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Abstract Model binarization is an effective method of compressing neural
networks and accelerating their inference process, which enables state-of-the-art
models to run on resource-limited devices. Recently, advanced binarization
methods have been greatly improved by minimizing the quantization error
directly in the forward process. However, a significant performance gap still
exists between the 1-bit model and the 32-bit one. The empirical study shows
that binarization causes a great loss of information in the forward and back-
ward propagation which harms the performance of binary neural networks
(BNNs). We present a novel Distribution-sensitive Information Retention
Network (DIR-Net) that retains the information in the forward and back-
ward propagation by improving internal propagation and introducing external
representations. The DIR-Net mainly relies on three technical contributions:
(1) Information Mazimized Binarization (IMB): minimizing the information
loss and the binarization error of weights/activations simultaneously by weight
balance and standardization; (2) Distribution-sensitive Two-stage Estimator
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(DTE): retaining the information of gradients by distribution-sensitive soft
approximation by jointly considering the updating capability and accurate
gradient; (3) Representation-align Binarization-aware Distillation (RBD): re-
taining the representation information by distilling the representations between
full-precision and binarized networks. The DIR-Net investigates both forward
and backward processes of BNNs from the unified information perspective,
thereby providing new insight into the mechanism of network binarization.
The three techniques in our DIR-Net are versatile and effective and can be
applied in various structures to improve BNNs. Comprehensive experiments on
the image classification and objective detection tasks show that our DIR-Net
consistently outperforms the state-of-the-art binarization approaches under
mainstream and compact architectures, such as ResNet, VGG, EfficientNet,
DARTS, and MobileNet. Additionally, we conduct our DIR-Net on real-world
resource-limited devices which achieves 11.1x storage saving and 5.4x speedup.

Keywords Binary Neural Network - Network Quantization - Model
Compression - Deep Learning

1 Introduction

Over the past few years, Artificial Intelligence (AI) utilizing Deep Neural
Networks (DNNs), especially Convolutional Neural Networks (CNNs) has
shown great potential on some specific tasks such as computer vision, including
but not limited to classification [441[76.[78,[83][88], detection [25L24L[69[7451]
and segmentation [21[100]. However, deep CNNs usually have a large number
of parameters and high computational complexity to satisfy the requirement of
high accuracy. Thus a great deal of memory and computing power is always
required when running the high accurate CNNs, which significantly limits
the deployment of CNNs on lightweight devices such as low-power chips and
embedded devices.

Fortunately, Binary Neural Networks (BNNs) can achieve efficient inference
and small memory usage utilizing the high-performance instructions including
XNOR, Bitcount, and Shift that most low-power devices support [20L[66,1]
AT19TL80LOLE7I7T]. Despite the huge speed advantage, existing binary neural
networks still suffer a large drop in accuracy compared with their full-precision
counterparts [56L60,7718]. The reasons for the accuracy drop mainly lie in
two aspects.

On the one hand, the limited representation capability and discreteness
of binarized parameters lead to significant information loss in the forward
propagation. When the 32-bit parameters are binarized to 1-bit, the diversity
of the neural network model drops sharply, which is proved to be the key factor
in the accuracy drop of BNNs [90]. To increase diversity, some work proposed
to introduce additional operations. For example, the ABC-Net [55] utilizes
multiple binary bases for more representation levels and the WRPN [65] devises
wider networks for more parameters. The Bi-Real Net proposed in [62] added
a full-precision shortcut to the binarized activations to improve the feature
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IMB: reducing both the information loss and quantization error RBD: mitigating information error
by the representation alignment
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Fig. 1: Overview of the training and inference process for a convolutional layer of our DIR-Net.
The training consists of Information Maximized Binarization (IMB) in the forward propaga-
tion and Distribution-sensitive Two-stage Estimator (DTE) in the backward propagation, and
performs under the Representation-align Binarization-aware Distillation (RBD) scheme. IMB
changes the weight distribution in the forward propagation to maximizing the information
of weights and activations. The shape change of DTE during the whole training process
minimizing the loss of gradient information in the backward propagation. RDB distills the
representations between full-precision and binarized networks. In the inference process, the
convolution operation is implemented by XNOR-Bitcount and Bit-shift operations, which
achieve a significant speedup compared with the floating-point convolution.

diversity, which also greatly improves the BNNs. But due to the speed and
memory limit, any extra floating-point calculation or parameter increase will
greatly harm the practical deployment on the edge hardware like Raspberry Pi
and BeagleBone [45]. Therefore, it is still a great challenge for BNNs to achieve
high accuracy while can be deployed on lightweight devices as well.

On the other hand, accurate gradients supply correct information for net-
work optimization in backward propagation. But during the training process
of BNNSs, discrete binarization inevitably causes inaccurate gradients and fur-
ther the wrong optimization direction. In order to deal with the problem of
discreteness, different approximations of binarization for the backward prop-
agation have been proposed [8l[62LI4[47\[7], which can be mainly categorized
into improving the updating capability and reducing the mismatching area
between the sign function and the approximate one. However, the difference
between the early and later training stages is always being ignored. In fact,
powerful update capabilities are usually highly required at the beginning of
the training process, while small gradient errors become more apparent at the
end of training. Moreover, some works extremely decrease the gap between
the sign function and the estimator in a certain period of the training process,
while our study shows that ensuring suitable parameters can be updated in
the whole training process is better for BNN optimization. Specifically, when
the estimator of BNN extremely approximates the sign function, though the
gradient error between them is small, the gradient values in BNN are almost
all zeros and the BNN can hardly be updated, which is called "saturation" [17].
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Therefore, the methods devoted to extremely decreasing gradient error may
seriously ignore the harm to the parameter updating capability.

In order to address the above-mentioned issues, we study the network bina-
rization from the information flow perspective and propose a novel Distribution-
sensitive Information Retention Network (DIR-Net) (see the overview in
Fig. . The proposed DIR-Net mainly relies on three techniques that retain
the information during the forward and backward propagation and improve
BNNs’ training to higher accuracy by improving internal propagation and
introducing external representations. (1) the DIR-Net introduces a novel bi-
narization approach named Information Maximized Binarization (IMB) in
the forward propagation, which balances and standardizes the weight distri-
bution before binarizing. With the IMB, we can minimize the information
loss in the forward propagation by maximizing the information entropy of
the quantized parameters and minimizing the quantization error. Besides, the
IMB is conducted offline and thus brings no time cost during inference. (2)
The Distribution-sensitive Two-stage Estimator (DTE) is devised to com-
pute gradients in the backward propagation, which minimizes the multi-type
information loss by approximating the sign function. The shape change of
the DTE is distribution-sensitive, which obtains the accurate gradients and,
more importantly, ensures that there are always enough parameters updated
in the whole training process. (3) Besides improving internal propagation, a
Representation-align Binarization-aware Distillation (RBD) is also applied in
DIR-Net to improve BNNs’ training by introducing external representations.
The RBD aligns the forward representations between full-precision and bina-
rized networks by distillation-based optimization to mitigate the information
loss of representation caused by binarization.

Note that we extend our prior conference publication [72] that mainly concen-
trates on a binary neural network method. This paper further comprehensively
studies the information loss of BNN from the perspective of mathematics and
experience to comprehend the forward and backward propagation of BNN more
deeply. Existing works lack the analysis and comprehension of the information
loss in binarization, and the manual or fixed strategies are always applied to
BNN but significant information loss still exists. Therefore, compared with
the conference version, this manuscript further comprehensively studies the
information loss problem in binarization, presents new distribution-sensitive im-
provements to the BNN, and compares the proposed method with more SOTA
methods on more architectures. First, we present a more in-depth analysis of
the information loss in the forward and backward propagation in Sec. 4] For the
forward propagation, we provide mathematical studies about the effect of both
the information retention by weight balance and the binarization errors on the
global level, which further clarifies the error minimization motivation of our
IMB. For the backward propagation, we show that the changes in weight distri-
bution during BNN training may limit updating capability of BNNs with soft
estimators. Second, we propose a novel DIR-Net with distribution-sensitive
estimator DTE, which improves the backward propagation process. Instead of
changing the shape of the estimator in IR-Net [72] with a fixed strategy, the
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DIR-Net further adjusts the shape of the estimator according to the distribution
of weights/activations in the backward propagation to retain the information of
accurate gradients and the updating capability of BNN. Third, we design an
RBD distillation scheme for DIR-Net to improve BNNs’ training by introducing
external representations. Orthogonal to both the IMB and DTE techniques
devoting to retaining information by improving the internal propagation, the
RBD aligns the external representations between full-precision and binarized
networks by distillation-based optimization to mitigate the information loss
of representation caused by binarization. Fourth, we add detailed ablation
experiments in Sec. [p| to verify the effectiveness of techniques in DIR-Net on
BNNs (Table [4), and also evaluate the impact of binarization errors (Table [2]),
DTE clipping interval (¢, setting in Table , and parameter information en-
tropy (Fig. . Fifth, we compare proposed DIR-Net on image classification
and objective detection tasks with more SOTA binarization approaches in
Table [6| (BONN [28], Si-BNN [82], PCNN [27], Real-to-Bin [64], MeliusNet [3],
and ReActNet [61]), and evaluate it on compact networks (EfficientNet [79],
MobileNet [36] and DARTS [58]) and detection frameworks (Faster R-CNN [75]
and SSD [59]). The results show that our DIR-Net is versatile and effective
across various architectures and datasets. Moreover, we also add and discuss
more latest related work of network compression and quantization [31L8TL70L
10L60,5756L60] to reflect the characteristics and advantages of our DIR-Net.

