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Abstract

Images captured in low-light environment often suffer
from complex degradation. Simply adjusting light would
inevitably result in burst of hidden noise and color distor-
tion. To seek results with satisfied lighting, cleanliness,
and realism from degraded inputs, this paper presents a
novel framework inspired by the divide-and-rule principle,
greatly alleviating the degradation entanglement. Assuming
that an image can be decomposed into texture (with possi-
ble noise) and color components, one can specifically exe-
cute noise removal and color correction along with light ad-
justment. Towards this purpose, we propose to convert an
image from the RGB space into a luminance-chrominance
one. An adjustable noise suppression network is designed
to eliminate noise in the brightened luminance, having the
illumination map estimated to indicate noise boosting lev-
els. The enhanced luminance further serves as guidance for
the chrominance mapper to generate realistic colors. Exten-
sive experiments are conducted to reveal the effectiveness
of our design, and demonstrate its superiority over state-of-
the-art alternatives both quantitatively and qualitatively on
several benchmark datasets. Our code is publicly available
at https://github.com/mingcv/Bread.

1. Introduction

Capturing high-quality images under less controlled con-
ditions is challenging especially using mobile devices. Of-
ten, people are shooting images in unsatisfactory light envi-
ronment. For instance, we might take a photo against light
source (please see Fig. 1); or a surveillance camera may be
monitoring a place in the nighttime. In such cases, the im-
ages will suffer from poor visibility. To obtain high-quality
images, a few solutions can be applied like one can extend
exposure time to receive more information, but if the target
scene is dynamic, the blur effect likely appears in captured
images; another possible way is to set a flash for light com-
pensation, which however frequently introduces unexpected
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Figure 1. Visual comparison on a sample from the VV dataset. Our
method obtains striking improvement over the other competitors,
e.g., the sky tone and the realism of human skin.

highlights and unbalanced lighting into photos. Hence, in-
stead of upgrading hardware, developing effective low-light
enhancement techniques is highly desired for practical use.

Low-light image enhancement is not a solo problem of
light adjustment, which also has troubles of noise burst and
color distortion concealed in the darkness because of the
limited capability of photographing devices. A number of
methods follow the Retinex theory [13] through decompos-
ing an image I into its reflectance R and illumination L in
the form of I = R ◦ L, where ◦ designates the Hadamard
product operator. Because the reflectance component re-
flects the intrinsic property of material, it is constant against
variant illuminations. Ideally, once the illumination is es-
timated or given, the reflectance can be immediately ob-
tained. One can adjust illumination according to different
demands. However, due to limited quality of sensors, the
noise factor N will be always an annoying resident in im-
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Figure 2. An image from the LOL dataset, which is in low-light
before being linearly enhanced. As can be observed in its RGB,
HSV and YCbCr channels, the chrominance components in the
YCbCr space are obviously less affected by noise than others.

Average PSNR Average SSIM

Figure 3. The illuminations of low-light images in the LOL train-
ing dataset are first aligned with their references and converted to
different color-spaces. We replace one of their channels with the
ground-truth one, and then compare them with references, obtain-
ing average metrics that indicate to what extent a single channel in
different spaces represents the major information of an image.

ages, thus the model turns out to be I = R◦L+N . A simple
algebraic transformation leads to I = (R + Ñ) ◦ L, where
Ñ = N/L with element-wise division. We can see from
above that the noise will be also amplified along with light
enhancement, which becomes spatially-correlated with L
as discussed in [30]. Furthermore, in low-light conditions,
sensors (either CCD or CMOS) are sensitive and non-linear
to insufficient photons of different light spectrum, which
brings color distortion even with illumination and noise
being properly handled. Therefore, for the sake of produc-
ing high-quality results from degraded inputs, a qualified al-
gorithm should remedy the highly entangled illness of dim
light, noise, and color distortion, simultaneously.

This work studies how to handle the complex degrada-
tion in the darkness from a dividing and ruling perspec-
tive. Assuming that an image can be disassembled into
texture (together with the main body of noise) and color
components, the operations including noise removal and

color correction along with light adjustment could be ex-
ecuted specifically. In Figs. 2 and 3, we visualize how the
noise distributes in different color-spaces and make statis-
tics on the effect of the single-channel restoration on data
pairs from the LOL training dataset [26]. The results sug-
gest that the YCbCr space is a “good” candidate to do the
job of texture-color decomposition. As aforementioned, the
principle behind our design is that “mind your own busi-
ness”. In other words, a solver is customized for coping
with one type of degradation intently. By the luminance-
chrominance separation, we are thereby possible to treat
the degradation in the texture and color components indi-
vidually, say focusing on the noise issue in the texture and
the color distortion in the other part. Please notice that,
although several methods [27, 29] have been recently pro-
posed to take care of noise and color shift issues along with
light enhancement without distinction on the recovered re-
flectance component, they barely consider decomposing the
degradation from a texture-color point of view to further
ease the problem.

