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Abstract Crowd counting in single-view images has

achieved outstanding performance on existing counting

datasets. However, single-view counting is not applica-

ble to large and wide scenes (e.g., public parks, long

subway platforms, or event spaces) because a single

camera cannot capture the whole scene in adequate de-

tail for counting, e.g., when the scene is too large to fit

into the field-of-view of the camera, too long so that the

resolution is too low on faraway crowds, or when there

are too many large objects that occlude large portions

of the crowd. Therefore, to solve the wide-area counting

task requires multiple cameras with overlapping fields-

of-view. In this paper, we propose a deep neural net-

work framework for multi-view crowd counting, which

fuses information from multiple camera views to pre-

dict a scene-level density map on the ground-plane of
the 3D world. We consider three versions of the fu-

sion framework: the late fusion model fuses camera-

view density map; the näıve early fusion model fuses

camera-view feature maps; and the multi-view multi-

scale early fusion model ensures that features aligned

to the same ground-plane point have consistent scales.

A rotation selection module further ensures consistent

rotation alignment of the features. We test our 3 fusion

models on 3 multi-view counting datasets, PETS2009,

DukeMTMC, and a newly collected multi-view count-

ing dataset containing a crowded street intersection.

Our methods achieve state-of-the-art results compared

to other multi-view counting baselines.

Qi Zhang
City University of Hong Kong
E-mail: qzhang364-c@my.cityu.edu.hk

Antoni B. Chan
City University of Hong Kong
E-mail: abchan@cityu.edu.hk

Information Extraction Information FusionInformation Alignment

Scene-level density map

Fusion 

module

Single view

Scene map

Counting model

Multi-camera views

Density map 

Fig. 1 The pipeline of the proposed multi-view fusion frame-
work comparing with the single image counting framework.
In the multi-view fusion model, feature maps are extracted
from multiple camera views, aligned on the ground-plane, and
fused to obtain the scene-level ground-plane density map. The
scene map is shown for reference. For single image counting,
many people are occluded (in red circles) and in low resolution
(in blue circles), which decreases the counting performance.

Keywords Crowd counting · Multi-view ·Wide-area ·
DNNs fusion · Scale selection · Rotation selection

1 Introduction

Crowd counting aims to estimate the number of the

people in images or videos. It has a wide range of real-

world applications, such as crowd management, public

safety, traffic monitoring or urban planning (Sindagi

and Patel 2018). For example, crowd counting can de-

tect overcrowding on the railway platform and help

with the train schedule planning. Furthermore, the esti-

mated crowd density map provides spatial information

of the crowd, which can benefit other tasks, such as hu-
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Fig. 2 The pipeline of our late fusion model and näıve early fusion model for multi-view counting. In the late fusion model,
single-view density maps are fused. In the näıve early fusion model, single-view feature maps are fused.

man detection (Eiselein et al. 2013; Kang et al. 2018;

Ma et al. 2015) and tracking (Kang et al. 2018; Ren

et al. 2018; Rodriguez et al. 2011).

Recently, with the strong learning ability of deep

neural networks (DNNs), density map based crowd count-

ing methods have achieved outstanding performance on

the existing counting datasets (Cao et al. 2018; Idrees

et al. 2018; Sindagi and Patel 2017), where the goal is

to count the crowd in a single image. However, a single

image view is not adequate to cover a large and wide

scene, such as a large park or a long train platform.

For these wide-area scenes, a single camera view cannot

capture the whole scene in adequate detail for counting,

either because the scene is too large (wide) to fit within

the field-of-view of the camera, or the scene is too long

so that the resolution is too low in faraway regions.

Furthermore, a single view cannot count regions that

are still within the scene, but are totally occluded by

large objects (e.g., trees, large vehicles, building struc-

tures). Therefore, to solve the wide-area counting task

requires multiple camera views with overlapping field-

of-views, which combined can cover the whole scene and

can see around occlusions. The goal of wide-area count-

ing is then to use multiple camera views to estimate the

crowd count of the whole scene.

Existing multi-view counting methods rely on fore-

ground extraction techniques and hand-crafted features.

Their crowd counting performance is limited by the ef-

fectiveness of the foreground extraction, as well as the

representation ability of hand-crafted features. Consid-

ering the strong learning power of DNNs as well as the

performance progress of single view counting methods

using density maps, the feasibility of end-to-end DNNs-

based multi-view counting methods should be explored.

In this paper, we propose a DNNs-based multi-view

counting method that extracts information from each

camera view and then fuses them together to estimate

a scene-level ground-plane density map (see Fig. 1).

The method consists of 3 stages: 1) Information ex-

traction – single view feature maps are extracted from

each camera image with DNNs; 2) Information align-

ment – using the camera geometry, the feature maps

from all cameras are projected onto the ground-plane in

the 3D world so that the same person’s features are ap-

proximately aligned across multiple views, and properly

normalized to remove projection effects; 3) Information

fusion – the aligned single-view projected feature maps

are fused together and used to predict the scene-level

ground-plane density map.

As single-view crowd counting is relatively mature,

it has well-studied feature extractor and decoder ar-

chitectures for predicting camera-level density maps.

Building from this, multi-view crowd counting can lever-

age single-view feature extractors and predicted den-

sity maps for each camera-view. The key issue then is

what and how to fuse the information from the vari-

ous cameras into a ground-plane representation for de-

coding into a ground-plane density map. We consider

three variants of fusion to provide a thorough study on

the fusion architecture for multi-view counting DNNs

models. These three variants differ in what informa-

tion is fused (i.e., single-view density maps or feature
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maps) and how fusion occurs (i.e., simple concatenation

or scale/rotation-aware concatenation). Specifically, the

three variants are: 1) concatenation of single-view den-

sity maps (denoted as late fusion); 2) concatenation of

single-view feature maps (näıve early fusion); 3) scale-

aware and rotation-aware concatenation of feature maps

(multi-view multi-scale, MVMS/MVMSR).

Specifically, first, in our late-fusion model (see Fig. 2

top), view-level density maps are predicted for each

camera view, projected to the ground-plane, and fused

for estimating the scene-level density map. This model

fuses count-level information, similar to traditional count-

based methods (Dittrich et al. 2017; Li et al. 2012; Ma

et al. 2012; Maddalena et al. 2014). We also propose a

post-projection normalization method that removes the

projection effect that distorts the sum of the density

maps (and thus the count). Second, in our näıve early

fusion model (see Fig. 2 bottom), convolutional feature

maps are extracted from each camera view, projected

to the ground-plane and fused to predict the scene-level

density map. Third, to handle the scale variations of the

same person across camera views, our multi-view multi-

scale (MVMS) early fusion model (see Fig. 6) extracts

features with consistent scale across corresponding lo-

cations in the camera views before applying projection

and fusion. We consider 2 approaches for selecting the

suitable scales, based on distances computed from the

camera geometry. To further improve the multi-view fu-

sion performance, a rotation selection module is added

in the multi-view fusion step (denoted as MVMSR).

The existing multi-view datasets that can be used

for multi-view counting are PETS2009 (Ferryman and

Shahrokni 2009) and DukeMTMC (Ristani et al. 2016).

However, PETS2009 is not a wide-area scene as it fo-

cuses on one walkway, while DukeMTMC is a wide-area

scene but does not contain large crowds. To address

these shortcomings, we collect a new wide-area dataset

from a busy street intersection, which contains large

crowds, more occlusion patterns (e.g., buses and cars),

and large scale variations. This new dataset more effec-

tively tests multi-view crowd counting in a real-world

scene.

In summary, our main contributions are:

1. We propose an end-to-end trainable DNNs-based

multi-view crowd counting framework, which fuses

information from multiple camera views to obtain a

scene-level density map.

2. We propose 3 fusion models based on our multi-

view framework (late fusion, näıve early fusion, and

multi-view multi-scale early fusion), which achieve

better counting accuracy compared to baselines.

3. We propose a rotation selection module based on ro-

tation equivariant networks to further improve the

multi-view fusion by considering the geometric prop-

erties of the average-height projection.

4. We collect a real-world wide-area counting dataset

consisting of multiple camera views, which will ad-

vance research on multi-view wide-area counting.

The remainder of this paper is organized as follows.

In Section 2, existing single-view and multi-view count-

ing methods are reviewed, and the rotation neural net-

works are introduced. In Section 3, the proposed two

DNNs-based multi-view counting models (both late fu-

sion and näıve early fusion model) are presented. In

Section 4, the multi-view multi-scale early fusion model

with scale selection and rotation selection module is

presented. In Section 5, we conduct experiments on

multi-view counting datasets.

2 Related Work

In this section, we review methods for crowd counting

from single-view and multi-view cameras, as well as ro-

tation equivariant/invariant networks.

2.1 Single-view counting

Traditional methods. Traditional single-view counting

methods can be divided into 3 categories (Chen et al.

2013; Sindagi and Patel 2018): detection, regression,

and density map methods. Detection methods try to

detect each person in the images by extracting hand-

crafted features (Viola and Jones 2004; Sabzmeydani

and Mori 2007; Wu and Nevatia 2007) and then train-

ing a classifier (Joachims 1998; Viola et al. 2005; Gall

et al. 2011) using the extracted features. However, the

detection methods do not perform well when the peo-

ple are heavily occluded, which limits their application

scenarios. Regression methods extract image features

(Chan et al. 2008; Cheng et al. 2014; Junior et al.

2010; Krizhevsky et al. 2012) and learn a mapping di-

rectly to the crowd count (Chan and Vasconcelos 2012;

Chen et al. 2012; Paragios and Ramesh 2001; Marana

et al. 1998). However, their performance is limited by

the weak representation power of the hand-crafted low-

level features. Instead of directly obtaining the counting

number, Lempitsky and Zisserman (2010) proposed to

estimate density maps, where each pixel in the image

contains the local crowd density, and the count is ob-

tained by summing over the density map. Traditional

density map methods learn the mapping between the

hand-crafted local features and the density maps (Lem-

pitsky and Zisserman 2010; Pham et al. 2015; Wang and

Zou 2016; Xu and Qiu 2016).