This work provides a novel and practical view to explain how BNNs work.
In addition to the strong capability to retain the information in the forward
and backward propagation, DIR-Net has excellent versatility to be extended
to various architectures of BNNs and can be trained via the standard training
pipeline. We evaluate our DIR-Net on image classification (CIFAR-10 and
ImageNet) and objective detection tasks (PASCAL VOC and COCO). The
results indicate that our DIR-Net exceeds other binarization approaches greatly
in a variety of architectures, including ResNet, VGG, EfficientNet, MobileNet,
DARTS architectures, and Faster R-CNN and SSD detection frameworks. To
validate the real-world performance of DIR-Net on low-power devices, we also
implement it on Raspberry Pi and it achieves outstanding efficiency (11.1x
storage saving and 5.4x speedup).

In summary, our main contributions are listed as follows:

— We propose the simple yet efficient Distribution-sensitive Information Reten-
tion Network (DIR-Net), which can improve BNNs by retaining information
during the training process. Compared with existing fixed-strategy estima-
tors, the DTE estimator in DIR-Net ensures enough updating capability
and improves the accuracy of BNNs. And the proposed RBD scheme in
DIR-Net aligns the representations of the full-precision network and BNN
to mitigate information loss.

— We measure the amount of information for binarized parameters by in-
formation entropy and present an in-depth analysis about the effects of
information loss and binarization error in BNNs.
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— We investigate both forward and backward processes of binary networks
from the unified information perspective, which provides new insight into
the mechanism of network binarization.

— Experiments demonstrate that our method significantly outperforms other
state-of-the-art (SOTA) methods in both accuracy and practicality on
various architectures and vision tasks. And we further prove the DTE and
RBD in the proposed DIR-Net can stably improve the performance.

— We implement 1-bit BNNs and evaluate their speed on real-world ARM
devices, and the results show that our DIR-Net achieves outstanding effi-
ciency.

The rest of this paper is organized as follows. Section II gives a brief review
of related model binarization methods and low-power devices. Section III
describes the preliminaries of binary neural networks. Section IV describes
the proposed approach, formulation, implementation, and discussion in detail.
Section V provides the experiments conducted for this work, model analysis,
and experimental comparisons with other SOTA methods. In Section VI, we
conclude the study.

2 Related Work

Recently, resource-limited embedded devices attract researchers in the area
of artificial intelligence by their low-power consumption, tiny size, and high
practicality, which significantly promotes the application of artificial intelli-
gence technology. However, the SOTA neural network models suffer massive
parameters and large sizes to achieve good performance in different tasks,
which also cause significant complex computation and great resource consump-
tion. To compress and accelerate the deep CNNs, many approaches have been
proposed, which can be classified into five categories: transferred/compact
convolutional filters [96L[921[84]; quantization/binarization [37[11L89,Q9]; knowl-
edge distillation [1293\16]; pruning [29,[32,23]; low-rank factorization [48]40,
49186 .

Compared with other compression methods, model binarization can sig-
nificantly reduce the consumption of memory. By extremely compressing the
bit-width of parameters in neural networks, the convolution filters in binary
neural networks can achieve 32x memory saving. Model binarization also
makes the compressed model fully compatible with the XNOR-Bitcount op-
eration to achieve great acceleration, and these operations can even achieve
58x speedup in theory [73]. Besides, the model binarization less changes the
architecture compared with other model compression methods, which makes it
easier to implement on resource-limited devices and attracts attention from the
researchers. By simply binarizing full-precision parameters including weights
and activations, we can achieve obvious inference acceleration and memory
saving.

[13] proposed a binarized neural network by simply binarizing the weight
and activation to +1 or -1, which compressed the parameters and accelerated
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CNNs by efficient bitwise operations. However, the binarization operation in
this work caused a significant accuracy drop. After this work, many binarization
approaches were designed to decrease the gap between BNNs and full-precision
CNNs. The XNOR-Net [73] is one of the most classic model binarization
methods, which pointed out that using floating-point scalars for each binary
filter can achieve significant performance improvement. Therefore, it proposed
a deterministic binarization method which reduces the quantization errors
of the output matrix by applying the 32-bit scalars in each layer, while it
incurred more resource-consuming floating-point multiplication and addition.
The TWN [50] and TTQ [98] utilized more quantization points to improve
the representation capability of quantized neural networks. Unfortunately,
the bitwise operation can never be used in these methods to accelerate the
network, and the memory consumption also increased. The ABC-Net [55] shown
that approximating weights and activations by applying multiple binary bases
can greatly improve the accuracy of BNNs, while it unavoidably decreases the
compression and acceleration ratios. The HWGQ [8] considered the quantization
error from the perspective of activation function. The LQ-Nets [94] applied a
large number of learnable full-precision parameters to get better performance
while increasing the memory usage. [64] got strong BNNs with a multi-step
training pipeline and a well-designed objective function in the training process.
Some binarization methods are devoted to solving the gradient error caused by
approximating the binarization (sign) function by a well-designed estimator in
the backward propagation. BNN+ [I4] also proposed an estimator to reduce this
gap and further studied various estimators to find a better solution. DSQ [26]
and IR-Net [72] creatively applied soft estimators that gradually changes its
shape to optimize the network. Bi-Real [62] introduced a novel BNN-friendly
architecture with Bi-Real shortcut to improve the performance from the term
of accuracy. ReActNet [61] further improved the architecture and training steps
and achieved a better BNN performance. ReActNet (1) applies RSign and
RPReLU to enable explicit learning of the distribution to reshape and shift
the values around zero, (2) uses the ReActNet block structure that duplicates
input channels and concatenates two blocks with the same inputs to address
the channel number difference, (3) uses average pooling in the shortcut to
match spatial downsampling.

Though some progress has been made on model binarization, existing
binarization approaches still cause a serious decrease in accuracy compared
with 32-bit models. First, since the existing works do not effectively measure
and retain the information in BNNs, the massive information loss is still a severe
problem exists in the BNN training process. Second, the existing methods
only focus on minimizing the gradient error, and seriously neglect the update
capability of network parameters. It is a trade-off between update capability
and accurate gradient that researchers should take into account when designing
the estimators. Additionally, the existing methods, which were proposed to
increase the accuracy of BNNs, always incur extra floating-point multiplication
or addition. Thus we propose DIR-Net to retain the information during the
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training process of BNNs. Further, it eliminate the resource-consuming floating-
point operations in the convolutional layer.

3 Preliminaries

The main operation in a layer of DNNs in the forward propagation can be
expressed as

Zz=w® a, (1)

where ® indicates the inner product operation, w € R™ and a € R” represent
weight tensors and the input activation tensors, respectively. a € R™ is the
output of the previous layer. However, a large number of floating-point multi-
plications greatly consume memory and computing resources, which heavily
limits the applications of CNNs on embedded devices.

Previous work has shown that bitwise operations, including XNOR, Bit-
count, and Shift, can greatly accelerate the inference of CNNs on low-power
devices [73]. Therefore, in order to compress and accelerate the deep CNNs,
binary neural networks binarize the 32-bit weights and/or activations to 1-bit.
In most cases, binarization can be expressed as

Qx = an7 (2)

where x indicates 32-bit weights w or 32-bit activations a, and By € {—1,+1}"
represents binary weights By, or binary activations B,. o represents scalars
including o, for binary weights and «, for binary activations. Usually, the sign
function is used to calculate By

+1, ifx>0

n (3)

By =sign(x) = {

, otherwise.
With the binary weights and activations, the tensor multiplication opera-
tions can be approximated by

zZ = Qw &® Qa - awaa(Bw O] Ba), (4)

where ©® indicates the bitwise inner product operation of tensors implemented
by bitwise operations XNOR and Bitcount. In addition, since the Shift oper-
ation is more hardware-friendly, some work even replace the multiplication
in the inference process of BNNs by Shift, such as the Shift-based batch nor-
malization [I3], which further accelerates the inference speed of BNNs on
hardware.