This paper develops an effective low-light image en-
hancement framework via breaking down the darkness
(Bread for short) based on the above analysis. The major
contributions of this paper are summarized as follows:

1. To the best of our knowledge, this is a pioneering at-
tempt to decouple the entanglement of noise and color
distortion, further mitigating the difficulty of low-light
enhancement with complex degradation.

2. We present an effective noise synthesis strategy un-
der the guidance of illumination, significantly improv-
ing the suppression quality of amplified and spatially-
correlated noise in the luminance.

3. To tackle the color distortion issue left in light-
enhanced images, we design a novel color adaption
network, which can properly deal with the chromi-
nance according to given luminance.

4. Extensive comparisons together with ablation studies
are provided to verify the efficacy of our method, and
reveal its advance over other state-of-the-art methods
both qualitatively and quantitatively.

2. Related Work
Numerous low-light image enhancement methods have

been proposed over last decades, which can be roughly
grouped into traditional and deep learning-based methods.

Traditional Methods. The simplest and most intuitive
way is to linearly adjust the value range or execute a non-
linear Gamma correction on inputs. Further, global and lo-
cal histogram-based methods [1, 3, 4, 14, 18] are introduced
to expand the dynamic range of images. In spite of their



ease of use, the enhancement quality is hardly guaranteed,
due to the content-blindness. Derived from the Retinex
theory [13], Single-scale Retinex (SSR) [12] first uses the
Gaussian blurred input as its illumination map, and then re-
moves the estimated illumination from the input as its fi-
nal result. Multi-scale Retinex (MSR) [11] extends SSR
by fusing the results of multiple Gaussian blur functions
with different variances. Besides the above mentioned at-
tempts, NPE [23] takes local maxima assumption to predict
the illumination, which is manipulated by a mapper to act as
the enhanced illumination and merged with the reflectance
component. LIME [9] proposes to refine the initial illumi-
nation obtained by the Max-RGB assumption and structure
preserving constraint. Although these methods can some-
what brighten low-light images, they barely take other hid-
den degradation, like noise and color distortion, into consid-
eration. To suppress the noise effect, SRIE [7] further im-
poses the sparsity on the recovered reflectance. Similarly,
RRM [15] integrates noise estimation into the main driv-
ing optimization to eliminate the noise in reflectance. How-
ever, the applicability of these optimization-based methods
is limited because of the expensive computation, sensitivity
to hyper-parameters, and unsatisfied enhancement quality.

Deep Learning-based Methods. Recently, methods
based on deep learning have dominated the target task. For
instance, MSR-Net [20] integrates the MSR mechanism
into a neural network and uses the BM3D [5] for denois-
ing. It gains improvement in visual quality, but still suf-
fers from the drawbacks like over-enhancement as the tra-
ditional MSR and lacks an embedded denoising function-
ality. LLNet [16] synthesizes training pairs by randomly
applying Gamma adjustment and adding synthetic noise to
clean images. An auto-encoder network is then employed
to learn the mapping function. However, the relationship
between real-world illumination and noise is not touched,
thus residual noise and over-smoothing problems show up.
Cai et al. [2] exploit to construct references from multi-
exposure sequences for single image enhancement. How-
ever, its performance is upper-bounded by involved MEF
methods. DUPE [22] and GLAD [25] learn the illumination
map for image retouching. Despite reasonable results, they
cannot effectively alleviate noise and color distortion issues.
DRD [26] and KinD++ [29] resort to the layer decomposi-
tion strategy that is beneficial to both illumination adjust-
ment and reflectance refinement. DRBL [27] develops a
deep recursive band network for semi-supervised low-light
enhancement. DLN [21] introduces lighten-darken trade-
off and feature aggregation blocks to ameliorate results.
However, they frequently have troubles in over-exposure
and color distortion. In unsupervised settings, Enlighten-
GAN [10] attempts to take advantage of larger-scale un-
paired training data through employing the GAN mecha-
nism, while Zero-DCE [8] alternatively learns a set of non-

reference loss functions. Although relieving the require-
ment of paired data, they mainly focus on the light factor,
and thus have insufficient abilities to remedy other defects.
Despite a progress made toward addressing the problem, ef-
fective and efficient designs for handling complex and multi-
entangled degradation are desirable for practical use.

