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Abstract Efficiently modeling spatial-temporal information
in videos is crucial for action recognition. To achieve this
goal, state-of-the-art methods typically employ the convo-
lution operator and the dense interaction modules such as
non-local blocks. However, these methods cannot accurately
fit the diverse events in videos. On the one hand, the adopted
convolutions are with fixed scales, thus struggling with events
of various scales. On the other hand, the dense interaction
modeling paradigm only achieves sub-optimal performance
as action-irrelevant parts bring additional noises for the final
prediction. In this paper, we propose a unified action recog-
nition framework to investigate the dynamic nature of video
content by introducing the following designs. First, when
extracting local cues, we generate the spatial-temporal ker-
nels of dynamic-scale to adaptively fit the diverse events.
Second, to accurately aggregate these cues into a global video
representation, we propose to mine the interactions only among
a few selected foreground objects by a Transformer, which
yields a sparse paradigm. We call the proposed framework
as Event Adaptive Network (EAN) because both key designs
are adaptive to the input video content. To exploit the short-
term motions within local segments, we propose a novel and
efficient Latent Motion Code (LMC) module, further im-
proving the performance of the framework. Extensive exper-
iments on several large-scale video datasets, e.g., Something-
to-Something V1&V2, Kinetics, and Diving48, verify that
our models achieve state-of-the-art or competitive perfor-
mances at low FLOPs. Codes are available at: https:
//github.com/tianyuan168326/EAN-Pytorch.

Y. Tian, G. Zhai, and Z. Gao are with the Institute of
Image Communication and Network Engineering, Shang-
hai Jiao Tong University, Shanghai, China. E-mail:
{ee tianyuan,zhaiguangtao,zhiyong.gao}@sjtu.edu.cn. Y. Yan is
with the AI Institute, Shanghai Jiao Tong University, Shanghai,
China. E-mail: yanyichao@sjtu.edu.cn. G. Guo is with Baidu. E-mail:
guoguodong01@baidu.com. � denotes the corresponding author.

(a) Pushing something so that it falls off the table

(b) Moving something towards the camera

Fig. 1: Two examples from the Something-Something
dataset [21]. The objects (i.e., can, box, and hand) and events
have diverse spatial-temporal scales in different videos.
Therefore, convolution kernels with adaptive scales can bet-
ter fit them. Moreover, the interactions among them are nat-
urally sparse, which can be accurately and efficiently mod-
eled by a dedicated sparse model. The objects, object inter-
actions, and key events are indicated by the colored boxes,
pink dotted arrows, and gray dotted arrows, respectively.

Keywords Action recognition · Dynamic neural networks ·
Vision Transformers · Motion representation

1 Introduction

Video action recognition is an open challenge in computer
vision, drawing increasing attention in both research and in-
dustrial communities, because of its fundamental role for
tremendous applications, e.g., human behavior monitoring [9]
[7] [51], video surveillance [17], anomaly events analysis [2]
[35], to name a few. It goes beyond the recognition per-
formed on single images and depends on comprehensively
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modeling both (1) the local spatial-temporal cues and (2) the
global object interactions in videos.

Many previous methods [60] [32] [70] [53] [6] [54] [14]
achieve promising performance by only modeling the lo-
cal spatial-temporal cues. However, these networks are typ-
ically built with convolutions, whose scales are usually em-
pirically determined and kept fixed for different input videos.
Indeed, by designing multi-scale networks, such as in ResNet
[23], Inception networks [48], and Res2Net [18], the models
are equipped with convolution kernels of diverse scales. But,
these architectures are still static, not adapting to the various
events within videos. We illustrate this challenge in Fig. 1.
There naturally arises a question - can we design a dynamic
architecture that adaptively fits the events in each video?

Additionally, recognizing the actions in videos needs to
reason about the interactions among the objects. Although
the local interactions can be well captured by the convolu-
tions, there are always some non-local interactions that can
only be observed from a global view. For example, in Fig. 1
(a), the key interaction is “the can is moved towards the
ground across several frames”. Modeling interactions like
this requires global reasoning capability, which is beyond
the function of convolution. To model the global informa-
tion, dense interaction models [61] [4] [13] calculate the
paired correlations at all positions, which inevitably intro-
duce the background noise signals. In contrast, the sparse
models [62] [39] are more accurate because they only target
the action-relevant regions. Nevertheless, the inefficiency and
the error accumulation caused by their embedded object de-
tector are nontrivial to resolve. Moreover, the utilized heavy
detector hinders the end-to-end training of the whole sys-
tem. Therefore, there arises another question - can we model
the global object interactions sparsely without relying on a
heavy object detector?

In this paper, we answer both questions with yes, by
carefully designing several spatial-temporal modeling mod-
ules. First, we propose an Event Adaptive Block (EAB) to
enhance the convolution operators with scale-adaptive mod-
eling capability. Particularly, this block perceives the scale
information of the key events within the input video, and
then dynamically synthesizes the spatial-temporal kernel. Since
the scale of the kernel is not fixed, it is unfeasible to rep-
resent it with a single trainable tensor. Instead, we refor-
mulate it as a soft fusion of several fixed-scale spatial- or
temporal-convolution kernels. Since the synthesized kernel
is customized to the input video, the local event cues within
the video are better modeled. Moreover, the prevalent archi-
tectures, e.g., R(2+1)D CNNs [54] and Inception-Nets [48]
can be viewed as a special case of the proposed EAB. Sec-
ond, we propose a Sparse Object Interaction Transformer
(SOI-Tr) to build sparse interaction graphs by adaptively se-
lecting the most important objects involved in the actions.
Concretely, given the deep video features, an embedded ob-

ject localization network first outputs several saliency maps,
each of which corresponds to an object. Then, a shallow
Transformer [55] is used to model the long-range interac-
tions among this small number of objects. Thanks to the
feature-level detection scheme, this module gets rid of the
heavy detector and is end-to-end trainable, which is more
effective and efficient than the previous models [62] [39].

In addition to the two spatial-temporal modeling mod-
ules above, we further propose a novel Latent Motion Code
(LMC) module to efficiently exploit the short-term motion
information within local video segments. Specifically, the
low-level motion cues within each segment, i.e., RGB dif-
ferences, are first encoded into a compact latent space. Then,
the high-order motion information is reasoned in this space.
The motion information further facilitates the discriminating
capability of our method for some hard action cases.

We incorporate the proposed three modules into a uni-
fied ConvNet called Event Adaptive Network (EAN). By
following a series of efficient network designs, the proposed
EAN is highly efficient. The whole framework can be jointly
optimized following the sparse sampling strategy proposed
in TSN [60]. We emphasize our contributions as follows:

– A novel Event Adaptive Block (EAB) is proposed to
generate the video-adaptive spatial-temporal convolution
kernel of dynamic scale, demonstrating superior local
spatial-temporal modeling capability. Moreover, our ap-
proach is the very first work to generate dynamic spatial-
temporal convolution kernels for video data.

– A Sparse Object Interaction Transformer (SOI-Tr) is de-
veloped to accurately reason the global interactions among
the sparse foreground objects, without relying on bound-
ing box annotations or external object detectors.

– A novel and efficient Latent Motion Code (LMC) mod-
ule is devised to capture the short-term motion informa-
tion within local video segments in a latent space.

– By incorporating the proposed EAB, SOI-Tr, and LMC
into the off-the-shelf 2D CNNs, i.e., 2D ResNet, we build
up a strong yet efficient video action recognition frame-
work called Event Adaptive Network (EAN). Our mod-
els achieve state-of-the-art or competitive results on sev-
eral large-scale video datasets, i.e., Something-Something
V1&V2 [21], Kinetics [6], and Diving48 [31].