4 Qi Zhang, Antoni B. Chan

DNNs-based methods. DNNs-based crowd counting

has mainly focused on density map estimation. The first

networks used a standard CNN (Zhang et al. 2015) to

directly estimate the density map from an image. Scale

variation is a critical issue in crowd counting, due to

perspective effects in the image (Yan et al. 2019a; Liu

et al. 2019b; Xu et al. 2019). Zhang et al. (2016) pro-

posed the multi-column CNN (MCNN) consisting of

3 columns of different receptive field sizes, which can

model people of different scales. Sam et al. (2017) added

a switching module in the MCNN structure to choose

the optimal column to match the scale of each patch.

Onoro-Rubio and López-Sastre (2016) proposed to use

the patch pyramid as input to extract multi-scale fea-

tures. Similarly, Kang and Chan (2018) used an image

pyramid with a scale-selecting attention block to adap-

tively fuse predictions on different scales.

Recently, more sophisticated network structures have

been proposed and extra information is explored to ad-

vance the counting performance (Shi et al. 2018; Idrees

et al. 2018; Wang et al. 2019; Ranjan et al. 2018; Cao

et al. 2018; Li et al. 2018; Liu et al. 2018; Shen et al.

2018; Jiang et al. 2019; Liu et al. 2019c). Sindagi and

Patel (2017) incorporated global and local context in-

formation in the crowd counting framework, and pro-

posed the contextual pyramid CNN (CP-CNN). Idrees

et al. (2018) proposed composition loss, implemented

through multiple dense blocks after branching off the

base networks. Li et al. (2018) replaced pooling opera-

tions in the CNN layers with dilated kernels to deliver

larger reception fields and achieved better counting per-

formance. Kang et al. (2017) proposed an adaptive con-

volution neural network (ACNN) that uses side infor-

mation (camera angle and height) to include context

into the counting framework. Many methods have fo-

cused on the perspective change issue in the counting

task. Cao et al. (2018) extracted multi-scale features

with a scale aggregation module and generated high-

resolution density maps by using a set of transposed

convolutions. Shi et al. (2019) proposed to estimate

the perspective map and use it to adaptively fuse the

multi-scale output density maps. Yan et al. (2019b) pro-

posed perspective-guided convolution (PGC) to utilize

perspective information instead of multi-scale or multi-

column architectures. Yang et al. (2020) proposed to es-

timate a perspective factor to warp the input images to

correct the perspective distortions. Lian et al. (2019)

proposed a regression guided detection network (RD-

Net) for RGB-D crowd counting. Liu et al. (2019a) pro-

posed Recurrent Attentive Zooming Network to zoom

high density regions for higher-precision counting and

localization.

All these methods are using DNNs to estimate a

density map on the image plane of a single camera-

view, with different architectures improving the per-

formance across scenes and views. In contrast, in this

paper, we focus on fusing multiple camera views of the

same scene to obtain a ground-plane density map in the

3D world. These single-view methods serve as the back-

bone single-view feature extractors for our multi-view

fusion networks.

2.2 Multi-view counting

Existing multi-view counting methods can be divided

into 3 categories: detection/tracking, regression, and

3D cylinder methods. The detection/tracking methods

first perform detection or tracking on each scene and

obtain single-view detection results. Then, the detec-

tion results from each view are integrated by projecting

the single-view results to a common coordinate system,

e.g., the ground plane or a reference view. The count of

the scene is obtained by solving a correspondence prob-

lem (Dittrich et al. 2017; Li et al. 2012; Ma et al. 2012;

Maddalena et al. 2014). Regression based methods first

extract foreground segments from each view, then build

the mapping relationship of the segments and the count

number with a regression model (Ryan et al. 2014; Tang

et al. 2014). 3D cylinder-based methods try to find the

people’s locations in the 3D scene by minimizing the

gap between the people’s 3D positions projected into

the camera view and the single view detection (Ge and

Collins 2010).

These multi-view counting methods are mainly based

on hand-crafted low-level features and regression or de-

tection/tracking frameworks. Regression-based meth-

ods only give the global count, while detection/tracking

methods cannot cope well with occlusions when the

scene is very crowded. In contrast to these works, our

approach is based on predicting the ground-plane den-

sity map in the 3D world by fusing the information

across camera views using DNNs. Two advantages of

our approach are the abilities to learn the feature ex-

tractors and fusion stage in end-to-end training, and to

estimate the spatial arrangement of the crowd on the

ground plane. While the previous methods are mainly

tested on PETS2009, which only contains low/moderate

crowd numbers on a walkway, here we test on a newly

collected dataset comprising a real-world scene of a

street intersection with large crowd numbers, vehicles,

and occlusions.

A preliminary conference version of this work ap-

pears in Zhang and Chan (2019). This journal version

contains the following extensions: 1) more details about
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the scale selection module are added, specifically the ra-

tionale of the multi-view scale selection guided by the

distance map; 2) a new rotation selection module is

proposed to consider the stretching effect of the fixed

average-height projection, which further boosts the per-

formance compared to the model in Zhang and Chan

(2019); 3) more experiments and ablation studies, in-

cluding more evaluation metrics (MAE, MSE, NAE and

GAME), experiments of new and updated comparison

methods (‘feature concatenation’, ‘stitching’, and up-

dated ’Detection+ReID’ method), experiments show-

ing how multi-cameras improve single-view counting

performance for each multi-camera counting methods,

more ablation studies on the rotation modules (filter

number, layer number and quantization angle), experi-

ments with more recent backbone networks, comparison

results with different module settings and methods and

on another test set in DukeMTMC, and the running

speed comparison of different methods.

Finally, following our conference paper (Zhang and

Chan 2019), a subsequent work (Zheng et al. 2021) en-

hances the late fusion model’s performance by modeling

the correlation between each pair of views for cross view

fusion.

2.3 Rotation equivariant/invariant networks

Rotation equivariance or invariance relates to the DNNs’

robustness to rotation changes of the input image. Ro-

tation equivariance means the output is accordingly ro-

tated if the input is rotated, which is useful for the dense

prediction tasks, like semantic segmentation or density

map estimations. Rotation invariance means the output

is invariant no matter how the input is rotated, which

is useful for classification tasks.

To enhance the networks’ robustness to rotations,

the easiest method is to use the data augmentation,

namely rotating the original examples multiple times

and training the network on the rotated versions. Jader-

berg et al. (2015) introduced the Spatial Transformer

which can spatially manipulate data within the net-

work, giving neural networks the ability to actively spa-

tially transform feature maps. Rotation equivariant and

invariant networks have also been proposed to improve

the rotation robustness. Laptev et al. (2016) uses mul-

tiple rotated examples as inputs into a shared network

to extract features at multiple rotations, and then uses

a max-pooling layer among these features to obtain

rotation-invariant features. In addition to image rotat-

ing, feature maps can also be rotated. For example,

Dieleman et al. (2016) and Cohen and Welling (2016)

obtained rotation robustness by rotating the feature

maps 3 times, by 90 degree each time, and then used

average or max-pooling operations. Besides images and

feature maps, rotation robustness can also be obtained

by rotating the kernel/filter. Gao and Ji (2017) pro-

vided an example of how to use rotated kernels, but

the weakness of their method is that the kernel size is

fixed (3*3), and rotation angle is limited (45 degree each

time, not arbitrary). Marcos et al. (2017) performed ar-

bitrary rotations and the orientation pooling was used

instead of max pooling to get the rotation-equivariance.

Weiler et al. (2018) proposed the steerable filter CNNs,

which employed steerable filters to compute orientation

dependent responses without suffering interpolation ar-

tifacts from filter rotation, and used group convolutions

for an equivariant mapping. Recently, rotation equivari-

ant/invariant networks have been utilized in 3D recog-

nition tasks, such as CubeNet (Worrall and Brostow

2018), ClusterNet (Chen et al. 2019).

In contrast to these methods that aim to obtain

robustness to rotations, we use the rotation equivari-

ant/invairant networks to negate the effects of the pro-

jection operation from the camera-view to the ground-

plane. Specifically, the multi-rotated filters are used to

reduce the influence of the average-height projection on

the extracted features, which improves the multi-view

fusion counting performance.

3 Multi-View Counting via Multi-View Fusion

For multi-view counting, we assume that the cameras

are fixed, the camera calibration parameters (both in-

trinsic and extrinsic) are known, and that the camera

frames across views are synchronized. Given the set

of multi-view images, the goal is to predict a scene-

level density map defined on the ground-plane of the

3D scene (see Fig. 1). The ground-truth ground-plane

density map is obtained in a similar way as the tra-

ditional camera-view density map – the ground-plane

annotation map is obtained using the ground-truth 3D

coordinates of the people, which is then convolved by a

fixed-width Gaussian kernel to obtain the density map

on the ground-plane.

In the following two sections, we propose three fu-

sion approaches for multi-view counting: 1) the late

fusion model projects camera-view density maps onto

the ground plane and then fuses them together, and

requires a projection normalization step; 2) the näıve

early fusion model projects camera-view feature maps

onto the ground plane then fuses them; 3) to handle

inter-view and intra-view scale variations, the multi-

view multi-scale early fusion model (MVMS) selects fea-

tures scales to be consistent across views when project-

ing to the same ground-plane point, and uses rotation
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FCN-7
Layer Filter
conv 1 16×1×5×5
conv 2 16×16×5×5
pooling 2×2
conv 3 32×16×5×5
conv 4 32×32×5×5
pooling 2×2
conv 5 64×32×5×5
conv 6 32×64×5×5
conv 7 1×32×5×5

Fusion
Layer Filter
concat -
conv 1 64×n×5×5
conv 2 32×64×5×5
conv 3 1×32×5×5

Table 1 FCN-7 backbone and fusion module. The Filter di-
mensions are output channels, input channels, and filter size
(w×h).

selection to handle rotation effects of the projection

(MVMSR).

We note that there are differences between fusing

density maps and fusing feature maps, since they con-

tain different information. Density maps only contain

location information of the crowd, but do not contain

identity information of people (person appearance fea-

tures). Thus, fusing density maps requires combining

/ aligning local density information across projected

views, but may suffer from errors due to ambiguity

or distortion caused by the 2D to 3D projection. In

contrast, feature maps contain identity (appearance)

information that can help to find correspondences of

the same person in different views on the ground-plane.

However, since the person is a different distance from

each camera, this information is present at different

scales among the camera views, which makes learning

the correspondences more difficult because the DNN

should see all combinations of scales to become scale

invariant. Thus to alleviate the issue of scale variations

among cameras, we propose a scale-aware fusion step,

which uses image pyramids to select features at the

same scale before projection. In this way, all the fea-

tures projected onto the ground-plane are at the same

scale, and the relationships among features is easier to

learn.