3. Methodology
3.1. Problem Analysis & Motivation

As previously discussed, low-light image enhancement
encounters complex degradation mixed up by dim light,
noise, and color distortion. Most previous methods tend to
directly restore the reflectance from illumination-adjusted
input under the guidance of ground-truth data, which in na-
ture ignores the noise-amplification process by the illumina-
tion adjustment operation. In other words, the defects hid-
den in the darkness will burst in the RGB channels of the re-
flectance map, which are correlated to the spatially-variant
illumination. This fact is tricky for both end-to-end net-
works like [25] and post-processing methods like [20], re-
sulting in artifacts in texture and/or color. Motivated by the
principle of divide-and-rule, we propose to convert images
from the RGB colorspace into a luminance-chrominance
one for decoupling the light and noise factors from the color
degradation. Among various colorspaces, YCbCr seems to
be a good choice supported by the evidence given in Fig. 3.
To handle the dim light and noise in the luminance, we de-
note the low-light luminance as Ylow = Y ◦Llow +N , and
the normal-light reference as Yhigh = Y ◦ Lhigh. The con-
nection between Ylow and Yhigh can be found as follows:

Yhigh =
(Ylow −N) ◦ Lhigh

Llow
=
Ylow

L̂
− N

L̂
, (1)

where L̂ = Llow/Lhigh represents the relative difference
between illuminations of low and normal-light images, and
the division is element-wise. We propose a solver, i.e. il-
lumination adjustment network, to seek YIA = Ylow/L̂.
From Eq. (1), we can see that the noise term Ñ = N/L̂
from Ylow remains in YIA. Even if N is simple, Ñ will
become much more complicated due to the correlation with
spatially-variant illumination. Thus, it is natural to adopt
L̂ as an indicator for the denoising. Barely previous meth-
ods take into account this property. KinD [30] is limited to
simply concatenate Llow and R together to restore the re-
flectance, which may not sufficiently exploit the guidance
information from the illumination, and the single restora-
tion network has to deal with all the degradation simulta-
neously. Inspired by the above, we alternatively synthe-
size noisy images that have the same illumination with ref-
erences but are corrupted with stimulated amplified noise
guided by A = Φ(L̂), where Φ(·) is a function that reflects
the relationship between illuminations and noise levels. By



Figure 4. An overview of our proposed Bread architecture and the basic structures of the involved sub-networks. The estimated relative
illumination map are shown by heat map for a better view.

this means, we obtain a noise-suppression solver, the solu-
tion of which are constrained by A. Though the relative
noise level map is determined, its overall scale is inacces-
sible due to the differences in photographing devices. To
robustly remove the noise, we further fuse the denoised lu-
minance YNS under different suppression strengths to ob-
tain the expected luminance map YNF . Having YNF esti-
mated, it is reasonable to employ it as guidance for map-
ping chrominance (color correction) from the input to an
adjusted/target light levels, which is achieved by our color
adaption network.

3.2. Overall Network Design

Figure 4 shows the overall architecture of our method,
which comprises an illumination adjustment net (IAN),
an adaptive noise suppression net (ANSN), and a color
adaption net (CAN). As can be seen from Fig. 4 A, we
firstly convert the input from the RGB to the YCbCr col-
orspace, obtaining the luminance Ylow and chrominance
Cblow , Crlow components. Then, Ylow is fed into the IAN
to predict the relative illumination difference map L̂, yield-
ing the adjusted YIA. The ANSN takes in YIA and Φ(L̂)
(denoted as A) to produce YNS . As discussed in 3.1, we
introduce a noise fusion module (NFM) into the noise sup-
pression stage. Relative noise level maps {A1, ...,Ak} with
k different suppression strengths are used to generate k de-
noised luminance maps {YNS1

, ..., YNSk
}, which are then

fused as YNF . The obtained luminance YNF is conse-
quently utilized as the guidance of the chrominance en-
hancement. Given the chrominance components of the low-
light image, and YNF , the CAN outputs CbCA

and CrCA
.

Finally, we combine YNF , CbCA
and CrCA

, and convert
them back to the RGB colorspace.

To largely exclude influence from other factors and ver-
ify the main claim, all the sub-networks follow the shape
shown in Fig. 4 B. There are three down-sampling layers
and three up-sampling layers in each sub-network, and two
convolutional layers with ReLU activations are inserted be-

fore each scaling layer. The inner channels of each block
are doubled after each down-sampling block and halved af-
ter each up-sampling layer, changing between 32 and 128.
All the convolution layers employ 3 × 3 kernel size, stride
= 1 and padding = 1. All the sub-networks are with a Sig-
moid activation at their tails, except for the ANSN which
is merely the convolution. Note that our sub-networks are
optimized individually.