However, the derivative of the sign function is zero almost everywhere,
which is obviously incompatible with the backward propagation since exact
gradients for activations and/or weights before the discretization would be zero.
Therefore, many works adopt the Straight-Through Estimator (STE) [4] in
gradient propagation, which is identity or hardtanh function specifically.
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4 Distribution-sensitive Information Retention Network

In this paper, we mention that severe information loss during training hinders
the high accuracy of BNNs. To be exact, information loss is mostly caused by
the sign function in the forward propagation and the approximation of gradients
in the backward propagation, and it greatly limits the performance of BNNs.
To address this problem, we propose a novel network, Distribution-sensitive
Information Retention Network (DIR-Net), which retains information during
training and deliver excellent performance to BNNs. Besides, all convolution
operations in DIR-Net are replaced by hardware-friendly bitwise operations.

4.1 Information Maximized Binarization in the Forward Propagation

In the forward propagation, the BNN usually suffers both information entropy
decreases and quantization error, which further causes information loss of
weights and activations. To retain the information and minimize the loss in the
forward propagation, we propose Information Maximized Binarization (IMB)
that jointly considers both information loss and quantization error.

4.1.1 Information Loss in the Forward Propagation

Since the discretization of the parameters by the binarization operation, the full-
precision and binarized parameters suffer a large numerical difference causing
significant information loss. In order to make the parameters of the binarized
network closer to the full-precision counterparts, the binarization error of
the BNN should be minimized. Consider the computation in a multivariate
function h(x), where x denotes the variable vector with full-precision. When the
h(-) function represents a neural network, x represents the 32-bit parameters
(weights w/activations a). The global error &, caused by quantizing x can be
expressed as

& = h(Qx) - h(X), (5)
where Qy indicates the variable vector quantized from x. When the probability
distribution of x is known, the error distribution and the moments of the error
can be computed. For example, the minimization of expected absolute error
can be present as

minE[|&, ] = / 1(Qe) — h ()] (x) dx, (6)

where E[-] denotes the expectation operator and f(x) denotes the probability
density function of x. In general, h(-) can be any linear or nonlinear function of
its arguments, and an analytical evaluation of this multidimensional integral can
be very difficult. In prior work [87,42], a simplifying assumption is made where
the quantity of &£, is approximated by its first-order Taylor series expansion

o

Eh~a—x

(Qx _X) . (7)
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For a certain value of x, the % is constant and non-zero. Therefore, minimizing
the global error E[|€,]] can be approximated as minimizing the quantiza-
tion error between the quantized (binarized) vectors and the full-precision
counterparts. The optimization problem in Eq. @ can be simplified as

min J(Qx) = |Qx — %, (8)

where J(Qx) is the quantization error of quantized parameters.

There are many studies, such as [73,52,[94], that focus on binarized neural
networks, optimizing the quantizer by minimizing the quantization error. Their
objective functions (Eq. typically) suppose that quantized models should
just strictly follow the pattern of full-precision models, which is not always
enough, especially when the parameters are quantized to extremely low bit
width. And during the BNN training, the parameters quantized from the full-
precision counterparts are limited to 2 values by the binarization function. Thus,
the amount of parameter information estimated by Shannon entropy descends
from almost infinite (32-bit) to extremely limited (1-bit), and is vulnerable since
the parameters suffer highly homogenization. Besides, the representation space
of binary neural networks By € {—1,1}"*™ is also quite different from that of
full-precision neural networks X € R™*™. Without retaining the information
during training, it is insufficient and difficult to ensure a highly accurate
binarized network only by minimizing the quantization error.

Therefore, our study is basically derived from the perspective of information
retention. In BNNs, the binarized parameter X optimized to retain information
should most reflect the original full-precision counterparts Qx. And in informa-
tion theory, this goal can be expressed as maximizing the mutual information
Z(X; Qx) between the full-precision and binarized parameters:

arg )Iggii I(Xa Qx) = H(Qx) - H(Qx | X)a (9)

where H(Qx) is the information entropy, and H(Qx | X) is the conditional
entropy of Qx given X. Since we use the deterministic sign function as the
quantizer in the binarization, for any X there is one and only one corresponding
X, i.e., H(Qx | X) = 0. Hence, the original objective function Eq. (9) is
equivalent to maximizing the information entropy of Qx.

Then we state the precise definition of the information entropy in BNNs
and then analyze how to maximize it. For a random variable b € {—1,+1}
obeying Bernoulli distribution, each element in By can be viewed as a sample
of b. The information entropy of Qy in Eq. can be calculated by

H(Qx) =H(Bx) =~ > pb)ln(p(b)), (10)

be{—1,1}

where p(b) denote the probability, p(b) € [0,1] and p(1) + p(—1) = 1. By
maximizing the information entropy H(Qx) in Eq. , we make the bina-
rized parameters Qx have the maximized amount of information, so that the
information in the full-precision counterpart x is retained.



Distribution-sensitive Information Retention for Accurate Binary Neural Network 11

4.1.2 Information Retention via Information Mazimized Binarization

To retain the information and minimize the loss in the forward propagation, we
propose Information Maximized Binarization (IMB) that jointly considers both
information loss and quantization error. First, we balance weights of the BNN
to maximize the information of weights and activations. Under the Bernoulli
distribution assumption and symmetric assumption of x, when p(1) = 0.5 in
Eq. , the information entropy H(Qx) of the quantized values x takes the
maximum value, which means the binarized values should be evenly distributed.
However, it is non-trivial to make the weight of BNNs be close to that uniform
distribution only through backward propagation.

Fortunately, we find that sim-
ply redistribute the full-precision
counterpart of binarized weights ey sign AT
can maximize the information en- H(By) = 0.50

trOpy Of binarized WelghtS and ac - Information A,Aazzirn{izeiBinarization -
. ! . - |-_ - - .
tivations simultaneously. Our IMB ﬁ — ;ﬁ% >
. alance - i
balances weights to have zero-mean 3 X oo o
. . H(Qx(0) = 0.69
attribute by subtractmg the mean Fig. 2: Comparison on information entropy of

of full-precision weights. Moreover,  binary weights quantized with IMB Q, and

directly binarizing weights without the sign function, respectively. Owing to the

performing the unit-norm might balance characteristic brought by IMB, the in-
formation entropy of Qx is larger than sign(x),

cause two problems. First, the full- where Qx and sign(x) have a probability of
precision weights are usually heav- 0.5 and 0.2 to take value 1 under Bernoulli
ily clustered in the range [fl’ 1]’ distribution, respectively.

which leads to more significant gradient approximation errors using STE. For
example, in the full-precision ResNet-18 model for ImageNet, the proportion
of weight elements in the range [—1,1] can even reach more than 95%. Second,
since the sign function with zero threshold is applied for the binarization, a
large number of weights close to 0 would change the signs and the binarized
values due to tiny gradient perturbations, which can make the optimization of
BNNs severely unstable. Thus, we further standardize the balanced weights to
mitigate the negative effect of weight magnitude. The standardized balanced
weights Wgiq are obtained through standardization and balance operations as
follows

Traditional Binarization

standardize

w
o(w)’
where p and o denote the mean and standard deviation, respectively. Wgiq
has two characteristics: (1) zero—mean, which maximizes the obtained binary
weights’ information entropy. (2) unit—-norm, which avoids the full-precision
counterparts of binarized weights too concentrated. Therefore, compared with
the direct use of the balanced progress, the use of standardized balanced
progress makes the weights in the network stably updated and thus further
improves the performance of BNNs.

Since the value of Qy depends on the sign of wyq and the distribution
of w is almost symmetric [33l[3], the balanced operation can maximize the

(11)

vAVstd = Wgtd — ,U/(Wstd)a Wstd =
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information entropy of quantized Q, on the whole. And when IMB is used
for weights, the information flow of activations in the network can also be
maintained. Supposing quantized activations Q, have mean E[Q,] = 1, the
mean of z can be calculated by

E[Z] =Qw® ]E[Qa] = Qw ® pul. (12)

Since the IMB for weights is applied in each layer, we have Q. ® 1 = 0, and
the mean of output is zero. Therefore, the information entropy of activations in
each layer can be maximized, which means that the information in activations
can be retained.

