of the
two shapes as colored points. The coordinates of each point are equal to
the corresponding eigenvalues showing that the eigenvectors of the two
shapes have a higher correlation in correspondence of similar eigenval-
ues (black line) rather that at similar indexes (red line) (Color figure
online)
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Fig. 5 Comparison between the AMKS descriptors on three corre-
sponding points on a full and a partial shape, before and after applying
the proposed correction. From the plot on the bottom, we can see how
the corrected descriptor (dashed black line) on the partial shape is much
more similar to the corresponding descriptor (magenta line) on the full
shape than the original descriptor (dashed red line) (Color figure online)

eigenfunctions on the full shape are indeed mainly localized
on the missing part. This correspondence is also visible on
the bottom left correlation matrix in terms of dot product
between the eigenfunctions of the two shapes. Ideally, the
correlation should be one in case of corresponding functions
and zero otherwise. As explained in Rodolà et al. (2017a),
the noise introduced by the boundary and the non-isometric
component of the deformation induces some fuzziness in the
correspondence between eigenfunctions which grows with
their signal frequency (i.e., the eigenfunction index). It is
also interesting to note how similar eigenfunctions appear to
correspond to similar eigenvalues on the two shapes. This is
further confirmed by the bottom right scatter plot, where we
plot the dot product of the eigenvectors of the two shapes as
circles with coordinates equal to the corresponding eigen-
value pair. Here the red color indicates higher similarity,
showing that the eigenvectors of the two shapes tend to be
in correspondence at similar eigenvalues (black line) rather
that at the same index on the sequence (red line).

This behavior has to be taken into account when comput-
ing the AMKS descriptor for partial shapes. In particular, it
affects the choice of the energy levels used to sample the
descriptor, which have to be consistent between the full and
the partial shape. A logarithmic sampling based on just the
eigenvalues of the partial shape considered in isolation is thus

not ideal for the partial case. A simple yet effective solution
to this problem is to use the same energy levels EX computed
on the full shape to compute the descriptor also on the partial
shape.

Computing the eigenvectors through the generalized
eigenvalue problem described in Sect. 6 leads to the identity
�′A� = I . Since the norm of each eigenvector depends on
the total area of the shape,wehave to further scale the descrip-
tors of the partial shape by the squared area ratio between the
partial and the full shape. Let AMKS(EM,N ) be the sig-
nature computed on N with energy bands computed on M.
We define the corrected descriptor as:

AMKSp(EM,N ,M) = AMKS(EM,N )
area(N )2

area(M)2
, (27)

where EM are the energy bands computed on the full shape,
and area(N ) and area(M) are the surface area of the partial
and full shapes, respectively.

In Fig. 5 we show the AMKS descriptor before and
after the proposed correction. We can see how the corrected
descriptor (dashed black curve) exhibits a much better align-
ment with the corresponding point descriptor of the complete
shape (magenta curve).

8 Experimental Evaluation

In this section we perform a series of quantitative and
qualitative analyses to test the performance of our descriptor
against two alternative state-of-the-art spectral signatures,
the WKS (Aubry et al. 2011b) and the scaled HKS (Sun
et al. 2009), which represent two of the most successful and
widely used non-learned descriptors for deformable shapes.
We start by describing the experimental setup, followed by
the application to the classical case of finding the correspon-
dence between two complete shapes. Finally, we analyze our
descriptor in the case of part-to-full shape matching.

8.1 Experimental Setup

Datasets The main datasets used for the evaluation of
our descriptor are TOSCA (Bronstein et al. 2008) and
FAUST(Bogoet al. 2014).The former comprises 8humanoid
and animal shape classes, for a total of 80 meshes of varying
resolution (3K to 50Kvertices). The FAUSTdataset (both the
real scans and synthetic version) consists of scanned human
shapes in different poses. In total, there are 10 human sub-
jects, each in 10 different poses, for a total of 100 meshes.
In the next experiments, we refer to the synthetic version,
unless specified otherwise.
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Note that both TOSCA and FAUST contain shapes under-
going non-isometric deformations and that in FAUSTwe also
have access to inter-class ground-truth correspondences. In
both datasets, all shapes have been remeshed to 5K vertices
by iterative edge contractions and re-scaled to unit area. For
the topological noise experiment we used the SHREC’16
topological noise dataset (Lähner et al. 2016), derived from
the KIDS dataset (Rodolà et al. 2014) to include self inter-
sections in the shapes. Finally, for the partial correspondence
scenario we used the SHREC’16 partial dataset (Cosmo et al.
2016a) and a synthetic dataset obtained from FAUST (both
described in detail in Sect. 8.3).
Distance In order to compare descriptors, we adopted the
distance proposed by Aubry et al. in Aubry et al. (2011b),
here denoted as L1