3.3. IAN: Illumination Adjustment Network

IAN is proposed to estimate the relative difference of
illumination maps between low-light luminance Ylow and
the normal-light Yhigh counterpart. The difference map is
adopted to adjust the low-light input into the normal-light
and further contributes to the noise suppression. The fol-
lowing loss function is used for IAN:

LIA =
∥∥∥Ylow/(L̂+ ε)− Yhigh

∥∥∥2
2

+ α
∥∥∥W ◦ ∇L̂∥∥∥

1
+ β

∥∥∥∇L̂−∇Ylow∥∥∥
1
,

(2)

where ‖ · ‖1 and ‖ · ‖2 respectively stand for the `1 and `2
norms, and ε is a small constant for avoiding zero denomi-
nator. In addition, α and β are two coefficients to balance
the importance of different terms. L̂ = θIAN (Ylow) →
Llow/Lhigh is the predicted relative difference of illumina-
tion between Ylow and Yhigh. The second term is to con-
strain the illumination to be piece-wise smooth with W =
1/(∇Ylow + ε) as the weight map. The last term is to pre-
serve the similarity between Ylow and L̂ in the gradient do-
main for reducing halo artifacts. ∇ designates the first-order
derivative filter. Once L̂ is acquired, it is used to generate
the output of the first stage, following YIA = Ylow/(L̂+ ε).

3.4. ANSN: Adaptive Noise Suppression Network

According to Eq. (1), we obtain the adjusted luminance
YIA = Yhigh + Ñ , in which the noise in Ylow is also am-
plified. Moreover, possible errors in the estimated illumina-
tion should not flow to the subsequent process. Therefore,
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Figure 5. Visual comparison of state-of-the-art methods and ours on samples from the LOL dataset.

Table 1. Quantitative results on LOL evaluation dataset of different methods in terms of PSNR, SSIM, NIQE and DeltaE. The subscript C
indicates gamma correction on the luminance towards references is conducted before evaluation. The best results are indicated in red, the
second-best results in blue and the third in green.

Metrics LIME [9] SIRE [7] NPE [23] RRM [15] EG [10] Zero-DCE [8] MSRNet [20]
PSNR↑ 16.76 11.86 16.97 13.88 17.48 14.86 13.17
SSIM↑ 0.444 0.494 0.482 0.670 0.654 0.562 0.460
NIQE↓ 9.779 8.073 9.788 4.234 5.238 8.811 9.261
DeltaE↓ 21.43 32.62 21.77 26.18 19.31 24.56 30.17

PSNRC ↑ 19.14 20.97 20.59 20.25 22.48 21.88 16.71
SSIMC ↑ 0.471 0.656 0.513 0.774 0.710 0.640 0.461
NIQEC ↓ 8.954 7.321 8.890 3.944 4.837 7.889 9.074
DeltaEC ↓ 19.06 14.32 17.60 14.03 13.28 14.01 22.72

Metrics DUPE [22] GLAD [25] DRD [26] DRBL [27] KinD++ [29] Bread Bread-ME
PSNR↑ 14.77 19.72 16.77 18.80 21.80 22.92 22.96
SSIM↑ 0.470 0.685 0.428 0.831 0.836 0.836 0.838
NIQE↓ 9.079 7.283 10.424 4.103 4.290 3.950 3.946
DeltaE↓ 26.19 16.54 23.65 15.59 11.52 11.54 11.19

PSNRC ↑ 22.36 23.72 18.73 22.48 23.91 25.98 26.06
SSIMC ↑ 0.594 0.724 0.448 0.851 0.847 0.851 0.857
NIQEC ↓ 8.110 6.754 9.644 3.753 3.901 3.649 3.614
DeltaEC ↓ 14.77 12.54 21.49 11.75 10.08 9.41 9.06

we simulate amplified noise Ñ on normal-light references
Yhigh without changing their illumination. Regions origi-
nally under darker light should have more intense noise than
those under brighter conditions, thus relative illumination
map L̂ estimated previously is natural to be adopted to in-

dicate noise levels. The choices of noise pattern are investi-
gated in LLNet [16], which says that Gaussian and Poisson
noises are competent. We take the simple Gaussian model
for noise synthesis. Modified from the traditional AWGN
model [28], we reach the following for noise synthesis:



YN = Yhigh +N (0,A), (3)

where A can be viewed as an attention map in inverse pro-
portion to L̂. Moreover, the following simple loss function
is used for ANSN:

LNS = ‖θNS(YN ,A)−N (0,A)‖22 . (4)

With the trained ANSN, the amplified noise in YIA can be
removed through YNS = YIA − θNS(YIA,A).