We first present the common components, and then

the 3 fusion models.

3.1 Backbone for camera views

A fully-convolutional network (denoted as FCN-7) is

used on each camera view to extract image feature

maps or estimate a corresponding view-level density

map. The FCN-7 settings are shown in Table 1. For

the ablation study, CSR-Net (Li et al. 2018) and LCC

(Liu et al. 2020) are also used as feature backbone (see

Section 6.3.1).

Coordinate correspondence 

Sampler

World planeImage plane

Camera parameters

Camera-view map
Scene-level map

Fig. 3 The projection module to transform camera-view
maps to a ground-plane representation. Here the camera-view
map is visualized as a density map.

3.2 Image to ground-plane projection

As we assume that the intrinsic and extrinsic param-

eters of the cameras are known, the projection from a

camera’s 2D image space to a 3D ground-plane repre-

sentation can be implemented as a differentiable fixed-

transformation module (see Fig. 3). The 3D height (z-

coordinate) corresponding to each image pixel is un-

known. Since the view-level density maps are based on

head annotations and the head is typically visible even

during partial occlusion, we assume that each pixel’s

height in the 3D world is a person’s average height

(1750 mm). The camera parameters together with the

height assumption are used to calculate the correspon-

dence mapping P between 2D image coordinates and

the 3D coordinates on the 3D average-height plane. Fi-

nally, the Sampler from the Spatial Transformer Net-

works (Jaderberg et al. 2015) is used to implement the

projection, resulting in the ground-plane representation

of the input map.

3.3 Late fusion model

and then project them to the ground-plane for fusion

and obtaining the scene-level density map, where the

intersections of the projected Gaussians are close to the

people locations on the ground-plane (see Fig. 4) and

are mapped to the Gaussian kernels of the ground-plane

density map.

The main idea of the late fusion model is to first esti-

mate the crowd density maps in each camera view, and

then project them to the ground-plane for fusion and

prediction of the scene-level density map. As shown in

Fig. 4, the intersections of the projected Gaussians will

be close to the people locations on the ground-plane,

and thus the fusion network aims to transform the inter-
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View 1 View 2 View 3

Sum Ground-truth Prediction

Fig. 4 Example of single-view density maps projected on
to the ground-plane and their summation. The intersections
of the projected Gaussians are close to the people locations
on the ground-plane. The orange dots are the ground-truth
annotations.

section points into the Gaussian kernels on the ground-

plane. In particular, the late fusion model consists of 3

stages (see Fig. 2 top): 1) estimating the camera-view

density maps using FCN-7 on each view; 2) project-

ing the density maps to the ground-plane representa-

tion using the projection module; 3) concatenating the

projected density maps channel-wise and then apply-

ing the Fusion module to obtain the scene-level density

map. The network settings for the fusion network are

presented in Table 1.

Projection Normalization. One problem is that the

density map is stretched during the projection step, and

thus the sum of the density map changes after the pro-

jection. Considering that the density map is composed

of a sum of Gaussian kernels, each Gaussian is stretched

differently depending on its location in the image plane.

To address this problem, we propose a normalization

method to ensure that the sum of each Gaussian ker-

nel remains the same after projection (see Fig. 5). In

particular, let (x0, y0) and (x, y) be the corresponding

points in the image plane and the 3D world ground-

plane representation. The normalization weight wxy for

ground-plane position (x, y) is

wxy =

∑
i,j Dx0,y0(i, j)∑

m,n P(Dx0,y0
(m,n))

, (1)

where Dx0,y0 denotes an image-space density map con-

taining only one Gaussian kernel centered at (x0, y0),

P is the projection operation from image space to ground

plane representation, the summation operation is over

the whole camera view map or projected ground-plane

map, and (i, j) and (m,n) are the image coordinates

.

View-level density map Normalized projected 
density map

Projected density map Normalization 
weight map

..

.

.

.

. .

Fig. 5 The projection normalization process for the late fu-
sion model. Sum is the sum of the whole density map, while
Sum(�) is the sum over the circled region (diameter 5).

and ground-plane coordinates, respectively. The nor-

malization map W = [wxy] for each camera is element-

wise multiplied to the corresponding projected density

map before concatenation. As illustrated in Fig. 5, to

visualize the effect of the projection normalization, we

choose a small circular region (diameter 5), and calcu-

late its sum before and after using the normalization.

After applying the projection normalization, the local

ground-plane sum is more consistent with the corre-

sponding image-based sum. Likewise, the sums of the

whole ground-plane and the whole image are also more

consistent after applying the normalization.

3.4 Näıve early fusion model

The näıve early fusion model directly fuses the feature

maps from all the camera-views to estimate the ground-

plane density map. Similar to the late fusion model, we

implement the early fusion model by replacing the den-

sity map-level fusion with feature-level fusion (see Fig. 2

bottom). Specifically, the näıve early fusion model con-

sists of 3 stages: 1) extracting feature maps from each

camera view using the first 4 convolution layers of FCN-

7; 2) projecting the image feature maps to the ground-

plane representation using the projection module; 3)

concatenating the projected feature maps and applying

the Fusion module to estimate the scene-level density

map. Note that the projection normalization step used

in the late fusion model is not required for the early

fusion model, since feature maps do not have the same

interpretation of summation yielding a count.

4 Multi-view multi-scale early fusion model

Intra-view scale variations are an important issue in

single-view counting, as people will appear with differ-
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Fig. 6 The pipeline of multi-view multi-scale early fusion model (MVMS) with rotation selection module (MVMSR). First,
multi-scale feature maps are extracted with an image pyramid. The multi-scale feature maps are up-sampled to the same size.
The scale selection module (the dotted box) ensures the scales of features that represent the same ground-plane point are
consistent across all views. The scale-consistent features are projected to the average-height plane and then fused to obtain
the scene-level density map. Two kinds of scale selection strategies (the two dotted boxes on the right) are utilized: the fixed
scale selection uses the distance information relative to a reference distance, and learnable scale selection makes the reference
distance a learnable parameter. For MVMSR, a rotation selection module is added after the projection step and before the
fusion step in order to remove mis-aligned rotations caused by the projection step.

ent sizes in the image due to perspective effects. Us-

ing multiple views increases the severity of the scale

variation issue; in addition to intra-view scale varia-

tion, multi-view images have inter-view scale variations,

where the same person will appear at different scales

across multiple views. This inter-view scale variation

may cause problems during the fusion stage as there

are a combinatorial number of possible scales appearing

across all views, which the network needs to be invariant

to. To address this problem, we extract feature maps at

multiple scales, and then perform scale selection so that

the projected features are at consistent scales across all

views (i.e., a given person’s features are at the same

scale across all views).

Our proposed multi-view multi-scale (MVMS) early

fusion architecture is shown in Fig. 6. The MVMS fu-

sion model consists of 4 stages: 1) extracting multi-scale

feature maps by applying the first 4 convolution layers

of FCN-7 on an image pyramid for each camera view; 2)

upsampling all the feature maps to the largest size, and

then selecting the scales for each pixel in each camera-

view according to the scene geometry; 3) projecting the

scale-consistent feature maps to the ground-plane rep-

resentation using the projection module; 4) fusing the

projected features and predicting a scene-level density

map using the fusion module. We consider 2 strategies

for selecting the consistent scales, fixed scale selection

and learnable scale selection.

To further boost the multi-view fusion process, a ro-

tation selection module is added before the fusion step

in the MVMS model, denoted as MVMSR. In the rota-

tion selection module, the projected feature maps are

convolved with multiple rotated versions of the filters,

and then combined by selecting among the rotated fea-

tures based on the camera geometry.

4.1 Scale selection module

In the camera pinhole model, an object’s scale in an im-

age is influenced by the object’s distance to the camera

(see Fig. 7). Therefore, the distance-to-camera informa-

tion can be used to select the scale in an image pyra-

mid to achieve scale consistency across multiple views.

A distance map of each view can be calculated from

the camera extrinsic parameters and the average per-

son height. The projection operation P(x0, y0, havg) is

the projection of the image view coordinate (x0, y0) to

the 3D world coordinates on the average height plane
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Fig. 7 The relationship between distance-to-camera and ob-
ject scale in a camera pinhole model.

havg. Then the distance-to-camera d(x0, y0) (see Fig. 8)

is calculated by transforming to the camera coordinate

system, where the camera center is the origin,

d(x0, y0) = ||RP(x0, y0, havg) + T ||, (2)

where R and T are the camera extrinsic parameters,

rotation matrix and translation, respectively.

Next we show how to use the distance information

to compute the scale according to the pinhole camera

model. Consider an image pyramid with zoom factor

z between neighboring scales. Let H be the height of

the object in the 3D world (H = havg here), and de-

fine hr as the height of the object on the image (at

scale 0) when the object is at a reference distance dr
from the camera. The same object appears in the im-

age with a different height hi when it is at distance di
from the camera. According to camera pinhole model,

we have di/dr = hr/hi. In the image pyramid, the ob-

ject’s height is zSrhr in image scale Sr (at distance dr)

and zSihi in image scale Si (at distance di). Thus, to

achieve scale consistency, where the heights are equal

in the selected image scales, we require that

zSrhr = zSihi. (3)

Solving for Si, we obtain the scale required for the ob-

ject at distance di to be consistent with the object at

reference distance dr and at reference scale Sr,

Si = Sr − logz(di/dr). (4)

4.1.1 Fixed scale-selection

The fixed scale selection strategy is illustrated in Fig. 6

(bottom-left). For a given camera, let {F0, · · · , Fn} be

the set of feature maps extracted from the image pyra-

mid, and then upsampled to the same size. Here F0 is

the original scale and Fn is the smallest scale. A dis-

tance map is computed according to (2) for the camera-

view, where d(x0, y0) is the distance between the cam-

era’s 3D location and the projection of the point (x0, y0)

into the 3D-world (on the average height plane). A scale

selection map S, where each value corresponds to the
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Fig. 8 Visualization of camera distance maps of PETS2009.
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camera 2

camera 3

Fig. 9 The fixed and learnable scale selection masks for
PETS2009.

selected scale for that pixel, is computed according to

(4),

S(x0, y0) = Sr − blogz

d(x0, y0)

dr
c, (5)

where b·c is the floor function. dr and Sr are the ref-

erence distance and the corresponding reference scale

number, which are the same for all camera-views. In

our experiments, we set the reference distance dr as the

distance value for the center pixel of the first view, and

Sr as the middle scale of the image pyramid. Given the

scale selection map S, the feature maps across scales are

merged into a single feature map, F =
∑

i 1(S = i)⊗Fi,

where ⊗ is element-wise multiplication, and 1 is an

element-wise indicator function.