Then, to further minimize the quantization error defined in Eq. and avoid
extra expensive floating-point calculations in previous binarization methods
causing by 32-bit scalars, the IMB introduces an integer shift-based scalar s to
expand the representation capability of binary weights. The optimal shift-based
scalar can be solved by

B*

W

s* = argmin||Weq — Bw <> s||*> s.t. s €N, (13)
Bw,s

where <> stands for left or right Bit-shift. B}, is calculated by B}, =
sign(Wetq), thus s* can be solved as

¥l

s* = round(log, (14)

Therefore, our IMB for the forward propagation can be presented as below:

Qw = By <> = sign(Wyq) <>,

15
Qa =B. = Sign(a)' ( )

The main operations in DIR-Net can be expressed as
z=(Bw ©®Ba) <> s. (16)

As shown in Fig. [2] the parameters quantized by IMB have the maximum
information entropy under the Bernoulli distribution. We call our binarization
method "Information Maximized Binarization" because the parameters are
balanced before the binarization operations to retain information.

Note that IMB serves as an implicit rectifier that reshapes the data distri-
bution before binarization. In the literature, a few studies also realized this
positive effect on the performance of BNNs and adopted empirical settings
to redistribute parameters [73l[I7]. For example, [I7] proposed the specific
degeneration problem of binarization and solved it using a specially designed
additional regularization loss. Different from these work, we first straightfor-
wardly take the information perspective to rethink the impact of parameter
distribution before binarization and provide the optimal solution by maxi-
mizing the information entropy. In this framework, IMB can accomplish the
distribution adjustment by simply balancing and standardizing the weights
before the binarization. This means that our method can be easily and widely
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Fig. 3: The weight distributions of a specific convolutional layer in binarized ResNet-18
architecture with IMB on ImageNet dataset at different epochs (10, 200, and 400) during
training. The first and second rows present the distributions in the BNNs using identity and
clip approximations, respectively.

applied to various neural network architectures and be directly plugged into
the standard training pipeline with a very limited extra computation cost.
Moreover, since the convolution operations in our DIR-Net are thoroughly
replaced by bitwise operations, including XNOR, Bitcount, and Shift, the
implementation of DIR-Net can achieve extremely high inference acceleration
on edge devices.

4.2 Distribution-sensitive Two-stage Estimator in the Backward Propagation

In the backward propagation, affected by the limited update range of the
estimator and the gradient approximation error simultaneously, the gradient
of the BNN suffers from information loss. In order to retain the information
originated from the loss function in the backward propagation, we propose a
progressive Distribution-sensitive Two-stage Estimator (DTE) to obtain the
approximation of gradients.

4.2.1 Information Loss in the Backward Propagation

Due to the discretization caused by binarization, the approximation of gradients
is inevitable in the backward propagation. Therefore, since the impact of
quantization cannot be accurately modeled by approximation, a huge loss of
information occurs. The approximation can be formulated as

oL _ 0L 0Qu 0L
ow  0Qw ow  9Qy T\

(17)

where L(w) indicates the loss function, g(w) represents the approximation of
the sign function and ¢’(w) donates the derivative of g(w). In previous work,
there are two commonly used approximations practices

identity : y =z or clip : y = hardtanh(z). (18)
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The identity function completely ignores the effect of binarization and
directly passes the gradient information of output values to input values. As
shown in the shaded area of Fig. a), the gradient error is huge and accumulates
through layers during the backward propagation. In order to avoid unstable
training instead of ignoring the error caused by identity, it is necessary to
design a better estimator to retain accurate information of gradient.

The clip function considers the clipping attribute of binarization, which
means only those inside the clipping interval ([—1,1]) can be passed through
backward propagation. But only the gradient information inside the clipping
interval can be passed. As shown in Fig. b), as for parameters outside [—1,1],
the gradients are clamped to zero, which means that once the value jumps
outside of the clipping interval, it will not be updated anymore. This feature
greatly limits the updating capability of backward propagation, thereby the
clip approximation makes optimization more difficult and harms the accuracy
of models. Strong updating capability is essential for the training of BNNs,
especially at the beginning of the training process.

Existing estimators are designed to obtain the gradient close to the derivative
of the sign function and retain the updateable capability of the BNN, so most
of them have an updateable interval, e.g., for the clip function, the interval is
[—1,1]. However, we observe an interesting trend during the training process
about the changes in the distribution of weights. As Fig. [3] shown, when the
IMB is applied, the number of weights close to 0 continuously decreases during
training, which occurs in most BNNs with various estimators (such as identity
and clip approximation). Moreover, since the application of batch normalization
in BNN;, there are also a large number of elements in the activation excluded
from the updateable interval, such as [—1,1] for STE. The phenomenon causes
more weights to be outside the updateable interval and brings great challenges
to the design of estimators. For BNNs with clip approximation, the phenomenon
lets more weights be out of [—1, 1] and these can not be updated anymore, which
limits their updating capability seriously. Some soft approximation functions
designed to reduce the gradient error are also affected by this problem since
they reduce the updateable interval of the parameter as well. For example, in
the later stage of the EDE in IR-Net [72], the update range of the estimator
continues to shrink to reduce the information loss caused by gradient errors.
At the end of this stage, less than 3% of the weights can be updated (Fig. .
In other words, the BNN almost lost its updating capability at this time.

The identity function causes gradient error between the sign function in
binarization and the gradients in backward propagation, while the clip and soft
approximation functions cause part of gradient outside the updatable interval.
Our method try to make a trade-off to take the advantage of these two types
of gradient approximation and avoid being affected by their drawbacks.

4.2.2 Information Retention via Distribution-sensitive Two-stage Estimator

To make a balance between them, and obtain the optimal approximation of
gradients in the backward propagation, we proposed Distribution-sensitive Two-
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Fig. 4: Error caused by gradient approximation, represented by the area of gray shades. As
is shown, (a) identity approximation suffers huge error. (b) Clip approximation does not
update the values outside the clipping interval. (¢) DTE maintains the updating capability
at early stage and progressively reduces the error. S; shrinks during Stage 1 by decreasing
the clipping value and S> shrinks during Stage 2 by increasing the derivate.

stage Estimator (DTE). Based on the analysis above, an intuitive backward
propagation solution is using a shape-flexible soft function to approximate
the gradient for meeting the information retention requirements in different
training stages. The hyperbolic tangent (tanh) function y = tanh(z) is one of
the ideal basic approximation functions, which has a centrosymmetric shape
same as the sign function, and also has limits of 1 and -1 when x — oo and
x — —00, respectively. And in order to make the function more flexible to
adapt to the requirements of different stages, the form of DTE is defined as

g(z) = ktanhtz, (19)

where k and t denote the coefficients that determine the specific shape of
the function, g(x) represents the derivable approximate substitute for the
forward sign function in the backward propagation, and x denotes the ran-
dom variable sampled from the full-precision parameter x. The k and ¢ are
distribution-sensitively change during the training process to restrict the shape
of approximate function:

i Tmax 1
t= min(tloo%, maX(Tmin].ON xlog Tmin 7t5)), k= IIlaX(*7 1),

s.t. Z p(i) > ¢,

—t<i<t

(20)

where 7 denotes the current epoch, IV is the number of total epochs; t. means
that the number of parameters in the range [—¢,¢] is € of the total, where €
indicates the lower limit for the percentage of parameters with high updating
capability and is empirically set as 10% to take both updating capability and
accurate gradient into account; tigoy is defined as t19gy; = max(|x|), which
determines the upper limit of valid update range for DTE; p(-) is probability
mass function of x that reflects the distribution of the element values in the
parameter X; Thin and Tax are 1071 and 10!, respectively.

In order to retain the information originated from the loss function in the
backward propagation, the DTE proposes a progressive distribution-sensitive
two-stage method to obtain the approximation of gradients.

Stage 1: Retain the updating capability of the backward propagation
algorithm. We keep the derivative value of gradient estimation function near
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one, and then gradually reduce the clipping value from a larger number to
one. At the start of this stage, the shape of DTE is depending on the weight
distribution of each layer, which ensures all parameters to be fully updated.
DTE adaptively changes the clipping value during this stage to get more
accurate gradients. The derivation of the DTE in the first stage is presented as:

¢ (z) =1 —tanh?(tz), t > 1. (21)

Applying this method, our estimation function evolves from identity to clip
approximation, which ensures the strong updating capability at the beginning
of the training process and alleviates the loss of updating capability.

Stage 2: Keep the balance between accurate gradients and strong
updating capability. In this stage, we keep the clipping value as one and
gradually push the derivative curve towards the shape of the step function, and
ensure that enough parameters are updated during this process. During this
process, the shape of DTE is changed according to the parameter distribution,
and the derivative around 0 is continuously increased to obtain an accurate
gradient until there are not enough parameters to be updated. The derivation
of the DTE in the second stage is presented as:

g(z) =t- (1 —tanh?(tz)), t. <t < 1. (22)

Benefited from the proposed method, our estimation function evolves from
clip approximation to the sign function, which ensures the consistency in
forward and backward propagation.