2 Related work

Deep Action Recognition. Two-stream CNNs [43] [16] [15]
are the earliest works on deep action recognition. Later, many
methods [60] [70] [32] [34] [33] [36] [30] [58] [63] [28]
[50] enhance the 2D CNNs with various temporal modules
and achieve promising results. To simultaneously learn the
temporal dynamics along with the spatial representations in
videos, 3D networks, e.g., C3D network [53], I3D [6], 3D-
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Fig. 2: Event Adaptive Network. Our framework aims to simultaneously model local spatial-temporal information and
global object interactions by incorporating two novel modules, i.e., Event Adaptive Block (EAB) and Sparse Object Interac-
tion Transformer (SOI-Tr), into the 2D ResNet backbone CNN. The EAB first perceives the scale of local events and then
dynamically synthesizes video-adaptive spatial-temporal kernels from spatial (S) or temporal (T) kernels of fixed scales.
The SOI-Tr specializes in global interactions among sparse foreground objects by leveraging a Transformer. Besides, a la-
tent motion code (LMC) module is adopted to efficiently exploit short-term motion information within local segments. Our
proposed framework is an end-to-end hybrid model that uses both convolution and self-attention.

ResNet [22] [49], R(2+1)D CNNs [54], and Slowfast net-
works [14], have also recently gained much attention. Our
framework is built upon the 2D CNNs due to their better
efficiency.

Multi-scale CNNs. Many modern image CNN architectures,
e.g., Inception networks [47] [48] [46], Res2Net [18], in-
corporate the multi-scale design for obtaining better repre-
sentations. For the video tasks, Zhang et al. [67] proposed
the various-timescale inference pooling to observe videos
across various timescales. TEA [30] extends the Res2Net
block with temporal modeling capability. However, all these
architectures are static, while our method is dynamic and
adaptive to the input video.

Dynamic Convolution. Jia et al. [25] first proposed the con-
cept of dynamic filter. Latter, several works [65] [8] in image
tasks attempt to dynamically generate aggregation weights
and use them to combine a set of convolutional kernels.
More recently, TANet [34] generalizes this idea to temporal
modeling for the video recognition task. However, the gen-
erated temporal kernel is shared across all channels, demon-
strating limited modeling capability and performance. In con-
trast, our method generates the full spatial-temporal kernel,
whose parameters are specified for each channel.

Object Interaction models. Ma et al. [37] employed the
LSTM to build the object-object interaction graph. Wang et
al. [62] utilized the Graph Convolutional Networks (GCNs)
to perform object relationship reasoning. Materzynska et
al. [39] proposed a sparse semantically grounded subject-
object graph representation. All these methods rely on an
object detector or external bounding box annotations to de-
termine the regions of the objects. Without leveraging any
explicit object region information, Non-local Neural Net-

works [61] try to model every pairwise interaction densely
in the feature space.

Vision Transformer. Recently, many works [12] [52] [4]
[13] [20] [1] [69] [5] [10] apply the Transformer architec-
ture [55] to image/video tasks by unfolding the visual sig-
nal or its feature map to a sequence of tokens. Although
their global modeling capability is inherently superior to the
convolution-based methods, these models are computationally-
expensive due to the dense self-attention mechanism. Simi-
lar to us, Girdhar et al. [19] and Plizzari et al. [40] also lever-
age a lightweight Transformer architecture to model the in-
teractions among the selected key regions of the input video.
However, they either rely on an object region proposal net-
work (RPN) to produce dense proposal regions or an exter-
nal computationally-heavy keypoint extractor to locate the
human keypoints. In contrast, our object representation is
sparse and is produced by a lightweight three-layer CNN.

Short-term Motion Representation. Previous works of two-
stream action recognition frameworks [43] [16] use optical
flow maps as a complement to RGB inputs. Both conven-
tional or CNN-based optical flow estimation methods [66]
[24] [41] [45] can be adopted in this framework. Recent
works [67] [58] propose several lightweight modules to pro-
duce task-specific short-term motion representations, which
can be jointly optimized with the action recognition net-
work. For example, PAN [67] proposes to use the differ-
ence of the low-level features between the adjacent frames
as a novel motion cue named Persistence of Appearance
(PA). More recently, TDN [58] uses a short-term module
to map the RGB difference motion signals into compact fea-
tures and fuse the features with that produced by the back-
bone network. In contrast, our proposed latent motion code
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(LMC) module exploits high-order motion information in a
latent space, which is more effective and also efficient.

3 Approach

In this work, we propose a novel video action recognition
framework called Event Adaptive Network (EAN), as shown
in Fig. 2. The network is built by inserting several Event
Adaptive Blocks (EABs) and a Sparse Object Interaction
Transformer (SOI-Tr) into different stages of the 2D ResNet
backbone CNN. Moreover, a Latent Motion Code (LMC)
module is adopted to exploit the short-term motion infor-
mation within local video segments. All components in our
framework are differentiable and the proposed EAN is end-
to-end trainable.

3.1 Event Adaptive Block

Event Adaptive Block (EAB) aims to generate the spatial-
temporal kernel to adaptively model the local cues within
the input video, as shown in Fig. 3. We start from an ap-
proximated formulation of the optimal kernel for the video,
and then implement the formulation as an efficient block.

An approximated formulation for the optimal ker-
nel. Formally, given an input video feature X l with channel
numberC, which is the output of the l-th (l ∈ [1, 4]) stage of
the backbone CNN. We first assume that there exists an op-
timal spatial-temporal kernel F̂ that accurately fits the key
elements (i.e., objects and events) of the video. This kernel
transforms the inputX l into an output tensor Y l of the same
shape by convolution:

Y l = X l ∗ F̂ . (1)

Both the scale and the parameters of the F̂ can adapt to
videos with different contents. Because the accurate shape
of F̂ is unknown, we cannot easily implement it as a train-
able fixed-scale convolution kernel. Instead, we propose to
solve the surrogate problem, i.e., approximating the produced
Y l. We achieve this by leveraging a group of fixed-scale spa-
tial or temporal convolutions:

Y l = ∪Gi=1{M ⊗ ∪Gj=1X
l
j ∗ F (2j−1)

s }i ∗ F (2i−1)
t , (2)

where F (2j−1)
s and F (2i−1)

t represent the spatial convolution
with kernel size (2j−1)×(2j−1) and the temporal convolu-
tion with kernel size 2i−1, respectively. Each convolution is
performed on a group of features for reducing the computa-
tion cost. G denotes the group number, ∪ denotes the chan-
nel concatenating operation, and X l

j = X l[j · c : (j+1) · c],
where c = C/G. ⊗ denotes the channel-wise broadcasting
matrix multiplication operation. M denotes the fusion ma-
trix that relates the spatial and temporal convolutions, and

Fig. 3: (a) EAB of maximum receptive filed size 5×5×5.
(b) A zoom-in of ESP-Net. “S:3×3, d=2” represents a 2D
spatial convolution with kernel size 3 and dilation size 2.
“T” indicates a 1D temporal convolution. “Max:3” denotes
the 3D max-pooling operator with kernel size 3. “Avg”, ⊕
and ⊗ denote the average pooling, the element-wise addi-
tion, and the broadcasting channel-only matrix multiplica-
tion, respectively. “FC” denotes a fully connected layer.

is estimated by the Event Scale Perceiving Network (ESP-
Net):

M = ESP-Net(X l),M ∈ RC×C . (3)

As formulated in Eq. (2), M dynamically gates the spa-
tial information flowed into each temporal convolution. By
choosing different M , we can mimic the previous hand-
crafted video architectures. For example, by only activating
the matrix elements connecting the spatial and temporal ker-
nels with the same size, the proposed formulation degener-
ates to the (2+1)D convolutions. Moreover, the multi-scale
spatial-only or temporal-only convolutions are also the spe-
cial cases of it.