4.1.2 Learnable scale-selection

The fixed scale selection strategy requires setting the

reference distance and reference scale parameters. To

make the scale selection process more adaptive to the

view context, a learnable scale-selection model is con-

sidered (see Fig. 6 (bottom-right)),

S(x0, y0) = b+ k logz

d(x0, y0)

dr
, (6)

where the learnable parameter b corresponds to the ref-

erence scale, and k adjusts the reference distance. The

learnable scale selection can be implemented as a 1×1
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Fig. 11 The rotation selection layer. The same kernel is
padded, rotated and then convolved with the projected fea-
tures. The rotation selection mask is used to select and fuse
the multi-rotated features.

convolution on the log distance map. Then, a soft scale

selection mask Mi for scale i can be obtained,

Mi(x0, y0) =
e−(S(x0,y0)−i)2∑n
j=0 e

−(S(x0,y0)−j)2
. (7)

Note that Mi(x0, y0) has values between 0 and 1, and

sums to 1 across scales,
∑k

i=0Mi(x0, y0) = 1. The scale

consistent feature map is then

F =

k∑
i=0

Mi ⊗ Fi, (8)

which is equivalent to a per-pixel soft-attention mech-

anism across scales, where Mi is the pixel-wise soft-

attention mask.

The fixed and learnable scale selection masks for

PETS2009 are shown in Fig. 9. The fixed scale selec-

tion produces binary masks and learnable scale selec-

tion produces soft masks. The learnable scale selection

gives more freedom for the networks to fuse the multi-

scale features, especially on the edges of each scale’s

masks.

4.2 Rotation selection module

In the projection module, the average-height assump-

tion is utilized in which all pixels in each view are as-

sumed to have the average height. The average-height

Angle map:

Quantized angle map:

View 1 View 2 View 3

Camera center

Camera 

center

Camera center

Fig. 12 Examples of the rotation selection masks for
PETS2009. The first row shows the angle maps for each view,
which show the rotation angle for each pixel. Brighter color
means larger rotation angles. The second row shows the quan-
tized angle maps, where a finite number of rotation angles are
used to reduce computation complexity.

projection is applicable due to the head annotations in

the datasets. On the other hand, the average height pro-

jection makes the feature patterns stretched along the

view ray. Therefore, the features are “rotated” to the

view ray direction after the projection (see Fig. 10). To

further improve the multi-view fusion, a rotation selec-

tion module is proposed and used before the multi-view

fusion step in order to counteract this phenomenon.

The rotation selection layer is illustrated in Fig. 11,

where “tall” aspect-ratio kernels (k1 by k2) are adopted

due to the stretched patterns. First, the kernel is padded

to be square to ensure the feasibility of the arbitrary ro-

tation of the kernel, where the square size is d
√

2 max(k1, k2)e.
Second, the kernels are rotated over a range of angles

{r0, r1, · · · , rm} (decided by the rotation selection map,

see next paragraph), which can be implemented using

the Sampler from (Jaderberg et al. 2015). Third, each

rotated kernel is convolved with the projected feature

maps, resulting in multi-rotated features {F0, ..., Fm}.
Finally, the multi-rotated features are selected and fused

with rotation selection masks.

The rotation selection mask is calculated with the

camera parameters on the average-height plane. Sup-

pose Wc = (xc, yc) are the coordinates on the scene-

level plane (after projection), and the (R, T ) are the

camera extrinsic parameters. Therefore, the camera lo-

cation is O = −RTT , and the corresponding view ray is

along
−−−→
OWc. The rotation angle r(xc, yc) is the angle be-

tween the unit vector (0, 1) along y direction and
−−−→
OWc.

After the rotation angle map r(xc, yc) is calculated, it

is then quantized by q degree into the rotation range

{r0, r1, ..., rm}. The rotation selection mask for rota-

tion angle ri is 1(r = ri), and the fused features are

F =
∑

i 1(r = ri)⊗Fi. Examples of the rotation selec-

tion masks are presented in the second row of Fig. 12.
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Dataset resolution view train / test crowd
PETS2009 768×576 3 1105 / 794 20-40
DukeMTMC 1920×1080 4 700 / 289 10-30
CityStreet 2704×1520 3 300 / 200 70-150

Table 2 The comparison of three multi-view datasets.

4.3 Training details

A two-stage procedure is used to train the model. The

first stage trains the main scene-level density map esti-

mation task as well as auxiliary view-level density map

estimation tasks. The auxiliary task for late fusion con-

sists of auxiliary losses applied between the predicted

and GT density maps for each view. The auxiliary task

for early fusion uses an auxiliary branch of 3 layers of

FCN to predict density maps for each view, followed

by an auxiliary loss on the view-level predicted density

maps. The learning rate is set to 1e-4. In the second

stage, the auxiliary view-level density map estimation

tasks are removed, leaving only the scene-level task.

FCN-7 (either density map estimator or feature extrac-

tor) is fixed and the fusion and scale selection parts

are trained. The loss function is the pixel-wise squared

error between the ground-truth and predicted density

maps. The learning rate is set to 1e-4, and decreases to

5e-5 during training. After training the two stages, the

model is fine-tuned end-to-end. The training batch-size

is set to 1 in all experiments.

5 Datasets and Experiment Setup

In this section we introduce the 3 multi-view counting

datasets and the experiment settings.

5.1 Datasets

We test the proposed multi-view counting framework on

two existing datasets, PETS2009 and DukeMTMC, and

our newly collected CityStreet dataset. Table 2 provides

a summary, and Fig. 13 shows examples.

5.1.1 PETS2009

PETS2009 (Ferryman and Shahrokni 2009) is a multi-

view sequence dataset containing crowd activities from

8 views. The first 3 views are used for the experiments,

as the other 5 views have low camera angle, poor image

quality, or unstable frame rate. To balance the crowd

levels, we use sequences S1L3 (14 17, 14 33), S2L2 (14 55)

and S2L3 (14 41) for training (1105 images in total),

and S1L1 (13 57, 13 59), S1L2 (14 06, 14 31) for testing

(794 images). The calibration parameters (extrinsic and

intrinsic) for the cameras are provided with the dataset.

To obtain the annotations across all views, we use the

View 1 annotations provided by Leal-Taixé et al. (2015)

and project them to other views, followed by manual

annotations to get all the people heads in the images.

5.1.2 DukeMTMC

DukeMTMC (Ristani et al. 2016) is a multi-view video

dataset for multi-view tracking, human detection, and

ReID. The multi-view video dataset has videos from 8

synchronized cameras for 85 minutes with 1080p reso-

lution at 60 fps. For our counting experiments, we use 4

cameras that have overlapping fields-of-view (cameras

2, 3, 5 and 8). The synchronized videos are sampled ev-

ery 3 seconds, resulting in 989 multi-view images. The

first 700 images are used for training and the remain-

ing 289 for testing. Using the same sampling method

for creating the DukeMTMC training set, 200 multi-

view frames are extracted from DukeMTMC Test Hard

set for extra evaluation. Camera extrinsic and homog-

raphy parameters are provided by the dataset. In the

original dataset, annotations for each view are only pro-

vided in the view ROIs, which are all non-overlapping

on the ground-plane and in Camera 8, only R3 region

is used and R1 and R2 are excluded. Since we are in-

terested in overlapping cameras, we project the anno-

tations from each camera view to the overlapping areas

in all other views. Region R2 (see Fig. 13) is excluded

during the experiment, since there are no annotations

provided there.

5.1.3 CityStreet

We collected a multi-view video dataset of a busy city

street in Hong Kong using 5 synchronized cameras. The

videos are about 1 hour long with 2.7k (2704×1520) res-

olution at 30 fps. We select Cameras 1, 3 and 4 for the

experiment (see Fig. 13 bottom). The cameras’ intrin-

sic and extrinsic parameters are estimated using the

calibration algorithm from Zhang (2000). 500 multi-

view images are uniformly sampled from the videos,

and the first 300 are used for training and remaining

200 for testing. The ground-truth 2D and 3D anno-

tations are obtained as follows. The head positions of

the first camera-view are annotated manually, and then

projected to other views and adjusted manually. Next,

for the second camera view, new people (not seen in the

first view), are also annotated and then projected to

the other views. This process is repeated until all peo-

ple in the scene are annotated and associated across

all camera views. Our dataset has larger crowd num-

bers (70-150), compared with PETS (20-40) and Duke-

MTMC (10-30). Our dataset also contains more crowd
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Fig. 13 Examples from 3 multi-view counting datasets. The first column shows the camera frames and annotations. The
second column shows the camera layout and scene-level ground-plane density maps. Note that ‘R2’ region of Camera 8 of
DukeMTMC dataset is not used since no annotations are available.

scale variations and occlusions due to vehicles and fixed

structures.

5.2 Experiment setup

5.2.1 Ground-truth settings

The ground-truth scene-level density maps are created

by convolving the people’s ground-plane annotation map

with a fixed-bandwidth Gaussian kernel. The people’s

ground-plane annotations are estimated from their camera-

view annotations and the camera calibration informa-

tion. First, each person’s height in 3D is estimated by

selecting a height, among a candidate set in the range

[1.6m, 2.0m] (step of 0.1m), so as to minimize the differ-

ences among the ground-plane coordinates obtained by

projecting that person’s 2D camera-view annotations

to the 3D world. Second, with the estimated person’s

height, a person’s ground-plane annotation is set to the

average of that person’s 2D annotations projected to

the 3D world. To construct the ground-truth scene-

level density maps, we follow single-image counting and

choose a fixed-bandwidth σ = 3 for the Gaussian ker-

nel.

The image resolutions (w×h) used in the experi-

ments are: 384×288 for PETS2009, 640×360 for Duke-

MTMC, and 676×380 for CityStreet. The resolutions of

the scene-level ground-plane density maps are: 152×177

for PETS2009, 160×120 for DukeMTMC and 160×192

for CityStreet. For the detection baseline, the original

image resolutions are used (Faster-RCNN will resize the

images).

