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Abstract Modern video object segmentation (VOS)

algorithms have achieved remarkably high performance

in a sequential processing order, while most of currently

prevailing pipelines still show some obvious inadequacy

like accumulative error, unknown robustness or lack of

proper interpretation tools. In this paper, we place the

semi-supervised video object segmentation problem into

a cyclic workflow and find the defects above can be

collectively addressed via the inherent cyclic property

of semi-supervised VOS systems. Firstly, a cyclic mech-

anism incorporated to the standard sequential flow can

produce more consistent representations for pixel-wise

correspondance. Relying on the accurate reference mask

in the starting frame, we show that the error propaga-

tion problem can be mitigated. Next, a simple gradient

correction module, which naturally extends the offline
cyclic pipeline to an online manner, can highlight the

high-frequent and detailed part of results to further

improve the segmentation quality while keeping feasi-
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ble computation cost. Meanwhile such correction can

protect the network from severe performance degration

resulted from interference signals. Finally we develop

cycle effective receptive field (cycle-ERF) based on gradi-

ent correction process to provide a new perspective into

analyzing object-specific regions of interests. We con-

duct comprehensive comparison and detailed analysis

on challenging benchmarks of DAVIS16, DAVIS17 and

Youtube-VOS, demonstrating that the cyclic mechanism

is helpful to enhance segmentation quality, improve the

robustness of VOS systems, and further provide quali-

tative comparison and interpretation on how different

VOS algorithms work. The code of this project can be

found at https://github.com/lyxok1/STM-Training.
1

1 Introduction

Video object segmentation (VOS) is garnering more at-

tention in recent years due to its widespread application

in the area of video editing and analysis. Among all

the VOS scenarios, semi-supervised video object seg-

mentation is the most practical and widely researched.

1 This manuscript is an extended version of our conference
paper to be published at the Thirty-fifth Conference on Neu-
ral Information Processing Systems (NeurIPS) 2020. delving
into the cyclic mechanism of semi-supervised video object seg-
mentation [15]. We have cited this paper in the manuscript
and extended the paper substantially but not limited in fol-
lowing aspects: (1). A smooth regularized term and insight
from frequency domain is appended in the method part. (2).
In depth analysis on the robust of VOS model and the ef-
fect from our correction methods is included in the methods
part. (3) More comprehensive experiments are appended to
demonstrate the generality of our studies, including compar-
ison under different baseline models and backbones, results
with COCO pretraining and more qualitative results of effect
from core components.
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Specifically, a mask is provided in the first frame indi-

cating the location and boundary of the objects, and the

algorithm should accurately segment the same objects

from the background in subsequent frames. A natural

solution toward this problem is to process videos in a

sequential order, exploiting the information from pre-

vious frames and guides the segmentation process in

the current frame, since in most practical scenarios,

the video is obtained in an online manner where only

previous knowledge is available. Following this manner,

current state-of-the-ar pipelines [34,16,18,20,31,37,27,
14] achieve high segmentation quality by delving into

the information reuse from previous frames.

However, few research consider the flaws exposed by

such sequential processing paradigm, where currently
prevailing VOS pipelines still exhibit the following prob-

lems: (1) Prone to accumulative error. Ideally, if the

masks predicted for intermediate frames are sufficiently

accurate, they can provide more helpful object-specific

information. Nevertheless, erroneous intermediate masks

can mislead the segmentation procedure in future frames

(as exemplified in Figure 1), and this error is further

enlarged when low-quality segmentation dominate the

reference templates. (2) Robustness. Although there

is no research explicitly analyzing the robustness of

VOS systems, but intuitively, it can be easily affected

by noise manually appended into the previous knowl-

edge, in cases such as adversarial attacks [7] particularly

aimed at VOS algorithms. (3) Unavailable tools for

interpretation. There is no unified tool to generally

show how a VOS network is working given input frame

and reference knowledge.

In this paper, we consider the problems above in a
cyclical context and find the cyclic mechanism can be a

potentially unified solution to collectively address these

issues. Semi-supervised VOS is inherently suitable to

be combined with a cyclic manner. Different from the

predicted reference masks, the initial reference mask

provided in the starting frame is always perfectly accu-

rate and reliable. This inspires us to explicitly bridge

the relationship between the initial reference mask and

objective frame by taking the first reference mask as a

measurement of prediction.

Specifically, when applying a generalized forward-

backward data flow to form a cyclical structure and

training our segmentation network at both the objective

frame and starting frame, our model can learn more con-

sistent correspondence relationship between predictions

and the initial template mask. Further, at the inference

stage, such cyclic structure can be naturally extended

to an online version via a gradient correction module,

which selectively refines the detailed and high-frequent

part of predicted mask based on the gradient backward

from the starting frame at a marginal time cost. As a

results, the cyclic workflow can effectively suppress the

accumulative error with the starting frame as correct

measurement. Meanwhile the online correction can also

prevent the network from interference of noisy reference,

boosting the robustness of our pipeline. Additionally, in-

spired by the process of gradient correction, we develop

a new interpretation tool called cycle effective receptive

field (cycle-ERF), which gradually updates an empty ob-

jective mask to show the strong response area w.r.t. the

reference mask. In our experiments, we utilize the cycle-
ERF to analyze how the cyclic training scheme affects

the support regions of objects and highlight the differ-

ence in focus-area among distinctive baseline methods.

This visualization method provides a fresh perspective

for analyzing how the segmentation network extracts

regions of interests from guidance masks.

The trained models are evaluated in both online

and offline schemes on common object segmentation

benchmarks: DAVIS16 [23], DAVIS17 [24] and Youtube-

VOS [35], where we combine our cyclic methods to

other baseline models and achieve results that are com-
petitive to other state-of-the-art methods under a fair

comparison setting. Besides, we also make detailed and

comprehensive analysis to show how each part of the

cyclic mechanism works under our design.

In a nutshell, the contributions of this paper can be

summarized as follows:

– We incorporate cycle consistency into the training

process of a semi-supervised video object segmen-

tation network to mitigate the error propagation

problem and further improve the segmentation qual-

ity. We achieved competitive results without data
pretraining on mainstream benchmarks and can fur-

ther be improved with more synthetic data.