Event Scale Perceiving Network (ESP-Net). It is well
known that the scale information is embodied in the spatial-
temporal context, which encodes the rich semantics w.r.t the
shapes of objects and the dynamics of events. Thus, ESP-Net
is implemented as a lightweight 3D network with a small
channel number but a large receptive field, as shown in Fig. 3
(b). Specifically, a 1×1×1 3D convolution layer is first adopted
to reduce feature channels of the input tensorX l by 16 times.
Then, the video context features are extracted with two 3D
convolutions with kernel size 5 × 5 × 5 and stride size 2 ×
2 × 2. Subsequently, the average pooling operation is uti-
lized to only reserve the channel dimension of the tensor,
and globally aggregate the event scale information of the in-
put video. Finally, a linear transformation layer followed by
a reshaping operation is utilized to produce M .

Implementation of EAB. We wrap the above procedure
into an Event Adaptive Block (EAB). This block is defined
as: Zl = Y l +X l, where Y l is given in Eq. (2) and “+X l”
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denotes a residual connection [23]. The residual connection
allows us to insert the proposed block into any pre-trained
model such as ResNet, without breaking its initial behavior
(e.g., when the weights of the last Conv layer in EAB are
initialized as zeros). An example of EAB with maximum
receptive field size 5× 5× 5 is illustrated in Fig. 3 (a). Bot-
tleneck design is introduced for reducing the computation
complexity, i.e., we first reduce the feature channel num-
ber by four times through 1×1×1 convolutions. The spa-
tial convolutions are followed by batch normalization (BN)
and ReLU non-linearity. We also introduce a max-pooling
branch as a complement for convolution. To further reduce
the parameter and the computational complexity, we replace
the convolution of large kernel size with dilated convolution.

Further discussion with dynamic convolution. Dynamic
Convolution [8] proposes to decouple the dynamic convolu-
tion as the attentions over several static convolutions. Nev-
ertheless, our method is dedicated to video data while they
are only for image data. In addition to that, there are several
other significant differences between our method and them.
First, our method is not merely context-adaptive but also
scale-adaptive. More concretely, during the kernel genera-
tion procedure, dynamic convolution uses a global average
pooling (GAP) operation to extract the global context infor-
mation as the first step. In contrast, we reserve the additional
spatial-temporal dimensions and utilize the 3D convolutions
to extract the scale information of the objects and events.
Second, the convolutions adopted in our method are with
various kernel sizes to adapt to the events of various scales,
while that in dynamic convolution are with the same kernel
size. Third, the element of M in our method is specified for
each channel, while the attention weight of dynamic convo-
lution is shared across all channels of the convolution.

3.2 Sparse Object Interaction Transformer

The proposed EAB only captures the local information of
the video, lacking the global modeling capability. Therefore,
we propose a Sparse Object Interaction Transformer (SOI-
Tr) to aggregate the local action cues into a global repre-
sentation, as shown in Fig. 4. To make the modeling pro-
cedure more accurate for the specific input video, we only
mine the interactions among the foreground objects in each
frame, which are localized on the fly in the feature space.

Given the output feature of the 5-th stage of the back-
bone CNN X5 ∈ RC×T×W×H , where C denotes the chan-
nel number, T denotes the temporal length,W×H represent
the spatial scales, we model SOI-Tr as follows:

(1) Localizing the foreground objects. The location of
each object is represented as a two-dimensional saliency map,
whose spatial scale is equivalent to that of X5, i.e., W ×H .
We use a small fully convolutional network (FCN) termed

Saliency-Net to regress the object saliency maps in parallel:

O = Saliency-Net(X5), O ∈ RN×T×W×H , (4)

where N denotes the maximum number of the foreground
objects in one frame. We empirically set N = 4 as most
actions only involve less than four objects.

Fig. 4: The architecture of the proposed Sparse Object Inter-
action Transformer (SOI-Tr). O(2,t) represents the saliency
map for the second object in the t-th frame. Et denotes the
positional embedding. We illustrate the feature map as the
original RGB frame for better intuitive understanding.

(2) Pooling the object features. We first denote the saliency
map for the n-th object in the t-th frame asO(n,t) ∈ RW×H .
Then, the feature representation of the object is produced by
spatially weighting the input video feature with the saliency
map:

F(n,t) = SSUM((Et +X5
t )�O(n,t)), F(n,t) ∈ RC , (5)

where � denotes the broadcasting element-wise multiplica-
tion, SSUM denotes the summation across spatial dimen-
sions. Et denotes a learnable spatially positional embedding
with the same shape as X5

t ∈ RC×W×H .
(3) Modeling the object interactions. With the object-

level features, we model the global interactions among them
using a Transformer:

F ′ = Transformer(F ), F ′ ∈ RN×T×C . (6)

The produced F ′ is with the same shape as F .
(4) Enhancing the global video representation. Finally,

we perform average-pooling on the original video features
and the interaction features, yielding the global video repre-
sentationX ′. It should be mentioned that the SOI-Tr module
also adopts the bottleneck designing with a channel com-
pressing factor of four.

Saliency-Net. This network is implemented as a light-
weight four-layer CNN followed by a spatial Softmax layer,
where the first layer reduces the the input channel number by
a factor of eight. The second layer is a 3D convolution with
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Fig. 5: (a) EANRGB model only takes the sparsely sampled clip as the input. (b) EANRGB+LMC model takes both the densely
sampled clip and the sparse clip as the input. (c) Zooming-in of the Latent Motion Code (LMC) module, which transforms a
local video segment St to a compact motion feature mt.

kernel size 3×1×1, which detects the moving objects with
obvious motions. The third layer is a 2D convolution with a
larger spatial kernel size 5×5, which localizes objects more
accurately by considering the context information.

Transformer. The transformer architecture used in our
framework is built by stacking two residual blocks, where
each block includes a multi-head QKV self-attention mod-
ule. Different from the vanilla Transformer, we mainly re-
move the classification token and replace the Layer Normal-
ization with Batch Normalization, following the practices
proposed in [44].

3.3 Latent Motion Code Module

The proposed EAB and SOI-Tr modules can already extract
the action cues from the input video clip effectively. We in-
sert several EABs and a SOI-Tr into the 2D ResNet back-
bone, building the EANRGB model, as shown in Fig. 5 (a).
EANRGB already recognizes the actions from the sparsely
sampled video clip effectively. Nevertheless, some subtle
action cues are inevitably lost during the sampling proce-
dure. To alleviate this issue, we sample the video clip more
densely, and introduce a novel Latent Motion Code (LMC)
module to efficiently mine the motion cues within the local
segments of this dense clip, as shown in Fig. 5 (c). When
equipping EANRGB with the LMC module, we build an im-
proved EANRGB+LMC model, as shown in Fig. 5 (b). Al-
though the EANRGB+LMC takes more frames as input, it is
also with high efficiency, due to the adopted latent motion
modeling scheme and early feature fusion strategy.

Frame Sampling Strategy. Following the previous works
[59] [67] [58], we uniformly divide the original long video
into several groups and then select a segment from each
group. Specifically, the input video is first divided into N
groups with equal length. N is 8 or 16 for different compu-
tational budgets. During the training procedure, five adjacent
frames are randomly chosen from each group as a 5-frame
segment. The N segments form a dense clip {St}Nt=1. The
first frames of each segment form a sparse clip {St[1]}Nt=1.