Fig. c) shows the shape change of DTE in each stage. Our DTE updates all
parameters in the first stage, and further improves the accuracy of parameters
in the second stage. Based on this two-stage estimation, DTE can reduce the
gap between the forward binarization function and the backward approximation
function. Meanwhile, the shape of DTE is adaptively adjusted by parameter
distribution to ensure that a certain volume of parameters can be updated in
each iteration. And in this way, all the parameters can be reasonably updated.

4.3 Representation-align Binarization-aware Distillation Scheme for
Information Retention Training

Although the forward and backward propagation of BNNs is greatly improved
to reduce the information loss, the high discretization still affects the represen-
tations inevitably. With well-trained corresponding full-precision networks, we
present a Representation-align Binarization-aware Distillation (RBD) scheme
to improve BNNs orthogonally with the improved internal propagation by
introducing external representations.

4.8.1 Information Loss in the Internal Representation

In BNNSs, the parameters are binarized from the corresponding full-precision
counterparts during the training process. Our proposed binarization unit is
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a deterministic binarization strategy that minimizes numerical errors and
entropy by weight balance and standardization, aiming to minimize the impact
of binarization on the information flow of BNNs. These techniques improve
the BNN performance by improving its own parameters. However, the gain
of improving the internal propagation purely is limited, thus the information
loss in the BNNs still exists and is even significant. We can also optimize
the representation of the BNNs by introducing the assistance of external
information, such as applying the representation of the full precision model as
a reference.

For the convolutional layer in the BNN, the error jointly caused by acti-
vation and weight binarization on the output representation is still hard to
estimate. Specifically, consider a binary neural network M and its full-precision
counterpart Mp,, the error &, of output representation can be expressed as

- 2
Izepll2 [lzll2”

where zg, = W®A; W, A € Mg, and z = Qw ©Qa; Qw, Qa € M. Considering
the batch normalization layer usually followed by the convolutional layer, we
normalize the representation by L2 normalization function || - ||z to get the
rid of the interference of scale. Due to the nonlinearity of the convolution and
binarization operations in Eq. , it is hard to directly solve or estimate the
error by statistic-based methods. Moreover, when the binarization is consid-
ered as perturbation the network, the errors caused by quantization may be
continuously accumulated in the BNN [53].

We would like to note that the above discussion about the information loss
of internal representation in the BNN is compatible with the related conclusion
for the binarization unit in Sec. but cannot be mitigated fundamentally
by the binarization unit improvements. The essence of information retention
in Eq. @ is to minimize the loss of information caused by a binarization
unit, which regards a binarized parameter (such as the weight and activation
of a certain layer) as the variable and minimizes the global error caused by
binarization. However, when we regard more than one parameter as variables, it
is hard to directly estimate or optimize the joint effect of their binarization on
a global error by a solution-based approach. Besides, there is also a significant
accumulated error in the information flow in the forward propagation of the
BNN, especially in the latter part of the propagation.

Ea (23)

4.8.2 Information Retention via Representation-align Binarization-aware
Distillation

Therefore, except the techniques to improve the binarization unit, we also
present an Representation-align Binarization-aware Distillation (RBD) scheme
for the BNN training by introducing external representations. This scheme
utilizes a pre-trained full-precision network as a teacher with the same architec-
ture as the BNN to be trained. This scheme distills each binarized convolutional
layer, aiming to align the output representations between the binarized and
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full-precision models to reduce the impact of binarization on information of
representation.

Specifically, during the forward propagation, we save the output repre-
sentation of the binarized convolutional layer in the BNN and that of the
corresponding teacher model, respectively. And inspired by [64], we use the
attention form in the distillation process for representations of the teacher
and student networks, which mainly pays attention to the inner relation of
representations and eliminates the influence of scale. When we substitute it
into Eq. , the error for the /-th layer can be expressed as:

zz2 Zf g
5ﬁ2 - - L ) (24)
122 2,
p

then we take the L2 normalization of the representation error 552 as the
distillation loss term of the layer and sum the loss terms:

L L z' 2 7t 2
Lrep =Y _|lE&], = -2 . (25)
2 €221l 2|z 2] 125 212 )

The losses from optimization techniques are summed to update the weight
jointly during the backward propagation, which can be expressed as:

L = LcE + vLrBD, (26)

where Lcg denotes the Cross-Entropy (CE) loss of the BNN and v is a
hyperparameter to control distillation impact, set to 0.1 as default.

Algorithm 1 BNN Training Process of the proposed DIR-Net.

1: Require: the input data a € R™, pre-activation z € R, full-precision weights w € R™.
2: Forward propagation
3:  Compute binary weight by IMB [Eq. (15)]:

\\Wstdl\l)
n

W—W
o(w—=1))’
Quw = By <> 5 = sign(Wepq) <> s
4:  Compute balanced binary input data [Eq. ]:

Qa = Ba = sign(a);

Wstd = s = round(log,

5. Calculate the output: z = (Bw ©® Ba) <> s
6: Back propagation
7:  Update the ¢’(-) via DTE:

Get current ¢ and k£ by Eq. (20)
Update the ¢’(:): g¢'(x) = kt(1 — tanh?(tz))
8:  Calculate the gradients w.r.t. a:
oa — B—Qag’(a)
9:  Calculate the gradients w.r.t. w:
58 0L g (a2
10: Parameters Update
11:  Update the network loss by RBD [Eq. (26)]:
Calculate the loss £ = Lcg + YLRBD
Update w: w =w — ng—fv, where 7 is learning rate.
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Our RBD scheme introduces an additional full-precision teacher model,
which can be regarded as the most ideal information-retaining version of the
BNN to be trained. Then, representation alignment is performed by distilling
the constructed error metric in the form of attention.

4.4 Analysis and Discussions

The training process of our DIR-Net is summarized in Algorithm [I} In this
section, we will analyze DIR-Net from different aspects.

4.4.1 Complezity Analysis

Since IMB and DTE are applied during the training process, there is no extra
operation for binarizing activations in DIR-Net. And in IMB, with the novel
shift-based scalars, the computation costs are reduced compared with the
existing solutions with 32-bit scalars (e.g., XNOR-Net, and LQ-Net), as shown
in Table [I] Moreover, we further test the real speed of deployment on hardware
and we showcase the results in Sec. [5.3

Table 1: The additional 32-bit operations consumed by different binarization methods.

Method Float Operations Bitwise Operations
XNOR-Net Ch Cq x Cy
LQ-Net 1 C1 x Ca
Ours 0 C1 xCy+C

*

C1 = Wout X hout X cout and C2 = wy X hyi X cin, where cout, Cin, Wk, Pk, Wout, Pout
denote the number of output channels, input channels, kernel width, kernel height,
output width, and output height, respectively. The Bitwise operation mainly consists of
XNOR, Bitcount and Shift.

0.4 3y
DIR-Net
4.4.2 Stabilize Training 03
In IMB, weight standardization is intro-  °?
duced for stabilizing training, which avoids o1
fierce changes of binarized weights. Fig. ] H ‘
shows the data distribution of weights 0.0 -

. . . . -4 -2 0 2 4
without standardization, obviously more

concentrated around 0. This phenomenon
means the signs of most weights are easy to
change during the process of optimization,
which directly causes unstable training of
binary neural networks. By redistributing
the data, weight standardization implicitly
sets up a bridge between the forward IMB

Fig. 5: Full-precision weights (in red)
in neural networks have a small data
range and always gather around O,
and thus their signs are highly pos-
sible to flip in the backward propa-
gation. The DIR-Net balances and
standardizes the weights (in blue) be-
fore the binarization for stabilizing
training.
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and backward DTE, contributing to a more stable training of binary neural
networks. Moreover, the proposed DTE also stabilizes the training by not only
ensuring the updating capability of networks, but also preventing the estimator
from being too steep, and thus avoid the gradients from being excessively
enlarged.

5 Experiments

We perform image classification on two benchmark datasets: CIFAR-10 [43] and
ImageNet (ILSVRC12) [I5] and object detection task on PASCAL VOC [22]
and COCO [54] datasets to evaluate our DIR-Net and compare it with other
recent SOTA methods over various architectures.

DIR-Net: We implement our DIR-Net based on PyTorch since it has a
high degree of flexibility and a powerful automatic differentiation mechanism.
To build a binarized model, we just use the binary convolutional layers binarized
by our method instead of the convolutional layers of the original models.