Though ANSN is already able to produce noise-free
enhancement results in most cases, the solo usage of it
may still leads to over-smoothed luminance for some sam-
ples. The reason is that the overall scale of the noise
level map is inaccessible due to the differences in pho-
tographing devices. To robustly remove the noise, we de-
velop a noise fusion module (NFM) to merge the luminance
maps {YNS1

, YNS2
, ..., YNSk

} with k different denoising
strengths of {A1,A2, ...,Ak}. Moreover, the fusion pro-
cess is expected to further remedy errors caused by the pre-
vious stages. To be concluded, the following learning prob-
lem is introduced:

LNF = ‖YNF − Yhigh‖22 + SSIM(YNF , Yhigh) (5)

where YNF = θNF (YNS1...k
,A1...k), and SSIM(·, ·) is the

structural similarity loss.

3.5. CAN: Color Adaption Network

Having obtained the YNS , the color components
are expected to be adapted accordingly. Given the
luminance and chrominance components of the orig-
inal input (Ylow, Cblow , Crlow) and the reference
(Yhigh, Cbhigh

, Crhigh
), the loss function for CAN is

designed as follows:

LCA =
∥∥CbCA

− Cbhigh

∥∥2
2

+
∥∥CrCA

− Crhigh

∥∥2
2
, (6)

where (CbCA
, CrCA

) = θCA(Ylow, Cblow , Crlow , Yhigh).
Note that, following the divide-and-rule principle, we use
Yhigh rather than YNF during training to avoid the influ-
ence from possible errors left in previous stages. Once the
network is trained, Yhigh is replaced with YNF for testing.

Considering the low-saturation problem of the references
in the LOL [26] training data as shown in Fig. 6, we can
alternatively introduce multi-exposure data for the training
of CAN, which often covers a wide range of exposure and
aplenty color patterns. The following learning problem is
desired:

(CbME
, CrME

) = θME(Ye1, Cbe1 , Cre1 , Ye2). (7)

Image pairs under different exposures, denoted as (Ye1,
Cbe1 , Cre1) and (Ye2, Cbe2 , Cre2), are randomly selected

GLAD [25] DRBL [27] GT (train)

Bread Bread-ME GT (eval)

Figure 6. The ground truth of training data in the LOL dataset
typically has less vivid color than that of evaluation.

from the sequences of multi-exposure photographs. The ob-
jective function of this module shares the same form with
Eqn. (6). It forces the enhanced chrominance components
to fit the exposure condition with respect to a certain lumi-
nance guided by real multi-exposure data. Our approach
also answers a key question that arises in the enhancement
– to what extent the enhanced color should be. In most, if
not all, of the cases, we expect it to be natural, under a cer-
tain exposure. The framework with multi-exposure data in-
troduced is denoted as Bread-ME. We show results of both
Bread and Bread-ME in quantitative experiments for fair
comparisons.

4. Experiments

4.1. Implementation Details

All of our models are implemented in PyTorch and op-
timized with Adam optimizer, the parameters of which are
set as β1 = 0.9, and β2 = 0.999. All the learning rates
are fixed as 10−3, except for the finetuning of the color
adaption network based on multi-exposure Data, which is
set as 10−4. α and β in Eqn. (2) are set as 4.0 and 0.5,
respectively. We set A = exp(−L̂), k = 3, A1,2,3 =
{0, 0.05A, 0.1A} for the ANSN and NFM.

We adopt the LOL dataset as the training data, which
contains 485 low/normal light pairs for training and 15 for
evaluation. To imitate various exposures in real-world pho-
tographs, we synthesize 8 images with different exposures
for each low-light image. The magnifications of the expo-
sures are uniformly distributed from one to making 25%
pixels over-exposed at most. For the training of the color
adaption network based on multi-exposure data, we first se-
lect the SICE dataset [2] for training, then append the orig-
inal 485 pairs of LOL dataset into the training data for fine-
tuning.



Input LIME [9] SRIE [7] MSRNet [20] DUPE [22] DRD [26]
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Figure 7. Visual comparison between different methods on the DICM testing dataset. Please zoom in for details.

Input GLAD [25] KinD++ [29] DRBL [27] EG [10] Zero-DCE [8] Ours

Figure 8. Visual comparison between different methods on the VV (top two rows) and MEF-DS [6] (the last row). Please zoom in for
details.

