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Abstract In this paper, we propose to train binarized

convolutional neural networks (CNNs) that are of sig-

nificant importance for deploying deep learning to mo-

bile devices with limited power capacity and computing

resources. Previous works on quantizing CNNs often

seek to approximate the floating-point information of

weights and/or activations using a set of discrete val-

ues. Such methods, termed value approximation here,

typically are built on the same network architecture of

the full-precision counterpart. Instead, we take a new

“structured approximation” view for network quanti-

zation — it is possible and valuable to exploit flexi-

ble architecture transformation when learning low-bit

networks, which can achieve even better performance

than the original networks in some cases. In particular,

we propose a “group decomposition” strategy, termed

GroupNet, which divides a network into desired groups.

Interestingly, with our GroupNet strategy, each full-

precision group can be effectively reconstructed by ag-

gregating a set of homogeneous binary branches. We

also propose to learn effective connections among groups

to improve the representation capability. To improve
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the model capacity, we propose to dynamically exe-

cute sparse binary branches conditioned on input fea-

tures while preserving the computational cost. More

importantly, the proposed GroupNet shows strong flex-

ibility for a few vision tasks. For instance, we extend

the GroupNet for accurate semantic segmentation by

embedding the rich context into the binary structure.

The proposed GroupNet also shows strong performance

on object detection. Experiments on image classifica-

tion, semantic segmentation, and object detection tasks

demonstrate the superior performance of the proposed

methods over various quantized networks in the litera-

ture. Moreover, the speedup and runtime memory cost

evaluation comparing with related quantization strate-

gies is analyzed on GPU platforms, which serves as a

strong benchmark for further research.

Keywords Binary neural networks · quantization ·
image classification · semantic segmentation · object

detection

1 Introduction

Deep convolutional neural networks have achieved sig-

nificant breakthroughs in many machine learning tasks,

such as image classification [1], object segmentation [2,

3] and object detection [4]. However, deep models often

require billions of FLOPs for inference, which makes

them infeasible for many real-time applications espe-

cially on resource constrained mobile platforms. To solve

this, existing works focus on network pruning [5–7],

low-bit quantization [8, 9] and/or efficient architecture

design [10, 11]. Among them, quantization approaches

seek to represent the weights and/or activations with

low bitwidth fixed-point integers. Thus, the dot prod-

uct can be computed by several XNOR-popcount bit-
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wise operations. Binarization [12, 13], which is an ex-

treme quantization approach, seeks to represent the

weights and activations by a single bit (e.g., +1 or

−1). Binarization has gained great attention recently

since the XNOR of two bits can be executed extremely

fast [14,15]. In this paper, we aim to design highly accu-

rate binary neural networks (BNNs) from a new quan-

tization perspective.

Existing fixed-point quantization methods, includ-

ing binarization, seek to quantize weights and/or acti-

vations by preserving most of the representational abil-

ity of the original network. In this sense, these methods

are based on the idea of value approximation, which can

be mainly divided into two categories. The first cat-

egory design effective optimization algorithms to find

better local minima for quantized weights. These works

either introduce knowledge distillation [8,16,17] or use

loss-aware objectives [18, 19]. The second category ap-

proaches focus on improving the quantizer [20–22], by

learning suitable mappings between discrete values and

their floating-point counterparts.

Note that, these value approximation based approaches

may have a natural limitation as it is merely a sub-

optimal approximation to the original network. More-

over, designing a good quantization function is highly

non-trivial especially for BNNs, since the quantization

process essentially is non-differentiable and the gradi-

ents can only be roughly approximated. Last, these

methods often lack of adaptive ability for other vision

tasks beyond image classification. Often these methods

may work well on image classification tasks, but may

not achieve promising quantization performance on seg-

mentation and detection tasks.

In this paper, we investigate the task of quantiza-

tion from a new perspective of structured approxima-

tion. We observe that, instead of directly approximat-

ing the original network, it is possible, and valuable

to learn an ensemble of a set of binary bases that can

match the representational capability of the floating-

point model. In particular, we propose a “group decom-

position” strategy termed GroupNet, which partitions

a full-precision model into groups. For the sake of ex-

position, we use terminology for network architectures

as comprising layers, blocks and groups. A layer is a

standard single parameterized layer in a network such

as a dense or convolutional layer, except with binary

weights and activations. A block is a collection of lay-

ers in which the output of end layer is connected to the

input of the next block (e.g., a residual block). A group

is a collection of blocks. In particular, one of the key

points is, based on the proposed GroupNet strategy,

we are able to use a set of binary bases to well approxi-

mate the floating-point model. This design shows three

benefits.

First, GroupNet enables more flexible trade-off be-

tween computational complexity and accuracy. Specifi-

cally, GroupNet enables fine-grained quantization levels

that can be any positive integers (except 1) while fixed-

point methods [8, 20] require the quantization levels to

be exponential power of 2. As a result, GroupNet can

achieve the fine-grained bit-width by directly control-

ling the number of bases, which works better for balanc-

ing the efficiency and accuracy of the overall network.

Second, skip connections have been shown to be im-

portant in increasing representational power and im-

proving gradient backpropagation as demonstrated in

BNNs literature [23]. In this sense, our group-wise de-

sign enjoys K times more skip connections than value

approximation, where K is the number of bases.

Third, the higher-level structural information can

be better utilized than the value approximation ap-

proaches. In practice, while the value approximation

based approaches show promising performance on im-

age classification tasks, they often perform poorly on

more challenging tasks such as semantic segmentation

and object detection. Relying on the proposed group

decomposition strategy, we are able to exploit task-

specific information or structures and further design

flexible binary structures according to specific tasks to

compensate the quantization loss for general tasks.

Specifically, for semantic segmentation, we are mo-

tivated by Atrous Spatial Pyramid Pooling (ASPP) [3,

24], which is built on top of extracted features of the

backbone network. To capture the multi-scale context,

we propose to directly apply different atrous rates on
parallel binary bases in the backbone network, which

is equivalent to absorbing ASPP into the feature ex-

traction stage. As will be shown, our strategy signifi-

cantly boosts the performance on semantic segmenta-

tion without increasing much computational complex-

ity of the binary convolutions. Moreover, we further

extend the proposed approach to building quantized

networks for object detection. Building low-precision

networks for object detection is more challenging since

detection needs the network to output richer informa-

tion, locations and categories of bounding boxes. Sev-

eral works in literature address quantized object detec-

tion [9,25,26]. There is still a considerable performance

gap between quantized object detectors and their full-

precision counterparts. To tackle this problem, we apply

our GroupNet and propose a new design modification to

better accommodate the quantized object detector and

achieve improved detection accuracy. Last, it is worth

mentioning that our structured approximation strategy

and the value approximation strategy are complemen-
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tary rather than contradictory. In fact, both are impor-

tant and should be exploited to obtain highly accurate

BNNs.

In this paper, we propose to redesign binary network

architectures from the quantization view. We highlight

that while most existing quantization works focus on

directly quantizing the full-precision architecture, we

begin to explore alternative architectures that shall be

better suited for dealing with binary weights and activa-

tions. In particular, apart from decomposing each group

into several binary bases, we also propose to learn the

connections between each group by introducing a soft

fusion gate. To further increase model capacity while

preserving the computational cost, we propose to tailor

conditional computing to binary networks by learning

to select informative bases for each group conditioned

on input features.

Our main contributions are summarized as follows.

– We propose to design accurate BNNs structures from

the structured approximation perspective. Specifi-

cally, we divide the network into groups and ap-

proximate each group using a set of binary bases.

We also propose to automatically learn the decom-

position by introducing soft connections.

– We explore ideas from conditional computing to learn

adaptive, conditional binary bases, which are dy-

namically selected during inference conditioned on

the input features. This strategy significantly in-

creases the model capacity of GroupNet without

increasing computational complexity during infer-

ence.

– The proposed GroupNet has strong flexibility and

can be easily extended to tasks other than image

classification. For instance, we propose Binary Par-

allel Atrous Convolution (BPAC), which embeds rich

multi-scale context into BNNs for semantic segmen-

tation. GroupNet with BPAC significantly improves

the performance while maintaining the complexity

compared to employ GroupNet only.

– To our knowledge, we are among the pioneering ap-

proaches to apply binary neural networks to general

semantic segmentation and object detection tasks.

– We develop implementations to evaluate the execu-

tion speed and runtime memory cost of GroupNet

and make comparison with other bit configurations

on various platforms.

– We evaluate our models on ImageNet, PASCAL VOC

and COCO datasets based on various architectures.

Experiments show that the proposed GroupNet ach-

ieves the state-of-the-art trade-off between accuracy

and computational complexity.

This paper extends our preliminary results in [27]

in several aspects. 1) In the conference version, we pro-

pose to employ the soft routing mechanism to learn

group-wise connections. Nevertheless, all the branches

still need to be executed at test time. In this paper,

we further explore more advanced structured approxi-

mation for BNNs. As opposed to static ones, we adapt

the structures to the input during inference, with en-

larged parameter space and improved model capacity.

In particular, we employ conditional computation by

optimizing data-dependent binary gates to decide the

execution of branches in each group. 2) We develop

the acceleration code on resource constrained platforms

and evaluate speedup and runtime memory cost com-

paring with various quantization methods. 3) We make

more analysis on differences and advantages of Group-

Net over other related quantization strategies. 4) In

addition to image classification and semantic segmen-

tation, we further extend GroupNet to object detec-

tion. In particular, we propose several modifications to

quantized object detection and our GroupNet outper-

forms the comparison methods. 5) For image classifica-

tion, we conduct more ablation studies and experiments

on more architectures and provide detailed analysis. 6)

For semantic segmentation, we develop models based

on DeepLabv3 and provide useful instructions.