Latent Motion Code Module (LMC). This module aims
to transform the short-term motion information within each
local segment into a single compact motion feature, as shown
in Fig. 5 (c). Given an input segment St, we model the mo-
tion information within it as follows:

(1) Calculating RGB difference maps. We obtain the low-
level motion cue, i.e., RGB difference map, by subtracting
every two consecutive frames:

dt[i] = St[i] − St[i−1], dt[i] ∈ R3×224×224, i ∈ [2, 5]. (7)

(2) Encoding motion from RGB to latent space. Due to
the high redundancy between the consecutive frames, the
produced difference map is naturally sparse and contains
many near-zero values. To simultaneously improve the com-
pactness of the signal and also filter out the task-unrelated
motion information, we use a learnable encoder to trans-
form it into a high-dimensional latent space. Specifically,
we divide dt[i] into 7 × 7 = 49 patches, where each patch
is of shape 3 × 32 × 32. Then, we compress these three-
dimensional patches into 128-element latent vectors, and the
vectors form a latent map of size 7× 7:

vt[i] = He(dt[i]), vt[i] ∈ R128×7×7, (8)

where the encoder He is implemented as a linear layer that
is shared by all patches. The input and output dimensions of
the layer are 3× 32× 32 = 3072 and 128, respectively.

(3) Modeling high-order motion in latent space. The la-
tent map is with low resolution and thus can be efficiently
processed by 3D convolutions:

{ct[i]}5t=2 = Hm({vt[i]}5t=2), ct[i] ∈ R128×7×7, (9)

where Hm is implemented as two stacking 3D convolutions
with kernel size 3 and group size 16. We call the produced
ct[i] as latent motion code (LMC) because it captures the
high-order motion information in the latent space.

(4) Decoding motion from latent to feature space. Through
another linear transformation, LMCs can be decoded into



EAN: Event Adaptive Network for Enhanced Action Recognition 7

the feature space. Following TDN [58], we align the di-
mensions of the decoded features with the features from the
Conv1 stage. Concretely, we decode the vector in each spa-
tial position of LMC into a feature patch of size 16× 8× 8,
and these 7× 7 patches form a motion feature map of shape
16× 56× 56:

mt[i] = Hd(ct[i]),mt[i] ∈ R16×56×56, (10)

where the decoder Hd is implemented as a linear layer with
the input dimension of 128 and the output dimension of 16×
8 × 8, respectively. Finally, the motion feature for segment
St is constructed by stacking the motion feature maps along
the channel dimension:

mt = [mt[2];mt[3];mt[4];mt[5]],mt ∈ R64×56×56. (11)

EANRGB+LMC architecture. As shown in Fig. 5 (b), for
each segment St, we add the motion feature mt produced
by the LMC module to the Conv1 feature of the first frame
St[1]:

ft = mt + Conv1(St[1]). (12)

Then, the fused features of each segment are fed to the re-
mained stages of EAN for predicting the action category
score:

action = Stage2-5({ft}N1 ), (13)

where Conv1 and Stage2-5 are indicated in Fig. 2.

4 Experiments

Datasets. We evaluate our method on several large-scale
video datasets with different properties, requiring our mod-
els to understand different aspects of action recognition task.

Something-Something includes V1 [21] and V2 [38] ver-
sions, which are two large-scale crowd-sourcing video datasets
for action recognition. There are about 110k (V1) and 220k
(V2) videos covering 174 fine-grained action categories with
diverse objects and scenes, focusing on humans performing
pre-defined basic actions. In this dataset, the actions are per-
formed with different objects so that models are required
to understand the basic actions instead of recognizing the
appearance of the objects or the background scenes. More-
over, the spatial and the temporal scales of the objects and
the events vary hugely across different videos, as shown in
Fig. 1, which is suitable for verifying the flexible spatial-
temporal modeling ability of the proposed method.

Kinetics [6] is a challenging human action recognition
dataset, which contains 400 and 600 human action classes.
This dataset includes human-object interactions such as play-
ing instruments, as well as human-human interactions such
as shaking hands and hugging. Compared to the temporal

reasoning required by the actions in Something-Something,
the actions in this dataset heavily rely on the appearance of
the objects. We evaluate our models on the trimmed version
to evaluate its capacity in modeling the appearances and the
interaction among objects. The experiments are conducted
on the validation set of Kinetics-400 [6] because there are
many well-known baseline methods.

Diving48 [31] includes more than 18K video clips for 48
unambiguous diving classes. This proves to be a challenging
task for modern action recognition systems as dives include
three stages (takeoff, flight, entry) and thus require mod-
eling of long-term temporal dynamics. This requires both
multi-scale temporal modeling and the perceiving of long-
range dependencies. Therefore, we conduct experiments on
this dataset to verify the multi-scale spatial-temporal mod-
eling ability of our method. We report the accuracy on the
first version of the official validation split, which has been
adopted by several previous methods.1

Implementation Detail We implement our model in Py-
torch, and we adopt ResNet50 [23] pretrained on ImageNet [11]
as the backbone. Following previous works [29] [30], we
also insert temporal convolutions with kernel size 3 and the
motion excitation (ME) module proposed in [30] before each
3×3 convolutions of bottleneck layers of the original ResNet50,
aiming to enhance its basic temporal modeling ability. We
also incorporate these changes into all baselines in the abla-
tion study for a fair comparison. The parameters within the
EABs and SOI-Tr are randomly initialized. For the spatial
dimension of the sampled clips, the short-side of the frames
are resized to 256 and then cropped to 224 × 224. We per-
form random cropping and flipping as data augmentation
during training. It’s worth mentioning that we do not per-
form horizontal flipping on the moving direction related ac-
tion classes such as “moving something from left to right”.
We train the network with a batch size of 64 and optimize it
using SGD with an initial learning rate of 0.01 for 40 epochs,
and decay it by a factor of 10 for every 10 epochs. The to-
tal training epochs are about 70. The dropout ratio is set to
0.5. The weight decay is set to 5e−4 and 1e−4 for Some-
thing/Diving48 and Kinetics-400, respectively.2

4.1 Comparison with State-of-the-Arts

Something V1 and V2. We first compare our method with
the other state-of-the-art approaches on Something V1 and
Something V2 datasets, as shown in Tab. 1. The previous
approaches are divided into four groups: 3D CNNs, object
interaction modeling enhanced 3D CNNs, 2D CNNs, and
2D CNNs enhanced with short-term motion representation.

Our method outperforms all methods built with 3D con-
volutions and meanwhile achieves higher efficiency. For ex-

1 http://www.svcl.ucsd.edu/projects/resound/Diving48 {train/test}.json
2 We adopt the same hyper-parameter settings as the official code-

base of TDN for a fair comparison.

https://github.com/MCG-NJU/TDN
https://github.com/MCG-NJU/TDN
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Table 1: Comparison to state-of-the-arts on Something-Something V1&V2 datasets. Following TDN [58], we adopt the 1-
clip and center-crop inference scheme where only a center crop of 224×224 from a single clip is used for evaluation. 8F and
16F indicate the sampling segment number of the input video is 8 and 16, respectively. The result of EANEn(RGB) is produced
by averaging the predicted action scores from the EAN8F(RGB) and EAN16F(RGB) models, which follows TSM [32]. −
indicates the paper didn’t provide the results.