K S . Given two shapesX andY , wemeasure
the distance between two descriptors corresponding to the
points x ∈ X and y ∈ Y as

L1
K S(x, y) =

d∑
i

∣∣∣∣K S(x)i − K S(y)i
K S(x)i + K S(y)i

∣∣∣∣ , (28)

where K S(·) is the descriptor vector for a given point.
Metrics The signatures were evaluated using two measures,
the Cumulative Match Characteristic (CMC) and the cor-
respondence accuracy (Kim et al. 2011). We use the CMC
to estimate the probability of finding a correct correspon-
dence among the p-nearest neighbors in descriptor space.
The probability (hit rate) is calculated as the percentage of
correct matches among the p-nearest neighbors. We average
the hit rate for all points across all pairs of shapes for increas-
ing values of p. The resulting CMC curve is monotonically
increasing in p.

The Princeton protocol (Kim et al. 2011), also known as
correspondence accuracy, captures the proximity of predicted
corresponding points to the ground-truth ones in terms of
geodesic distance on the surface. Specifically, we count the
percentage of matches that are below a certain distance from
the ground-truth correspondence. Given a pair of shapes and
an input feature descriptor for a point on one of the shapes,
we find the closest point on the other shape in descriptor
space. Then we calculate the geodesic distance between its
position over the surface and the position of the ground-
truth corresponding point. Given a match (x, y) ∈ X × Y
and the ground-truth correspondence (x, y∗), the normalized
geodesic error is ε(x) = dY (y, y∗)/area(Y)0.5.
Implementation details We used the cotangent scheme
approximation of the Laplace–Beltrami operator. Unless oth-
erwise specified, we considered k = 100 eigenvectors of the
Laplacian and a descriptor size of d = 100 in all methods.
The choice of diffusion time will be discussed later. For the
settings specific to theHKS and theWKS,we refer the reader
to Sun et al. (2009) and Aubry et al. (2011b), respectively.

Our method requires setting the same number of parameters
as the HKS and theWKS, with the exception of an additional
time parameter. For the energy we use the same range as the
WKS (Aubry et al. 2011b).

The time parameter is extensively discussed in the next
paragraph, where we show that the AMKS is not particularly
sensitive to its value provided that it sits within a certain
range.

Choice of time Recall that computing the AMKS requires
choosing a time T . At first, this seems to add further com-
plexity to our signature, compared to the HKS and theWKS.
For this reason, we decided to perform some tests over two
separate subsets of shapes from TOSCA and FAUST in order
to evaluate how the choice of the diffusion time affects the
performance of our descriptor.

Table 1 shows the hit ratio of our descriptor on the nearest
0.1% of points in descriptor space. In these experiments, we
explore how the hit ratio changes for varying levels of noise
and choices of the stopping time T . In particular, columns
1 to 11 of Table 1 show the values of the hit ratio for finite
values of T , while column 12 shows the value in the limit
T → ∞ (see Eq. 17).

In addition, we compare the results to those obtained
with the WKS (column 13), noting that the WKS is time-
independent. Finally, we also show the results obtained when
using a signature that is a concatenation of the AMKS (for
the optimal stopping time T ) and the WKS. For the TOSCA
dataset, we employed 7 classes (wolf excluded) for a total of
28 pairs, whereas for FAUST we used 10 pairs. Here a pair
consists of two shapes: the class reference shape, in canonical
pose, and another shape of the same class in a different pose.
When adding noise, the reference shape is first rescaled, then
Gaussian noise is added to the vertex positions and finally the
shape is rescaled again.

It is worth noting that (a) the hit rate of the AMKS is
almost always higher than that of the WKS, regardless of the
choice of the time T , (b) the optimal times for the twodatasets
are similar but different, (c) finite stopping times invariably
yield better results than taking the limit, and (d) using both
the WKS and the AMKS does not increase the performance
of the signature, suggesting that the information contained in
the AMKS is strictly greater than that contained in theWKS.