4.2. Performance Evaluation

To verify the effectiveness of our proposed method, sev-
eral public datasets are used for evaluation, including LOL
[26], DICM [14], NPE [23] and VV1. Representative state-
of-the-art methods, including LIME [9], SIRE [7], NPE
[23], RRM [15], MSRNet [20], DUPE [22], GLAD [25],
DRD [26], DRBL [27], KinD [30], EG [10] and Zero-DCE
[8] are adopted for comparisons. Image quality assessment
metrics, including PSNR, SSIM, NIQE [17], DeltaE [19]
and LOE [24], are employed to measure these methods.

The quantitative comparison between Bread(-ME) and
other competitors on the LOL evaluation dataset is reported
in Table 1. Our method outperforms other state-of-the-art
alternatives by a noticeable margin, on both of the refer-

1https://sites.google.com/site/vonikakis/datasets

ence and no-reference metrics, demonstrating the efficacy
of our proposed Bread framework. Note that the absolute
brightness is inaccessible during evaluation, which may be
unfair to those non-data-driven methods and may interfere
the assessment of the fidelity in details, thus we also pro-
vide a version of metrics besides the original, the predicted
luminance of which is aligned to its ground truth by sim-
ple Gamma correction. Visual comparisons on several sam-
ples from the LOL evaluation and testing datasets are de-
picted in Figs. 5 and 7, respectively. The results by our
method achieve remarkably higher quality with noise well-
suppressed and less artifacts, while irregular illumination,
noise residual, and texture/color distortion exist in the re-
sults of other methods. Moreover, we can see from Fig.
5 that multi-exposure-data-based color adapter rectifies the
greenish hue, producing more realistic tone. Also, we pro-



Table 2. Quantitative comparison on the DICM, NPE and VV
datasets. All the competitors are trained on the LOL dataset.

Datasets Metrics GLAD DRD DRBL KinD++ Bread Bread-ME

DICM (44) NIQE↓ 3.0875 4.7120 3.2784 2.8584 3.0893 3.0869
LOE↓ 240.71 608.70 660.10 535.34 400.07 388.85

NPE (8) NIQE↓ 3.6143 4.0676 3.5843 3.9101 3.5103 3.4596
LOE↓ 211.27 741.78 814.82 494.38 398.57 392.72

VV (24) NIQE↓ 4.4112 4.1508 3.3770 3.8084 3.6770 3.6710
LOE↓ 199.57 522.04 648.67 300.57 339.56 302.26

- Size(MB)↓ 10.90 9.05 20.10 34.9 8.21 8.21

Input Bread Bread-ME

Figure 9. Visual comparison between color adaption without and
with multi-exposure data used. It is obvious that the introduction
of such data contributes to more vibrant color.

vide non-reference results in Table 2. For fair compari-
son, the methods list in the table are all data-driven and
trained on the LOL dataset. Our framework occupies the
leading position in terms of both two non-reference metrics
on three benchmark datasets. Please note that, NIQE does
not monotonously change following the quantity of visual
noises, which means that a more visual-pleasing noise-free
texture can also cause a high NIQE value. We will continue
this discussion in the supplementary materials. Addition-
ally, we provide more visual results to further illustrate the
effectiveness of the noise suppression and the fidelity of the
color adaption in Fig. 8.

4.3. Ablation Study

As shown in Table 3, to evaluate the effectiveness of dif-
ferent settings in our framework, we conduct ablation stud-
ies, including removing the denoising process, the noise fu-
sion module and the IA-NS separation setting, respectively.
We further evaluate different noise synthesis models, in-
cluding fixed Gaussian noise (noise level of 25, denoted
as FGN), Poisson noise (PN) and our spatially-correlated
Gaussian noise (Bread). To validate the necessity of the us-
age of multi-exposure data, please compare the results of
Bread and Bread-ME. The visual comparison is also shown
in Fig. 9, which illustrates that the color fidelity meets sig-
nificant improvement from the data. Several key questions
are highlighted as follows:
The necessity of NFM: We can see that without the NFM,
the framework encounters an obvious degradation for the
non-blind metrics, because the errors arising in IAN and

Table 3. Ablation study on different configurations.

PSNR↑ SSIM↑ PSNRC ↑ SSIMC ↑
w/o DN 16.91 0.586 23.33 0.623
w/o NFM 17.08 0.721 23.72 0.816
w/o IA-NS Sep. 18.69 0.785 24.58 0.829
w/ FGN 21.40 0.799 25.26 0.821
w/ PN 22.44 0.831 25.84 0.849
Bread 22.92 0.836 25.98 0.851
Bread-ME 22.96 0.838 26.06 0.857

ANSN are left untreated.

The necessity of IA-NS separation: For directly learning
the restoration without IA-NS separation, we use YIA and
Yhigh pairs and keep the same architecture of the noise sup-
pression network. The gap between this setting and the
noise synthesis approaches emphasizes the importance of
the separation strategy.