Method Backbone Pre-train Frames GFLOPs Something V1 Something V2
Top1 (%) Top5 (%) Top1 (%) Top5 (%)

3D CNNs:
I3D [6] 3D-ResNet50 Kinetics 32×2 306 41.6 72.2 - -

Non-local I3D [61] 3D-ResNet50 Kinetics 32×2 336 44.4 76.0 - -
ECO(En) [71] BNInc+3D-ResNet18 Kinetics 92 267 46.4 - - -
S3D-G [64] InceptionV1 ImageNet 64 71 48.2 78.7 - -

3D CNNs + Object interaction:
GCN + Non-local [62] 3D-ResNet50 Kinetics 32×2 606 46.1 76.8 - -
I3D + STIN + OIE [39] I3D Kinetics 32 154 - - 60.2 84.4

2D CNNs:
TSN [59] BN-Inception ImageNet 8 16 19.5 - 33.4 -

MultiScale TRN [70] BN-Inception ImageNet 8 16 34.4 63.2 48.8 77.6
TSM8F [32] ResNet-50 Kinetics 8 33 45.6 74.2 58.8 85.4
TSM16F [32] ResNet-50 Kinetics 16 65 47.2 77.1 63.4 88.5
TANet8F [34] ResNet-50 ImageNet 8 33 46.5 75.8 60.5 86.2
TANet16F [34] ResNet-50 ImageNet 16 66 47.6 77.7 62.5 87.6
TANetEn [34] ResNet-50 ImageNet 8+16 99 50.6 79.3 - -
TEINet8F [33] ResNet-50 ImageNet 8 33 47.4 - 61.3 -
TEINet16F [33] ResNet-50 ImageNet 16 66 49.9 - 62.1 -
TEINetEn [33] ResNet-50 ImageNet 8+16 99 52.5 - 65.5 89.8

STM [26] ResNet-50 ImageNet 8×30 990 49.2 79.3 62.3 88.8
STM [26] ResNet-50 ImageNet 16×30 2010 50.7 80.4 64.2 89.8

GST8F [36] ResNet-50 ImageNet 8 29 47.0 76.1 - -
GST16F [36] ResNet-50 ImageNet 16 59 48.6 77.9 62.6 87.9
TEA8F [30] ResNet-50 ImageNet 8 35 48.9 78.1 - -
TEA16F [30] ResNet-50 ImageNet 16 70 51.9 80.3 - -

TEA [30] ResNet-50 ImageNet 16×30 2100 52.3 81.9 65.1 89.9
EAN8F(RGB)(Ours) ResNet-50 ImageNet 8 36 51.9 79.5 63.5 88.2
EAN16F(RGB)(Ours) ResNet-50 ImageNet 16 72 53.4 81.4 64.6 89.1
EANEn(RGB)(Ours) ResNet-50 ImageNet 8+16 108 55.8 83.1 66.6 89.9

2D CNNs + Short-term motion:
TRNRGB+Flow [70] BN-Inception ImageNet 8×7 - 42.0 - 55.5 83.1
TSMRGB+Flow [32] ResNet-50 ImageNet 16×7 - 52.6 81.9 66.0 90.5

PAN8F(RGB+PAN) [67] ResNet-50 ImageNet 8×5 68 50.5 79.2 63.8 88.6
PAN [67] ResNet-101 ImageNet (8×5)×2 503 55.3 82.8 66.5 90.6

TDN8F(RGB+SDM) [58] ResNet-50 ImageNet 8×5 36 52.3 80.6 64.0 88.8
TDN16F(RGB+SDM) [58] ResNet-50 ImageNet 16×5 72 53.9 82.1 65.3 89.5
TDNEn(RGB+SDM) [58] ResNet-50 ImageNet (8+16)×5 108 55.1 82.9 67.0 90.3

EAN8F(RGB+LMC)(Ours) ResNet-50 ImageNet 8×5 37 53.4 81.1 65.2 89.4
EAN16F(RGB+LMC)(Ours) ResNet-50 ImageNet 16×5 74 54.7 82.3 66.6 90.3
EANEn(RGB+LMC)(Ours) ResNet-50 ImageNet (8+16)×5 111 57.2 83.9 68.8 91.4

ample, compared with Non-local I3D [61], our EAN8F(RGB+LMC)

model achieves 8.8% higher Top1 accuracy (44.4% vs. 53.2%
on Something V1) with only ∼ 11% computational cost.

We also compare our method with the two methods [39]
[62] that first detect the objects of the input frames in the
RGB space and then model the object interactions. Although
we do not use the pretrained object detector or extra object
bounding box annotations to get the proposal regions, our
method still significantly outperforms them. Specifically, our
improvements over GCN + Non-local [62] and I3D + STIN
+ OIE [39] are 11.1% (on Something V1) and 8.6% (on
Something V2), respectively, in terms of the Top1 recogni-

tion accuracy. This proves the superiority of the end-to-end
object detection scheme and the Transformer architecture
adopted in our method.

As for the 2D CNN-based methods, we compare our
EANRGB architecture with them for a fair comparison, where
only one frame is sampled from each segment. Our mod-
els achieve the best performance under all settings of dif-
ferent input frame numbers. The performances of TSN and
TRN are relatively inferior to other methods because both
the two methods only model the temporal information upon
the highest-level feature maps from the backbone CNN. TEA
is superior to all other 2D CNNs because it explores multi-
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Table 2: Comparison to state-of-the-arts on Kinetics-400 dataset. Following TDN [58], we adopt the 10-clip and 3-crop
inference scheme where three crops of 256×256 frames and 10 clips are used for testing. Therefore, the computational cost
of the same model here is 30× heavier than that on Something datasets. − indicates the paper didn’t provide the results.

Method Backbone Pre-train Frames GFLOPs Top1 (%) Top5 (%)
ARTNet [57] ResNet-18 ImageNet 16×250 23.5×250 70.7 89.3

I3D [6] Inception V1 ImageNet 64×N/A 108×N/A 72.1 90.3
I3D [6] Inception V1 None 64×N/A 108×N/A 67.5 87.2

I3D+NL [61] 3D-ResNet-101 ImageNet 32×60 359×60 77.7 93.3
ECO(En) [71] BNInc&3D-ResNet-18 None 92 267 70.0 -
SlowOnly [14] 3D-ResNet-50 None 8×30 41.9×30 74.8 91.6
SlowFast [14] 3D-ResNet-50 None (4+32)×30 36.1×30 75.6 92.1

SlowFast+NL [14] 3D-ResNet-101 None (16+64)×30 234×30 79.8 93.9
TSN [59] BN-Inception ImageNet 25×10 53×10 69.1 88.7
TSN [59] Inception v3 ImageNet 25×10 80×10 72.5 90.2

R(2+1)D [54] ResNet-34 None 32×10 152×10 72.0 90.0
TSM [32] ResNet-50 ImageNet 8×30 33×30 74.1 -
TSM [32] ResNet-50 ImageNet 16×30 65×30 74.7 -
STM [26] ResNet-50 ImageNet 16×30 67×30 73.7 91.6

TEINet [33] ResNet-50 ImageNet 8×30 33×30 74.9 91.8
TEINet [33] ResNet-50 ImageNet 16×30 66×30 76.2 92.5
TANet [33] ResNet-50 ImageNet 8×30 43×30 76.1 92.3
TANet [33] ResNet-50 ImageNet 16×12 86×12 76.9 92.9
TEA [30] ResNet-50 ImageNet 16×30 70×30 76.1 92.5
PAN [67] ResNet-50 ImageNet (8×5)×2 270 75.3 92.4

TDN8F(RGB+SDM) [58] ResNet-50 ImageNet (8×5)×30 36×30 76.6 92.8
TDN16F(RGB+SDM) [58] ResNet-50 ImageNet (16×5)×30 72×30 77.5 93.2
TDNEn(RGB+SDM) [58] ResNet-50 ImageNet (8+16)×5×30 108×30 78.4 93.6
TDNEn(RGB+SDM) [58] ResNet-101 ImageNet (8+16)×5×30 198×30 79.4 94.4

EAN8F(RGB+LMC)(Ours) ResNet-50 ImageNet (8×5)×30 37×30 77.1 93.3
EAN16F(RGB+LMC)(Ours) ResNet-50 ImageNet (16×5)×30 74×30 78.3 93.7
EANEn(RGB+LMC)(Ours) ResNet-50 ImageNet (8+16)×5×30 111×30 79.0 94.1

scale spatial-temporal information. Compared with TEA, our
method outperforms it consistently with the different input
frame numbers. When using 8 and 16 input frames, the im-
provements are 3.0% and 1.5% on Something V1 dataset.
The reason is that the multi-scale architecture of TEA is
based on the hand-crafted Res2Net, which is static and not
adaptive to the video. In contrast, the spatial-temporal mod-
eling architecture of our method is dynamic and adaptive.