Note that computing the AMKS in the time limit T → ∞
effectively means removing the mixing component, yielding
a signature that is equal to theWKS, with the only difference
being the use of the fourth power (instead of the square) of
the entries of the Laplacian eigenvectors. When compared
to the WKS, the results in Table 1 suggest that the fourth
power has a stronger smoothing effect close to zero values,
resulting in a loss of descriptive power wrt to the WKS in
the absence of noise. This in turn highlights the importance
of taking into account the mixing between eigenspaces that
we observe at finite time averages in the AMKS. While it
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Fig. 6 The figure shows the AMKS of the same point on different
shapes, at increasing times t = 0.01, 1, 100. Each plot above the sitting
shape shows the behavior of two signatures: the green curve belongs
to the shape in the reference pose whereas the red curve represents the
sitting shape

would be tempting to think that a modified version of the
WKS that includes the mixing components may therefore
be superior to both the AMKS and the WKS, note that this
would make little sense from the point of view of physics and
it would have actually a detrimental effect on the signature
performance, as we quickly realised during the experimental
evaluation. In other words, the mixing alone is not sufficient
to justify the increased performance of the AMKS and it is
the synergy between the use of the fourth power and finite
times that leads to the improved performance and resilience
to noise of the AMKS.

As for the optimal value of the stopping time, we observe
that the optimal performance of the AMKS in the FAUST
dataset is reached at slightly higher times when compared to
TOSCA. Indeed, in the TOSCA dataset there is a stronger
mixing of eigenvectors as it exhibits smaller deviations from
isometry. Note however that the performance of the signature
is fairly stable on a relatively wide interval around T = 0.5,
implying that fine-tuning this parameter is not crucial. This
optimal range, in turn, is a consequence of Weyl’s law and
the eigenvalues normalization that follows from normalizing
all shapes to have unit area. Consequently, in order to avoid
leaving free parameters and to ensure a fair comparison, in
the next experiments we set T = 0.5 for both the TOSCA
and FAUST datasets. Finally, note that we have run similar
experiments on the partial shape datasets and the results were
consistent with those of Table 1 and thus are omitted.

To conclude our investigation on the time parameter, in
Fig. 6 we visualize how the AMKS signature of a point
changes as the stopping time varies. By increasing the stop-
ping time, the rate at which eigenspaces are mixed decreases,
resulting in flatter and less descriptive signatures, while for
very short times the signature varies significantly on the high
energy bands. Hence, the optimal choice of the diffusion time
is a key factor in the trade-off between descriptiveness and
sensitivity of the signature.

8.2 Full Shapes Correspondence

In this section we compare the performance of our signature
to that of the WKS and the HKS in the context of matching
between two complete shapes. We also analyze the descrip-
tors when the surface is represented as a point cloud rather
than a triangular mesh, and in the presence of topological
noise.

Descriptor robustness We commence by evaluating the
robustness of the descriptor when Gaussian noise is added to
the coordinates of the mesh vertices. Fig. 7 shows the CMC
curve of our method compared to those of the other spectral
signatures, for varying levels of Gaussian noise (left to right,
η = 0, 0.01, 0.02). For our signature, we set T = 0.5 fol-
lowing the analysis of the previous section. In these plots,
the y-axis is the hit rate ± standard error (the plots were
drawn by averaging the hit rate over all the pairs of shapes of
each dataset) and the x-axis refers to the p-nearest neighbors
(in percentage) in the descriptor space. Our approach clearly
outperforms the alternatives, with the difference becoming
larger as the noise increases. This is more evident in the
TOSCA dataset, as it exhibits smaller deviations from isom-
etry. This shows the noise robustness of our signature.

In Fig. 8we provide a qualitative comparison of the behav-
iors of the AMKS and the WKS, showing the distance in
descriptor space of a given point from the other points of
the shape. We can see that our descriptor is more informa-
tive showing a more peaked distribution around the correct
match, even in the presence of high levels of Gaussian noise.

Point-wise correspondence In this experiment, we use the
three signatures (HKS,WKS, and AMKS) to compute point-
wise correspondences between pairs of shapes by taking the
nearest neighbor in descriptor space. In Fig. 9 we show the
results following the previously described Princeton proto-
col. As expected, our method shows the largest improvement
on the TOSCA and FAUST inter-class datasets, which con-
tain stronger non-isometric deformations.