5.2.2 Methods

We test our multi-view fusion models, denoted as “Late

fusion”, “Näıve early fusion”, “MVMS” (multi-view multi-

scale early fusion), and “MVMSR” (MVMS with ro-

tation selection). The late fusion model uses projec-

tion normalization. MVMS uses learnable scale selec-

tion, and a 3-scale image pyramid with zoom factor of

0.5. MVMSR uses 3 rotation selection layers with filter

number F = 32 and quantization angle Q = 10◦, 45◦

and 45◦ for PETS2009, DukeMTMC and CityStreet,

respectively. Besides, we have also performed the mod-

els with different feature extraction backbones. These

settings will be tested later in the ablation study.

For comparisons, we test and compare with several

comparison methods. The first comparison method is

an approach to fusing camera-view density maps into a

scene-level crowd count, denoted as “Dmap weighted”,

which is an adaptation from Ryan et al. (2014). First

single image counting model is applied to get the den-

sity map Di for each camera-view. The density maps

are then fused into a scene-level count using a weight

map Wi for each view,

C =
∑
i

∑
x0,y0

Wi(x0, y0)Di(x0, y0), (9)

where the summations are over the camera-views and

the image pixels. The weight map Wi is constructed
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Dataset Method MSE NAE MAE/GAME(0) GAME(1) GAME(2)

PETS2009

Dmap weighted 7.29 0.182 5.62 - -
Detection+ReID 7.01 0.174 5.46 - -
Feature concatenation 8.96 0.300 7.32 - -
Stitching 14.51 0.337 10.90 - -
Late fusion 5.18 0.138 3.92 6.38 7.75
Näıve early fusion 6.76 0.199 5.42 7.26 8.13
MVMS 4.83 0.124 3.49 5.30 6.27
MVMSR 4.93 0.130 3.62 5.37 6.98

DukeMTMC

Dmap weighted 2.06 0.186 1.54 - -
Detection+ReID 2.30 0.355 1.89 - -
Feature concatenation 5.23 1.030 4.44 - -
Stitching 1.65 0.215 1.24 - -
Late fusion 1.63 0.187 1.29 1.77 2.22
Näıve early fusion 1.90 0.199 1.47 2.00 2.62
MVMS 1.28 0.122 0.95 1.24 1.50
MVMSR 1.17 0.118 0.89 1.19 1.42

CityStreet

Dmap weighted 11.46 0.120 9.36 - -
Detection+ReID 21.18 0.193 17.48 - -
Feature concatenation 21.34 0.245 18.33 - -
Stitching 10.55 0.107 8.76 - -
Late fusion 9.63 0.099 8.06 12.75 23.10
Näıve early fusion 9.85 0.100 8.11 12.73 22.93
MVMS 9.02 0.096 7.36 11.95 20.44
MVMSR 8.49 0.086 6.98 11.39 19.79

Table 3 The scene-level counting performance of different methods on the 3 datasets. MSE, NAE, MAE and GAME are
used as evaluation metrics. Note that for comparison methods whose outputs are not density maps, GAME(1) and GAME(2)
are not applicable. FCN-7 is used as feature backbone for PETS2009, and CSR-net is used as feature backbone for CityStreet
and DukeMTMC. For MVMSR, the filter number is 32, the layer number is 3 and the quantization angle is 10◦, 45◦ and 45◦

for the PETS2009, DukeMTMC and CityStreet, respectively.

based on how many views can see a particular pixel.

In other words, Wi(x0, y0) = 1/t, where t is the num-

ber of views that can see the projected point P(x0, y0).

Note that Ryan et al. (2014) used this simple fusion ap-

proach with traditional regression-based counting (in

their setting, the Di map is based on the predicted

counts for crowd blobs). We also test on the meth-

ods with different single-image counting models. Here,

we are using recent DNN-based methods (CSR-net)

and crowd density maps, which outperform traditional

regression-based counting, and hence form a stronger

baseline method compared to Ryan et al. (2014).

The second comparison method is using human de-

tection methods and person re-identification (ReID),

denoted as “Detection + ReID”. First, Faster-RCNN

(Ren et al. 2015) is used to detect humans in each

camera-view. Next, the scene geometry constraints and

the ReID method Circle2020 ((Sun et al. 2020; Wang

et al. 2018)) are used to associate the same people

across views. Specifically, each detection box’s top-center

point in one view is projected to other views, and ReID

is performed between the original detection box and de-

tection boxes near the projected point in other views.

Finally, the scene-level people count is obtained by count-

ing the number of unique people among the detection

boxes in all views. The bounding boxes needed for train-

ing are created with the head annotations and the per-

spective map of each view.

The third comparison method is to simply concate-

nate the features of the different views and directly

regress a scene-level count. We’ve used the LCC (Liu

et al. 2020) as the feature extractor, where the output

of the scale-aware module of LCC is used as extracted

features.

The fourth comparison method is to “stitch” to-

gether the counts from different camera views. In par-

ticular, first a set of non-overlapping ROIs on the ground-

plane are formed by assigning ground-plane pixels to

the closest camera. These ROIs are then projected into

their camera views. Next, single-view counting (CSR-

net) is performed on each camera-view, and the ROI

count in each camera view is obtained. Finally, the

scene-level count is the sum of the ROI counts.

5.2.3 Evaluation

The mean absolute error (MAE), mean squared error

(MSE), and normalized (relative mean) absolute error

(NAE) are used to evaluate multi-view counting perfor-

mance, comparing the scene-level predicted counts and

the ground-truth scene-level counts. Besides, Grid Av-

erage Mean absolute Error (GAME) (Guerrero-Gómez-

Olmedo et al. 2015) is also used to evaluate the local
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counting performance of the predicted scene-level den-

sity maps of the proposed methods. The definitions of

these evaluation metrics are as follows.

MAE =
1

N

N∑
i

|ci − ĉi|, (10)

MSE =

√√√√ 1

N

N∑
i

(ci − ĉi)2, (11)

NAE =
1

N

N∑
i

|ci − ĉi|/ĉi, (12)

GAME(L) =
1

N

N∑
i

(

4L∑
l=1

|cli − ĉli|), (13)

where N is the number of the test images, ci and ĉi are

the estimated and ground-truth people count in the i-

th image. As to GAME metric, the scene-level density

maps are divided in 4L non-overlapping patches and

compute the average of the MAE of these patches. cli
and ĉli are the estimated and ground-truth people count

of the patch l of i-th image. Note that MAE equals the

GAME when L = 0.

In addition, we also evaluate the predicted counts

in each camera-view. The ground-truth count for each

camera-view is obtained by summing the ground-truth

scene-level density map over the region covered by the

camera’s field-of-view. Note that people that are totally

occluded from the camera, but still within its field-of-

view, are still counted.

6 Experiment Results

In this section, the scene-level counting performance

of the proposed DNN-based multi-view fusion meth-

ods are evaluated against other multi-camera counting

methods. We also demonstrate the single-view count-

ing performance using multi-view cameras. In terms

of both evaluation perspectives, the proposed method

can achieve better counting results on all 3 multi-view

counting datasets.

6.1 Scene-level counting performance

In this section, we test the proposed multi-view count-

ing models in terms of scene-level counting performance

on the 3 multi-view counting datasets, PETS2009 (Fer-

ryman and Shahrokni 2009), DukeMTMC (Ristani et al.

2016) and CityStreet. The results are presented in Ta-

bles 3, 7, 8, and 9, and examples shown in Fig. 14.

Method MSE NAE MAE
Hybrid (Dittrich et al. 2017) - - 2.03
Late fusion (w/ PN) 2.56 0.241 1.53
Naive early fusion 2.14 0.203 1.71
MVMS 1.26 0.091 0.98
MVMSR 1.24 0.089 0.96

Table 4 Extra experiment results on PETS S1L1 (views 1
and 2) comparing with a traditional multi-view method. ‘PN’
means projection normalization.

Method MSE NAE MAE
Dmap weighted 7.21 0.437 4.17
Detection+ReID 7.06 0.371 3.71
Late fusion (w/ PN) 4.82 0.307 2.62
Näıve early fusion 6.13 0.361 2.82
MVMS 6.20 0.328 2.81
MVMSR 6.00 0.329 2.89

Table 5 Extra experiment results on DukeMTMC Test Hard
set.

6.1.1 PETS2009

The scene-level counting results on PETS2009 are shown

in Table 3 (top row) and Table 7 (“Scene” column).

On PETS2009, our proposed multi-view fusion models

(use FCN-7 as backbone) achieve better results than

the two comparison methods. Detection+ReID (Cir-

cle2020) performs worst on this dataset because the

people are close together in a crowd, and occlusion

causes severe misdetection. Among our three multi-view

fusion models, näıve early fusion performs worse, which

suggests that the scale variations in multi-view images

limits the performance. Furthermore, MVMS performs

much better than other models, which shows the multi-

scale framework with scale selection strategies can im-

prove the feature-level fusion to achieve better perfor-

mance.

The performance of using one camera for the scene-

level counting task is not as good as using multi-cameras.

In particular, using Dmap with cameras 1 or 2 per-

forms poorly due to the limited field-of-view. Dmap

using camera 3 achieves slightly better performance

than using multi-cameras (Dmap weighted, CSR-net

backnoned) because most people can already be seen

in camera 3. This also suggests that “Dmap weighted”

cannot fuse the multi-view information well. Nonethe-

less, our fusion methods all outperform the Dmap weighted,

demonstrating the efficacy of the projection and fu-

sion stages. The feature concatenation method outputs

a scene-level count, and does not consider the geom-

etry relationship of the camera views, thus achieving

worse results than the proposed methods. The Stitch-

ing method, which only considers the distance between

objects and cameras but neglects the occlusions in the

camera views, also performs worse than our methods.

Finally, using multiple cameras to count with “Detec-
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tion+ReID” improves the performance over single cam-

eras, but still has higher error than our fusion methods.