2 Related Work

Network quantization. The recent increasing demand

for implementing fixed-point deep neural networks on

embedded devices motivates the study of low-bit net-

work quantization. Quantization based methods repre-

sent the network weights and/or activations with very

low precision, thus yielding highly compact DNN mod-
els compared to their floating-point counterparts. BNNs

[12, 13] propose to constrain both weights and activa-

tions to binary values (i.e., +1 and −1), where the

multiplication-accumulations can be replaced by purely

xnor(·) and popcount(·) operations, which are in gen-

eral much faster. However, BNNs still suffer from sig-

nificant accuracy decrease compared with the full preci-

sion counterparts. To narrow this accuracy gap, ternary

networks [28, 29] and even higher bit fixed-point quan-

tization [20,30] methods are proposed.

In general, quantization approaches target at tack-

ling two main problems. On one hand, some works tar-

get at designing a more accurate quantizer to minimize

information loss. For the uniform quantizer, works in

[31, 32] explicitly parameterize and optimize the upper

and/or lower bound of the activation and weights. To

reduce the quantization error, non-uniform approaches

[22,33] are proposed to better approximate the data dis-

tribution. In particular, LQ-Net [22] proposes to jointly

optimize the quantizer and the network parameters.
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On the other hand, because of the non-differentiable

quantizer, some literature focuses on relaxing the dis-

crete optimization problem. A typical approach is to

train with regularization [34, 35], where the optimiza-

tion problem becomes continuous while gradually ad-

justing the data distribution towards quantization level.

Moreover, Hou et al. [18, 19] propose the loss-aware

quantization by directly optimizing the discrete objec-

tive function.

To well balance accuracy and complexity, several

works [36–40] propose to employ a linear combination of

binary tensors to approximate the filters and/or activa-

tions while still possessing the advantage of binary op-

erations. In particular, Guo et al. [36] recursively per-

form residual quantization on pretrained full-precision

weights and do convolution on each binary weight base.

Similarly, Li et al. [37] propose to expand the input fea-

ture maps into binary bases in the same manner. Lin et

al. [38] further expand both weights and activations

with a simple linear approach. Unlike the previous local

tensor approximation approaches, we propose to design

BNNs from a structured approximation perspective and

show strong generalization on a few mainstream com-

puter vision tasks.

There also have been several works that employ neu-

ral architecture search (NAS) for BNNs [41–44] to ex-

plore a high-performance binary neural architecture.

Note that our GroupNet is orthogonal to these ap-

proaches, where we explore how to ensemble the bi-

nary bases effectively to approximate the original full-

precision network. Based on an advanced binary base

architecture, our GroupNet can achieve better perfor-

mance.

Hardware Implementation. In addition to the quan-

tization algorithms design, the implementation frame-

works and acceleration libraries [9,45–48] are indispens-

able to expedite the quantization technique to be de-

ployed on energy-efficient edge devices. For example,

TBN [49] focuses on the implementation of ternary ac-

tivation and binary weight networks. daBNN [50] tar-

gets at the inference optimization of BNNs on ARM

CPU devices. GXNOR-Net [51] treats TNNs as sparse

BNNs and propose an acceleration solution on dedi-

cated hardware platforms. In this paper, we develop the

acceleration code for BNNs, GroupNet and fixed-point

quantization on GPU platforms. We also compare the

accuracy and efficiency trade-offs between them.

Dynamic networks. Dynamic networks, as opposed

to static ones, can adapt their structures or parame-

ters to the input during inference, and therefore en-

joy desired trade-off between accuracy and efficiency

for dealing with varying computational budgets on the

fly. In particular, closely related to our paper, mix-

ture of experts (MoE) [52, 53] build multiple network

branches as experts in parallel. For example, HydraNet

[54] replaces the convolutional blocks in the last stage

of a CNN by multiple branches, and selectively execute

these branches at test time. The recent Switch Trans-

former [55] proposes to dynamically activate a FFN

layer from experts, leading to trillion parameter models

with constant computational cost. In this paper, we tai-

lor conditional computing to GroupNet by learning to

select data-specific bases for each group. Related to our

GroupNet, High-capacity Expert BNNs (HCE) [56] pro-

poses to automatically search for optimal binary net-

work architectures, equipped with multiple experts to

increase model capacity. During inference, HCE only se-

lects one expert, while our GroupNet enables Top-N se-

lection for larger model capacity. Moreover, our Group-

Net focuses on structured experts, while the scope of

HCE is on designing layer-wise experts for binary con-

volutions.

Semantic segmentation. Deep learning based seman-

tic segmentation is popularized by the Fully Convolu-

tional Networks (FCNs) [2]. Recent prominent direc-

tions have emerged: using the encoder-encoder struc-

ture [3, 57]; relying on dilated convolutions to keep the

reception fields without downsampling the spatial reso-

lution too much [24, 58]; employing multi-scale feature

fusion [59, 60]; employment of probabilistic graphical

models [61,62].

However, these approaches typically focus on de-

signing complex modules for improving accuracy while

sacrificing the inference efficiency to some extent. To

make semantic segmentation applicable, several meth-

ods have been proposed to design real-time semantic

segmentation models. Recently, works of [63, 64] ap-

ply neural architecture search for exploring more ac-

curate models with less Multi-Adds operations. Yu et

al. [65] propose BiSeNet, where a spatial path extracts

high resolution features and a context path obtains suf-

ficient receptive fields to achieve high speed and ac-

curacy. ESPNet [58, 66] design efficient spatial pyra-

mid for real-time semantic segmentation under resource

constraints. In contrast, we instead propose to acceler-

ate semantic segmentation frameworks from the quan-

tization perspective, which is parallel to the above ap-

proaches. Given a pretrained full-precision model, we

can replace multiplication-accumulations by the XNOR-

popcount operations, which would bring great benefits

for embedded platforms. We may be the first to apply

binary neural networks on semantic segmentation and

achieve promising results.

Object detection. Object detection has shown great

success with deep neural networks. As one of the dom-

inant detection framework, two-stage detection meth-
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ods [67–69] first generate region proposals and then re-

fine them by subsequent networks. The popular method

Faster-RCNN [69] first proposes an end-to-end detec-

tion framework by introducing a region proposal net-

work (RPN). Another main category is the one-stage

methods which are represented by YOLO [70–72], SSD

[73] and FCOS [4]. The objective is to improve the de-

tection efficiency by directly classifying and regressing

the pre-defined anchors without the proposal genera-

tion step. RetinaNet [74] proposes a new focal loss to

tackle the extreme foreground-background class imbal-

ance encountered during training in one-stage detec-

tors. Moreover, Tian et al. [4] propose a simple fully

convolutional anchor-free one-stage detector that achieves

on par performance with the anchor-based one-stage

detectors.

In addition, designing light-weight detection frame-

works is crucial since mobile applications usually re-

quire real-time, low-power and fully embeddable. For

example, the work of [75] and [26] propose to train

a tiny model by distilling knowledge from a deeper

teacher network. MNasNet [76] proposes to automat-

ically search for mobile CNNs which achieve improved

mAP quality than MobileNets for object detection. In

this paper, we explore to design efficient detectors from

the quantization view. Note that, we are probably the

first to train a binary object detection model.

3 Proposed Method

Most previous methods in the literature have focused

on value approximation by designing accurate binariza-

tion functions for weights and activations (e.g., mul-

tiple binarizations [36–40]). In this paper, we seek to

binarize both weights and activations of CNNs from a

“group-wise approximation” view. In the following, we

first define the research problem and present some basic

knowledge about binarization in Section 3.1. Then, we

explain our binary architecture design strategy in Sec-

tion 3.2 and introduce how to learn architectures au-

tomatically and dynamically in Section 3.3. In Section

3.4, we further provide the complexity analysis. Finally,

in Section 3.5 and Section 3.6, we describe how to use

task-specific attributes to generalize our approach to se-

mantic segmentation and object detection, respectively.

3.1 Problem definition

For a convolutional layer, we define the input feature

x ∈ Rcin×win×hin , weight tensor w ∈ Rcin×cout×w×h

and the output y ∈ Rcout×wout×hout , respectively.

Binarization of weights: Following [13], we approx-

imate the floating-point weight w by a binary weight

filter bw and a scaling factor α ∈ R+ such that w ≈
αbw, where bw is the sign of w and α calculates the

mean of absolute values of w. In general, sign(·) is non-

differentiable and so we adopt the straight-through es-

timator [77] (STE) to approximate the gradient calcu-

lation. Formally, the forward and backward processes

can be written as follows:

Forward : bw = sign(w),

Backward :
∂`

∂w
=

∂`

∂bw
· ∂bw

∂w
≈ ∂`

∂bw
,

(1)

where ` is the loss.

Binarization of activations: For activation binariza-

tion, we utilize the piecewise polynomial function to

approximate the sign function as in [23]. The forward

and backward can be written as:

Forward : ba = sign(x),

Backward : ∂`
∂x = ∂`

∂ba ·
∂ba

∂x ,

where ∂ba

∂x =


2 + 2x : −1 ≤ x < 0

2− 2x : 0 ≤ x < 1

0 : otherwise

.

(2)

3.2 Binary Network Decomposition

In this paper, we want to design a new structural rep-

resentation of a network for quantization. First of all,

note that a float number in computer is represented by a

fixed-number of binary digits. Motivated by this, rather

than directly doing the quantization via “value decom-

position”, we propose to decompose a network into bi-

nary structures while preserving its representability.

Specifically, given a floating-point residual network

Φ(·) with N blocks, we decompose Φ(·) into P binary

fragments [F1, ...,FP ], where Fi(·) can be any binary

structure. Note that each Fi(·) can be different. A nat-

ural question arises: can we find some simple methods

to decompose the network with binary structures so

that the representability can be exactly preserved? To

answer this question, we here explore two kinds of ar-

chitectures for F(·), namely layer-wise decomposition

and group-wise decomposition in Section 3.2.1 and Sec-

tion 3.2.2, respectively. Then we present a novel strat-

egy for automatic decomposition in Section 3.3.

3.2.1 Layer-wise binary decomposition

The key challenge of binary decomposition is how to re-

construct or approximate the floating-point structure.

The simplest way is to approximate in a layer-wise man-

ner. Let B(·) be a binary convolutional layer and bw
i be
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FP conv

FP conv

dynamic hard gate

(a) (b) (d)

FP conv

FP conv

...