– We design a gradient correction module to extend

the offline segmentation network to an online ap-

proach, which boosts the model performance with

marginal increase in computation cost, while keeping

the model robust to disturbing noise.

– We develop cycle-ERF, a new visualization method

to analyze the important regions on different seg-

mentation models, which offers interpretability on

the impact of cyclic training.

2 Related works

2.1 Semi-supervised video object segmentation

Semi-supervised video object segmentation has been

widely researched in recent years with the rapid devel-

opment of deep learning techniques. Depending on the
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Fig. 1: An example of error propagation risk during the inference time, while the reference object is the camel in

foreground, the distracting camel from background is incorrectly segmented at the same time.

presence of a learning process during inference stage,

the segmentation algorithms can be generally divided

into online methods and offline methods. OVOS [3] is

the first online approach to exploit deep learning for the

VOS problem, where a multi-stage training strategy is

design to gradually shrink the focus of network from gen-

eral objects to the one in reference masks. Subsequently,

OnAVOS [32] improved the online learning process with

an adaptive mechanism. MaskTrack [22] introduced

extra static image data with mask annotation and em-

ployed data synthesized through affine transformation,

to fine-tune the network before inference. All of these on-

line methods require explicit parameter updating during

inference. Although high performance can be achieved,

these methods are usually time-consuming with a real-

time FPS of less than 1, rendering them unfeasible for

practical deployment.

On the other hand, there are a number of offline

methods that are deliberately designed to learn gener-

alized correspondence feature and they do not require

necessary online learning process during inference time.

RGMP [34] designed an hourglass structure with skip

connections to predict the objective mask based on the

current frame and previous information. S2S [35] pro-

posed to model video object segmentation as a sequence-

to-sequence problem and proceeds to exploit a temporal

modeling module to enhance the temporal coherency

of mask propagation. Other works like [37,18] resorted

to using state-of-the-art instance segmentation or track-

ing pipeline [8,21] while attempting to design matching

strategies to associate the mask over time. A few recent

methods FEELVOS [31] and AGSS-VOS [16] mainly

exploited the guidance from the initial reference and the

last previous frame to enhance the segmentation accu-

racy with deliberately designed feature matching scheme

or attention mechanism. STM [20] further optimized the

feature matching process with external feature memory

and an attention-based matching strategy, such memo-

rial structure is further optimized by involving global

context [14], adaptive gaussian kernel [27] and structure

of vision transformer [36]. Compared with online meth-

ods, these offline approaches are more efficient. However,

to learn more general and robust pixel-wise feature cor-

respondence, these data-hungry methods may require

backbones pretrained on large amounts of extra data

with mask annotations from other tasks such as instance

segmentation [17,6] or saliency detection [28]. Without

these auxiliary help, the methods might well be dis-

rupted by distractions from similar objects in the video,

which then propagates erroneous mask information to

future frames.

All the approaches mentioned above follow a stan-

dard sequential processing order from start to end of the

video and can not ensure the predicted mask is closely

related to the initial reference guidance at first frame. In

contrast, by embedding the cyclic mechanism into train-

ing stage, our method explicitly impose the constraint of

reference mask in learning process. Besides, the online

extension of gradient correction does not update the

pretrained model parameters as other online learning

methods, but dynamically refine the output according

to the modification information from the reliable initial

reference mask.

2.2 Cycle consistency

Cycle consistency is widely researched in unsupervised

and semi-supervised representation learning, where a

transformation and its inverse operation are applied

sequentially on input data, the consistency requires that

the output representation should be close to the orig-

inal input data in feature space. With this property,

cycle consistency can be applied to different types of

correspondence-related tasks. [4] is a classical technique

for correspondence learning, which treat the learning

problem as video colorization and impose the consis-

tency on natural color space to force embeddings of the

same semantics to be closer in feature space. In the

work of [29], a multiple step cycle-loop is build to con-
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nect correspondence relationship between real images

and rendered shots from 3D models. [33] combined

patch-wise consistency with a weak tracker to construct

a forward-backward data loop and this guides the net-

work to learn representative feature across different time

spans, [10] further extend such cyclic data loop to a ran-

dom walk process. [19] exploited the cycle consistency

in unsupervised optical flow estimation by designing

a bidirectional consensus loss during training. On the

other hand Cycle-GAN [39] and Recycle-GAN [2] and

other popular examples of how cyclic training can be uti-
lized to learn non-trivial cross-domain mapping, yielding

reliable image-to-image transformation across different

domains.

Our method with cyclic mechanism is different from

the works mentioned above in following aspects. First,

the motivation to exploit cycle consistency in our work

is to explicitly regularize the predicted mask to be ac-

curate for backward reference in cyclic loop, while in

unsupervised methods like [33], the cycle consistency

is an approach to obtain correspondence ground-truth.

Further, the learning objective of our work is still a fully
supervised segmentation task, with high-level and clear

semantic information (the object is taken as foreground

while the others are background). In contrast, methods

with unsupervised cycle consistency for correspondence

learning construct their objective by self-mimic in low-

level semantics (e.g. the color space [4], spatial posi-
tion [33] or transformation flow [29]), thus the learned

embeddings are easy to correspond to distractors with

similar low-level expression if there is not sufficient con-

text provided. Consequently large amount of data are

required to train these unsupervised methods to learn

to catch the context relationship. Finally, our cyclic

structure is not only applicable during training, but

also useful in the inference stage. By measuring the con-

sistency between initial reference mask and predicted

results, we can refine the output on current frame to

obtain more accurate guidance for future prediction.

3 Methods

3.1 Problem formulation

Given a video of length T ,Xt is the t-th frame (t ∈ [1, T ])

in temporal sequential order, and Yt is its corresponding

annotation mask. Sθ is an object segmentation network

parameterized by learnable weights θ. In terms of the se-

quential processing order of the video, the segmentation

network should achieve the function as in Equation (1)

below:

Ŷt = Sθ (Xt−1,Yt−1, Xt) t ∈ [2, T ] (1)

where Ŷt denotes the predicted object mask at t-th frame.