In Fig. 10 we show some qualitative examples illustrat-
ing the normalized geodesic error, where we compare our
results with those obtained with the WKS on a selection of
shapes from the TOSCA dataset. The lower presence of col-
ored spots for the AMKS suggests a better matching quality.

Topological Noise We use the SHREC16 topological noise
dataset (Lähner et al. 2016) to investigate the behavior of our
descriptor in the presence of self intersections (topological
“gluing”) on the surface representation. Spectral descriptors
are known to be particularly sensitive to topological changes
in the shape but, as shown in Fig. 11, the AMKS maintains
its edge over the HKS and the WKS even in the presence of
this type of noise.
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Fig. 7 Quantitative comparison of the matching performance of differ-
ent descriptors (HKS, WKS, and the proposed AMKS) on the TOSCA
dataset (top) and the FAUST dataset (bottom) using the CMC curve ±

standard error, considering an increasing percentage of nearest points
in descriptor space (x-axis) and with increasing level of Gaussian noise
(left to right)

Fig. 8 Distance in the descriptor space between a given point (red dot)
and all the other points of the shape, where the blue color corresponds
to smaller distances. The left figure shows the behavior of our AMKS
at increasing noise levels, compared with WKS (Color figure online)

Point clouds Being a spectral descriptor, the AMKS can be
applied to any surface representation where a discretization
of the Laplace Beltrami Operator can be computed. Point
clouds are widely used representations in computer vision
for 3D surfaces. We use the shapes in TOSCA and FAUST to
generate two datasets of synthetic point clouds with ground-
truth correspondences. We sample the surface of each shape
on a regular 3D grid resulting in point clouds of approxi-
mately 10k points uniformly distributed over the surface. We
use themethod proposed in Clarenz et al. (2004) to discretize
the Laplacian on a point cloud. Figure 12 shows the CMC
curves on the point cloud datasets for different amount of
Gaussian noise (applied as a displacement along the normal
at each point). In both datasets the AMKS outperforms the

0 0.05 0.1 0.15 0.2 0.25
Normalized geodesic error

0

0.2

0.4

0.6

0.8

1

%
 o

f c
or

re
sp

on
de

nc
es

TOSCA

AMKS
WKS
HKS

0 0.05 0.1 0.15 0.2 0.25
Normalized geodesic error

0

0.2

0.4

0.6

0.8

1

%
 o

f c
or

re
sp

on
de

nc
es

FAUST Scan - Inter Class

AMKS
WKS
HKS

0 0.05 0.1 0.15 0.2 0.25
Normalized geodesic error

0

0.2

0.4

0.6

0.8

1

%
 o

f c
or

re
sp

on
de

nc
es

FAUST Scan - Intra Class

AMKS
WKS
HKS

Fig. 9 Quantitative comparison between spectral signatures in terms of the Princeton protocol on the TOSCA (left) and FAUST Scans dataset
(center and right). Intra- and inter-class refer to the case where the match is computed only between meshes representing the same and different
subjects, respectively

123



1488 International Journal of Computer Vision (2022) 130:1474–1493

A
M
K
S

W
K
S

H
K
S

0.5

0

Fig. 10 Qualitative comparison between the WKS and the AMKS on
some shapes from the TOSCA dataset. For each point of the surface we
show the normalized geodesic error between the closest descriptor on

the corresponding reference shape and the ground truth correspondence
(or its symmetric one). Overall, the AMKS leads to a better matching
quality than the alternative signatures
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Fig. 11 Left: comparison of CMC curves for different methods on the SHREC16 Topological Noise dataset (Lähner et al. 2016). Right: qualitative
comparison showing the geodesic distance on the surface between the computed and ground-truth matches

other descriptors, with the margin becoming slightly larger
as the noise is increased. This suggests that our descriptor
is a good choice in scenarios where the point cloud data is
intrinsically noisy due to the acquisition process.

Point classification One of the most used methods to train
a neural network to perform the task of shape matching is
to cast it as a classification task, where corresponding points
on different shapes belong to the same class and there are
as many classes as the number of points per shape (Rodolà
et al. 2014). We used our descriptor as input of two of the
state-of-the-art architectures for convolutional deep learning
on shapes: FeastNet (Verma et al. 2018) and MoNet (Monti
et al. 2017).