...

...

...

(e)

...

(f)

soft gate

...
...

...

0 1...

(g)

...

...

...

...

(c)

Fig. 1 Illustration of the proposed method. We take one residual block with two convolutional layers for illustration. For
convenience, we omit batch normalization and nonlinearities. (a): The floating-point residual block. (b): Direct binarization of
a full-precision block. (c): Layer-wise binary decomposition in Eq. (3), where we use a set of binary convolutional layers B(·) to
approximate a floating-point convolutional layer. (d): Basic group-wise binary decomposition in Eq. (5), where we approximate
a whole block with a linear combination of binary blocks G(·). (e): We approximate a whole group with homogeneous binary
bases H(·), where each group consists of several blocks. This corresponds to Eq. (6). (f): Illustration of the soft connection
between two neighbouring blocks. (g): Hard gating mechanism for dynamically selecting branches.

the binarized weights for the i-th base. In Figure 1(c),

we illustrate the layer-wise feature reconstruction for a

single block. Specifically, for each layer, we aim to fit

the full-precision structure using a set of binarized ho-

mogeneous branches F(·) given a floating-point input

tensor x:

F(x) =
1

K

K∑
i=1

Bi(x) =
1

K

K∑
i=1

(bw
i ⊕ sign(x)), (3)

where ⊕ is bitwise operations xnor(·) and popcount(·),
K is the number of branches. During the training, the

structure is fixed and each binary convolutional kernel

bw
i is directly updated with end-to-end optimization.

The scale scalar can be absorbed into batch normaliza-

tion when doing inference. Note that all Bi’s in Eq. (3)

have the same topology as the original floating-point

counterpart. Each binary branch gives a rough approx-

imation and all the approximations are aggregated to

achieve more accurate reconstruction to the original full

precision convolutional layer. Note that when K = 1,

it corresponds to directly binarize the floating-point

convolutional layer (Figure 1 (b)). However, with more

branches (a larger K), we are expected to achieve more

accurate approximation with more complex transfor-

mations.

Different from [27], we remove the floating-point

scales for two reasons. First, the scales can be absorbed

into batch normalization layers. Second, we empirically

observe that the learnt scales for different branches dif-

fer a little and removing them does not influence the

performance.

During the inference, the homogeneous K bases can

be parallelizable and thus the structure is hardware

friendly. This will bring significant gain in speed-up of

the inference. Specifically, the bitwise XNOR operation

and bit-counting can be performed in a parallel of 64 by

the current generation of CPUs [13, 23]. We only need

to calculate K binary convolutions and K full-precision

additions. As a result, the speed-up ratio σ for a con-

volutional layer can be calculated as:

σ =
64cin · w · h · win · hin

K(cin · w · h · win · hin + 64wout · hout)
. (4)

We take one layer in ResNet for example. If we set

cin = 256, w×h = 3×3, win = hin = wout = hout = 28,

K = 5, then it can reach 12.45× speedup. In practice,

the actual speedup ratio is also influenced by the pro-

cess of memory read and thread communication. We

extensively evaluate the on-device speedup in Section

6.

3.2.2 Group-wise binary decomposition

In the layer-wise approach, we approximate each layer

with multiple branches of binary layers. Note each branch

will introduce a certain amount of error and the er-

ror may accumulate due to the aggregation of multi-

branches. As a result, this strategy may incur severe
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quantization errors and bring large deviation for gra-

dients during back-propagation. To alleviate the above

issue, we further propose a more flexible decomposi-

tion strategy called group-wise binary decomposition,

to preserve more structural information during approx-

imation.

To explore the group-structure decomposition, we

first consider a simple case where each group consists

of only one block. Then, the layer-wise approximation

strategy can be easily extended to the group-wise case.

As shown in Figure 1 (d), similar to the layer-wise case,

each floating-point group is decomposed into multiple

binary groups. However, each group Gi(·) is a binary

block which consists of several binary convolutions and

fixed-point operations (i.e., AddTensor). For example,

we can set Gi(·) as the basic residual block [1] which is

shown in Figure 1 (a). Considering the residual archi-

tecture, we can decompose F(x) by extending Eq. (3)

as:

F(x) =
1

K

K∑
i=1

Gi(x). (5)

In Eq. (5), we use a linear combination of homogeneous

binary bases to approximate one group, where each base

Gi is a binarized block. Thus, we effectively keep the

original residual structure in each base to preserve the

network capacity. As shown in Section 5.2.2, the group-

wise decomposition strategy performs much better than

the simple layer-wise approximation.

Furthermore, the group-wise approximation is flex-

ible. We now analyze the case where each group may

contain different number of blocks. Suppose we parti-

tion the network into P groups and it follows a simple

rule that each group must include one or multiple com-

plete residual building blocks. For the p-th group, we

consider the blocks set T ∈ {Tp−1 + 1, ..., Tp}, where

the index Tp−1 = 0 if p = 1. We can extend Eq. (5) into

multiple blocks format:

F(xTp−1+1) = 1
K

K∑
i=1

Hi(x),

= 1
K

K∑
i=1

G
Tp

i (G
Tp−1
i (...(G

Tp−1+1
i (xTp−1+1))...)),

(6)

where H(·) is a cascade of consequent blocks which

is shown in Figure 1 (e). Based on F(·), we can effi-

ciently construct a network by stacking these groups

and each group may consist of one or multiple blocks.

Different from Eq. (5), we further expose a new dimen-

sion on each base, which is the number of blocks. This

greatly increases the structure space and the flexibility

of decomposition. We explore the effect of the structure

space in Section 5.2.2 and further describe how to learn

the decomposition in Section 3.3.

3.3 Learning for decomposition

There is a significant challenge involved in Eq. (6). Note

that the network has N blocks and the possible num-

ber of connections is 2N . Clearly, it is not practical to

enumerate all possible structures during the training.

Here, we propose to solve this problem by learning the

structures for decomposition automatically.

3.3.1 Learned soft gating

We introduce in a fusion gate as the soft connection

between blocks G(·). To this end, we first define the

input of the i-th branch for the n-th block as:

Cn
i = sigmoid(θni ),

xn
i = Cn

i �Gn−1
i (xn−1

i )

+ (1− Cn
i )�

K∑
j=1

Gn−1
j (xn−1

j ),

(7)

where θ ∈ RK is a learnable parameter vector, Cn
i is

a gate scalar and � is the Hadamard product. And we

empirically observe that using a learnable scale θ that

shares among branches does not influence the perfor-

mance and it can be absorbed into batch normalization

(BN) layers during inference.

Here, the branch input xn
i is a weighted combination

of two paths. The first path is the output of the corre-

sponding i-th branch in the (n−1)-th block, which is a

direct connection. The second path is the aggregation

output of the (n−1)-th block. The detailed structure is

shown in Figure 1 (f). In this way, we make more infor-

mation flow into the branch and increase the gradient

paths for improving the convergence of BNNs.

Remarks: For the extreme case when
∑K

i=1 C
n
i = 0,

Eq. (7) will be reduced to Eq. (5) which means we ap-

proximate the (n − 1)-th and the n-th block indepen-

dently. When
∑K

i=1 C
n
i = K, Eq. (7) is equivalent to

Eq. (6) and we set H(·) to be two consequent blocks

and approximate the group as a whole. Interestingly,

when
∑N

n=1

∑K
i=1 C

n
i = NK, it corresponds to set H(·)

in Eq. (6) to be a whole network and directly ensemble

K binary models.

Note that the group-wise decomposition has K×
more skip connections than the layer-wise decomposi-

tion, implying the improved representational power and

gradient backpropagation of the model.

3.3.2 Dynamic hard gating

The soft gating regime in Section 3.3.1 adopts real-

valued weights to dynamically rescale the representa-

tions obtained from different branches. In this way, all
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the branches still need to be executed, and the com-

putation cannot be reduced at test time. To improve

the inference efficiency, we propose to learn dynamic

hard gates, allowing the models to adaptively allocate

the computation dependent on the input features with

only a fraction of activated branches. Such a design is

shown in Figure 1 (g). Formally, the gating mechanism

is applied to the output of the preceding group and can

be formulated as

gi =

{
1, if ψ(x)i ≥ f(ψ(x), N)

0, otherwise
(8)

where gi is the i-th element of a K-dimensional bi-

nary vector g which is used to select the N activated

branches, ψ(·) is a learned mapping function of the in-

put x and f(ψ(x), N) returns the N -th largest element

in ψ(x).

The light-weight projection ψ(·) is defined as:

ψ(x) = mean(x)ν, (9)

where mean(·) is the channel-wise average pooling for

feature summary and ν ∈ Rcin×K is a trainable linear

transformation.

Nevertheless, during training, the selection process

in Eq. (8) is non-differentiable. Moreover, it is crucial

to update the parameters of the non-selective branches.

To address this, we use Softmax(·) to approximate the

gradients of g for the back propagation:

∂g

∂x
≈ ∂Softmax(x)

∂x
. (10)

In this way, we effectively address the gradient mis-

match between the forward and backward, while allow-

ing all experts are updated properly during training.

3.4 Complexity and model size analysis

A comprehensive comparison of various quantization

approaches over complexity and model size is shown

in Table 1. For example, in some previous multiple bi-

narization approaches [38,79], each convolutional layer

is approximated using K weight bases and K activation

bases, which needs to calculate K2 times binary convo-

lution. In contrast, we just need to approximate several

groups with K structural bases. As reported in Sec-

tion 5.1, we save approximate K times computational

complexity while still achieving comparable Top-1 ac-

curacy. Since we use K structural bases, the number of

parameters increases by K times in comparison to the

full-precision counterpart. But we still save the model

size by ∼ 32/K times since the weights for convolu-

tional layers are binary in our GroupNet, except for the

8-bit first and last layers, and the 8-bit 1× 1 downsam-

pling layers in some GroupNet variants. For our ap-

proach, there exists element-wise operations between

each group, so the computational complexity saving is

slightly less than 64
K×.