Xt−1 ⊂ {Xi|i ∈ [1, t − 1]} is the reference frame set,

which is a subset of all frames appearing before objective

frame Xt. Similarly, Yt−1 is a set containing reference

object masks corresponding to the reference frames in

Xt−1. However, in the semi-supervised setting, only the

initial reference mask at the first frame is available.

Therefore, in the inference stage, the corresponding

predicted mask Ŷt is taken as the approximation of the

reference mask. Hence, we have Yt−1 ⊂ {Y1}
⋃
{Ŷi|i ∈

[2, t− 1]}.

3.2 Cycle consistency loss

For the sake of mitigating error propagation during

training, we incorporate the cyclical process into the of-

fline training process to explicitly bridge the relationship

between the initial reference and predicted masks. To be
specific, as illustrated in Figure 2, after obtaining the pre-

dicted output mask Ŷt at frame t, we construct a cyclic

reference set for frames and mask set, respectively

denoted as X̂t ⊂ {Xi|i ∈ [2, t]}, Ŷt ⊂ {Ŷi|i ∈ [2, t]}.
With the cyclic reference set, we can obtain the

prediction for the initial reference mask in the same

manner as sequential processing:

Ŷ1 = Sθ
(
X̂t, Ŷt, X1

)
(2)

Consequently, we apply mask reconstruction loss (in

Equation 3) during supervision, optimizing on both the

output mask of the t-th frame Ŷt and the backward

prediction Ŷ1.

Lcycle,t = L(Ŷt, Yt) + L(Ŷ1, Y1) (3)

In implementation, we utilize the combination of cross-

entropy loss and mask IOU loss as supervision at both

sides of the cyclic loop, which can be formulated as,

L(Ŷt, Yt) = LIOU + γLCE (4)

LIOU = 1−
∑
u∈Ω min(Ŷt,u, Yt,u)∑
u∈Ω max(Ŷt,u, Yt,u)

(5)

LCE =
∑
u∈Ω

(
(1− Yt,u) log(1− Ŷt,u) + Yt,u log(Ŷt,u)

)
(6)

where Ω denotes the set of all pixel coordinates in the

mask while Yt,u and Ŷt,u are the normalized pixel values

at coordinate u of the masks, γ is a hyperparameter

to balance between the two loss terms. It should also

be noted that the cyclic mechanism in Figure 2 indi-

rectly applies data augmentation on the training data
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Fig. 2: Overview of the proposed cyclic mechanism in both training and inference stages of the segmentation

network. For simplicity, we take the situation where Xt−1 = {X1}, Yt−1 = {Y1}, X̂t = {Xt} and Ŷt = {Ŷt} as an

example.

by reversing the input clips in temporal order, helping

the segmentation network to learn more general feature

correspondences.

3.3 Gradient correction

Cyclic refinement process. After training with the

cyclic loss as Equation (3), we can directly apply the

offline model in the inference stage. However, inspired

by the cyclic structure in training process, we can take

the accurate initial reference mask as a measurement

to evaluate the segmentation quality of current frame

and proceed to refine the output results based on the

evaluation results. In this way, we can explicitly reduce

the effect of error propagation during inference time to

keep our trained model from disturbances by natural or

adversarial noises.

To achieve this goal, we design a gradient correction

block to update segmentation results iteratively as il-

lustrated in Figure 2. Since only the initial mask Y1 is

available in inference stage, we apply the predicted mask

Ŷt to infer the initial reference mask in the same manner

as Equation (2), and then evaluate the segmentation

quality of Ŷt with the loss function in Equation (4). Intu-

itively, when more accurate prediction mask Ŷt are taken

as reference, smaller reconstruction error for Y1 will be

yielded; therefore, during the gradient correction, our

algorithm is focusing on minimizing the reconstruction

error of the reference mask

min
Ŷt

Lrec = min
Ŷt

L
(
Sθ
(
{Xt}, {Ŷt}, X1

)
, Y1

)
(7)

Where the loss term L(·, ·) adopts the same formulation

as Equation (4) The gradient descent method is adopted

to solve the reconstruction problem in Equation (7) so

as to refine the mask Ŷt. To be specific, we start from

an output mask Ŷ 0
t = Ŷt, and then update the mask for

N iterations:

Ŷ l+1
t = Ŷ lt − α

∂Lrec
∂Ŷ lt

(8)

where α is a predefined correction rate for mask update

and N is the iteration times. With this iterative refine-

ment, we naturally extend the offline model to an online

inference algorithm. However, the gradient correction

approach can be time-consuming since it requires multi-

ple times of network forward-backward pass. Due to this

reason, we only apply gradient correction once per K

frames to achieve good performance-runtime trade-off.

Interpretation in the frequency domain. Em-

pirically, with the gradient correction process in Equa-

tion (8), the details of output mask can be better han-

dled. This claim can be demonstrated from the aspect

of frequency domain, where we find that the gradient

correction module empirically acts a high-frequency am-

plifier to polish the output mask in fine-grained details.

To analyze from the aspect of frequency, we take the gra-

dient correction module as a black box system and calcu-

late its frequency response by computing the averaged

ratio between output and input amplitude-frequency

characteristics,

AFGC =
1

T

T∑
t=1

∣∣∣FFT (Ŷ Nt )∣∣∣∣∣∣FFT (Ŷ 0
t

)∣∣∣ (9)
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Fig. 3: Frequency domain distribution of input mask, output mask and amplitude response of gradient correction

module. The results is obtained by averaging the response value on all frames of DAVIS17 validation set.

where FFT (·) denotes 2D Fast Fourier transform. We

visualized the 2D frequency-domain intensity of the

input mask, output mask of gradient correction and

the frequency-domain response AFGC in the form of
amplitude-frequency characteristic contour in Figure 3.

We observe that compared with the input mask, the out-

put mask manifests stronger intensity in high-frequency

component (the four corner of the contour figure), the

frequency response of gradient correction module also

highlights and amplifies the part corresponding high-

frequency harmonic. This observation provides the expla-

nation of higher boundary accuracy improvement from

the perspective of frequency since the high-frequency

component usually supplements some detailed informa-

tion of output masks.