FeastNet is a deep neural network based on a graph-
convolution operator that dynamically learns a mapping
between vertices and filter weights, from features learned
by the network. MoNet defines convolution-like operations

as template matching with local intrinsic patches on graphs
or manifolds. It replaces the weight functions with Gaussian
kernels with learnable parameters, which can be interpreted
as a Gaussian Mixture Model (GMM). For both methods
we used the code provided by authors on GitHub. For Feast-
Net we adopted the translation invariant single-scale network
architecture proposed in Verma et al. (2018). The first 80
FAUST shapes were used for training and the remaining 20
for test.

Table 2 shows the classification accuracy results after
training the networks with different descriptors as input. We
compare our descriptor against the WKS, the local rigid
descriptor SHOT (Salti et al. 2014) and using the XYZ
coordinates of the points as input. The results show how
the network is able to exploit the higher descriptiveness
of AMKS in order to achieve better classification accu-
racy. Note that, while training directly on XYZ coordinates
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Fig. 12 Quantitative comparison of different methods (HKS, WKS,
and the proposed AMKS) on point clouds derived from FAUST (top)
and TOSCA (bottom) with increasing levels of Gaussian noise along

the surface normals. Each of the three columns shows a sample point
cloud and the corresponding CMC curves for each method at different
noise levels: 0.005 (left), 0.02 (middle), 0.05 (right)

Table 2 Classification accuracy of FeastNet and MoNet trained with
different input descriptors

XYZ (%) ROT(XYZ) (%) SHOT (%) WKS (%) AMKS (%)

FeastNet 86 50 63 80 86

MoNet 88 64 75 94 95

The best result for each architecture is highlighted in bold

allows to achieve a similar accuracy, the performance rapidly
decreases if we allow shapes to undergo a random rotation
(i.e., ROT(XYZ)) since neither the XYZ coordinates nor the
network are intrinsically invariant to this transformation.

It should be noted that this experiment was not meant to
provide an exhaustive comparison of our descriptor against
learned ones, as the performance of the latter usually comes
at the cost of an increased complexity as well as the need of
large amounts of training data. Our aim in this experiment

was instead to show that the AMKS can indeed be used as
part of standard learning-based matching pipelines.

8.3 Partial Shapes Correspondence

To assess the ability of the proposed descriptor to handle
shapes with missing parts we applied it to two datasets con-
taining partial shapes. SHREC16 (Cosmo et al. 2016a) is a
dataset of animal and human shapes in different poses con-
taining two types of partiality, neat cuts and holes. In our
experiments we consider only the cuts sub-dataset, in which
the shapes are missing a whole contiguous part of their body.
We also test on a more realistic scenario in which the partial
shape is given by a synthetically generated range acquisition
of a human subject.We refer to this dataset asRANGE.Range
maps are obtained by capturing shapes of FAUST with a vir-
tual camera. Some examples of the synthetic point clouds are
shown in Fig. 13.
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Fig. 13 Left: some examples of the synthetic range maps contained in the RANGE dataset. Right: comparison of CMC curves for the AMKS, its
partial version AMKSp , WKS, its partial version WKSp , SHOT, and HKS on the RANGE dataset
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Fig. 14 Comparison of CMC curves of AMKS, its partial version
AMKSp , its partial version AMKSp , WKS, its partial version WKSp ,
SHOT, and HKS on the cuts sub-dataset of SHREC2016 partial
dataset (Cosmo et al. 2016a)

Figures 13 and 14 show the CMC curves for the AMKS
adapted to handle partiality (AMKSp), the original formula-
tionof theAMKS, theWKS, and theHKSon theRANGEand
SHREC16 datasets, respectively. We also include the results
for the SHOT descriptor (Salti et al. 2014) and a version of
the WKS adapted to handle partiality similarly to what done
for our signature.

As the figures show, correctly handling partiality is essen-
tial for the performance of the descriptor as well as for the
WKS. However it is also worth noting how the original for-
mulation of the AMKS is still performing better than the

competitors and that the AMKS outperforms the WKS even
after both have been modified to cope with partiality.

The superiority of our approach is also visible in the qual-
itative examples reported in Fig. 15, where we draw over
each shape a colormap proportional to the geodesic distance
between the correct match and the retrieved one.