We further compare the improved EANRGB+LMC archi-
tecture with the other recent 2D CNNs that also take ad-
vantage of the short-term motion information, where 5 ad-
jacent frames are sampled from each segment. Compared
with the optical flow-based methods, i.e., TRNRGB+Flow

and TSMRGB+Flow, our smallest model EAN8F(RGB+LMC)

already outperforms them by 11.2% and 0.6%, respectively.
It’s worth noting that the computational complexity of our
LMC motion feature produced from the input video of 40
frames is only 1.1 GFLOPs, while the computational com-
plexity of FlowNet2.0 [24] is 2006 GFLOPs for the same
video. In other words, the proposed LMC module is 1823×
more efficient than optical flow modality, while achieving
better performance for the action recognition task.

By averaging the predictions from EAN8F(RGB+LMC)

and EAN16F(RGB+LMC), the resulted model EANEn(RGB+LMC)

boosts the action recognition performance to a new state-of-
the-art level, i.e., 57.2% (4 +2.1%) on Something V1 and
68.8% (4 +1.8%) on Something V2, when using the recent
method TDN as the anchor. Compared with the PAN model,
the improvement of our method is 1.9% on Something V1,
even though that PAN adopts a much heavier backbone net-
work, i.e., 2D-ResNet101.

Furthermore, we summarize the key differences among
our adopted ResNet baseline, our variant models and other
recent relevant methods, as shown in Tab. 3. Particularly,
TDN also uses a short-term temporal difference module (SDM)
to exploit short-term motion information in the low-level
feature space, and fuse the motion features into the back-
bone in the early stage. Nevertheless, our method outper-
forms TDN by 1.1% on Something V1. The consistent im-
provements of our method over the other methods strongly
justify the superiority of the proposed event scale adaptive
spatial-temporal modeling paradigm by EAB, sparse object
interaction modeling scheme by SOI-Tr, and high-order mo-
tion representation in latent space by LMC.

Kinetics-400. To verify that our method also effectively
captures rich object appearance cues and the interactions
among them, we compare our method with other state-of-
the-art results on the Kinetics-400, as shown in Tab. 2. When
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Table 3: Comparison of different models in terms of in-
put clip setting and their key modules, i.e., local spatial-
temporal modeling module, global aggregation module and
short-term motion modeling module. PA, TSM and ME in-
dicate the appearance of persistence module [67], the tem-
poral shift module [32] and the motion excitation mod-
ule [30], respectively. L/SDM represents the long/short-term
temporal difference modules in TDN [58]. AVG indicates
the spatial-temporal average pooling operation. The model
performances on Something V1 are also reported.

Model Input clip Key components Top1 (%)segment×frame Local Global Motion
TSM8F 8 × 1 TSM AVG - 45.6

ResNet baseline 8 × 1 ME AVG - 48.6
EAN8F(RGB) 8 × 1 EAB SOI-Tr - 51.9

PAN8F(RGB+PAN) 8 × 5 TSM AVG PA 50.5
TDN8F(RGB+SDM) 8 × 5 LDM AVG SDM 52.3
EAN8F(RGB+LMC) 8 × 5 EAB SOI-Tr LMC 53.4

compared with the methods based on 2D CNNs, our method
outperforms all of them when using the same backbone net-
work, and demonstrates a better trade-off between the ac-
tion recognition accuracy and the computational complex-
ity. For example, when equipped with the same ResNet-50
backbone, our method outperforms the recent method TDN
by 0.6%. When adopting the ResNet-101 backbone, TDN
shows the strongest result among all 2D CNNs. Neverthe-
less, this also increases the computation cost of TDN, which
is even close to the 3D CNN method, i.e., SlowFast + NL
network. Our EAN models achieve the best complexity per-
formance trade-off among all state-of-the-art methods.

Diving48. To prove that our method can model subtle
fine-grained motion cues, we test our method on Diving48.
This dataset requires modeling the subtle body motions in
long-short terms and includes much fewer videos compared
with Something-Something and Kinetics. We input 16 frames

Table 4: Comparison to state-of-the-arts on Diving48. We
adopt the single clip or twice clips inference schemes where
a center crop of 224×224 from a single clip or twice clips is
used. − indicates the paper didn’t provide the results.

Method Pre-train Frames Top1 (%)
TSN (from [31]) ImageNet 8 16.7
TRN (from [31]) ImageNet 8 22.8
C3D (from [31]) ImageNet 64 27.6

R(2+1)D (from [3]) Kinetics - 28.9
P3D (from [36]) ImageNet 16 32.4
C3D (from [36]) ImageNet 16 34.5

Kanojia et al. [27] ImageNet 64 35.6
TEA-ResNet50 [31] ImageNet 16 36.0

CorrNet-101 [56] - 32×10 38.6
GST [36] ImageNet 16 38.8

Ours ImageNet 16 40.4
Ours ImageNet 16×2 41.7

to the network and sample two clips from the video during
inference. The results are shown in Tab. 4. Our method out-
performs the recent state-of-the-art GST [36] when using
single clip (4 +1.6%) or twice clips (4 +2.9%) as the in-
put videos.

4.2 Ablation Studies for EAN

We conduct extensive ablation studies on Something V1 [21]
dataset to demonstrate the superiority of the proposed frame-
work by answering the following questions. The variant mod-
els in this section are derived from the EAN8F(RGB) model.
The input clip is always with 8 frames.

Q1: Are the proposed EAB and SOI-Tr effective and
necessary? As mentioned in Sec. 3, in our framework, the
EAB extracts more accurate local spatial-temporal represen-
tation and the SOI-Tr derives global object interaction repre-
sentation from the video. To confirm that both two represen-
tations are effective and necessary for a high-performance
action recognition framework, we conduct ablation experi-
ments. Specifically, we equip ResNet baseline with the two
proposed modules separately and analyze their impact on
the performance.

Table 5: Comparison of the performance of using different
spatial-temporal modeling modules.

Method Param FLOPs Something V1
Top1 (%) Top5 (%)

ResNet baseline 24.0M 33.1G 48.6 77.5
ResNet+EABs 29.5M 35.3G 50.8 78.4
ResNet+SOI-Tr 30.3M 33.8G 49.3 77.9
ResNet+EABs+SOI-Tr 36.0M 36.1G 51.9 79.5

As shown in Tab. 5, both the two modules demonstrate
strong video modeling capability. When the ResNet base-
line is enhanced with the EABs, the Top1 accuracy is sig-
nificantly improved by 2.2%. The reason is that the features
extracted by the ResNet baseline are not accurate enough,
and the proposed EABs can refine the features with the dy-
namic spatial-temporal kernel. For a more intuitive under-
standing, we will visualize the refined feature maps by our
method in section 4.3. Then, we observe that the ResNet +
SOI-Tr baseline also outperforms the original ResNet base-
line by 0.7% in terms of Top1 accuracy, while only introduc-
ing an extra 0.7 GFLOPs computation cost. Finally, simul-
taneously using EAB and SOI-Tr boosts the performance to
51.9%, which proves the complementarity of the two pro-
posed modules.