Anti-noise regularization. However, intuitively,

amplifying the high-frequency component will not only

append details but also results in noise and artifacts

around the object boundaries. To overcome such arti-

facts from gradient-correction, we augment the recon-

struction error with a regularization term to suppress

potential noise after refinement, denoted as

Lrec = L
(
Sθ
(
{Xt}, {Ŷt}, X1

)
, Y1

)
+ λLsmooth

(
Ŷt

)
(10)

where Lsmooth
(
Ŷt

)
is a spatial smooth term to avoid

exaggerating some spot-like area in output masks with

λ as its corresponding weight parameter.

Lsmooth
(
Ŷt

)
=

1

|Ω|
∑
u∈Ω
∇xŶ 2

t,u +∇yŶ 2
t,u (11)

In instantiation, the Sobel operators ∇x,∇y are first

applied on the mask Ŷt along the horizontal and vertical

directions to calculate the spatial gradient, then areas

with large spatial gradient norm are penalized. The aug-

mented reconstruction objective can still be optimized

according to the manner of Equation (8).

3.4 Cycle-ERF

The cyclic mechanism with gradient update in Equa-

tion (8) is not only helpful for the output mask refine-
ment, but it also offers a new aspect of analyzing the

region of interests of specific objects segmented by the

pretrained network. In detail, we construct a reference
set, Xl = {Xl} and Yl = {0} as the guidance, where 0

denotes an empty mask of the same size as Xl but is

filled with zeros. We take these references to predict ob-

jects at the t-th frame Ŷt. To this end, we can obtain the

prediction loss L(Ŷt, Yt). To minimize this loss, we con-
duct the gradient correction process as in Equation (8)

to gradually update the empty mask for M iterations.

Finally, we take the ReLU function to preserve the pos-

itively activated areas of the objective mask as our final

cycle-ERF representation, the resulting receptive field

can be expressed as

cycle-ERF(Yl) = ReLU
(
ŶMl |Ŷ 0

l =0

)
(12)

As we will show in our experiments, the cycle-ERF

is capable of properly reflecting the support region of

specific objects for the segmentation task. Through this

analysis, the pretrained model can be shown to be partic-

ularly concentrated on certain objects in videos, making

the learned segmentation model more interpretable.

4 Experiments

4.1 Experiment setup

Datasets. We train and evaluate our method on three

widely used benchmarks for semi-supervised video ob-

ject segmentation, DAVIS16 [23], DAVIS17 [24], and

Youtube-VOS [35]. DAVIS16 contains 50 videos in total,

where 30 sequences are used for training and the others

are taken as validation. In this benchmark, each video
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only covers a single reference mask. DAVIS17 is a multi-

object extension of DAVIS16 and contains 120 video

sequences in total with at most 10 objects in a video.

The dataset is split into 60 sequences for training, 30 for

validation, and the other 30 for test. The Youtube-VOS

is larger in scale and contains more object categories.

There are a total of 3,471 video sequences for train-

ing and 474 videos for validation in this dataset with

at most 12 objects in a video, it also contains videos

where objects appear from intermediate frames. Follow-

ing the training procedure in [20,31], we construct a
hybrid training set by mixing the data from all training

sequences.

Metrics. For evaluation on DAVIS16, DAVIS17 val-

idation, and test set, we adopt the metric following

standard DAVIS evaluation protocol [24]. The Jaccard

overlap J is adopted to evaluate the mean IOU be-

tween predicted and groundtruth masks. The contour

F-score F computes the F-measurement in terms of the

contour based precision and recall rate. The final score

is obtained from the average value of J and F . The

evaluation on Youtube-VOS follows the same protocol

except that the two metrics are computed on seen and

unseen objects respectively and averaged together.

Baselines. We take three recent methods as our

base model for further analysis of our proposed cyclic

mechanism in the following experiments.

– Space Time Memory Network (STM) [20] is a widely

used pipeline for fast and accurate semi-supervised

video object segmentation, and the memory mech-

anism makes it flexible in adjusting reference sets

Xt and Yt, which is suitable as comparison to our

reference-based approach.

– Kernelized Memory Network (KMN) [27] is the ker-

nelized version of STM network, where a Gaussian
kernel is dynamically calculated before merging the

knowledge from memory into current query feature.

– Global Context Memory Network (GCM) [14] ex-

tends the STM-like structure with a global temporal

span, where the spatially global context of each ref-

erence frame is stored and dynamically updated in

the memory.

– Associate Objects with Transformer (AOT) [36] is

a more advanced and efficient video object segmen-

tation framework, where a long-short term cross

attention structure is designed to help with parallel

video object segmentation on multiple objects.

Since there is no public training code of [20,27,14], we

implement them by ourselves, and for [36], we directly

implement our cycle mechanism from the public code

from the author. For STM, in order to adapt to the

time-consuming gradient correction process, we take the

lightweight design by reducing the intermediate memory

feature dimension, resizing the input resolution for in-

ference to 240× 427, which is 1/4 of the size in original

work [20] (480× 854), and then upsampling the output

to original resolution by nearest interpolation. For KMN,

we replace the argmax operation in original paper with

soft-argmax to make sure the network is end-to-end

trainable. For AOT, we modify the one-hot encode into

soft labels to ensure the cycle loop is end-to-end dif-

ferentiable. For ease of representation, we denote the

models trained with cyclic scheme with a “-cycle” suffix.

It should be mentioned that the adopted baseline mod-
els from the original papers involved different external

static data from various segmentation datasets [17,6],

resulting in unfair and inconsistent comparisons here. To

enable fairer and more consistent comparison, for most

of our analysis, we re-train our implemented models us-

ing only the training data in DAVIS and Youtube-VOS.

Nevertheless, for more comprehensive comparison, we

still provide results of STM and AOT with the same

setting as [20], where the model is pretrained purely on

COCO [17] and predict the object mask at the resolu-

tion of (480×854), which is the most commonly adopted

experimental setting.