(a): The conventional floating-point dilated convolution.

(b):  The proposed Binary Parallel Atrous Convolution (BPAC). 

Sign Multi-dilations decompose

-1 1 -1 1 -1 1 -1
1 1 -1 1 1 -1 1
1 -1 -1 1 -1 1 -1
-1 -1 1 -1 1 1 1
1 1 -1 -1 1 -1 1
-1 -1 1 1 -1 -1 -1
-1 1 -1 1 -1 1 1

-1 1 -1
1 -1 1
-1 1 -1

3x3 Conv
rate=1

3x3 Conv
rate=2

…
..

Sum

⊕

⊕Binary feature map

Output
-1 -1 -1

1 -1 -1

1 -1 1

⊛

Floating-point feature map 3x3 Conv, dilation rate=2

Outputa11 a12 a13 a14 a15 a16 a17
a21 a22 a23 a24 a25 a26 a27
a31 a32 a33 a34 a35 a36 a37
a41 a42 a43 a44 a45 a46 a47
a51 a52 a53 a54 a55 a56 a57
a61 a62 a63 a64 a65 a66 a67
a71 a72 a73 a74 a75 a76 a77

w11 w12 w13

w21 w22 w23

w31 w32 w33

Fig. 2 The comparison between conventional dilated convo-
lution and BPAC. For expression convenience, the group only
has one convolutional layer. ~ is the convolution operation
and ⊕ indicates the XNOR-popcount operations. (a): The
original floating-point dilated convolution. (b): We decom-
pose the floating-point atrous convolution into a combination
of binary bases, where each base uses a different dilated rate.
We sum the output features of each binary branch as the final
representation.

3.5 Extension to semantic segmentation

The key message conveyed in the proposed method is

that, although each binary branch has a limited mod-

eling capability, aggregating them together leads to a

powerful model. In this section, we show that this prin-

ciple can be applied to tasks other than image classifica-

tion. In particular, we consider semantic segmentation

which can be deemed as a dense pixel-wise classifica-

tion problem. In the state-of-the-art semantic segmen-

tation network, the atrous convolutional layer [24] is

an important building block, which performs convolu-

tion with a certain dilation rate. To directly apply the

proposed method to such a layer, one can construct

multiple binary atrous convolutional branches with the

same structure and aggregate results from them. How-

ever, we choose not to do this but propose an alter-

native strategy: we use different dilation rates for each

branch. In this way, the model can leverage multiscale
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Table 1 Computational complexity and static storage comparison of different quantization approaches. F : full-precision, B:
binary, QK : K-bit quantization.

Model Weights Activations Operations Model Size Saving Computation Saving
Full-precision DNN F F +, −, × 1 1

[12,13] B B XNOR-popcount ∼ 32× ∼ 64×
[19, 78] B F +, − ∼ 32× ∼ 2×
[29, 30] QK F +, −, × ∼ 32

K
× < 2×

[8, 20] QK QK +, −, × ∼ 32
K
× < 64

K2×
[37, 38] K ×B K ×B +, −, XNOR-popcount ∼ 32

K
× < 64

K2×
GroupNet K × (B,B) +,−, XNOR-popcount ∼ 32

K
× < 64

K
×

information as a by-product of the network branch de-

composition. It should be noted that this scheme does

not incur any additional model parameters and com-

putational complexity compared with the naive binary

branch decomposition. The idea is illustrated in Fig-

ure 2 and we term this strategy Binary Parallel Atrous

Convolution (BPAC).

In this work, we use the same ResNet backbone

in [3,24] with output stride=8, where the last two stages

employ atrous convolution. In BPAC, we keep rates =

{2, ...,K + 1} and rates = {6, ...,K + 5} for K bases in

the last two blocks, respectively. Intriguingly, as will be

shown in Section 5.3, our strategy brings so much ben-

efit that using five binary bases with BPAC achieves

similar performance as the original full precision net-

work despite the fact that it saves considerable compu-

tational cost.

3.6 Extension to object detection

We further generalize GroupNet to the object detection

task. We work on the one-stage detector, which consists

of backbone, feature pyramid and heads. We directly

use the backbone network pretrained on the ImageNet

classification task to initialize the detection backbone.

For the feature pyramid, it attaches a 1×1 and 3×3 con-

volutional layer at each resolution to adapt the feature

maps. Since it lacks of structural information like the

backbone network, we therefore apply the layer-wise bi-

nary decomposition in Section 3.2.1. Furthermore, the

detection heads occupy a large portion of complexity

in the whole detection framework. And each head is

comprised of several consequent layers which is simi-

lar to a basic residual block. To preserve the structural

information, following the spirit of group-wise binary

decomposition strategy in Section 3.2.2, we propose to

approximate each head as a whole. The structure is il-

lustrated in Figure 3.

We note that except the last layers for classifica-

tion, center-ness and regression, other parameters of the

heads are not shared across all feature pyramid levels

which is the opposite of the full-precision counterpart.

Such a design is motivated by the observation in [80]

that there is a large divergence of activation distribu-

tions across different feature pyramid levels. To cap-

ture accurate batch statistics, we privatize BN layers

for each pyramid level. Moreover, as a single binary

convolutional layer has worse representational capabil-

ity than the fixed-point one, we also use separate con-

volutional weights to ensure the model capacity. More

optimization details are explained in Section 5.4.

4 Discussions

Differences from fixed-point quantization approaches.

Our GroupNet is different from fixed-point quantiza-

tion approaches [8, 17, 20, 22] in both the quantization

algorithm and its underlying inference implementation.

Note that in conventional fixed-point methods, the

inner product between fixed-point weights and acti-

vations can be computed by bitwise operations. Let

w ∈ RM and a ∈ RM be the weights and activations,

respectively. they can be encoded by a linear combina-

tion of binary bases, respectively. In particular, w and a

can be encoded by bw
i ∈ {−1, 1}M and ba

i ∈ {−1, 1}M ,

where i = 1, ..., P , respectively. Let QP (·) be any quan-

tization function, and for simplicity, we here consider

uniform quantization only. Then, the inner product of

w and a can be approximated by

QP (wT)QP (a) =

P−1∑
i=0

P−1∑
j=0

2i+j(bw
i ⊕ ba

j ). (11)

where ⊕ indicates the binary inner product, which can

be efficiently implemented by popcount and xnor bit-

wise instructions that are commonly equipped in mod-

ern computers. According to Eq. (11), the computa-

tional complexity is O(MP 2) for the fixed-point inner

product. Bearing the group-wise binary decomposition

in Section 3.2 in mind, it can be easily realized that

the proposed GroupNet with K bases has the same

computational complexity with the conventional P -bit

fixed point quantization when K = 2P . However, com-

pared with the P -bit fixed point quantization, the pro-

posed GroupNet with 2P bases introduces extra addi-
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Binary backbone Binary feature pyramid

B(⋅)

… ⊕

…

head

head
classificationB(⋅)

B(⋅) … B(⋅)

Binary heads

center-ness

B(⋅)

… ⊕

… B(⋅)

B(⋅) … B(⋅)

regression

head

head

head

Fig. 3 Illustration of the proposed binary detection framework. We partition the whole framework into three parts, namely,
binary backbone, binary feature pyramid and binary heads.

tions from the fusion of decomposition branches. It is

worth noting that the convolution is implemented with

two steps: im2col and GEMM. The high-precision ad-

ditions can be efficiently merged into the im2col opera-

tion of the succeeding layer during implementation. For

im2col operation, most of the time is spend on data re-

arrangement, an extra tensor addition will have a very

limited influence on its execution time. Moreover, the

extra additions only account for a small portion of the

overall network complexity, which intrinsically limits

the impact on the overall speed. To justify our anal-

ysis, we provide speedup evaluations in Section 6.1. We

also provide the analysis of the runtime training and

inference memory cost in Section 6.2.

To emphasize, the proposed GroupNet enables much

more flexible design of the quantization algorithm. Ben-

efiting from the group-wise binary decomposition, the

proposed GroupNet allows more fine-grained exploration

space, where the quantization levels can be chosen from

the continuous positive integer domain. In contrast, con-

ventional fixed-point quantization requires the quanti-

zation levels to be the power of 2. For example, the bit-

width of GroupNet with 5 bases is between 2-bit and

3-bit. Thus, GroupNet enjoys a flexible trade-off be-

tween complexity and accuracy by setting appropriate

K. Moreover, as introduced in Section 3.5 and Section

3.6, our GroupNet is demonstrated to be more efficient

in exploiting task-specific information or structures to

compensate the quantization information loss.

Moreover, we define the model size of the full-precision

model as Ω. Then, the model size for GroupNet with K

bases becomes KΩ/32 and the one for P -bit fixed-point

quantization is PΩ/32.

Based on the above analysis, we summarize that the

proposed GroupNet introduces small additional run-

time cost caused by the extra addition operations, how-

ever, provides benefits in algorithm flexibility and per-

formance.

Differences between GroupNet and other multi-

ple binarizations methods. In [38], a linear combi-

nation of binary weight/activations bases are obtained

from the full-precision weights or activations without

being directly learned. In contrast, we directly design

the binary network structure, where binary weights are

end-to-end optimized. [36, 37, 39, 40] propose to recur-

sively approximate the residual error and obtain a se-

ries of binary maps corresponding to different quanti-
zation scales. However, it is a sequential process which

cannot be paralleled. Also, all previous multiple bina-

rizations methods belong to local tensor approxima-

tion. In contrast to value approximation, we propose a

group decomposition approach to approximate the full-

precision network. Moreover, tensor-based methods are

tightly designed to local value approximation and may

be hardly generalized to other tasks accordingly. In ad-

dition, our group decomposition strategy achieves much

better performance than tensor-level approximation as

shown in Section 5.2.2.