Network Structures: We evaluate our DIR-Net performance on main-
stream and compact CNNs structures, including VGG-Small [94], ResNet-18,
ResNet-20 on CIFAR-10, and ResNet-18, ResNet-34 [30], MobileNetV1 [36],
EfficientNet-B0 [79], and DARTS [58] on ImageNet dataset in our experiments.
To verify the versatility of our method, we also evaluate our DIR-Net on
networks with normal structure and ReActNet [6I] structure, the latter in-
cludes several structure designs and is specifically proposed for binarization.
We guarantee the architecture of DIR-Net in the reported results is consistent
with existing SOTA competitors. We binarize all convolutional and fully con-
nected layers except the first and last one, and keep the 1x1 convolution to
full-precision in EfficientNet and DARTS.

Hyper-parameters and other setups: In order to evaluate our DIR-Net
on different CNN structures, we mostly apply the original hyper-parameter
settings and training steps in their papers, and follow exactly the presented
results in their paper [73l04,62L[721[6T[85]. Specifically, for experiments on
CIFAR-10, we train the models for up to 400 epochs. The learning rate starts
at le-1 and decays to 0 during training by the Cosine Annealing scheduler [63].
For experiments on ImageNet, we train the models for up to 250 epochs. The
learning rate starts at le-2 and decays to 0 during training by the Cosine
Annealing scheduler. The weight decay of le-4 and batch size of 128 are
adopted following the original paper, and SGD is applied as the optimizer with
a momentum of 0.9. For experiments on Pascal VOC and COCO datasets,
we train the models for up to 300000 iterations. The learning rate starts at
le-3 and decays at 30000th, 80000th, 200000th iteration, the weight decay of
0 and batch size of 32 are adopted, and Adam is applied as the optimizer.
And we evaluate the results of DIR-Net in all comparative experiments with 3
different random seeds and report their mean values, and discuss the standard
deviations of results in the corresponding specific sections.
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Fig. 6: (a) IMB’s effect on information entropy of activations in each layer of ResNet-20.
(b) The effect of activation information entropy on accuracy for ResNet-20 on CIFAR-10
dataset, where the z-axis coordinate indicates the percentage of activations that less than 0.

5.1 Ablation Study

In this section, we evaluate the performance and effects of our proposed IMB
and DTE on BNN.

5.1.1 Effect of IMB

Our proposed IMB adjusts the distribution of weights to maximize the infor-
mation entropy of binary weights and binary activations in the network. Due
to the balance operation before binarization, the binary weight parameters of
each layer in the DIR-Net have the maximal information entropy. As for binary
activations affected by binary weights in DIR-Nets, the maximization of its
information entropy is also guaranteed.

In order to illustrate the information retention capability of IMB, in Fig.
we show the information entropy reduction of each layer’s binary activations in
the network quantized by IMB and vanilla binary neural network respectively.
As the figure shown, vanilla binarization results in a great decrease in the
information entropy of binary activations. It is notable that the information
loss seems to accumulate across layers in the forward propagation. Fortunately,
in the IMB quantized networks, the information entropy of activations of
each layer is close to the maximal information entropy under the Bernoulli
distribution. IMB can achieve information retention of the binary activations
in each layer.

We further evaluate the impact of information on our DIR-Net in detail.
The information in DIR-Net is defined by Eq. (10), and can be adjusted by
changing the mean value of activations. Fig. presents the relationship
between the information of weights in DIR-Net and the final accuracy. The
information entropy of binarized activations is determined by the percentage of
full-precision counterparts that less than 0. The results show that information
entropy is almost positively correlated with network accuracy. And when
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the information is maximized, the BNN achieves the highest accuracy, which
verifies the effectiveness of IMB. Therefore, information entropy is an important
indicator to measure the amount of information that BNN holds, and we can
improve BNNs’ performance by maximizing the entropy.

In addition, we analyze the impact of IMB on binarization errors. In
Table 2] we compare binarized networks that apply different approaches to
quantize weights (activations are binarized directly for the sake of fairness),
including vanilla binarization, XNOR binarization, and our IMB. The XNOR
binarization uses 32-bit scalars while our IMB uses integer shift-based scalars.
Compared with vanilla binarization, BNNs quantized by XNOR and IMB
have a much smaller binarization error since the usage of scalars. Our IMB
further eliminates all floating-point scalars (1.3e3) and related floating-point
computation compared with XNOR binarization, while the binarization error
only increases by 5% (0.1e4) but the quantized network enjoys better accuracy
(84.9%). The results show that our IMB has a better balance between inference
speedup and binarization error minimization.

Table 2: Ablation study for binarization error on ResNet-20.

Method Bit-width (W/A) Error  Float Scalar  Accuracy (%)
Full-Precision 32/32 - - 91.7
Binary 1/1 5.1e4 0 83.8
XNOR 1/1 1.9e4 1.3e3 84.8
IMB (Ours) 1/1 2.0e4 0 84.9

5.1.2 Effect of DTE

Firstly, we discuss the setting of the parameter ¢. in the DTE, which deter-
mines the degree of updating capability that DTE maintains. As mentioned
in section we control the value of the parameter t. to ensure that at least
€ of parameters are updated during the whole training process. However, if
the value of € is set too large, the gradients will be not accurate since the gap
between the estimator and the sign function is huge. Table [3]shows the accuracy
of DIR-Net under different ¢, settings, based on the ResNet-20 architecture and
the CIFAR-10 dataset. The results show that the accuracy increases with the
decreasing of the value of € in a considerable range (approximately 100%-10%).
And the models which properly ensure the updating capability perform better
than that do not control the lower limit of updating capability at all (e is set to
0%). The results show that compared with the estimator that simply minimizes
the gradient error, appropriately improving the minimum updating capability
of binarized model and keeping enough parameters updating during training
are more helpful to improve BNN performance. Therefore, in our experiment,
we empirically set the value of € to 10% to achieve a good trade-off between
accurate gradient and updating capability.
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Table 3: The effect of parameter € on accuracy.

e (%) 100 90 8 70 60 50 40 30 20 10 0
Accuracy (%) 84.2 84.4 84.7 84.6 85.1 85.7 85.9 86.2 86.7 86.8 86.5
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Fig. 7: Comparison of representation errors of ResNet-18

the curve of the correspond- quantized by ReActNet and DIR-Net. We present the

ing derivative of existing representation errors of the last convolutional layer in

EDE and our DTE, respec- residual blocks to compare with a full-precision teacher
)

with the same structure.

tively. Among the deriva-
tive curves, the blue curves
represent the derivative of EDE or DTE and the yellow ones represent the
derivative of STE (with clipping). Obviously, in the first stage (epoch 10 to
epoch 200 in Fig. [8) of DTE, there are lots of data beyond the range of [—1, +1],
thereby the estimator should have a larger effective updating range to ensure
the updating capability of the BNN. In addition, the peakedness of weight
distribution is high and a large amount of data is clustered near zero when
training begins. DTE keeps the derivative close to the identity function at
this stage to avoid the derivative value near zero being too large, thereby
preventing severe unstable training. Fortunately, as binarization is introduced
into training, the weights will be gradually redistributed around —1/+ 1 in the
later stages of training. Therefore, we can slowly increase the derivative value
and approximate the standard sign function to avoid gradient mismatch. The
visualized results show that our DTE approximation for backward propagation
is consistent with the real data distribution, which is critical to improving the
accuracy of networks. Moreover, compared to the existing EDE, the improve-
ment of DTE lies in the ability to maintain the network’s updating capability
throughout the training process, especially in the later stages of training. As
shown in Fig. [8] at the 400 epoch, the derivative of EDE is almost the same as
the sign function (the pink line) and only 2.78% of weights can be updated,
while the proposed DTE ensures at least € (default set as 10%) of weights can
be continuously updated.

5.1.8 Effect of RBD

The proposed RBD aims to align the representation between the full-precision
and the binarized ones by distilling the corresponding activation outputs with an
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especially designed loss function. By aligning the inner relations, the impact of
high discrete representation is further reduced with more information retained
in the network.

Fig. [7] shows the phenomenon of error accumulation in ReActNet and DIR~
Net. It shows the average representation error of 30 random samples after
every four layers, which are calculated by Eq. and takes the absolute sum
of each convolutional layer. The binarized network always loses information
during propagation, while the corresponding full-precision network is not
affected by binarization and is considered to be well-trained. Thus, we induce
the full-precision representations as external knowledge to better reduce the
difficulty of training binarized networks. We can see from the figure that
based on ResNet-18, for ReActNet, the representation error between binarized
parameters and corresponding full-precision parameters begins with 5.1e-4 after
the first convolution layer, and increases gradually to 3.4e-3. But our DIR-Net
is equipped with RBD, and the distillation effectively closes the distance to
the full-precision counterpart which is 29.1% lower than ReActNet after the
last block. And thus stabilizes the training process of binarized networks to
get higher results.