8.4 Functional Maps Pipeline

As a further experiment, we evaluated the performance of our
descriptor when used in the context of a complete functional
maps pipeline. In recent years, approaches based on func-
tional maps (Ovsjanikov et al. 2012; Rodolà et al. 2017a;
Cosmo et al. 2016b) have proven to be very effective par-
ticularly for non rigid shape, thanks to their implicit shape
representation.

For the case where the input shapes are complete, we used
the originalmethod proposed inOvsjanikov et al. (2012). The
basic idea is to define a correspondence between two shapes
as a linear map between their functional bases defined as the
eigenfunctions of their Laplace–Beltrami operators. In this
way, finding a correspondence is equal to optimizing over the
functional map. Given a large enough set of corresponding
functions, i.e., descriptors between the two shapes, this can
be solved as a linear system. For the case of partial shapes,
we used instead the method of Rodolà et al. (2017a). This
is similar to Ovsjanikov et al. (2012), but it leverages the
particular slanted diagonal structure of the functional map
itself to handle partiality.

A
M
K
S p

A
M
K
S

W
K
S

H
K
S

Fig. 15 Qualitative examples of partial shapes with error map (AMKS partial vs AMKS), growing from white to dark red (Color figure online)
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Fig. 16 Comparison of CMC curves for AMKS, WKS, SHOT, and HKS used as input of a functional maps pipeline on a, b full and c, d partial
shapes of the TOSCA dataset. b, d refer to the scenarios where noise is added to the dataset (full: η = 0.04, partial: η = 0.02)

Figure 16 shows the results obtained when using our
descriptor against three alternatives (HKS, WKS, or SHOT)
as part of a functionalmaps pipeline on the full (a) and (c) par-
tial (Cosmo et al. 2016a) shapes of the TOSCA dataset. The
various constraints and refinement procedures introduced by
thematching pipeline have a clear regularization effect on the
final correspondence, resulting in a reduced margin between
the AMKS and the WKS, in the case of noiseless shapes.
To better appreciate the robustness of AMKS to noise, we
then run the same experiment on a noisy version of the two
datasets. With the addition of noise, the advantage of using
the AMKS, which we have shown to be naturally resilient
to noise, becomes apparent, as shown in Fig. 16b, d. Note
also that the SHOT descriptor, despite being a good choice
for partial shapes, is highly impacted even by mild levels of
noise.

8.5 Runtime Analysis

Finally, we analyze the running time needed to compute our
descriptor. Without considering the spectral decomposition,
the computational complexity of theAMKS isO(dnk2), with
n being the number of points of the mesh, k the dimension of
the truncated eigenbasis, and d the number of energy levels1.
Here we perform an experimental evaluation of the running
time needed to compute the AMKS. To this end, we imple-
ment our method in MATLAB and we run the code on a
desktop workstation with 16GB of RAM and Intel i7 8600
processor. Since the eigendecomposition is a common step in
all the compared methods, we ignore it when measuring the
running time. Fig. 17 shows the time needed to compute each
descriptor, averaged over 100 executions. In the left plot, we
fix the number of eigenvalues to 100 and let the number of
points vary between 1k and 10k, while in the right plot we
keep 5k points and increase the number of eigenvectors from
50 to 500.

As expected, introducing the mixing factor results in a
slightly higher running time while the computational com-

1 The code for the computation of our signature is available on-line at
https://github.com/lcosmo/amks-descriptor.
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Fig. 17 Comparison of execution times with respect to the number of
points (left) and eigenvectors (right)

plexity remains linear in the number of points. On the other
hand, we introduce a quadratic complexity with respect to
the number of eigenvalues. It is worth noticing, however,
that for typical numbers of eigenvectors used in spectral
shape retrieval and matching tasks (< 200), the behavior
is almost linear and that for a higher number of eigenvectors
the main bottleneck would be the spectral decomposition of
the Laplace–Beltrami operator.

9 Conclusions

Wehave proposed a spectral signature for points on non-rigid
three-dimensional shapes based on continuous-timequantum
walks and the average mixing matrix, holding the transition
probabilities between each pair of vertices of a mesh. We
have shown, both theoretically and experimentally, that our
signature is robust to noise and that it outperforms alternative
spectral and non-spectral descriptors under a wide variety of
scenarios involving different types of shape representation
and noise. We have also proposed a simple yet effective way
to cope with shape partiality, and showed that this yields a
significant improvement in a partial shape matching task.
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