Implementation details. The training and infer-

ence procedures are deployed on an NVIDIA TITAN

Xp GPU. Within an epoch, for each video sequence, we

randomly sample 3 frames as the training samples – the

frame with the smallest timestamp is regarded as the

initial reference frame. Similar to [20], the maximum

temporal interval of sampling increases by 5 every 20

training epochs. We set the hyperparameters as γ = 1.0,

λ = 0.75, N = 10, K = 5, and M = 50. During training,

we adopt a bootstrapping strategy for the cross entropy

loss, where only the top 40% pixels with maximum train-

ing loss are taken into account. The ResNet series of
models [9] pretrained on ImageNet [26] are adopted as

our backbone for baseline. The network is trained with

a batch size of 4 for 240 epochs in total and is optimized

by the Adam optimizer [13] of learning rate 10−5 and

β1 = 0.9, β2 = 0.999. In both training and inference

stages, the input frames are resized to the resolution of

240× 427. The final output is upsampled to the origi-

nal resolution by nearest interpolation. For simplicity,

we directly use Xt and Ŷt to construct the cyclic ref-

erence sets. For the case of multiple objects, we adopt

the soft aggregation method in [16,20] to normalize the

probability at each pixel of output masks.

Data augmentation. We apply common augmen-

tation operations including random horizontal flipping,

additive Gaussian noise and contrast enhancement. Ad-

ditionally, we also adopt random crop strategy and fixed

affine transformation (sheer, resize, rotation) to each

training sample. We note that frames selected from the



8 Yuxi Li et al.

same video will share the same transformation param-

eters. When exploiting COCO to synthesize data, we

follow [1] to take random affine and copy-paste trick to

generate pseudo sequences.

4.2 Main results

In this section, we first report the comparison results

between our cyclic model and other methods, where our

full model is measured with configuration of different

backbone and cyclic schemes.

DAVIS. The evaluation results on DAVIS16 vali-

dation set, DAVIS17 validation and test-dev set are re-

ported in Table 1. From this table, we observe that our

model trained with cyclic loss outperforms most of the of-

fline methods and even performs better than the method

with online learning [32] on DAVIS17 benchmark. When

combined with the online gradient correction process,

our method gets further improvement. It should also

be noticeable that although standard STM-cycle do not

require additional training data other than DAVIS and

Youtube-VOS, it outperforms some other state-of-the-

art pipelines highly dependent on additional training

data [16,34,31]. In terms of the runtime speed, although

gradient correction increases the computation cost, our

method still runs at a speed comparable to other offline

methods [16] due to our efficient implementation. When

we replace the backbone network from ResNet50 to more

lightweight ResNet18, our trained model can run faster

with still competitive performance. Although there is a

performance gap between our approach that is trained

from scratch and the state-of-the-art online learning

method, our method is far more efficient and it does not

requires collecting extra data from instance segmenta-

tion tasks as training samples. It is also noticeable that

when adding COCO into training set, cyclic version of

STM can achieve state-of-the-art performance on all

benchmarks of DAVIS, obtaining consistent improve-

ment over original STM [20], which shares the same

backbone but requires more data besides COCO.

Furthermore, we also try to combine the gradient

correction process with an existing open source model of

AGSS-VOS [18]2 to test inference performance gain on

state-of-the-art method with purely gradient correction.

This appears to bring improvement on the overall seg-

mentation quality, demonstrating that cyclic consistency

is helpful even in different segmentation pipelines.

Youtube-VOS. The evaluation results on Youtube-

VOS validation set are reported in Table 2. On this

benchmark, our model also outperforms some offline

methods and their online learning counterparts [35,37].

2 https://github.com/Jia-Research-Lab/AGSS-VOS

It is also noticeable that compared with the performance

on seen objects, the one on unseen objects has improved

more using our gradient correction strategy. Further, we

observe that with ResNet-50 backbone and gradient cor-

rection technique, our final pipeline can achieve similar

segmentation accuracy and runtime speed to some state-

of-the-art methods [16] on Youtube-VOS even without

extra data for pre-training. Finally, as consistent with

the results on DAVIS series, when combined with COCO

pretraining, our STM-cycle model can achieves better

performance than other state-of-the-art models with
pretrained [20,16,34]

4.3 Ablation study

In this section, we conduct a series of experiments to

analyze the cyclic property of our trained models, with

all the results evaluated on the DAVIS16 and DAVIS17

validation set and ResNet50 as backbone network.

4.3.1 Effectiveness of each cyclic component.

We first demonstrate the effectiveness of cyclic training

and gradient correction in Table 4, where the baseline
method [20] based on STM network is re-implemented

and retrained.From this table, both components are

shown to be helpful in boosting the performance on both

DAVIS16 and DAVIS17 validation sets. In particular,

the incorporated cycle mechanism improves the contour

score F more than the overlap score J , signifying that

the proposed scheme is likely to be more useful for

fine-grained mask prediction.

4.3.2 Improvement with different reference sets.

Due to the flexibility of our baseline method in configur-

ing its reference sets during inference, we tested how our

cyclic training strategy would impact VOS performance

using different reference sets on our STM baseline. We

conduct the test under four types of configuration: (1)

Only the initial reference mask and its frame are utilized

for predicting other frames. (2) Only the prediction of

the last frame Ŷt−1 and the last frame are used. (3) Both

the initial reference and last frame prediction are uti-

lized, which is the most common configuration in other

state-of-the-art works. (4) The external memory strategy

(denoted as MEM) in [20] is used where the reference

set is dynamically updated by appending new prediction

and frames at a specific frequency of 5Hz. In the results

reported in Table 3, we observe that the cyclic training is

helpful under all configurations. It is also interesting to

see that our scheme achieves the maximum improvement

(+4.6 J&F on DAVIS17 and +1.9 J&F on DAVIS16)

https://github.com/Jia-Research-Lab/AGSS-VOS
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DAVIS17 validation
Method Extra data OL GC J (%) F(%) J&F(%) FPS

RGMP [34] X 64.8 68.6 66.7 3.6
DMM-Net [37] X 68.1 73.3 70.7 -
AGSS-VOS [16] X 63.4 69.8 66.6 10
AGSS-VOS [16] X X 64.0 70.6 67.3 2.2
FEELVOS [31] X 69.1 74.0 71.5 2