10 epoch 200 epoch 400 epoch

60

40

20

> € (10%)
2 4

Fig. 8: The proposed distribution-sensitive DTE takes full account of the impact of weight
distributions (after standardization) in different epochs (10, 200 and 400) during training.
The weight distributions are shown in the upper part, the middle and bottom parts are the
comparisons of estimators in DIR-Net (DTE) and existing IR-Net (EDE). Taking DTE as
an example, the blue line is the derivative of DTE, the yellow and the pink lines are the
derivative of the STE and sign function, respectively. And the shade indicates the error
between the derivative of DTE/STE and that of the sign function. Compared with existing
EDE, DTE further ensures that at least €(10%) weights can always keep updating capability
during training.
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5.1.4 Ablation Performance

We further evaluate the performance of different parts of DIR-Net using the
ResNet-20 architecture on the CIFAR-10 dataset, which helps understand how
DIR-Net works in practice. Table [4] presents the accuracy of networks with
different settings. As the Table [4 shown, both IMB and DTE can improve the
accuracy. For the IMB, both the the standardization of weight data in IMB
plays an important role. The accuracy of BNN with weight standardization and
bit-shift scalars is 0.5% and 0.8% higher than that of naive BNN, respectively,
while the IMB version achieves 1.1% gain. For the DTE, the key to improving
BNN performance is the cooperation of its two stages. The performance of BNN
that only applies the stagel of DTE is even not as good as the naive BNN with
clip approximation. And the results of BNNs only applying stage2 show that,
the estimator that ensures a certain updating capability always be retained
(e = 10%) is more effective to BNN compared with the estimator that does
not control the lower limit (e = 0%). The phenomenon proves the motivation
of DTE, which is specifically ensuring the minimum update capability of the
estimator during the training process. The usage of DTE takes 1.7% gain to
BNN. For the RBD, in Table @] we show the results with or without RBD,
using different forms of loss functions, including Mean Squared Error (MSE)
loss and KL divergence loss [34]. See from the results, RBD with Eq. gets
the most obvious improvements which boost the performance from 83.8% to
86.2%. Meanwhile, distilling the full-precision representation with MSE and KL
divergence loss functions can also help with the training and the final results
(1.1% and 1.3% improvements, respectively), which confirms that inducing
the external knowledge of full-precision and aligning the representations can
reduce the negative impact of error accumulation caused by highly discrete
parameters. Moreover, the improvements in IMB, DTE, and RBD can be
superimposed, hence we can train binary neural networks with high accuracy
using our method.

Table 4: Ablation study for DIR-Net.

Method Bit-width (W/A) Acc. (%)
Full-Precision 32/32 91.7
Binary 1/1 83.8
IMB (w/o weight standardization) 1/1 84.3
IMB (w/o shift-based scalars) 1/1 84.6
IMB 1/1 84.9
DTE (stagel) 1/1 83.6
DTE (stage2, e = 0%) 1/1 84.9
DTE (stage2, e = 10%) 1/1 85.1
DTE 1/1 85.5
RBD (MSE) 1/1 84.9
RBD (KL divergence) 1/1 85.1
RBD 1/1 86.2

DIR-Net (IMB & DTE & RBD) 1/1 89.0
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Table 5: Performance comparison on CIFAR-10.

Topology Method Bit-width (W/A) Acc. (%)
Full-Precision 32/32 93.0
Bi-Real 1/1 89.1
XNOR 1/1 90.2
ResNet-18 RAD 1/1 90.5
IR-Net 1/1 91.5
ReActNet 1/1 92.3
DIR-Net (ours) 1/1 92.810.14
Full-Precision 32/32 91.7
DoReFa 1/1 79.3
DSQ 1/1 84.1
Bi-Real 1/1 85.7
IR-Net 1/1 86.5
ReActNet 1/1 87.9
ResNet-20 DIR-Net (ours) 1/1 89.040.07
Full-Precision 32/32 91.7
DoReFa 1/32 90.0
LQ-Net 1/32 90.1
DSQ 1/32 90.2
IR-Net 1/32 90.8
DIR-Net (ours) 1/32 91.310.06
Full-Precision 32/32 91.7
LAB 1/1 87.7
XNOR 1/1 89.8
VGG-Small BNN 1/1 89.9
RAD 1/1 90.0
IR-Net 1/1 90.4
DIR-Net (ours) 1/1 91.110.10

5.2 Comparison with SOTA methods

We have performed a complete evaluation of the DIR-Net by comparing it with
the existing SOTA methods.

5.2.1 Image Classification Tasks

CIFAR-10 dataset. Table [5] lists the performance of different methods on
the CIFAR-10 dataset, and we compare our DIR-Net with these methods on
various widely used architectures, such as ResNet-18 [46], ResNet-20 [2], and
VGG-Small. We show the comparison with results of RAD [I7], IR-Net [72],
and ReActNet [6I] over ResNet-18, DoReFa-Net [97], LQ-Net [94], DSQ [26],
IR-Net [72], and ReActNet [61] over ResNet-20, BNN [39], LAB [35], RAD [17],
XNOR-Net [73] and IR-Net [2] over VGG-Small.

In all cases in the table, our proposed DIR-Net has the highest accuracy.
Moreover, in the case of using the ResNet architecture, our DIR-Net has a
significant improvement compared to the existing SOTA methods when using
1-bit weights and 1-bit activations (1W/1A). For example, with the 1W /1A
bit-width setting, the accuracy of our method is improved by 4.9% compared
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to DSQ on ResNet-20, and the gap between the full-precision counterpart is
reduced to 2.7%. Compared with the IR-Net, our DIR-Net performs better since
it further ensures enough parameters can be updated during the training process,
and it can outperform IR-Net by generally 1.2% with different backbones on
1W /1A bit-width. Moreover, among the results of all network architectures, the
standard deviation of the results using different random numbers is less than
0.14%, and it is even as low as 0.10% on the VGG-Small, which is much lower
than the improvement against existing SOTA methods on these architectures
(at least 0.5%). The results show that the improvement of our DIR-Net is
robust and can stably improve the network performance under various settings.
ImageNet dataset. We study the performance of DIR-Net over ResNet-18,
ResNet-34, MobileNetV1, DARTS, and EfficientNet-B0 structures on the large-
scale ImageNet dataset. Table [f] lists the comparison with several SOTA quan-
tization methods, including BWN [73], HWGQ [52], TWN [50], LQ-Net [94],
DoReFa-Net [97], ABC-Net [55], Bi-Real [62], XNOR++ [6], BWHN [38], SQ-
BWN and SQ-TWN [19], PCNN [27], BONN [28§], Si-BNN [82], Real-to-Bin [64],
MeliusNet [5], and ReActNet [61].

As shown in Table[6] when only quantizing weights over ResNet-18 with 1-bit
weights, DIR-Net greatly exceeds most other methods, and even outperforms the
TWN with 2-bit weights by a notable 5.7%. Meanwhile, DIR-Net outperforms
IR-Net 0.7% on Top-1 accuracy and 0.9% on Top-5 accuracy based on ResNet-
34 architecture using 1W/32A setting. Moreover, while using the 1W/1A
setting, our DIR-Net also surpasses the SOTA binarization methods. The
Top-1 accuracy of our DIR-Net is apparently higher than that of the ReActNet
(65.9% vs. 66.5% for ResNet-18) and Si-BNN (63.3% vs. 67.9% for ResNet-34).
The results prove that our DIR-Net is more competitive than the existing
binarization methods.

We further implemented our DIR-Net on more compact CNN structures,
including DARTS, EfficientNet and MobileNet, and compared with other SOTA
binarization methods. Results in Table [6] shows that our DIR-Net outperforms
both vanilla BNN and Bi-Real Net over the DARTS and EfficientNet-B0 struc-
tures without any additional computational overheads and training steps. Over
the DARTS structure, our DIR-Net surpasses Bi-Real by 2.8% on Top-1 and
3.6% on Top-5 accuracy, respectively, and surpasses ReActNet by 0.5% and
0.8%. Over the EfficientNet-BO0 structure, DIR-Net surpasses Bi-Real by 3.9%
Top-1 and 4.2% Top-5 accuracy, and surpasses ReActNet by 0.9% and 0.7%. In
both cases DIR-Net outperforms the basic BNN method by an convincing mar-
gin. As for the MobileNet structure, DIR-Net also performs well and surpasses
the SOTA methods. Under the setting of 1W /1A, our DIR-Net only loses 1.8%
of the Top-1 accuracy compared with the full-precision counterpart, which is
much better than other binarization methods. Experiments on these compact
networks show that our binarization scheme is versatile and competitive in vari-
ous structures. We also recorded the fluctuation of the DIR-Net Top-1 accuracy
with different random seeds, where the maximum and minimum values of the
standard deviation under various settings are 0.16% and 0.03%, respectively,
and all the results stably exceeded the existing binarization methods.
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Table 6: Performance comparison on ImageNet.