PETS S1L1. We next compare our method with a

traditional multi-view counting method “Hybrid” (Dit-

trich et al. 2017) on the subset of PETS2009 dataset,

PETS S1L1, which is presented in Table 4. Dittrich

et al. (2017) proposed two approaches (head detector

and count regression) by fusing hand-crafted features

(corner points or Harr feature) from multiple cameras

for multi-view counting. Similar to Dittrich et al. (2017),

we use PETS2009 S1L1 13 57 (view 1 and 2) for train-

ing and 13 59 (view 1 and 2) for testing. Our fusion

models (FCN-7 backbone) all achieve better performance

than the multi-view counting method based on tra-

ditional hand-crafted low-level features, and MVMSR

achieves the best scene-level counting performance.

6.1.2 DukeMTMC

The scene-level counting results on DukeMTMC are

shown in Table 3 (middle row) and Table 8 (“Scene”

column). On DukeMTMC, our multi-view fusion mod-

els (use CSR-net as backbone) achieve better perfor-

mance than comparison methods at the scene-level count-

ing task. Due to lower crowd numbers in DukeMTMC,

the performance gap among the 3 fusion models is not

large – but MVMS and MVMSR still perform best and

MVMSR is better than MVMS. Furthermore, results

from comparison methods also show that using a sin-

gle camera is not adequate for the scene-level counting

task. Dmap with a single camera 8 performs slightly

better than using multi-cameras (Dmap weighted) due

to the large field-of-view of camera 8, and the limi-

tations of the weighted fusion. Since camera views in

DukeMTMC dataset share smaller area of overlapping

regions and the occlusion issue is not severe, the Stitch-

ing method performs relatively better than other com-

parison methods, but the proposed MVMS and MVMSR

still perform better.

DukeMTMC Test Hard. Finally, the scene-level

counting results on the DukeMTMC Test Hard set,

which contains more crowds, are presented in Table 5.

Our fusion model (FCN-7 backbone) achieves better

scene-level counting results than the baselines. Among

our methods, late fusion has slightly lower error than

MVMS/MVMSR.

6.1.3 CityStreet

The scene-level counting results on CityStreet are shown

in 3 (bottom row) Table 9 (“Scene” column). On CityS-

treet, our multi-view fusion models achieve better re-

sults than the comparison methods. Compared to PETS2009,

Dataset Method MSE NAE MAE

PETS2009

CVF (Zheng et al. 2021) - - 3.08
CVCS (Zhang et al. 2021) - 0.165 5.17
MVMS 4.83 0.124 3.49
MVMSR 4.93 0.130 3.62

DukeMTMC

CVF (Zheng et al. 2021) - - 0.87
CVCS (Zhang et al. 2021) - 0.525 2.83
MVMS 1.28 0.122 0.95
MVMSR 1.17 0.118 0.89

CityStreet

CVF (Zheng et al. 2021) - - 7.08
CVCS (Zhang et al. 2021) - 0.117 9.58
MVMS 9.02 0.096 7.36
MVMSR 8.49 0.086 6.98

Table 6 The scene-level counting performance of different
methods on the 3 datasets. MSE, NAE and MAE are used
as evaluation metrics. Note that only MAE is provided in
CVF (Zheng et al. 2021), and MAE and NAE are provided
in CVCS (Zhang et al. 2021).

CityStreet has larger crowds and more occlusions and

scale variations. Therefore, the performances of the base-

line methods decreases significantly, especially Detec-

tion+ReID. Due to large camera angle change and se-

vere occlusions in the CityStreet dataset, Feature con-

catenation and Stitching cannot perform well on the

larger and more complicated dataset. Our MVMSR model

achieves much better performance on CityStreet than

all other models. The reason is the 3 views of the CityS-

treet dataset have larger view angle change than the

other two datasets, which can better demonstrate the

effectiveness of the rotation selection in the multi-view

fusion process. Furthermore, similar to the other two

datasets, using multi-cameras achieves better scene-level

counting performance than using a single camera.

6.1.4 Comparison with concurrent methods

We next compare with two recent multi-view counting
methods published concurrently during the revision of

our paper: CVF (Zheng et al. 2021) and CVCS (Zhang

et al. 2021). The comparison is shown in Table 6, and

our proposed method achieves the best performance on

the largest dataset CityStreet.

6.2 Single-view counting performance

We next evaluate the single-view counting performance,

which is the people count within the single-camera’s

field-of-view. Here we mainly aim to show that multi-

view information can improve single-view counting over

using a single camera. Note, the comparison method

feature concatenate and stitching directly output a scene-

level count and are not used for comparison in this sec-

tion.

PETS2009: The single-view counting results on PETS2009

are shown in Table 7. Columns ‘C1’, ‘C2’, and ‘C3’ cor-

respond for single-view counting in regions within the
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PETS2009 (Ferryman and Shahrokni 2009)
Method (camera) Scene C1 C2 C3
Dmap (camera 1) 13.74/0.413/12.19 4.55/0.213/3.96 - -
Dmap (camera 2) 13.48/0.404/12.39 - 9.43/0.309/8.33 -
Dmap (camera 3) 7.95/0.239/6.89 - - 6.37/0.201/5.46
Dmap weighted (multiview) 7.29/0.182/5.62 4.02/0.169/3.61 4.25/0.136/3.42 5.21/0.149/4.23
Detection+ReID (camera 1) 17.99/0.545/17.24 9.75/0.356/8.57 - -
Detection+ReID (camera 2) 16.27/0.485/15.54 - 12.33/0.393/11.19 -
Detection+ReID (camera 3) 16.27/0.503/16.33 - - 15.60/0.472/14.59
Detection+ReID (multiview) 7.01/0.174/5.46 8.22/0.238/6.55 9.33/0.300/7.09 13.50/0.400/11.76
Late fusion (multiview) 5.18/0.138/3.92 3.20/0.143/2.62 4.19/0.137/3.17 5.00/0.150/3.97
Näıve (multiview) 6.76/0.199/5.42 3.13/0.124/2.37 5.76/0.179/4.27 6.36/0.192/4.92
MVMS (multiview) 4.83/0.124/3.49 2.22/0.084/1.66 3.67/0.103/2.58 4.58/0.127/3.46
MVMSR (multiview) 4.93/0.130/3.62 2.17/0.077/1.57 3.30/0.097/2.38 4.76/0.133/3.64

Table 7 Comparison of the scene-level (left) and the single-view counting (right) measured with mean square error, mean
absolute error and relative mean absolute error (MSE/NAE/MAE) on PETS2009. Column “Scene” denotes the scene-level
counting error. Columns “C1”, “C2” and “C3” refer to the single-view counting error for the region within the field-of-view of
cameras 1, 2 and 3. “camera” indicates the camera(s) used for counting. The late fusion model uses projection normalization,
and MVMS and MVMSR uses learnable scale selection and FCN-7 is used as the feature backbone.

DukeMTMC (Ristani et al. 2016)
Method (camera) Scene C2 C3 C5 C8
Dmap (camera 2) 6.07/0.613/5.19 0.97/0.487/0.73 - - -
Dmap (camera 3) 8.73/1.000/8.03 - 1.28/0.647/0.79 - -
Dmap (camera 5) 7.39/0.830/6.72 - - 0.81/0.575/0.49 -
Dmap (camera 8) 2.43/0.258/1.87 - - - 1.57/0.232/1.21
Dmap weighted 2.71/0.250/2.11 1.35/0.426/1.02 1.28/0.647/0.79 1.42/0.663/0.89 1.83/0.201/1.30
Det+ReID (camera 2) 4.42/0.425/3.51 2.28/1.03/2.06 - - -
Det+ReID (camera 3) 7.93/0.890/7.20 - 0.55/0.132/0.25 - -
Det+ReID (camera 5) 7.11/0.782/6.38 - - 1.29/0.524/0.96 -
Det+ReID (camera 8) 5.85/0.620/5.10 - - - 4.28/0.541/3.58
Det+ReID (multiview) 2.30/0.355/1.89 0.94/0.513/0.75 0.71/0.584/0.40 2.37/1.09/1.89 3.62/0.422/2.86
Late fusion (multiview) 1.63/0.187/1.29 0.64/0.263/0.45 0.56/1.040/0.35 0.66/0.548/0.37 1.48/0.198/1.15
Näıve (multiview) 1.90/0.199/1.47 0.59/0.265/0.44 0.66/0.970/0.44 0.91/0.768/0.60 1.64/0.195/1.23
MVMS (multiview) 1.28/0.122/0.95 0.50/0.199/0.33 0.40/0.677/0.21 0.59/0.401/0.31 1.11/0.125/0.81
MVMSR (multiview) 1.17/0.118/0.89 0.45/0.183/0.30 0.38/0.758/0.19 0.54/0.410/0.29 1.02/0.118/0.76

Table 8 Comparison of the scene-level (left) and the single-view counting (right) using mean square error, mean absolute
error and relative mean absolute error (MSE/NAE/MAE) on DukeMTMC. CSR-net is used as the feature backbone. See the
caption of Table 7 for further description.

fields-of-view of cameras 1, 2, and 3, respectively. On

PETS2009, our 3 multi-view fusion models can achieve

better results than the two comparison methods in terms

of all single-camera counting, which demonstrates that

the proposed multi-view fusion DNNs can well inte-

grate the information from multi-views to improve the

counting performance in different regions. Furthermore,

MVMS performs much better than other models, which

also shows the multi-scale framework with scale selec-

tion strategies can improve the feature-level fusion to

achieve better performance. Finally, the comparison meth-

ods’ single-view counting performance can also be im-

proved with the aid of other cameras.

DukeMTMC: On DukeMTMC, our multi-view fu-

sion models can achieve better performance than com-

parison methods on most camera-views (see Table 8).

Detection+ReID achieves the good result on camera 3

because this camera is almost parallel to the horizontal

plane, has low people count, and rarely has occlusions,

which is an ideal operating regime for the detector. Fi-

nally, the single-view counting performance is mostly

improved with the aid of multi-cameras.

CityStreet: On CityStreet (see Table 9), our 3 multi-

view fusion models achieve better results than the com-

parison methods. Due to severe occlusions and scale

changes, the Detection+ReID methods perform badly,

even with the aid of other cameras. However, using

multi-cameras still improves the single-view counting

performance, and our methods are the most effective

at multi-view fusion.

6.3 Ablation studies

We next present ablation studies on the various com-

ponents of our fusion pipeline.