The choice of noise synthesis settings: We synthesize noisy
images polluted by Poisson noise through applying the es-
timated low illumination map to the normal-light images
and then contaminate them through the Poisson process.
We then remove its illumination from the corrupted low-
light images to simulate the adjusted images with ampli-
fied noise. For the fixed Gaussian results, we simply ap-
ply the AWGN on normal-light images. Unfortunately, the
strength of Poisson and fixed-Gaussian denoiser is not ad-
justable, which means further fusion is futile, thus we adopt
the spatial-correlated Gaussian as our first option. More de-
tails will be discussed in supplementary.

5. Conclusion

This work discussed the mixture of multi-degradation in
low-light images, which increases the training difficulty and
limits the enhancement quality of previous methods. To
disentangle the complex degradation, the colorspace of an
image is first converted from the RGB into a luminance-
chrominance one, i.e., YCbCr, from a texture-color perspec-
tive. By doing so, the main pressure of image brightening
and denoising goes to the luminance component Y , while
the chrominance components Cb and Cr respond to color
correction, having the enhanced Y as guidance. Regard-
ing different specific illnesses, the sub-networks including
IAN, ANSN, and CAN are customized and trained individ-
ually, all of which follow the simple U-shaped net. Our de-
signs make the training environment for each sub-network
specific to one simple degradation, the effect of which has
been validated by the experiments. It is positive that such a
divide-and-rule principle with texture-color decomposition
can be applied to other enhancement and restoration tasks
like dehazing and underwater image enhancement.



References
[1] Mohammad Abdullah-Al-Wadud, Md Hasanul Kabir,

M Ali Akber Dewan, and Oksam Chae. A dynamic
histogram equalization for image contrast enhancement.
IEEE Transactions on Consumer Electronics, 53(2):593–
600, 2007. 2

[2] Jianrui Cai, Shuhang Gu, and Lei Zhang. Learning a deep
single image contrast enhancer from multi-exposure images.
IEEE TIP, 27(4):2049–2062, 2018. 3, 6

[3] Turgay Celik and Tardi Tjahjadi. Contextual and variational
contrast enhancement. IEEE TIP, 20(12):3431–3441, 2011.
2

[4] Heng-Da Cheng and XJ Shi. A simple and effective his-
togram equalization approach to image enhancement. Digi-
tal signal processing, 14(2):158–170, 2004. 2

[5] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and
Karen O. Egiazarian. Image denoising by sparse 3-
d transform-domain collaborative filtering. IEEE TIP,
16:2080–2095, 2007. 3

[6] Yuming Fang, Hanwei Zhu, Kede Ma, Zhou Wang, and
Shutao Li. Perceptual evaluation for multi-exposure image
fusion of dynamic scenes. IEEE TIP, 29:1127–1138, 2020.
7

[7] Xueyang Fu, Delu Zeng, Yue Huang, Xiao-Ping Zhang, and
Xinghao Ding. A weighted variational model for simultane-
ous reflectance and illumination estimation. In CVPR, pages
2782–2790, 2016. 3, 5, 7

[8] Chunle Guo, Chongyi Li, Jichang Guo, Chen Change Loy,
Junhui Hou, Sam Kwong, and Runmin Cong. Zero-reference
deep curve estimation for low-light image enhancement. In
CVPR, pages 1780–1789, 2020. 3, 5, 7

[9] Xiaojie Guo, Yu Li, and Haibin Ling. Lime: Low-light im-
age enhancement via illumination map estimation. IEEE
TIP, 26(2):982–993, 2016. 3, 5, 7

[10] Yifan Jiang, Xinyu Gong, Ding Liu, Yu Cheng, Chen Fang,
Xiaohui Shen, Jianchao Yang, Pan Zhou, and Zhangyang
Wang. Enlightengan: Deep light enhancement without
paired supervision. IEEE TIP, 30:2340–2349, 2021. 3, 5,
7

[11] Daniel J Jobson, Zia-ur Rahman, and Glenn A Woodell. A
multiscale retinex for bridging the gap between color images
and the human observation of scenes. IEEE TIP, 6(7):965–
976, 1997. 3

[12] Daniel J Jobson, Zia-ur Rahman, and Glenn A Woodell.
Properties and performance of a center/surround retinex.
IEEE TIP, 6(3):451–462, 1997. 3

[13] Edwin H Land. The retinex theory of color vision. Scientific
american, 237(6):108–129, 1977. 1, 3