FRTM [25] - - 70.2 41.3
OnAVOS [32] X X 61.0 66.1 63.6 0.04

PReMVOS [18] X X 73.9 81.7 77.8 0.03
STM-ResNet50 [20]† X 79.7 84.4 82.0 7.9

STM-ResNet50-cycle (Ours)† X X 80.4 85.2 82.8 2.5
STM-ResNet18-cycle (Ours) 64.7 69.9 67.3 55.3
STM-ResNet18-cycle (Ours) X 65.3 70.8 68.1 13.4
STM-ResNet50-cycle (Ours) 68.7 74.7 71.7 38
STM-ResNet50-cycle (Ours) X 69.8 75.9 72.9 9.3

DAVIS17 test-dev
Method Extra data OL GC J (%) F(%) J&F(%) FPS

RVOS [30] 48.0 52.6 50.3 22.7
RGMP [34] X 51.3 54.4 52.8 2.4

AGSS-VOS [16] X 54.8 59.7 57.2 10
FEELVOS [31] X 55.2 60.5 57.8 1.8
OnAVOS [32] X X 53.4 59.6 56.9 0.03

PReMVOS [18] X X 67.5 75.7 71.6 0.02
STM-ResNet50 [20]† X 68.0 74.1 71.0 14.8

STM-ResNet50-cycle (Ours)† X X 70.6 76.4 73.5 4.1
STM-ResNet18-cycle (Ours) 53.2 58.4 55.8 44.7
STM-ResNet18-cycle (Ours) X 53.7 60.5 57.2 10.7
STM-ResNet50-cycle (Ours) 55.1 60.5 57.8 31
STM-ResNet50-cycle (Ours) X 55.4 62.8 59.1 6.9

DAVIS16 validation
Method Extra data OL GC J (%) F(%) J&F(%) FPS

Lucid Dreaming [12] 83.9 82.0 83.0 -
RGMP [34] X 81.5 82.0 81.8 7.8

AGAME [11] X 81.5 82.2 81.9 14.3
FEELVOS [31] X 81.1 82.2 81.7 -

FRTM [25] - - 78.5 41.3
OnAVOS [32] X X 86.1 84.9 85.5 0.08

PReMVOS [18] X X 84.9 88.6 86.8 0.02
STM-ResNet50 [20]† X 88.9 88.9 88.9 7.4

STM-ResNet50-cycle (Ours)† X X 89.2 90.4 89.8 2.0
STM-ResNet18-cycle (Ours) 80.4 80.3 80.4 64.5
STM-ResNet18-cycle (Ours) X 81.3 81.1 81.2 17.7
STM-ResNet50-cycle (Ours) 84.1 83.7 83.9 38.5
STM-ResNet50-cycle (Ours) X 84.1 83.8 84.0 11.5

Table 1: Comparison with state-of-the-art method on DAVIS16 and DAVIS17 set. “Extra data” indicates the
method is pretrained with extra data with mask annotations.“-” indicates unavailable results. “OL” denotes online

learning or update process. “GC” is short for gradient correction. “†” denotes the pretraining is implemented

from [1] with larger input size (480× 854) for inference.

with the configuration Xt−1 = {Xt−1},Yt−1 = {Ŷt−1},
since this case is the most vulnerable to accumulative

error propagation and hence, proper training with cyclic

loss term can effectively relieve such a problem.

4.3.3 Sensitivity analysis.

Next, we evaluate how the hyperparameters in our al-

gorithm affect the final results. In Figure 4, we show

the performance-runtime trade-off w.r.t. the correction

iteration time N . We find that the J&F score satu-

rates when N approaches 10; above which, the score

improvement is somewhat marginal but at the expense

of decreasing efficiency. Considering the trade-off be-

tween runtime and performance, we take N = 10 as

the empirically optimal iteration number for gradient

correction. Additionally, we also analyze the impact of

correction rate α as shown in Figure 7. From this figure,

we find the larger strength of correction usually results

in better performance, but the overall performance vari-
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Method Extra data OL GC JS(%) JU (%) FS(%) FU (%) G(%) FPS
RVOS [30] 63.6 45.5 67.2 51.0 56.8 24
S2S [35] 66.7 48.2 65.5 50.3 57.6 6

FRTM [25] 68.6 58.4 71.3 64.5 65.7 -
TVOS [38] 67.1 63.0 69.4 71.6 67.8 -
RGMP [34] X 59.5 - 45.2 - 53.8 7

DMM-Net [37] X 58.3 41.6 60.7 46.3 51.7 12
AGSS-VOS [16] X 71.3 65.5 75.2 73.1 71.3 12.5

S2S [35] X 71.0 55.5 70.0 61.2 64.4 0.06
OSVOS [3] X X 59.8 54.2 60.5 60.7 58.8 -

MaskTrack [22] X X 59.9 45.0 59.5 47.9 53.1 0.05
OnAVOS [32] X X 60.1 46.6 62.7 51.4 55.2 0.05
DMM-Net [37] X X 60.3 50.6 63.5 57.4 58.0 -

STM-ResNet50 [20]† X 76.1 70.8 79.6 77.5 76.0 3.9
STM-ResNet50-cycle (Ours)† X X 77.8 73.3 81.5 80.1 78.2 0.9
STM-ResNet18-cycle (Ours) 69.2 56.2 72.5 65.0 65.7 63
STM-ResNet18-cycle (Ours) X 70.4 58.2 73.9 67.2 67.5 15.2
STM-ResNet50-cycle (Ours) 71.7 61.4 75.8 70.4 69.9 43
STM-ResNet50-cycle (Ours) X 72.6 63.0 76.7 72.3 71.2 13.8

Table 2: Comparison with state-of-the-art method on Youtube-VOS validation set. The subscript S and U denote

the seen and unseen categories. G is the global mean. “-” indicates unavailable results.“OL” denotes online learning

or update process. “GC” is short for gradient correction. “†” denotes the pretraining is implemented from [1] with
larger input size (480× 854) for inference.

datasets DAVIS17 DAVIS16
Xt−1 Yt−1 baseline +cycle ∆ baseline +cycle ∆
{X1} {Y1} 65.2 67.6 +2.4 81.2 81.2 +0.0

{Xt−1} {Ŷt−1} 56.8 61.2 +4.4 75.3 77.2 +1.9

{X1, Xt−1} {Y1, Ŷt−1} 67.3 69.2 +1.9 82.3 83.8 +1.5
MEM MEM 69.7 71.7 +2.0 82.3 83.9 +1.6

Table 3: Experiments on improvement of J&F score with different reference set configuration.