5 Experiments

We define several methods for comparison as follows:

GroupNet-A: It implements the full model with learnt

soft connections described in Section 3.3. Following Bi-

Real Net [81], we apply skip connection bypassing every

binary convolution to improve the convergence. Note
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that due to the binary convolution, skip connections are

high-precision which can be efficiently implemented us-

ing fixed-point addition. GroupNet-B: Based on GroupNet-

A, we keep the 1× 1 downsampling skip connections to

high-precision (i.e., 8-bit) similar to [23,82]. GroupNet-

C: Based on GroupNet-B, we replace the soft routing

mechanism with the dynamic hard gating. By default,

we train 8 bases and dynamically select 4 bases during

inference.

5.1 Evaluation on ImageNet

5.1.1 Experimental settings

Dataset. The proposed method is first evaluated on

ImageNet (ILSVRC2012) [87] dataset. ImageNet is a

large-scale dataset which has ∼1.2M training images

from 1K categories and 50K validation images. Sev-

eral representative networks are tested: ResNet-18 [1],

ResNet-34, ResNet-50 and MobileNetV1 [11]. As dis-

cussed in Section 4, we compare the proposed approach

with binary neural networks in Table 2 and fixed-point

approaches in Table 3, respectively.

Implementation details. As in [8, 13, 20, 21], we bi-

narize the weights and activations of all convolutional

layers, except that the first and the last layers are quan-

tized to 8-bit. In all ImageNet experiments, training

images are resized to 256 × 256, and a 224 × 224 crop

is randomly sampled from an image or its horizontal

flip, with the per-pixel mean subtracted. We do not use

any further data augmentation in our implementation.

We use a simple single-crop testing for standard eval-

uation. No bias term is utilized. Following [83], train-

ing is divided into two stages. In the first stage, we

train a network with binary activations and real-valued

weights from scratch. In the second stage, we inherit

the weights from the first step as the initial value and

fine-tune the network with weights and activations both

being binary. For both stages, we use the Adam opti-

mizer with a linear learning rate decay scheduler, an

initial learning rate of 5e-4 and a batch size of 256. We

optimize the network for maximum 90 epochs in each

stage. The weight decay is set to 1e-5 for the first stage

and 0 for the second stage. Following [8,21], no dropout

is used due to binarization itself can be treated as a

regularization. We initialize the dynamic hard gating

parameters ν using Kaiming initialization [88] and op-

timize them in conjunction with other network parame-

ters using backpropagation. We apply layer-reordering

to the networks as: Sign → Conv → PReLU → BN.

Inserting PReLU(·) after convolution is important for

convergence. We follow the BN folding literature [9,80]

to fuse BN parameters into convolutional weights dur-

ing inference. During training, the BN parameters and

the convolutional weights are updated separately. Our

simulation implementation is based on PyTorch [89].

OPs calculation. We follow the calculation method in

[83], where we count the binary operations (BOPs) and

floating point operations (FLOPs) separately. Then the

total operations (OPs) is calculated by OPs = BOPs/64

+ FLOPs, following the literature [13,23,86] in BNNs.

Model size calculation. Following the common prac-

tise in the literature [13,23], the model size is calculated

by 32×Nf +P×NP +Nb, where Nf , NP and Nb are the

number of full-precision, P -bit fixed-point and binary

weights, respectively.

5.1.2 Comparison with binary neural networks

Since we employ binary weights and binary activations,

we directly compare to the previous state-of-the-art bi-

nary approaches, including standard binary neural net-

works BNN [12], XNOR-Net [13], Bi-RealNet [23], Re-

ActNet [86], Real-to-Binary Net [83], HCE [56]; and

multiple binarization methods BitSplit [84], Circulant

CNN [79], BENN [85]. We report the results in Ta-

ble 2 and summarize the following points. 1): When

comparing with other multiple binarizations methods,

our GroupNet shows better performance with compa-

rable complexity. In comparison to directly binarizing

networks, GroupNet also achieves better performance

with moderate complexity increase. In summary, our

approach achieves an improved trade-off between com-

putational complexity and prediction accuracy. 2): We

observe that GroupNet-B outperforms GroupNet-A by

a large margin. It justifies keeping 1× 1 downsampling

skip connections to high-precision is crucial for achiev-

ing high performance. 3): For Bottleneck structure in

ResNet-50, we find larger quantization error than the

counterparts using basic blocks with 3× 3 convolutions

in ResNet-18 and ResNet-34. The similar observation

is also found by [90]. We assume that this is mainly at-

tributable to the 1× 1 convolutions in Bottleneck. The

reason is 1× 1 filters are limited to two states only (ei-

ther 1 or−1) and they have very limited learning power.

Moreover, the bottleneck structure reduces the number

of filters significantly, which implies the gradient paths

are greatly reduced, leading to increased optimization

difficulty.

5.1.3 Comparison with fixed-point approaches

Since we use K binary group bases, we compare our

approach with at least
√
K-bit fixed-point approaches.
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Table 2 Performance comparisons of different binarization methods on ImageNet. We use operations count (OPs) to measure
the computational cost. “-” denotes that the results are not reported. “W” and “A” refer to the weight and activation bitwidth
respectively. We use the customized MobileNetV1 structure following ReActNet.

Network Method Bitwidth (W/A) #Parameters (Mbit) OPs (×108) Top-1 Acc. (%) Top-5 Acc. (%)

ResNet-18

Full-precision 32/32 374.0 18.17 69.7 89.4
BNNs [12] 1/1 27.2 1.47 42.2 67.1

XNOR-Net [13] 1/1 33.7 1.67 51.2 73.2
Bi-RealNet [23] 1/1 33.6 1.63 56.4 79.5

Real-to-Binary Net [83] 1/1 44.6 1.83 65.4 86.2
HCE [56] 1/1 293.7 1.37 67.5 87.5

BitSplit [84] (1/1) × 4 - 2.47 58.4 80.6
BENN [85] (1/1) × 6 168.9 8.70 61.0 -

Circulant CNN [79] (1/1) × 4 - 2.47 61.4 82.8
GroupNet-A (1/1) × 4 50.0 2.25 65.2 85.7
GroupNet-B (1/1) × 4 54.8 2.43 67.3 87.6
GroupNet-C (1/1) × 4 105.5 2.43 68.2 88.3

ResNet-34

Full-precision 32/32 697.5 36.68 73.2 91.4
Bi-RealNet [23] 1/1 43.8 1.93 62.2 83.9

BENN [85] (1/1) × 6 230.9 10.44 64.7 84.4
GroupNet-A (1/1) × 4 103.7 3.40 68.7 88.3
GroupNet-B (1/1) × 4 108.5 3.58 70.7 89.6
GroupNet-C (1/1) × 4 188.2 3.58 72.2 90.5

ResNet-50

Full-precision 32/32 817.8 41.00 76.0 92.9
Bi-RealNet [23] 1/1 176.8 5.36 62.6 83.9

BENN [85] (1/1) × 6 545.9 10.93 66.2 85.8
GroupNet-A (1/1) × 4 117.0 3.68 69.8 88.0
GroupNet-B (1/1) × 4 194.6 7.05 71.3 90.2
GroupNet-C (1/1) × 4 217.6 7.05 73.4 91.0

MobileNetV1

Full-precision 32/32 937.2 48.33 72.4 -
Bi-RealNet [23] 1/1 72.5 1.90 58.2 81.0

ReActNet-C∗ [86] 1/1 83.4 2.14 70.0 -
BENN [85] (1/1) × 6 370.5 5.32 63.0 84.0

GroupNet-A (1/1) × 4 124.0 3.19 66.8 86.2
GroupNet-B (1/1) × 4 133.8 4.16 70.8 89.5
GroupNet-C (1/1) × 4 259.3 4.16 72.1 90.3

∗ denotes that we remove the knowledge distillation loss for fair comparison.

Table 3 Performance comparisons of different methods on ImageNet. We use operations count (OPs) to measure the com-
putational cost. “-” denotes that the results are not reported. “W” and “A” refer to the weight and activation bitwidth
respectively.

Network Method Bitwidth (W/A) #Parameters (Mbit) OPs (×108) Top-1 Acc. (%) Top-5 Acc. (%)

ResNet-18

Full-precision 32/32 374.0 18.17 69.8 89.1
GroupNet-C (1/1) × 4 105.5 2.43 68.2 88.3

LSQ [91] 2/2 61.6 2.25 67.6 87.6
QIL [32] 2/2 61.6 2.25 65.7 -

PACT [31] 2/2 61.6 2.25 64.4 -
LQ-Net [22] 2/2 61.6 2.25 64.9 85.9

ResNet-34

Full-precision 32/32 697.5 36.68 73.3 91.4
GroupNet-C (1/1) × 4 188.2 3.58 72.2 90.5

LSQ [91] 2/2 102.3 3.40 71.6 90.3
QIL [32] 2/2 102.3 3.40 70.6 -

PACT [31] 2/2 102.3 3.40 - -
LQ-Net [22] 2/2 102.3 3.40 69.8 89.1

Table 4 Performance of GroupNet and the width multiplier
on ImageNet.

Model Top-1 % Top-5 %
GroupNet-A 65.2 85.7

Width multiplier 63.5 85.2

In Table 3, we compare our approach with the state-

of-the-art fixed-point approaches LSQ [91], QIL [32],

PACT [31] and LQ-Nets [22].

Table 5 Comparisons between several group-wise decompo-
sition strategies. Top-1 and Top-5 accuracy (%) gaps to the
corresponding full-precision ResNet-18 network are also re-
ported.

Model Bases Top-1 Top-5 Top-1 gap Top-5 gap
Full-precision 1 69.7 89.4 - -
GroupNet-A 4 65.2 85.7 4.5 3.7

GBD v1 4 63.7 85.2 6.0 4.2
GBD v2 4 62.9 84.7 6.8 4.7
GBD v3 4 59.8 82.7 9.9 6.7

LBD 4 57.8 80.1 11.9 9.3
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All the comparison results are directly cited from

the corresponding papers. From the results, we observe

that with comparable computational complexity, the

proposed GroupNet surpasses the state-of-the-art fixed-

point methods, which demonstrates the flexibility and

effectiveness of our method.