[14] Chulwoo Lee, Chul Lee, and Chang-Su Kim. Contrast en-
hancement based on layered difference representation of 2d
histograms. IEEE TIP, 22(12):5372–5384, 2013. 2, 7

[15] Mading Li, Jiaying Liu, Wenhan Yang, Xiaoyan Sun, and
Zongming Guo. Structure-revealing low-light image en-
hancement via robust retinex model. IEEE TIP, 27(6):2828–
2841, 2018. 3, 5, 7

[16] Kin Gwn Lore, Adedotun Akintayo, and Soumik Sarkar. Ll-
net: A deep autoencoder approach to natural low-light image
enhancement. Pattern Recognition, 61:650–662, 2017. 3, 5

[17] Anish Mittal, Rajiv Soundararajan, and Alan Conrad Bovik.
Making a “completely blind” image quality analyzer. IEEE
Signal Processing Letters, 20:209–212, 2013. 7

[18] Etta D Pisano, Shuquan Zong, Bradley M Hemminger, Marla
DeLuca, R Eugene Johnston, Keith Muller, M Patricia Brae-
uning, and Stephen M Pizer. Contrast limited adaptive his-
togram equalization image processing to improve the detec-
tion of simulated spiculations in dense mammograms. Jour-
nal of Digital imaging, 11(4):193, 1998. 2

[19] Gaurav Sharma, Wencheng Wu, and Edul N. Dalal. The
ciede2000 color-difference formula: Implementation notes,
supplementary test data, and mathematical observations.
Color Research and Application, 30:21–30, 2005. 7

[20] Liang Shen, Zihan Yue, Fan Feng, Quan Chen, Shihao
Liu, and Jie Ma. Msr-net: Low-light image enhance-
ment using deep convolutional network. arXiv preprint
arXiv:1711.02488, 2017. 3, 5, 7

[21] Li-Wen Wang, Zhi-Song Liu, Wan-Chi Siu, and Daniel PK
Lun. Lightening network for low-light image enhancement.
IEEE TIP, 29:7984–7996, 2020. 1, 3

[22] Ruixing Wang, Qing Zhang, Chi-Wing Fu, Xiaoyong Shen,
Wei-Shi Zheng, and Jiaya Jia. Underexposed photo enhance-
ment using deep illumination estimation. In CVPR, pages
6849–6857, 2019. 1, 3, 5, 7

[23] Shuhang Wang, Jin Zheng, Hai-Miao Hu, and Bo Li. Nat-
uralness preserved enhancement algorithm for non-uniform
illumination images. IEEE TIP, 22(9):3538–3548, 2013. 3,
5, 7

[24] Shuhang Wang, Jin Zheng, Hai-Miao Hu, and Bo Li. Nat-
uralness preserved enhancement algorithm for non-uniform
illumination images. IEEE TIP, 22:3538–3548, 2013. 7

[25] Wenjing Wang, Chen Wei, Wenhan Yang, and Jiaying
Liu. Gladnet: Low-light enhancement network with global
awareness. In IEEE International Conference on Automatic
Face & Gesture Recognition, pages 751–755, 2018. 3, 5, 6,
7

[26] Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu.
Deep retinex decomposition for low-light enhancement. In
BMVC, page 155, 2018. 2, 3, 5, 6, 7

[27] Wenhan Yang, Shiqi Wang, Yuming Fang, Yue Wang, and
Jiaying Liu. From fidelity to perceptual quality: A semi-
supervised approach for low-light image enhancement. In
CVPR, pages 3063–3072, 2020. 1, 2, 3, 5, 6, 7

[28] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and
Lei Zhang. Beyond a gaussian denoiser: Residual learning of
deep cnn for image denoising. IEEE TIP, 26(7):3142–3155,
2017. 5

[29] Yonghua Zhang, Xiaojie Guo, Jiayi Ma, Wei Liu, and Ji-
awan Zhang. Beyond brightening low-light images. IJCV,
129(4):1013–1037, 2021. 1, 2, 3, 5, 7

[30] Yonghua Zhang, Jiawan Zhang, and Xiaojie Guo. Kindling
the darkness: A practical low-light image enhancer. In ACM
MM, pages 1632–1640, 2019. 2, 3, 5, 7


	1 . Introduction
	2 . Related Work
	3 . Methodology
	3.1 . Problem Analysis & Motivation
	3.2 . Overall Network Design
	3.3 . IAN: Illumination Adjustment Network
	3.4 . ANSN: Adaptive Noise Suppression Network
	3.5 . CAN: Color Adaption Network

	4 . Experiments
	4.1 . Implementation Details
	4.2 . Performance Evaluation
	4.3 . Ablation Study

	5 . Conclusion