Fig. 4: Performance-runtime trade-off with different

iteration size N on DAVIS17 validation.

Fig. 5: Results on DAVIS17 validation set with different

amount of training data in Youtube-VOS for STM-cycle

and baseline STM model.

ation is not sensitive to the change of correction rate

α, reflecting that our update scheme is robust and can

accommodate variations to this parameter well, conse-

quently, we set correction rate α = 180 since the overall

gain becomes saturated under this configuration.

4.3.4 Effect of Anti-noise regularization

Together with the analysis of correction rate α, we also

investigate the effect of proposed anti-noise regulariza-

tion term under different correction rate and loss weight

λ. We find that the smooth term in Equation (7) can

bring stable gains to overall segmentation quality except

when the correction rate is small. When α is larger,

the gain appears to be more obvious and finally con-
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datasets J (%) F(%) J&djkF(%)
baseline

DAVIS17
67.6 71.7 69.7

+ cyclic 68.7 74.7 71.7
+ GC 69.2 74.3 71.8
+ both 69.8 75.9 72.9
baseline

DAVIS16
82.8 81.7 82.3

+ cyclic 84.1 83.7 83.9
+ GC 83.3 82.3 82.8
+ both 84.1 83.8 84.0

Table 4: Ablation study on the effectiveness of different

component. “GC” is short for gradient correction.

Fig. 6: Qualitative comparison between predicted results

from gradient correction module with and without anti-

noise regularization on DAVIS17 test-dev. Left column:

The original query frame. Medium column: Predicted

mask from gradient correction module without anti-noise

regularization. Right column: Predicted mask from gra-

dient correction module with anti-noise regularization.

verges to a stable level of improvement. We think this

is because larger correction rates produces more precise

segmentation but also tends to result in more severe

background artifacts, which can be alleviated by the

smooth constraint. Finally, we set λ = 0.75 since we find

the overall gain is not sensitive within proper interval

of this loss weight.

In Figure 6, we further qualitatively analysis the

impact of the regularization term during gradient cor-

rection. By comparison between the output masks, we

can find we equipped with the smooth regularization,

our gradient correction can suppress some subtle noise

blocks in the background.

4.3.5 Results with Different Amount of Training Data

As discussed in Section 3.2, the cycle-consistency loss

in our method implicitly applies data augmentation

to train more generalized VOS model, thus should be

more robust to scarcity of training data, especially for

visual tasks that requires large amounts of synthesized

Fig. 7: Performance with different correction rate and

smooth term for STM-cycle. The model is trained on

the hybrid dataset of DAVIS2017 and Youtube-VOS.

And the evaluation results are reported on DAVIS2017

validation set.

data [17] for pretraining like VOS. To demonstrate this

discussion, we specifically design experiments to test

the performance when the training data is gradually de-

creased. In detail, we start from our standard benchmark
with hybrid training set of DAVIS and Youtube-VOS

(%100 selected), then we gradually decrease the avail-

able training clips in Youtube-VOS (from %100 to %60)

and evaluate the performance of trained model. The

results are depicted in Figure 5. We can observe that

when combined cyclic consistency loss, the performance
of trained STM model degrades slower than the coun-

terpart without cycle-consistency but with the same

backbone, demonstrating that the cycle consistency can

alleviate the problem of data scarcity to some extent.

4.3.6 Robustness to noise perturbations

In addition to accumulative predicted error, video object

segmentation systems are also prone to noise perturba-

tions on reference templates. In this section, we further

investigate how the gradient correction process mitigates

the effects from such noisy interference. To do this, we

utilize STM network with the MEM strategy as [20]

by dynamically appending a predicted mask and its

frame into the reference set. However, in this case, the

predicted masks to be appended are manually replaced

by a noisy version. Technically, we try to perturb the

inference process with four types of noises, of which two
are regarded as natural noises and the other two are

adversarial-type noises.

– Low-quality. We replace the predicted mask Ŷt
from baseline model with lower segmentation quality

on the same frame.
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datasets DAVIS17 DAVIS16
Noise +GC J (%) F(%) J&F(%) +GC J (%) F(%) J&F(%)

Low-quality
65.9 72.2 69.1 65.9 72.2 69.1

X 66.9 73.3 70.1 X 66.9 73.3 70.1

Box-template
63.0 66.0 64.5 63.0 66.0 64.5

X 68.7 74.9 71.8 X 68.7 74.9 71.8

Table 5: Results of models affected by natural noisy masks on DAVIS17 and DAVIS16 validation set.

setting White Box Black Box
Noise +GC J (%) F(%) J&F(%) +GC J (%) F(%) J&F(%)

FGSM [7]
43.2 48.8 46.0 39.0 46.4 42.7

X 52.7 59.4 56.0 X 51.0 59.7 55.4

MI-FGSM [5]
38.6 44.8 41.7 30.9 36.8 33.9

X 50.6 58.0 54.3 X 47.7 55.6 51.7

Table 6: Results of models affected by adversarial noise on DAVIS17 validation set.

datasets setting DAVIS17 DAVIS16
base model +cycle +GC J (%) F(%) J&F(%) J (%) F(%) J&F(%)

STM [20]
67.6 71.7 69.7 82.8 81.8 82.3

X 68.7 74.7 71.7 84.1 83.5 83.8
X X 69.8 75.9 72.9 84.1 83.8 84.0

KMN [27]
67.5 72.3 69.9 81.5 80.3 80.9

X 67.8 73.5 70.7 82.6 83.4 83.0
X X 69.1 75.3 72.2 82.8 83.7 83.3

GCM [14]
66.7 72.9 69.8 81.1 81.1 81.1

X 67.5 73.3 70.4 83.3 83.2 83.3
X X 67.6 73.7 70.7 83.6 83.6 83.6

AOT-T [36]
76.5 81.9 79.2 86.5 88.4 87.5

X 77.7 82.7 80.2 86.5 88.5 87.5
X X 77.9 83.6 80.8 86.6 88.5 87.6

Table 7: Results of cyclic mechanism with different baseline models on DAVIS17 and DAVIS16 validation sets. The

baseline results of STM, KMN and GCM are from our own implementation. The results of AOT-T are obtained

from the official public code.