5.1.4 Extension on MobileNetV1

We further propose to apply GroupNet based on ReAct-

Net. Specifically, ReActNet customizes the MobileNetV1

structure as the binarization backbone and GroupNet-

C treats the ReActNet as the base structure. Follow-

ing ReActNet, we make three modifications. 1): The

3× 3 depth-wise and the 1× 1 point-wise convolutional

blocks in the MobileNetV1 are replaced by the 3 × 3

and 1×1 vanilla convolutions in parallel with shortcuts

respectively. 2): For the reduction block, we duplicate

the input activation and concatenate two blocks with

the same inputs to address the channel number differ-

ence, permitting to add identity skip connections. 3):

We also replace Sign and ReLU to RSign and RPReLU

following ReActNet, respectively.

The empirical results show that our GroupNet is

complementary to high-performance binary architec-

tures (K = 1) by exploring how to ensemble the binary

bases (K > 1) effectively to approximate the original

full-precision network. Based on an advanced binary

base architecture, our GroupNet can achieve better per-

formance.

5.2 Ablation study on ImageNet classification

5.2.1 Width multiplier vs. structured approximation

We further compare the “structured approximation”

with the width multiplier baseline [11], which simply

multiplies the channel number by a fixed ratio. To make

the two settings directly comparable, we set K = 4 and

the width multiplier to 2. The results are shown in Ta-

ble 4.

We observe that GroupNet outperforms the width

multiplier baseline on ResNet-18. This further justifies

the group-wise approximation can better preserve the

information.

5.2.2 Effect of the group space

To show the importance of the space design, we de-

fine more methods for comparison as follows: LBD: It

implements the layer-wise binary decomposition strat-

egy described in Section 3.2.1. GBD v1: We imple-

ment with the group-wise binary decomposition strat-

Table 6 Validation accuracy (%) of Group-Net on ImageNet
with different number of bases. All cases are based on the
ResNet-18 network with binary weights and activations.

Model Bases Top-1 Top-5 Top-1 gap Top-5 gap
Full-precision 1 69.7 89.4 - -
GroupNet-A 1 58.1 80.8 11.6 8.6
GroupNet-A 3 63.8 84.9 5.9 4.5
GroupNet-A 4 65.2 85.7 4.5 3.7
GroupNet-A 5 66.0 86.2 3.7 3.2

egy, where each base consists of one block. It corre-

sponds to the approach described in Eq. (5) and is il-

lustrated in Figure 1 (d). GBD v2: Similar to GBD

v1, the only difference is that each group base has two

blocks. It is illustrated in Figure 1 (e) and is explained

in Eq. (6). GBD v3: It is an extreme case where each

base is a whole network, which can be treated as an

ensemble of a set of binary networks. We present the

results in Table 5.

From the results, we have two main observations

and analysis. 1): The group-wise decomposition strate-

gies (GBD v1-v3, GroupNet-A) outperform the layer-

wise counterpart (LBD) by a large margin. Our specu-

lation is that skip connections have been demonstrated

to play an important role in increasing representational

capability and improving gradient backpropagation in

BNNs literature [23]. In this sense, group-wise variants

have K times more skip connections than LBD, which

explains to some extent why the group-wise approxi-

mation performs much better. 2): As shown in prod-

uct quantization [92], a fine quantization granularity is

theoretically guaranteed to reduce the approximation

error. Therefore, approximating one block as a whole is

able to achieve the best trade-off since it simultaneously

keeps the most skip connections at the fine granular-

ity. This is reflected by the empirical results that the

block-wise approximation (e.g., GroupNet-A and GBD

v1) achieves the highest accuracy.

5.2.3 Effect of the number of bases

We further explore the influence of number of bases K

to the final performance in Table 6. When the num-

ber is set to 1, it corresponds to directly binarize the

original full-precision network and we observe appar-

ent accuracy drop compared to its full-precision coun-

terpart. With more bases employed, we can find the

performance steadily increases. The reason can be at-

tributed to the better approximation of the floating-

point network, which is a trade-off between accuracy

and complexity. It can be expected that with enough

bases, the network should has the capacity to approxi-

mate the full-precision network precisely.
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5.2.4 Effect of the soft gate

In this section, we further analysis the effect of soft

gate described in Section 3.3.1. We show the quantita-

tive results in Table 7. From the results, we can observe

consistent accuracy improvement for various architec-

tures. This shows that increasing the gradient paths

and learning the information flow within BNNs is im-

portant for maintaining the performance. For instance,

on ResNet-34, learning the soft gates can improve the

Top-1 accuracy by 2.1%.

5.3 Evaluation on semantic segmentation

In this section, we further evaluate GroupNet on the

PASCAL VOC 2012 semantic segmentation benchmark

[93] which contains 20 foreground object classes and one

background class. The original dataset contains 1,464

(train), 1,449 (val) and 1,456 (test) images. The dataset

is augmented by the extra annotations from [94], result-

ing in 10,582 training images. The performance is mea-

sured in terms of averaged pixel intersection-over-union

(mIOU) over 21 classes.

Implementation details. Our experiments are based

on FCN [2], where we adjust the dilation rates of the

last two stages in ResNet with atrous convolution to

make the output stride equal to 8. We empirically set

dilation rates to be (4, 8) in last two stages. Similar to

the structure of FCN-32s and FCN-16s, we define our

modified baselines as FCN-8s-C5 and FCN-8s-C4C5,

where C4 and C5 denote extracting features from the

final convolutional layer of the 4-th and 5-th stage, re-

spectively. We first pretrain the binary backbone on

ImageNet dataset and fine-tune it on PASCAL VOC.

During fine-tuning, we use Adam with initial learning

rate=1e-4, weight decay=0 and batch size=16. We set

the number of bases K = 4 in experiments. We train 40

epochs in total and decay the learning rate by a factor

of 10 at 20 and 30 epochs. We do not add any auxiliary

loss and ASPP.

5.3.1 Experiments on FCN

The main results are reported in Table 8 and Table 9.

From the results in Table 8, we can observe that when

all bases using the same dilation rate, there is an ob-

vious performance gap with the full-precision counter-

part. This performance drop is consistent with the clas-

sification results on ImageNet dataset in Table 3. It

proves that the quality of extracted features has a great

impact on the segmentation performance. Moreover,

we also quantize the network to 2-bit using the state-

of-the-art fixed-point quantization method LSQ. Com-

pared with LSQ, we achieve better performance with

comparable computational cost.

To reduce performance loss, we further employ di-

verse dilated rates on parallel binary bases to capture

the multi-scale information without increasing any com-

putational complexity. This formulates our final ap-

proach GroupNet-C + BPAC in Table 9, which shows

significant improvement over the GroupNet-C counter-

part. Moreover, the performance of GroupNet-C + B-

PAC outperforms the full-precision baseline in Table 8,

which strongly justifies the flexibility of GroupNet.

5.3.2 Experiments on DeepLabv3

For training the DeepLabv3 [24] baseline, we use Adam

as the optimizer. The initial learning rate for training

backbone network is set to 1e-4, and is multiplied by

10 for ASPP module. Similar to image classification, we

keep the first layer and last classification layer to 8-bit.

We employ the layer-wise approximation in quantizing

the ASPP module. We set K = 4 for both backbone

and ASPP. The training details are the same with those

in FCN except that we use the polynomial decay of

learning rate. The results are provided in Table 11.

Moreover, a problem still exists in training binary

DeepLabv3. The ASPP module uses large dilation rates

for the three 3×3 convolutions with rates = {12, 24, 36}
when output stride=8. For training BNNs with Eq. (2),

we apply one-paddings to constrain activations to {−1, 1}.
However, for atrous convolution with large rates, padding

ones can introduce high bias and make the optimiza-

tion difficult. To solve this problem, we instead bina-

rize the activations to {0, 1} following the quantizer

in [20]. Note that the numerical difference is only a

scalar whether activations are represented by {−1, 1} or

{0, 1} in bitwise operations to accelerate the dot prod-

ucts [20,22]. The importance for binarizing activations

to {0, 1} is shown in Table 10.

It is worth noting that the comparable counterpart

of DeepLabv3 is the GroupNet-C + BPAC with FCN-

8s-C5 in Table 9. The main difference is that in the

proposed BPAC module, we directly incorporate the

multiple dilation rates in the backbone network to cap-

ture multi-scale context. In contrast, DeepLabv3 em-

beds the ASPP module on top of the backbone net-

work. With the same output stride, the computational

complexity of FCN is lower than DeepLabv3 since no

additional ASPP is needed. With the simpler quantized

FCN framework with BPAC, we can achieve compara-

ble or even better performance than quantized DeepLa-

bv3. For example, with the ResNet-34 backbone, Group-

Net-C + BPAC outperforms DeepLabv3 by 5.9 w.r.t.

mIOU. It also shows that binarization on ASPP is sensi-
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Table 7 The effect of soft gates on ImageNet.

Model Full GroupNet-A (w/o softgates) GroupNet-A

ResNet-18
Top-1 % 69.7 64.1 65.2
Top-5 % 89.4 85.0 85.7

ResNet-34
Top-1 % 73.2 66.4 68.7
Top-5 % 91.4 86.2 88.3

ResNet-50
Top-1 % 76.0 67.7 69.8
Top-5 % 92.9 86.7 88.0

Table 8 Performance of GroupNet on the PASCAL VOC
2012 validation set with FCN.

Backbone Model mIOU ∆

ResNet-18, FCN-8s-C5
Full-precision 64.9 -
LSQ (2-bit) 60.8 4.1
GroupNet-C 61.5 3.4

ResNet-18, FCN-8s-C4C5
Full-precision 67.3 -
LSQ (2-bit) 62.9 4.4
GroupNet-C 63.6 3.7

ResNet-34, FCN-8s-C5
Full-precision 72.7 -
LSQ (2-bit) 68.5 4.2
GroupNet-C 69.3 3.4

ResNet-50, FCN-8s-C5
Full-precision 73.1 -
LSQ (2-bit) 69.6 3.5
GroupNet-C 70.0 3.1

Table 9 Performance of GroupNet-C with BPAC on PAS-
CAL VOC 2012 validation set with FCN.