6.3.1 Backbone for MVMS and MVMSR

We compare different feature extraction backbones in

the proposed multi-view counting framework: FCN-7,
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Dataset CityStreet
Method (camera) Scene C1 C3 C4
Dmap (camera 1) 11.70/0.110/9.31 10.21/0.112/8.51 - -
Dmap (camera 3) 11.64/0.199/9.41 - 11.83/0.129/9.23 -
Dmap (camera 4) 24.24/0.256/21.92 - - 22.84/0.240/20.30
Dmap weighted (multiview) 11.46/0.120/9.36 9.30/0.101/7.87 11.19/0.121/9.19 12.84/0.116/10.16
Detection+ReID (camera 1) 49.68/0.513/45.80 45.71/0.483/41.38 - -
Detection+ReID (camera 3) 45.09/0.453/40.87 - 37.94/0.391/32.94 -
Detection+ReID (camera 4) 35.10/0.323/30.03 - - 33.16/0.311/28.57
Detection+ReID (multiview) 21.18/0.193/17.48 42.36/0.456/37.76 35.10/0.355/29.27 22.84/0.228/18.21
Late fusion 9.63/0.099/8.06 9.71/0.110/8.36 9.51/0.110/7.99 9.01/0.089/7.46
Näıve early fusion 9.85/0.100/8.11 10.04/0.108/8.35 9.42/0.106/7.74 9.65/0.098/7.94
MVMS (multiview) 9.02/0.096/7.36 9.59/0.110/7.87 8.44/0.100/6.87 7.59/0.081/6.24
MVMSR (multiview) 8.49/0.086/6.98 8.51/0.094/7.05 8.06/0.089/6.49 7.89/0.078/6.44

Table 9 Comparison of the scene-level and the single-view counting using mean square error, mean absolute error and relative
mean absolute error (MSE/NAE/MAE) on CityStreet. CSR-net is used as the feature backbone. See the caption of Table 7
for further description.

Backbone Method MSE NAE MAE/GAME(0) GAME(1) GAME(2)

FCN-7

Late fusion 10.24 0.097 8.12 13.05 21.14
Näıve early fusion 10.11 0.096 8.10 13.06 20.98
MVMS 10.05 0.096 8.01 13.67 21.99
MVMSR 9.73 0.090 7.37 13.89 22.60

CSR-net

Late fusion 9.63 0.099 8.06 12.75 23.10
Näıve early fusion 9.85 0.100 8.11 12.73 22.93
MVMS 9.02 0.096 7.36 11.95 20.44
MVMSR 8.49 0.086 6.98 11.39 19.79

LCC

Late fusion 10.51 0.113 8.71 15.45 26.29
Näıve early fusion 9.96 0.103 7.97 12.99 22.56
MVMS 9.86 0.093 7.67 13.92 22.97
MVMSR 9.46 0.086 7.42 12.77 21.22

Table 10 Comparison of different backbones for scene-level counting performance on CityStreet, where the settings for the
rotation module are the same: the filter number is 32, the layer number is 3 and the quantization angle is 45◦.

CSR-net (Li et al. 2018) (first 7 layers of VGG) and

LCC (Liu et al. 2020) (use the output of the scale-aware

module as extracted features).

First, the counting results of the 4 fusion models

on CityStreet are presented in Table 10. Generally, us-
ing larger backbone performs better than FCN-7. How-

ever, the performance gap using different is larger for

Dmap weighted, indicating that the single-view density

maps of CSR-Net are more accurate. This suggests that

the scale-selection module in MVMS is sufficient for

handling scale changes in multi-view counting, and the

benefits of using dilated convolutions to handle single-

view scale changes are diminished. Furthermore, the

improvement of MVMSR and MVMS over late/näıve

fusion is consistent among the 3 backbones. Finally,

the proposed MVMSR method achieves the best per-

formance on all 3 backbones, which indicates the effec-

tiveness of the rotation selection module.

Second, the counting results of MVMS and MVMSR

on the 3 datasets are presented in Table 11. Generally,

with larger backbone, the performance of MVMS or

MVMSR can be improved on the CityStreet and Duke-

MTMC dataset, and MVMSR is better than MVMS.

On PETS2009 dataset, the smaller backbone performs

better than larger backbones, and the possible reason

is the larger backbone models are overfitting on the

dataset since more CNNs layers are used. Furthermore,

on PETS2009, since the camera angle change is not

large enough and most people can be seen by camera 3,

the best performance of MVMSR is slightly worse than

MVMS. Nonetheless, MVMSR is better than MVMS on

the more complicated datasets, CityStreet and Duke-

MTMC.

6.3.2 Normalization in the late fusion model

We perform an ablation study on the late fusion model

(FCN-7 backbone) with and without the projection nor-

malization step, and the results are presented in Table

12 (top). Using projection normalization reduces the

error of the late fusion model, compared to not using

the normalization step. This demonstrates the impor-

tance of maintaining the total count when projecting

the density map into the ground-plane representation.

6.3.3 Scale selection in MVMS

We perform an ablation study on the scale-selection

strategy of MVMS, and the results are presented in Ta-
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Backbone Method MSE NAE MAE/GAME(0) GAME(1) GAME(2)

PETS2009

MVMS(FCN-7) 4.83 0.124 3.49 5.30 6.27
MVMS(CSR-net) 5.26 0.140 3.99 6.27 7.51
MVMS (LCC) 5.62 0.151 4.36 6.68 7.98
MVMSR (FCN-7) 4.93 0.130 3.62 5.37 6.98
MVMSR (CSR-net) 5.51 0.140 4.15 6.56 8.30
MVMSR (LCC) 5.60 0.151 4.37 5.80 6.94

DukeMTMC

MVMS(FCN-7) 1.24 0.170 1.03 1.53 1.92
MVMS(CSR-net) 1.28 0.122 0.95 1.24 1.50
MVMS (LCC) 1.38 0.132 1.04 1.26 1.49
MVMSR (FCN-7) 1.31 0.144 1.01 1.50 2.02
MVMSR (CSR-net) 1.17 0.118 0.89 1.19 1.42
MVMSR (LCC) 1.26 0.129 0.94 1.29 1.57

CityStreet

MVMS(FCN-7) 10.05 0.096 8.01 13.67 21.99
MVMS(CSR-net) 9.02 0.096 7.36 11.95 20.44
MVMS (LCC) 9.86 0.093 7.67 13.92 22.97
MVMSR (FCN-7) 9.73 0.090 7.37 13.89 22.60
MVMSR (CSR-net) 8.49 0.086 6.98 11.39 19.79
MVMSR (LCC) 9.46 0.086 7.42 12.77 21.22

Table 11 Comparison of different backbones for MVMS/MVMSR on PETS2009, DukeMTMC and CityStreet. For MVMSR,
the filter number is 32, the layer number is 3 and the quantization angle is 10◦, 45◦ and 45◦ for PETS2009, DukeMTMC and
CityStreet, respectively.

Dataset PETS2009 DukeMTMC CityStreet
Region C1 C2 C3 Scene C2 C3 C5 C8 Scene C1 C3 C4 Scene
Late fusion (w/ PN) 2.62 3.17 3.97 3.92 0.49 0.77 0.39 1.15 1.27 8.14 7.72 8.08 8.12
Late fusion (w/o PN) 2.75 3.86 4.37 4.22 0.63 0.73 0.51 1.31 1.43 9.89 9.60 9.82 9.87
MVMS (fixed) 1.74 2.57 3.81 3.82 0.65 0.46 0.88 1.44 1.09 8.11 7.83 8.32 7.80
MVMS (learnable) 1.66 2.58 3.46 3.49 0.63 0.52 0.94 1.36 1.03 7.99 7.63 7.91 8.01

Table 12 Ablation study (MAE) comparing the late fusion model with and without projection normalization (PN), and
MVMS with fixed or learnable scale selection.

Dataset fixed discrete fixed soft learnable soft
PETS2009 3.82 3.59 3.49
CityStreet 7.80 8.55 8.01

Table 13 MAE comparison of MVMS model (FCN-7 back-
bone) selection module settings: fixed scale selection with dis-
crete mask or soft-mask, and learnable scale selection with
soft-mask.

ble 12 (bottom). Most of the time the learnable scale-

selection strategy can achieve lower error than fixed

scale-selection. We note that using MVMS with fixed

scale-selection strategy still outperforms the näıve early

fusion, which performs no scale selection. Thus obtain-

ing features that have consistent scales across views is

an important step when fusing the multi-view feature

maps.

The proposed two scale selection modules use dif-

ferent mask methods: discrete mask for fixed scale se-

lection and soft-mask for learnable scale selection. We

perform another ablation study on fixed scale selection

using the soft-mask, which is presented in Table 13.

When using soft-masks, learnable scale selection still

outperforms fixed scale selection.

6.3.4 Rotation module in MVMSR

We perform the ablation study on the rotation module

of MVMSR on the CityStreet dataset (with CSR-net

backbone), including the number of filters F , the num-

ber of layers L, and the rotation quantization angle Q

of the rotation selection layer.

Number of filters F : The results of the ablation

study on the number of filters F is shown in Table 14,

where the number of layers in rotation selection is 3 and

the rotation quantization angle is 45◦. Increasing the

number of filters does not necessarily improve the per-

formance of the scene-level counting performance. The

reason is because the rotation selection layer naturally

handles the effect of feature rotations in the projection

step, and thus less filters are required when compared

to without the rotation selection, where each rotation

needs a separate filter. Besides, using more filters de-

creases the speed of the model in the inference stage.

Therefore, we choose F = 32 in the remaining experi-

ments, whose performance is better compared to others.

Number of layers L: We perform an ablation

study on the number of layers L of the rotation module

in Table 15, where the number of filters is 32 and the

rotation quantization angle is 45◦. From the table, we

conclude that fewer rotation selection layers may not

reduce the feature rotation effect and too many layers

may make the model overfit and decrease the count-

ing performance. The choice of L = 5 achieves the best
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F MAE MSE NAE G(1) G(2) FPS
8 7.56 9.36 0.091 11.54 20.70 5.8
16 7.24 8.74 0.088 11.73 19.81 5.6
32 6.98 8.49 0.086 11.39 19.79 5.5
64 7.09 8.73 0.088 11.90 20.47 3.4
128 7.08 8.82 0.092 12.31 21.28 0.6

Table 14 The ablation study on filter number F of the ro-
tation module in MVMSR on CityStreet. Here L = 3 and
Q = 45. G(1) and G(2) are GAME(1) and GAME(2), respec-
tively.