– Box-template. We replace the predicted mask Ŷt
with a coarse level groundtruth mask where all pixels
in the bounding box of objects are set to be 1.

– FGSM [7]. We take the classical adversarial attack

method to generate interference noise on intermedi-

ate reference masks, where the loss term in Equa-

tion (4) on all frames in a video is maximized under

a given pixel-wise changing constraint ε ≤ 20.

– MI-FGSM [5]. We further added a harsher adver-

sarial attack method to test the robustness of our

model. The MI-FSGM method generates noise to-

wards the same objective and constraint as FSGM

but updates the reference mask according to an iter-

ative manner with momentum.

For the noise types generated by adversarial attack

– FGSM [7] and MI-FGSM [5], we follow the common

protocol in adversarial attack and defence by testing

the results under both black box and white box set-

tings. In white box setting, we take the trained STM-

ResNet50-cycle model to generate noise and the attack

itself, while in black box setting, we leverage the trained

STM-ResNet18-cycle model to generate noise and at-

tack the one with the vanilla ResNet50 backbone. For
each scheme, we conduct another experiment with gra-

dient correction on the noisy masks before appending

to the memory as the control group. The results are

reported in Table 5 and Table 6. From Table 5, we see

the gradient correction is helpful for both low-quality

and box-template reference conditions. The improve-

ment is much more obvious for the case of box-template,

which indicates that the impact of gradient correction is

greater when the intermediate reference mask is coarser

but properly covers the object area. Meanwhile, from

Table 6, we could see that although both attack methods

degrade the segmentation performance to a large extent,

but by properly utilizing the gradient correction, we can

alleviate the effect from adversarial attacks.

4.3.7 Extension to other memory-based methods.

Our cyclic mechanism is easy to implement and can be

naturally extend to other segmentation pipelines. To



Exploring the Semi-supervised Video Object Segmentation Problem from a Cyclic Perspective 13

Fig. 8: Qualitative results shows the improvement of cyclic training over the baseline in DAVIS17 validation.

Fig. 9: The visual effect of gradient correction module on DAVIS17 test-dev set

Fig. 10: Cycle-ERF of frames w.r.t. the initial reference object masks in DAVIS17 validation.
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Fig. 11: Cycle-ERF comparison on STM, GCM and KMN on DAVIS16 validation set.

demonstrate the generalization of our design, we further

extend another two famous baseline methods, KMN [27]

GCM [14] and AOT [36] to a cyclic version and mea-

sure the performance gain. Corresponding results are

reported in Table 7, we can observe that combining with

cyclic mechanism can boost the segmentation quality

for all the baseline models on both datasets. In detail,

we find the improvement of gradient correction on GCM

is the least obvious, this can be due to the global prop-

erty of GCM, where the memory squeezes the spatial

domain, and loses the fine-grain information of original
objects, which prevents the gradient from propagating

to detailed spatial location. In contrast, the gain of gra-

dient correction on KMN is most salient, since KMN

itself will highlight the focusing area in the query frame,

therefore the backward gradient related to the objects

will be preserved. This is also reflected in the cycle-ERF

analysis in section 4.4.

4.4 Qualitative analysis

Segmentation results. In Figure 8, we show some

segmentation results using the STM model trained with

and without our cycle scheme. From comparison on the

first sequences, we observe that the cyclic mechanism

suppresses the accumulative error from problematic ref-

erence masks. From the second video, we see the cyclic

model can depicts the boundary between foreground

objects more precisely, which is consistent with the quan-

titative results. Further, our method can successfully

segment some challenging small objects (caught by the

left woman’s hand). In Figure 9, we show the visual

effect from the gradient correction module, it is clear

to see that gradient correction can help update and

reconstruct the losses on some detail.

Cycle-ERF analysis. We further analyze the cycle-

ERF defined as Equation (12) on different approaches.

We take the initial mask as the objects to be predicted

and take a random intermediate frame and an empty

mask as reference. Figure 10 visualizes the cycle-ERFs

of some samples output from baseline STM and STM-

cycle model. Compared with baseline, our cyclic training

scheme helps the network concentrate more on the fore-

ground objects with stronger responses. This indicates

that our model learns more robust object-specific cor-

respondence. It is also interesting to see that for STM

network, only a small part of the objects is crucial for

reconstructing the same objects that were in the initial

frames as the receptive field focuses on the outline or

skeleton of the objects. This can be used to explain

the greater improvement of contour accuracy using our

method, and also provide cues on the extraction from

reference masks.

In Figure 11, we take the cycle-ERF as a tool to

analysis the focusing area of different baseline models,

STM [20], GCM [14] and KMN [27] on DAVIS16. By

comparison, we find STM shows overally stronger re-
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Fig. 12: Failure cases of STM-cycle on DAVIS17 test-dev.

sponse on focusing area around the foreground object.

In contrast, GCM highlight more background context

around the object, since the memorial mechanism in

this method always squeeze the context into the cache

and focus more on global relationship. On the other

hand, cycle-ERF from KMN yields response focusing

on more specific and small part of objects and less in-

tensity in background or context, this is in consistency

with the design insight behind this method, where a

dynamic gaussian kernel is applied to suppress the in-

teraction between less related areas. These comparisons

with Cycle-ERF manifest that such visualization meth-

ods can be a helpful tool to provide interpretability of

existing models.

Investigation of Failure Cases. Figure 12 shows

some failure cases of our method, although combined

with cyclic loss and gradient correction, the network can

not handle extremely narrow and small objects (e.g. the

brassie in the man’s hand in the second row), meanwhile,
as shown in the first row, our method can suffer from

cases where the specified objects are severely occluded

by obstacles in the foreground.

5 Conclusion

This paper incorporates the cycle mechanism with semi-

supervised video segmentation network to mitigate the

error propagation problem in current approaches. When

combined with an efficient and flexible baseline, the

proposed cyclic loss and gradient correction module

achieve competitive performance-runtime trade-off on

three challenging benchmarks. Detailed analysis are

further conducted to demonstrate the generality and

robustness of such cyclic design. Further explanations

can be drawn from a new perspective of cycle-ERF.
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