Backbone Model mIOU

ResNet-18, FCN-8s-C5
Full-precision (multi-dilations) 67.6

LSQ (2-bit) 64.0
GroupNet-C + BPAC 66.2

ResNet-18, FCN-8s-C4C5
Full-precision (multi-dilations) 70.1

LSQ (2-bit) 66.5
GroupNet-C + BPAC 69.0

ResNet-34, FCN-8s-C5
Full-precision (multi-dilations) 75.0

LSQ (2-bit) 71.3
GroupNet-C + BPAC 73.9

ResNet-50, FCN-8s-C5
Full-precision (multi-dilations) 75.5

LSQ (2-bit) 72.6
GroupNet-C + BPAC 74.4

Table 10 The difference for binarizing ASPP with {−1, 1}
and {0, 1}. The metric is mIOU.

Model full-precision {0, 1} {−1, 1}
ResNet-18 72.1 64.0 51.6

Table 11 Performance on the PASCAL VOC 2012 valida-
tion set with DeepLabv3.

Backbone Model mIOU ∆

ResNet-18
Full-precision 72.1 -

Backbone 68.6 3.5
Backbone + ASPP 65.0 7.1

ResNet-34
Full-precision 74.4 -

Backbone 71.9 2.5
Backbone + ASPP 68.0 6.4

ResNet-50
Full-precision 76.9 -

Backbone 73.6 3.3
Backbone + ASPP 70.2 6.7

tive to the final performance, since the binarization pro-

cess constrains the feature magnitude to {0, 1} which

causes the multi-scale information loss.

5.4 Evaluation on object detection

In this section, we evaluate GroupNet on the general

object detection task. Our experiments are conducted

on the large-scale detection benchmark COCO [95]. Fol-

lowing [74,96], we use the COCO trainval35k split (115K

images) for training and minival split (5K images) for

validation. We also report our results on the test dev

split (20K images) by uploading our detection results

to the evaluation server. Our experiments are based on

FCOS [4] and RetinaNet [74]. In all settings, we set

K = 4.

Implementation details. In specific, the backbone

is initialized by the pretrained weights on ImageNet

classification. GroupNet is then fine-tuned with Adam

with the initial learning rate of 5e-4 and the batch size

of 16 for 90,000 iterations. The learning rate is decayed

by 10 at iteration 60,000 and 80,000, respectively. Note

that we keep updating the BN layers rather than fix

them during training. Other hyper-parameters are kept

the same with [4, 74].

5.4.1 Performance evaluation

We report the performance on FCOS in Tables 13 and
14, as well as RetinaNet in Table 15, respectively. We

can observe that GroupNet achieves promising results

over all ResNet architectures. For instance, with the

ResNet-18 backbone, the gap of AP is only 3.7 on FCOS

while we save considerable computational complexity.

This strongly shows that the proposed GroupNet is a

general approach that can be extended on many fun-

damental computer vision tasks. Furthermore, we high-

light that we are among the pioneering approaches to

explore binary neural networks on object detection in

the literature.

We compare with the state-of-the-art quantized ob-

ject detector FQN [25], and also quantize the detector

with LQ-Net using the proposed training strategy. We

observe that GroupNet-C outperforms the two compar-

ing methods. It shows that learning independent heads

is more effective than freezing batch normalization lay-

ers in FQN to stabilize the optimization. Moreover, the

better low-precision feature quality of GroupNet also

contributes to superiority of the performance.
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Table 12 Performance on COCO validation set with different binarized components.

Model AP AP50 AP75 APS APM APL

Full-precision 33.8 51.8 36.1 19.3 36.4 44.4
Backbone 33.7 51.6 36.2 19.0 36.3 44.5

Backbone + Pyramid 32.9 50.3 35.7 18.8 35.1 42.8
Backbone + Pyramid + Heads (shared) 19.3 36.6 18.4 10.5 23.0 28.8

Backbone + Pyramid + Heads (w/o shared) 30.1 47.5 33.2 16.0 31.2 39.2

Table 13 Performance on the COCO validation set based on FCOS.

Backbone Model #Parameters (Mbit) FLOPs (×1010) AP AP50 AP75 APS APM APL

ResNet-18

Full-precision 617.4 15.5 33.8 51.8 36.1 19.3 36.4 44.4
FQN 86.2 1.01 26.2 43.5 26.7 13.3 29.5 35.7

LQ-Net 86.2 1.01 28.0 45.0 30.6 15.0 29.8 36.6
GroupNet-C 165.0 1.03 30.1 47.5 33.2 16.0 31.2 39.2

ResNet-34

Full-precision 940.8 19.3 37.5 55.9 40.3 22.6 40.8 47.4
FQN 124.5 1.25 28.8 46.3 30.0 14.8 31.0 38.8

LQ-Net 124.5 1.25 30.8 47.8 33.4 16.2 32.5 40.0
GroupNet-C 245.8 1.27 32.8 49.8 35.6 17.4 34.0 41.8

ResNet-50

Full-precision 1034.0 20.4 38.6 57.4 41.4 22.3 42.5 49.8
FQN 137.2 1.32 29.7 47.1 30.8 15.3 31.8 39.3

LQ-Net 137.2 1.32 32.1 49.6 34.8 17.6 33.2 40.6
GroupNet-C 260.4 1.64 33.9 51.2 37.3 18.3 35.0 42.5

Table 14 Performance on the COCO test set based on FCOS.

Backbone Model AP AP50 AP75 APS APM APL

ResNet-18

Full-precision 33.9 51.9 36.4 19.4 35.6 42.2
FQN 26.3 43.8 26.8 13.5 29.4 35.4

LQ-Net 28.2 45.3 30.7 15.1 29.6 36.1
GroupNet-C 30.2 47.7 33.3 15.9 31.4 39.4

ResNet-34

Full-precision 37.8 56.3 41.0 22.1 40.1 46.7
FQN 28.9 46.6 30.1 14.5 31.5 37.8

LQ-Net 30.9 47.5 33.5 16.0 32.3 39.5
GroupNet-C 32.6 49.4 35.7 17.3 34.2 41.7

ResNet-50

Full-precision 38.8 57.9 41.9 22.4 41.5 48.0
FQN 29.9 47.4 31.0 14.9 31.7 39.0

LQ-Net 32.0 49.5 35.1 17.4 32.7 40.0
GroupNet-C 33.8 51.4 37.5 18.0 35.1 42.4

5.4.2 Detection components analysis

We further analysis the affect of quantizing the back-

bone, feature pyramid and heads to the final perfor-

mance, respectively. The results are reported in Ta-

ble 12.

From Table 12, binarizing the backbone and the fea-

ture pyramid only downgrades the performance by a

small margin. However, binarizing heads causes an ob-

vious AP drop. It can be attributed to that heads are

responsible for adapting the extracted multi-level fea-

tures to the classification and regression objectives. As

a result, its representability is crucial for robust de-

tectors. However, the multi-level information is under-

mined when being constrained to {−1, 1}. This shows

that the detection modules other than the backbone are

sensitive to quantization, and we leave it as our future

work.

By comparing the results with respect to weight

sharing, we observe the original sharing heads strat-

egy that widely used in full-precision detection frame-

works performs extremely bad in the binary setting.

In specific, with ResNet-18 backbone, the AP gap be-

tween with and without weight sharing reaches by 10.8.

It is worth noting that separating the parameters does

not increase any additional computational complexity.

Even though the number of parameters are increased

(i.e., by ∼ 4 times in heads), the memory consumption

is still significantly reduced due to the 1-bit storage.

6 Acceleration on hardware

To investigate the real execution speed and memory

cost of the proposed GroupNet and other related coun-

terparts such as fixed-point quantization, we develop

the acceleration code (GPU version only) on resource

constrained platforms and provide the benchmark re-

sults. Experimental platforms include HiSilicon Kirin

970, Qualcomm 821 as well as Qualcomm 835. For fair

comparison, we fix the frequency of the sub-systems

(such as the CPU, GPU and DDR) if possible in or-

der to prevent interference from the DVFS (dynamic

voltage and frequency scaling) on the modern operat-
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Table 15 Performance on the COCO validation set based on RetinaNet.

Backbone Model #Parameters (Mbit) FLOPs (×1010) AP AP50 AP75 APS APM APL

ResNet-18
Full-precision 685.8 18.8 32.9 52.7 34.8 19.8 35.6 41.7
FQN (2-bit) 135.7 1.43 28.2 46.5 29.2 15.6 30.0 37.7
GroupNet-C 182.1 1.44 30.7 48.0 32.8 16.4 32.2 39.8

ResNet-34
Full-precision 1008.6 22.6 36.2 56.6 38.7 22.1 39.6 45.1
FQN (2-bit) 175.8 1.66 31.5 50.4 33.2 17.1 34.3 41.4
GroupNet-C 262.4 1.68 33.4 52.1 36.4 18.0 35.2 42.5

ResNet-50
Full-precision 1215.6 23.9 37.8 58.5 40.7 22.8 41.3 48.3
FQN (2-bit) 203.1 1.74 31.9 51.1 33.5 17.9 35.1 40.3
GroupNet-C 305.7 2.06 34.2 52.5 37.5 18.9 35.6 43.3

Table 16 The execution time (us) of a single layer with different configurations.

Device model case1 case2 case3 case4 case5 case6 case7 case8 case9 case10 case11

Qualcomm 821
2-bit 1928 3543 7968 24914 93069 1512 2348 3546 7188 21187 75486

GroupNet 2014 3621 8163 25376 94550 1613 2487 3627 7311 21362 75982
Relative 4.4% 2.2% 2.4% 1.8% 1.6% 6.6% 5.9% 2.3% 1.7% 0.8% 0.7%

Qualcomm 835
2-bit 2076 2969 6463 20528 73967 1600 1900 2852 5646 15822 69803

GroupNet 2255 3206 6930 21776 75010 1754 1998 2982 5746 17676 71140
Relative 8.6% 8.0% 7.2% 6.1% 1.4% 9.6% 5.1% 4.6% 1.8% 11.7% 1.9%

Kirin 970
2-bit 900 2234 2544 8040 31027 1048 1594 2415 2390 6750 24087

GroupNet 1017 2603 2550 8030 31145 1060 1594 2535 2478 6764 24326
Relative 13.0% 16.5% 0.2% -0.1% 0.4% 1.1% 0.0% 5.0% 3.7% 0.2% 1.0%

Table 17 Exact execution time (ms) and speedup ratios for overall quantized layers. We run 5 times and report the results
with mean and standard deviation.