L MAE MSE NAE G(1) G(2) FPS
1 7.32 8.81 0.090 12.27 20.90 6.8
3 6.98 8.49 0.086 11.39 19.79 5.5
5 6.63 8.25 0.082 12.11 20.70 4.5
7 6.77 8.46 0.086 11.45 20.40 3.8
9 7.00 8.77 0.082 11.56 20.24 3.3

Table 15 The ablation study on layer number L of the ro-
tation module in MVMSR on CityStreet. Here F = 32 and
Q = 45◦.

Q MAE MSE NAE G(1) G(2) FPS
15◦ 7.48 9.04 0.092 12.68 21.60 2.0
30◦ 7.26 9.02 0.085 11.06 19.34 3.5
45◦ 6.63 8.25 0.082 12.11 20.70 4.5
60◦ 7.02 8.56 0.084 11.54 20.19 5.2
75◦ 7.01 8.47 0.089 11.96 20.65 5.8
90◦ 7.20 8.63 0.088 11.96 20.17 6.1

Table 16 The ablation study on rotation quantization angle
Q of the rotation module in MVMSR on CityStreet. Here
F = 32 and L = 5.

performance in terms of MAE, MSE and NAE metric

while L = 3 achieves the best performance in terms of

GAME(1) and GAME(2). We use L = 5 in the remain-

ing experiments.

Quantization angle Q: Finally, we perform an ab-

lation study on the quantization angle Q in the rota-

tion selection module of MVMSR on CityStreet, and

the results are presented in Table 16. The choice of the

quantization angle Q involves the balance between the

benefit of rotation selection and the extra learning com-

plexity caused by the multi-rotations of the features.

Q = 45◦ has the best performance, compared to larger

and smaller quantization angles on CityStreet.

In the main experiments tables (Table 3 and 9), we

report the result on CityStreet with F = 32, L = 3 and

Q = 45◦ for better overall performance in terms of all

evaluation metrics than the comparison methods.

6.3.5 Detection+ReID with Detection or ReID

ground-truth

In crowd scenes, detection methods are limited by se-

vere occlusions among the crowd, while ReID meth-

ods are hindered by detection errors, partial occlusions,

Method FPS
Dmap weighted (FCN-7) 58.5
Dmap weighted (CSR-net) 9.4
Detection+ReID 0.3
Feature concatenation 3.4
Stitching 8.7
Late fusion (FCN-7) 27.8
Näıve early fusion (FCN-7) 30.7
MVMS (FCN-7) 19.8
MVMSR (FCN-7) 11.1
Late fusion (CSR-net) 5.2
Näıve early fusion (CSR-net) 8.5
MVMS (CSR-net) 7.9
MVMSR (CSR-net) 5.5
Late fusion (LCC) 3.9
Näıve early fusion (LCC) 5.0
MVMS (LCC) 4.4
MVMSR (LCC) 0.5

Table 17 Running speed comparison on the CityStreet
dataset.

scale changes between cameras, and low image-patch

resolution. To illustrate the difficulties, we use the ground-

truth inter-camera associations (i.e., the best possible

ReID) on the people detections and get counting MAE

30.3 on CityStreet, which is worse than our density-

map fusion methods. Likewise, we apply ReID (Cir-

cle2021) on the ground-truth person boxes (i.e., the

best possible detector), and get counting MAE 10.7.

Integrating multi-view detection and ReID for multi-

view crowd counting would be interesting future work,

and our dataset could serve as a test-bed.

6.3.6 Running speed comparison

We compare the running speed of different methods

on the CityStreet dataset in the Table 17. Times are

recorded for an Intel Xeon CPU E5-2543@3.30GHz with

a Nvidia Geforce GTX 1080 Ti GPU. Generally, larger

or deeper backbones (CSR-net and LCC) have lower

running speed than lighter backbones (FCN-7). Com-

paring our methods, näıve early fusion is faster than

late fusion because only one decoder module is needed

to predict the scene-level density map, whereas late fu-

sion has additional computations for predicting the den-

sity maps for each camera-view. MVMS is slower than

näıve early fusion because MVMS extracts multi-scale

features, compared to a single feature scale for näıve

early fusion. Finally, MVMSR is slower than MVMS

due to the additional network depth from the rota-

tion module. The comparison method Dmap weighted

(FCN-7) is faster than Dmap weighted (CSR-net) and

Dmap weighted (CSR-net), due its smaller backbone.

For Detection+ReID (Circle2020), it uses large ReID

models, so the running speeds is slow. The Stitching

method’s speed is similar to Dmap weighted (CSR-net),
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32

1

4

GT Late fusion Naïve early fusion MVMSScene map

camera 1 camera 3 camera 4 

101.00 97.95 108.74 100.19

MVMSR

99.60

GT Late fusion Naïve early fusion MVMSScene map

camera 2 camera 3 camera 5 camera 8

11.00 11.40 12.79 11.40 11.76

MVMSR

GT Late fusion Naïve early fusion MVMS Scene map

camera 1 camera 2 camera 3

43.00 38.34 37.77 39.78

MVMSR 

40.33

Fig. 14 The visualization results of the proposed multi-view fusion counting methods on PETS2009, DukeMTMC and CityS-
treet.

due to the same backbone model. For feature concate-

nation method, a large CNN model is used, so the run-

ning speed is comparable to our method’s speed with

larger backbones.

7 Discussion and Conclusion

In this paper, we propose a DNNs-based multi-view

counting framework that fuses camera-views to pre-

dict scene-level ground-plane density maps for wide-

area crowd counting. Both late fusion of density maps

and early fusion of feature maps are studied. For late

fusion, a projection normalization method is proposed

to counter the effects of stretching caused by the projec-

tion operation. For early fusion, a multi-scale approach

is proposed that selects features that have consistent

scales across views. We also propose a rotation selec-

tion module to handle rotated features introduced by

the projection operation. To advance research in multi-

view counting, we collect a new dataset of large scene

containing a street intersection with large crowds. From

the experiment results, our methods’ performance gain

over other comparison methods are larger on CityS-

treet, which is a larger and crowded scene. On the other

hand, when the scene is not crowded enough, such as

DukeMTMC, other methods can also achieve good per-

formance. Nonetheless, our methods MVMS/MVMSR

achieve the best performance on all 3 datasets.

In this paper, we focus on multi-camera counting

when camera calibrations are known (like many other

multi-camera vision tasks, such as 3D human pose esti-

mation and multi-camera detection and tracking). The

situation when the surveillance cameras orientation or
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intrinsic parameters change gradually is interesting fu-

ture work. One way to handle this situation would be

to build an automatic calibration system, such as Au-

toClib (Bhardwaj et al. 2018), which uses car type and

size to help calibrate the cameras, or (Ammar Abbas

and Zisserman 2019), which computes a homography

matrix for transforming the image to a geometrically

correct bird’s eye (overhead) view. Other calibration

methods from 3D reconstruction (Agarwal et al. 2011;

Snavely et al. 2006) could also be used.

Besides, adapting our framework to moving cameras

and unknown camera parameters (using the full spatial

transformer net) is interesting future work. In addition,

we have trained and tested the network on each dataset

individually. Another interesting future direction is on

cross-scene multi-view counting, where the scenes in

the test set are distinct from those in the training set

– however, this requires more multi-view scenes to be

collected. Since collecting videos of real scenes is diffi-

cult, especially during the pandemic, one recent work

(Zhang et al. 2021) has collected a synthetic dataset for

cross-scene cross-view multi-view counting.
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Leal-Taixé L, Milan A, Reid I, Roth S, Schindler K (2015)
Motchallenge 2015: Towards a benchmark for multi-target
tracking. arXiv preprint arXiv:150401942 11

Lempitsky V, Zisserman A (2010) Learning to count objects
in images. In: Advances in Neural Information Processing
Systems, pp 1324–1332 3

Li J, Huang L, Liu C (2012) People counting across multiple
cameras for intelligent video surveillance. In: IEEE Ninth
International Conference on Advanced Video and Signal-
Based Surveillance (AVSS), IEEE, pp 178–183 3, 4

Li Y, Zhang X, Chen D (2018) Csrnet: Dilated convolutional
neural networks for understanding the highly congested
scenes. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp 1091–1100 4, 6,
17

Lian D, Li J, Zheng J, Luo W, Gao S (2019) Density map re-
gression guided detection network for rgb-d crowd count-
ing and localization. In: CVPR, pp 1821–1830 4

Liu C, Weng X, Mu Y (2019a) Recurrent attentive zoom-
ing for joint crowd counting and precise localization. In:
CVPR, pp 1217–1226 4

Liu J, Gao C, Meng D, Hauptmann AG (2018) Deci-
denet: Counting varying density crowds through attention
guided detection and density estimation. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp 5197–5206 4

Liu L, Qiu Z, Li G, Liu S, Ouyang W, Lin L (2019b) Crowd
counting with deep structured scale integration network.
In: The IEEE International Conference on Computer Vi-
sion (ICCV) 4

Liu W, Salzmann M, Fua P (2019c) Context-aware crowd
counting. In: CVPR, pp 5099–5108 4

Liu X, Yang J, Ding W, Wang T, Wang Z, Xiong J (2020)
Adaptive mixture regression network with local count-
ing map for crowd counting. In: Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XXIV 16, Springer, pp
241–257 6, 13, 17

Ma H, Zeng C, Ling CX (2012) A reliable people counting
system via multiple cameras. ACM Transactions on In-
telligent Systems and Technology (TIST) 3(2):31 3, 4

Ma Z, Yu L, Chan AB (2015) Small instance detection by in-
teger programming on object density maps. In: Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp 3689–3697 2

Maddalena L, Petrosino A, Russo F (2014) People counting
by learning their appearance in a multi-view camera en-
vironment. Pattern Recognition Letters 36:125–134 3, 4

Marana A, Costa LdF, Lotufo R, Velastin S (1998) On the ef-
ficacy of texture analysis for crowd monitoring. In: Inter-

national Symposium on Computer Graphics, Image Pro-
cessing, and Vision, IEEE, pp 354–361 3

Marcos D, Volpi M, Komodakis N, Tuia D (2017) Rotation
equivariant vector field networks. In: Proceedings of the
IEEE International Conference on Computer Vision, pp
5048–5057 5
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