We also plot the top 5 classes that are significantly im-
proved after introducing the SOI-Tr. As shown in Fig. 6, we
find that the most improved instances can be roughly divided
into two groups: (a) The instances that require tracking the
state of a certain object over the whole clip, such as the
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Fig. 6: The top 5 action classes that are significantly im-
proved after introducing the SOI-Tr module.

Fig. 7: Visualization of one video clip from the most im-
proved category by the SOI-Tr. The input clip is first pro-
cessed by EABs to obtain the spatial-temporal feature map
X5. Then, SOI-Tr calculates the saliency mapO of the most
concentrated object and the interactions of this object across
the temporal axis. We take the 4th frame as the anchor and
show the attention vector α.

videos of “Lifting a surface ... ” and “Pulling two ends ... ”.
(b) The instances that contain multiple objects and the inter-
actions between them, such as the videos of “Pretending to
put ... ”. This is aligned with the motivation of introducing
SOI-Tr, i.e., accurately modeling the long-range object in-
teractions benefits the recognition of some complex actions.

To systematically understand how the EABs and SOI-Tr
improve the recognition performance, we randomly select
one video from the category “Lifting a surface with some-
thing on it but not enough for it to slide down” and visualize
it. In Fig. 7, we can clearly see that the original feature X5

before global modeling concentrates on the background or
the board, omitting the main object, i.e., the small sliding
box. This makes sense because both the spatial area and the
motion magnitude of the board are more obvious than the
small box. After introducing the SOI-Tr, the object detec-
tor first finds the main object. Then, the Transformer model
builds the long-range dependencies across the whole clip.
We also notice that the board in the first frame is also de-
tected. But, this background object will be neglected in the
self-attention model because its weight is only 0.11.

Table 6: Study on the location of EAB and SOI-Tr.

EAB SOI-Tr Param FLOPs Something V1
Top1 (%) Top5 (%)

Stage 1∼2 Stage 3∼5 35.6M 35.8G 49.4 78.2
Stage 1∼3 Stage 4∼5 34.8M 35.9G 50.4 79.2
Stage 1∼4 Stage 5 36.0M 36.1G 51.9 79.5
Stage 1∼5 - 65.8M 36.2G 50.8 79.1

Q2: Where to insert the proposed modules? We per-
form an ablation study on which stage to use local operator
(EAB) and global operator (SOI-Tr). The results are shown
in Tab. 6. From these results, we see that adding more EABs
into the main network only slightly increases the computa-
tional cost due to the high efficiency of the bottleneck de-
signing and group convolution. When some EABs are re-
placed with the SOI-Tr, the performance decreases consis-
tently. This implies that the local spatial-temporal informa-
tion is crucial for action recognition, which cannot be sub-
stituted by the high-level object interaction information. We
also try to build the network only with EABs, the result is
also inferior to the original hybrid model (convolution+self-
attention). The setting of using EAB after stage 1∼4 and
SOI-Tr after stage 5 obtains the best recognition accuracy
and is with reasonable complexity.

Q3: Is the prior assumption of SOI-Tr reasonable? To
prove the end-to-end foreground object detector and the spar-
sity assumption for object interactions are both important
for SOI-Tr, we train other variant models where we replace
our detected object regions with the same number of the
fixed regions or the regions detected by a pre-trained Faster
RCNN [42] model. When the number of the boxes output
from Faster RCNN is too small, we pad it with the central
region of the frames. The performances of the models are
compared in Tab. 7.

Table 7: Study on various object region sampling strategies.

Regions FLOPs Something V1
Top1 (%) Top5 (%)

None 35.3G 50.8 78.4
Fixed 35.8G 50.9 78.4
Faster RCNN 71.3G 51.1 78.7
All 36.4G 51.3 79.1
Our Det-Net 36.1G 51.9 79.5

First, we notice that building the interaction model upon
the fixed regions already slightly improves the performance,
proving that the interaction modeling is beneficial to the ac-
tion recognition. Then we use the Faster RCNN detector
to predict more accurate foreground regions. Surprisingly,
the performance improvement is negligible. This may be as-
cribed to the fact that most frames only contain one or two
objects, which cover fewer regions compared with the “fixed
region” scheme. In contrast, the Saliency-Net embedded in
our method always detects enough salient regions in an end-
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to-end manner and obtains the best performance, i.e., 51.9%.
Also, it is computationally efficient due to the shared fea-
ture extractor with the other parts of the framework. We em-
phasize that our embedded Saliency-Net outperforms Faster
RCNN by 0.8% while running 118× faster.

We further try to leverage all positions to build a dense
interaction model, as shown in the penultimate row of Tab. 7.
However, the performance is obviously inferior to our method.
This strongly supports our assumption that most regions are
only background noises for the final prediction and leverag-
ing all of them will deteriorate the final performance.

4.3 Further Studies for EAB

In this section, we make further studies on the aspects that
impact the effectiveness of EAB.

Large receptive field and multi-scale modeling are
important. To verify this, we introduce the following base-
lines:

Fig. 8: Illustrations of the baseline spatial-temporal blocks.
The representation signs are the same meaning as Fig. 3.

(1) S-Block. It is implemented with a (2+1)D convolution
with kernel size 3 × 3 × 3 and group size 3, as shown in
Fig. 8 (a), which only captures single-scale features with a
small receptive field.
(2) L-Block. It is implemented with a (2+1)D convolution
with kernel size 3 × 3 × 3, group size 3, and dilation size
2 × 2 × 2, as shown in Fig. 8 (b), which captures single-
scale features with a larger receptive field.
(3) Incep-Block. It is implemented with a group of (2+1)D
convolutions in an Inception-style, as shown in Fig. 8 (c),
which captures multi-scale features with a larger receptive
field. The only difference between this baseline and EAB is
that the M is replaced with an identity mapping operation.

We compare our method with the proposed baseline meth-
ods in Tab. 8. First, it can be seen that EAB outperforms the
S-Block baseline by a large margin (51.9% vs. 49.6%). The
improvement is originated from two aspects: (1) The large
spatial-temporal kernel within EAB enables the larger re-
ceptive field and aggregates more local information. (2) The
explicit multi-scale modeling introduces richer feature rep-
resentation. It is necessary to validate the independent con-
tribution from the two aspects. We first compare the S-Block

Table 8: Comparison of different spatial-temporal blocks.
RFS denotes the receptive field size.

Models RFS Multi
scale? Param FLOPs Something V1

Top1 (%) Top5 (%)
Only SOI-Tr - - 30.3M 33.8G 49.3 77.9
+S-Block 3× 3× 3 - 30.9M 36.1G 49.6 78.1
+L-Block 5× 5× 5 - 30.9M 36.1G 50.3 78.4
+Incep-Block 5× 5× 5 X 30.9M 36.0G 50.8 78.8
+EAB 5× 5× 5 X 36.0M 36.1G 51.9 79.5

baseline with the L-Block baseline. L-Block has a larger
spatial-temporal receptive field size but the same number of
parameters. We can see that the recognition accuracy is im-
proved by 0.7%. Then, we build the Incep-Block baseline by
enhancing the L-Block baseline with multi-scale modeling
capability. This improvement further improves the recogni-
tion accuracy. From the comparisons above, we verify that
both the two aspects facilitate the action task, and multi-
scale architecture fully exploits the large receptive field.

Fig. 9: Comparison of the features from Stage4 of EAN and
the evolution of the prediction scores. The proposed EAB
can discover more semantically-aligned regions for actions,
and also suppress the noisy information from backgrounds
to yield correct prediction. Zoom in for better visualization.