Device Network Binary GroupNet-C 2-bit Binary vs. GroupNet-C Binary vs. 2-bit GroupNet-C vs. 2-bit

Q835
ResNet-18 12.1±0.2 48.8±0.3 44.8±0.2 4.03 3.70 0.92
ResNet-34 25.3±0.3 98.0±0.5 90.6±0.4 3.87 3.58 0.93

Q821
ResNet-18 15.7±0.3 55.4±1.6 52.5±1.0 3.45 3.34 0.95
ResNet-34 32.3±0.6 110.3±2.6 105.2±2.1 3.41 3.26 0.95

ing system. We fuse the batch normalization layers into

the corresponding convolutional layers following [9,80].

Multiple rounds of experiments are conducted and the

profiling data is averaged for statistic stability.

6.1 Execution speed benchmarks

Implementation details. We employ OpenCL (sim-

ilar with CUDA and is a common programming lan-

guage on the embedded platforms) to implement the

GPU acceleration. Arithmetic and bit-wise logical op-

erations, such as popcount and xor are supported in the

OpenCL language. Dedicated software is developed for

the proposed neural network acceleration. As explained

in Sec. 4, the binary convolution is implemented with

two steps: im2col and GEMM. We provide the example

implementation in Figure 4.

Results analysis. We first compare the layer-wise ex-

ecution time between GroupNet (refer to Eq. (3)) with

4 bases and 2-bit models. The results are listed in Table

16. A total of 11 cases are included in this experiment.

All cases are with convolutions of 3× 3 kernel, padding

1 and stride 1. For convenience, we configure the in-

put and output feature maps to have the same shape,

where input channels/width/height = output channel-

s/width/height, respectively. For the first five cases, we

fix the channel number to be 64 and increase the reso-

lution from 28 to 448 with a multiplier 2. For the last

six cases, we fix the resolution to be 56 × 56 and dou-

ble the channel number from 16 to 512. From the re-

sults, we observe that the inference speed of GroupNet

is slighter slower than that of the 2-bit model due to

the extra addition operations discussed in Section 4.

We set the batch size to 1 in all scenarios. We also re-

port the overall speed for all quantized layers in Table

17 of BNNs, GroupNet-C (4 bases) and 2-bit models.

From Table 17, we first observe that the real execution

time of GroupNet-C and 2-bit models is less than 4×
slower than the binary case. Moreover, we also report

the speedup of the 4 bases GroupNet-C against the 2-

bit model. Specifically, the relative speedup ranges from

0.92 to 0.95 across different architectures (ResNet-18

and ResNet-34) on various devices (Qualcomm 821 and

835). It implies the extra addition operations analyzed

in Section 4 has small impact on the overall inference

speed. In summary, the group-wise approximation is

still hardware-friendly but more flexible and accurate.

We finally report the inference time of binary con-

volutions and high-precision additions respectively in

Table 18, where we can observe that “hAdd” executes

much faster than “bConv”.
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Table 18 Comparison on the inference time of the binary convolution and high-precision addition. ‘bConv’ and ‘hAdd’ indicate
the binary convolution and the high-precision addition, respectively.

Device Mode case1 case2 case3 case4 case5 case6 case7 case8 case9 case10 case11

Qualcomm 821
bConv 588 1227 2634 8265 31106 476 737 1249 2259 6000 19914
hAdd 191 510 832 1769 5592 187 366 510 677 1038 1311

Qualcomm 835
bConv 652 918 1915 6053 23718 526 692 946 1790 4839 17394
hAdd 98 209 375 1051 3899 114 122 210 262 362 577

Kirin 970
bConv 337 742 849 2617 9762 317 465 698 693 1898 6292
hAdd 73 113 272 957 3811 107 113 162 219 333 522

Table 19 Memory consumption (MB) with ResNet-18 for the proposed method and fixed-point quantization scheme. For
memory during training, we set the training batch size to be 64 and measure the GPU memory cost. For storage needed in
the inference mode, we report the consumption by the activations and weights, respectively, in a format of ‘a + w’ (we do not
include the memory consumption of the input layer and the output layer).

Mode
GroupNet-C Fixed-point

base a/w
2 3 4 1/1 2/2 4/4 FP32/FP32

training 3953 5117 6275 4969 4969 4969 -
inference 2.06 + 4.59 2.06 + 6.89 2.06 + 9.18 1.43 + 2.30 1.65 + 4.59 2.11 + 9.18 9.70 + 73.44

Fig. 4 Example code to implement binary GEMM with
GPU instructions. The following kernel will be executed in
SIMD (single instruction, multiple data stream) manner on
the GPU.

__kernel void gemm_v1(

__global half *dst , // GEMM result

buffer , in dimension of [M * N]

__global uchar *src , // activation ,

in dimension of [M * K]

__global uchar *weight , // weight

parameters , in dimension of [N, K]

__global half *bias , // bias

parameters

int M, int N, int K,

half alpha // quantization

scale factor

)

{

int x = get_global_id (0); // thread id

int y = get_global_id (1); // thread id

x = min(x, M-1);

y = min(y, N-1);

uchar buffer;

uchar filter;

short result;

result = 0;

short i;

for(i=0; i<K; i++) {

buffer = src[i*M + x];

filter = weight[i*N + y];

result += popcount(buffer ^ filter); //

obtain count of ones

}

result = (short)(K*8) - result * (short)2;

// obtain binary inner product result

half save;

save = result * alpha;

dst[y*M + x] = save + bias[y];

return;

}

6.2 Runtime memory consumption

We further explore the actual training and inference

memory consumption of GroupNet-C and the fixed-

point quantization scheme. Note that we focus more on

the runtime memory footprint in practice because en-

ergy consumption is dominated by memory access [97].

We measure the runtime memory consumption with

ResNet-18 on ImageNet, as illustrated in Table 19.

Implementation details. When developing the ac-

celeration code with OpenCL on the target platforms,

we find the memory allocation is quite time consum-

ing. Therefore, we leverage the compilation phase al-

location strategy. Specifically, we build up the compu-

tation graph for the network inference and record the

lifetime of each tensor. Only one static memory pool is

allocated, where tensors are mapped into sub-buffers of

this memory pool. When the lifetime of a tensor ends,

the buffer is marked free and can be re-used by the fol-

lowing tensors. The mapping pattern is pre-determined

at the compilation stage and hard-coded into the pro-

gram, thus negligible time is introduced by the memory

mapping during runtime.

Results analysis. In the training phase, we use “fake

quantization”, where we simulate the quantization by

rounding the tensors into binary ones, however still rep-

resent the data with floating-point. Each extra branch

would introduce an extra memory cost (memory can

not be re-used among different branches, as the ten-

sors are saved for back-propagation). Thus, the training

memory increases linearly with the number of bases K

in GroupNet. In contrast, the fixed-point solution has a

fixed amount of memory consumption for all bit quan-

tization training (K = 1).
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For the runtime memory footprint at the testing

time, we count the activation storage and weight stor-

age separately. In particular, the activation storage of

our GroupNet only brings a fixed amount of memory

cost. It is because after the computation of each branch,

the buffer is freed and re-used in the next branch. Specif-

ically, a memory pool is allocated with the capacity be-

ing dependent by the largest buffer in the network. In

practice, we found the largest buffer is occupied by the

im2col result of the input convolutional layer (this layer

has a large kernel size of 7 × 7) for ResNet. However,

for the fixed-point quantization scheme, the activation

memory consumption increases with the bitwidth con-

figuration. In other words, a fixed-point method needs

to be pre-allocated memory for P -bit while GroupNet

only needs a buffer for 1-bit (1 base). Note that ac-

cumulation is required for our GroupNet, which might

not be freed when handling different branches. As a re-

sult, the preliminary size of the memory pool of our

GroupNet (2.06 MB) is generally larger than that of

the fixed-point solution (1.43 MB for 1/1).

Moreover, for weight parameters storage during in-

ference, the memory consumption is directly decided by

the base number K or quantization bitwidth.

In summary, under comparable FLOPs, GroupNet-

C (base = 4) consumes higher runtime memory foot-

print than 2-bit fixed-point models, i.e., 11.24 MB vs.

6.24MB, where both are much less than the full-precision

one, 83.14MB. The gap mainly comes from storing more

parameters in our GroupNet.

7 Conclusion

In this paper, we have explored highly efficient and ac-

curate CNN architectures with binary weights and ac-

tivations. Specifically, we have proposed to directly de-

compose the full-precision network into multiple groups

and each group is approximated using a set of binary

bases which can be optimized in an end-to-end manner.

We have also proposed to learn the decomposition au-

tomatically. To increase model capacity, we have intro-

duced conditional computing to binary networks, where

the bases in each group are dynamically executed. Ex-

perimental results have proved the effectiveness of the

proposed approach on the ImageNet classification task.

More importantly, we have generalized the proposed

GroupNet approach from image classification tasks to

more challenging fundamental computer vision tasks,

namely dense prediction tasks such as semantic seg-

mentation and object detection. We highlight that we

may be among the first few approaches to apply binary

neural networks on general semantic segmentation and

object detection tasks, and achieve encouraging perfor-

mance on the PASCAL VOC and COCO datasets with

binary networks. Last, we have developed the underly-

ing acceleration code and speedup evaluation compar-

ing with other quantization strategies is analyzed on

several platforms, which serves as a strong benchmark

for further research. In the future, we will employ the

latent-free optimizer [98] for BNNs that directly update

the binary weights, to reduce the memory consumption

during training. We will also develop acceleration code

on X86, ARMs and FPGA platforms.
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