We randomly select one video from Something V1 dataset
and visualize the 8×14×14 feature map output from Stage4
(this is before the inserting of the SOI-Tr), as shown in Fig. 9.
It clearly demonstrates that our method can discover more
semantically consistent regions for actions, and in the mean-
time reduce noisy backgrounds for correct prediction. More-
over, the feature activation heatmaps of our method are bet-
ter spatially aligned with the target object (see the water).
We also show the state evolution process in Fig. 9. Interest-
ingly, our method detects the start and end points of actions
although only trained with classification labels.

Dynamic architecture matters. From Tab. 8, we notice
that the performance gap between the Incep-Block baseline
and EAB is still rather large, i.e., 1.1% Top1 accuracy. We
conjecture this is due to the dynamic architecture of EAB.
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As mentioned in section 3.1, the inference pathway for EAB
is determined by the kernel fusion matrix M . For more de-
tailed analysis, we propose two kernel fusion strategies:
(1) Channel Shuffle. We replace M with a conventional fu-
sion method, i.e., Channel Shuffle operation [68], which en-
ables the communication of the features of different groups.
(2) Static Matrix. TheM is a learnable matrix during training.
But, it’s a fixed matrix during inference.

Table 9: Comparison of different feature fusion methods.

Methods Param FLOPs Something V1
Top1 (%) Top5 (%)

Identity (Incep-Block) 30.9M 36.0G 50.8 78.8
Channel Shuffle 30.9M 35.9G 51.1 78.9
Static Matrix 30.9M 36.0G 51.3 79.2
Dynamic Matrix 36.0M 36.1G 51.9 79.5

Both the above two baselines belong to the static ar-
chitecture but they are similar to the EAB in terms of the
network details, which are perfect for studying the impact
of dynamic modeling. We compare their performances in
Tab. 9. We observe that the performance improves consis-
tently with a more complex kernel fusion strategy, i.e., Iden-
tity→Channel Shuffle→Static Matrix→Dynamic Matrix.
The Dynamic fusion matrix adopted by EAB shows the best
performance (51.9%) with negligible extra cost.

Kernel visualization. To verify that the dynamic kernel
fusion matrix M of EAB is indeed adaptive to the scales of
the main objects and the key events within different videos,
we conduct a group of experiments by augmenting one an-
chor video and observing the change of the weights of the
fixed-scale kernels. The augmented videos and the kernel
weight changing procedure are illustrated in Fig. 10. We first
see, both the weight distributions along the temporal axis
or the spatial axis are not sparse, i.e., all kernels are acti-
vated. This supports our assumption that the optimal spatial-
temporal kernel for the video is with an unknown complex
shape and cannot be accurately replaced by one kernel of
fixed-scale. Also, the distributions do not follow some sim-
ple distributions such as Uniform or Gaussian, indicating
that the kernel weights cannot be trivially hand-crafted and
are required to be learned from data. When we spatially
zoom in the anchor video by 1.6×, the main objects in the
video, i.e., the hand and the stick, are easier to be discov-
ered, we see that EAB is more inclined to exploit the spatial
convolutions of small kernels such as that of size 1×1 in-
stead of that of size 5×5 . Similarly, when we sample the
frames with 2× higher frame-rate, the object motions be-
come slower and the small temporal convolutions such as
that with kernel size 1 are fully used.

Studies on EAB details. In this part, we conduct exper-
iments to verify whether all the designs of EAB contribute

Fig. 10: Visualizing the dynamic kernel fusion matrix M

of the proposed EAB via the kernel weights. For each spa-
tial or temporal kernel, its weight is computed by summing
the matrix values connected to it. In the first row, we give
an anchor video. Below it, we show the impact to the ker-
nel weights by changing the spatial or temporal scales of
the anchor video. The kernel weights of anchor, spatially-
, and temporally-augmented videos are indicated by gray,
green, and brown bars, respectively. “S-3”&“T-3” denotes
the fixed-size spatial&temporal kernel of size 3×3&3.

Table 10: Ablation on detailed designs of EAB.

Design Param FLOPs Something V1
Top1 (%) Top5 (%)

Without Max Pool 36.0M 36.1G 50.6 78.4
Avg Pool 36.0M 36.1G 51.4 79.8
Without inter ReLU 36.0M 36.1G 50.9 79.0
Without dilation 37.2M 37.5G 51.9 79.8
(1+1+1)D 35.7M 35.7G 51.2 79.2
Ours 36.0M 36.1G 51.9 79.5

to the final performance. As shown in Tab. 10, the max pool-
ing operation significantly improves the performance (1.3%
w.r.t Top1 accuracy), and meanwhile our method is not sen-
sitive to specific implementation of this operation. Both av-
erage pooling and max pooling operators achieve excellent
performance. Max pooling demonstrates a slight advantage
over average pooling because the regions of the key objects
and frames related to action only cover a small proportion
of the input video data. Also, we find that the extra non-
linearity introduced by the intermediate ReLU operations
between spatial- and temporal-filters also benefit the perfor-
mance, which is consistent with the conclusion from pre-
vious work [54]. Besides, we demonstrate that the dilated
convolution achieves comparable performance with the or-
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dinary convolution while it is much more efficient. Finally,
we also try to decompose the 2D spatial convolution into
two stacking 1D convolutions. But this brings a slight per-
formance drop. To summarize, the extensive experiments in
this section prove the necessity of detailed designs in EAB.

5 Erroneous Cases and Limitations

Although the quantitative results on standard benchmarks
and the extensive analysis above have verified the effective-
ness of the proposed framework, it inevitably has some lim-
itations, which lead to erroneous recognition results.

One limitation is caused by the simple architecture of
ESP-Net within EAB. ESP-Net is responsible for perceiv-
ing the event scales within the input video, composed of
two convolution layers followed by a global average pool-
ing operation. Although this simple “average” operation is
lightweight in terms of the computational cost, it also makes
the statistical results of the video biased to the large objects.
As shown in Fig. 11, the feature activations are dominated
by the large-area human hand shadow, neglecting the real
objects (the human hand and the charger) involved in the
action plugging something into something.

Fig. 11: Recognition error caused by EAB. The shadow of
the human hand instead of the real hand and the charger is
attended, causing the recognition result changing from plug-
ging something into something to moving part of something.

Another limitation is originated from the proposed SOI-
Tr. The adaptiveness of SOI-Tr lies in detecting different
foreground objects for different input videos. Nevertheless,
the adaptiveness may be limited by the representation of the
objects, i.e., points in the feature map, which correspond
to fixed-size regions within the input video. Therefore, the
granularity and the scale of the detected foreground objects
are not flexible enough. As shown in Fig. 12, only small
parts of the towel can be detected. Therefore, the global state
folding of the towel can not be perceived. Instead, the lo-
cal states of the wrongly attended objects, i.e., the human
hand and the partial towel, contribute to the wrong predic-
tion touching part of something.

Fig. 12: Recognition error caused by SOI-Tr. We visualize
the foreground object distribution maps, where only parts
of the towel are detected in this case. Therefore, the global
state folding of the towel can not be perceived, resulting the
biased action recognition result touching.

6 Conclusion and Future Works

To model the spatial-temporal scale variances and the long-
range object interactions in videos, we propose to dynam-
ically generate the video-adaptive kernels from the input
video and model the interactions among the objects with a
Transformer. Moreover, we design a novel short-term mo-
tion representation to further enhance the performance of
our method. We perform extensive evaluations to study the
effectiveness of the proposed approach on video action recog-
nition task, and the results demonstrate that our models achieve
impressive performances on Something-Something V1/V2,
Kinetics-400, and Diving48 datasets. In the future, we will
explore how to better approximate the video-adaptive ker-
nel. As for the network architecture, we will investigate more
powerful backbone networks. We also plan to extend the
proposed framework to more downstream video tasks such
as the spatial-temporal action localization task.
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