Topology Method Bit-width (W/A) Top-1(%) Top-5(%)
Full-Precision 32/32 69.6 89.2
ABC-Net 1/1 42.7 67.6
XNOR 1/1 51.2 73.2
BNN+ 1/1 53.0 72.6
DoReFa 1/2 53.4 -
Bi-Real 1/1 56.4 79.5
XNOR++ 1/1 57.1 79.9
PCNN 1/1 57.3 80.0
IR-Net 1/1 58.1 80.0
BONN 1/1 58.3 81.6
Si-BNN 1/1 59.7 81.8
Real-to-Bin 1/1 65.4 86.2
ReActNet 1/1 65.9 -
ResNet-18 DIR-Net! (ours) 1/1 60.4 81.9
DIR-Net? (ours) 1/1 66.510.10 87.1
Full-Precision 32/32 69.6 89.2
SQ-BWN 1/32 58.4 81.6
BWN 1/32 60.8 83.0
HWGQ 1/32 61.3 83.2
TWN 2/32 61.8 84.2
SQ-TWN 2/32 63.8 85.7
BWHN 1/32 64.3 85.9
IR-Net 1/32 66.5 86.8
DIR-Net (ours) 1/32 67.510.06 87.9
Full-Precision 32/32 73.3 91.3
ABC-Net 1/1 52.4 76.5
Bi-Real 1/1 62.2 83.9
IR-Net 1/1 62.9 84.1
Si-BNN 1/1 63.3 84.4
ReActNet 1/1 67.3 87.9
DIR-Net! (ours 1/1 64.1 85.3
ResNet-34  pIR Net? Eours; 1?1 67.910.09 88.2
Full-Precision 32/32 73.3 91.3
ABC-Net 1/32 68.8 86.1
Bi-Real 1/32 69.7 88.9
Si-BNN 1/32 70.1 89.7
IR-Net 1/32 70.4 89.5
DIR-Net (ours) 1/32 71.150.03 90.4
Full-Precision 32/32 73.3 91.3
BNN 1/1 52.2 76.6
Bi-Real 1/1 61.5 83.8
DARTS IR-Net 1/1 62.1 84.2
ReActNet 1/1 65.1 86.4
DIR-Net! (ours) 1/1 63.3 85.1
DIR-Net? (ours) 1/1 65.610.12 87.2
Full-Precision 32/32 76.2 92.7
BNN 1/1 52.7 76.5
Bi-Real 1/1 58.7 81.3
EfficientNet IR-Net 1/1 60.1 82.6
ReActNet 1/1 63.5 85.1
DIR-Net! (ours) 1/1 63.0 84.8
DIR-Net? (ours) 1/1 64.810.09 86.2
Full-Precision 32/32 72.4 -
BNN 1/1 60.9 -
MeliusNet22 1/1 63.6 84.7
MobileNet MeliusNet29 1/1 65.8 86.2
MeliusNet42 1/1 69.2 88.3
ReActNet 1/1 69.5 -
DIR-Net (ours) 1/1 70.6+0.16 89.7

I Results of networks with normal structure.
2 Results of networks with ReActNet structure [61].
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Table 7: Performance comparison on PASCAL VOC.

Framework (Backbone) Input Method Bit-width (W/A) mAP (%)
Full-Precision 32/32 72.4
BNN 1/1 42.0
SSD300 (VGG-16) 300x300 XNOR 1/1 50.2
Bi-Real 1/1 63.8
BiDet 1/1 66.0
DIR-Net ]./1 67.140.13
Full-Precision 1/1 74.5
BNN 1/1 35.6
Faster R-CNN (ResNet-18) 600x1000 XNOR 1/1 48.4
Bi-Real 1/1 58.2
BiDet 1/1 59.5
DIR-Net 1/1 60.440.07

5.2.2 Object Detection Tasks

PASCAL VOC dataset. Furthermore, to validate the generalization of our
DIR-Net, we evaluate it on other vision tasks. PASCAL VOC is a widespread
dataset for object detection with 20 classes. We compare our method with many
other binarization methods, including BNN [39], XNOR [73], Bi-Real [62], and
BiDet [85]. And we also apply binarization on different frameworks, such as
SSD300 [59] and Faster R-CNN [75] with VGG-16 and ResNet-18 backbones,
respectively.

As shown in Table [7} our DIR-Net far exceeds all existing binarization

methods by convincing margin. Compared with the general quantization meth-
ods, such as BNN, XNOR, and Bi-Real, our DIR-Net has achieved significant
improvement, which is consistent with the phenomenon of classification tasks.
For the SSD300 and Faster R-CNN frameworks, the DIR-Net outperforms
these methods at last 3.3% and 2.2% of mAP, respectively. And compared with
BiDet, a binary quantization method specially designed for object detection,
DIR-Net improves the performance of 1.1% (SSD300) and 0.9% (Faster R-CNN)
by improving the training strategy without bringing any inference burden. For
the results of DIR-Net, the standard deviation caused by different random
seeds is less than or equal to 0.13%.
COCO dataset. We also evaluate the DIR-Net on the COCO dataset, which
is much more challenging than PASCAL VOC due to the high diversity and
large scale. We compare our method with BNN [39], XNOR [73], Bi-Real [62],
and BiDet [85] on different frameworks, including the SSD300 [59] and Faster
R-CNN [75] with VGG-16 and ResNet-18 backbones, respectively.

As Table [§ shows, DIR-Net still far outperforms BNN, XNOR, Bi-Real, and
BiDet. When applying the SSD300 and Faster R-CNN frameworks, DIR-Net
outperforms the existing SOTA method BiDet by 0.8% and 0.4%, respectively
in mAP, and the standard deviation caused by different random seeds is less
than or equal to 0.10%. Experiments show that the techniques of DIR-Net can
stably and significantly improve BNNs on large-scale object detection tasks.
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Table 8: Performance comparison on COCO.

Framework Bit-width mAP APs9  APrs
Input Method
(Backbone) p (W/A) al[.s,.95) (%) (%) (%)
Full-Precision 32/32 23.2 41.2 23.4
BNN 1/1 6.2 15.9 3.8
(S\S/l();?c)?_(ia) 300x300 XNOR 1/1 8.1 19.5 5.6
Bi-Real 1/1 11.2 26.0 8.3
BiDet 1/1 13.2 28.3 10.5
DIR-Net 1/1 14.0+40.10 29.7 11.3
Full-Precision 1/1 26.0 44.8 27.2
BNN 1/1 5.6 14.3 2.6
fgsets‘;“\?ei‘_'l(él)\m 600% 1000 XNOR 1/1 10.4 21.6 8.8
Bi-Real 1/1 14.4 29.0 13.4
BiDet 1/1 15.7 31.0 14.4
DIR-Net 1/1 16.110.08 31.5 14.8

5.3 Deployment Efficiency on Raspberry Pi 3B

In order to further evaluate the efficiency of our proposed DIR-Net when it is
deployed on real-world mobile devices, we implemented DIR-Net on Raspberry
Pi 3B, which has a 1.2 GHz 64-bit quad-core ARM Cortex-A53 and tested the
running speed in practice. We use the SIMD instruction SSHL on ARM NEON
to ensure the inference framework daBNN [95] is compatible with DIR-Net.

Table 9: Comparison of time cost of ResNet-18 with different bits (single thread).

Method Bit-width (W/A) Size (Mb) Time (ms)
Full-Precision 32/32 46.77 1418.94
NCNN 8/8 - 935.51
DSQ 2/2 - 551.22
DIR-Net (w/o scalars) 1/1 4.20 252.16
DIR-Net (ours) 1/1 4.21 261.98

We must point out that so far, very few studies have reported the inference
speed of their models deployed on real-world devices which is one of the most
important criteria for evaluating the quantized models, especially when using
1-bit binarization. As shown in Table[d] we compare DIR-Net with existing high-
performance inference implementations including NCNN [68] and DSQ [26].
Obviously, the inference speed of DIR-Net is much faster than others since
all floating-point operations in convolutional layers are replaced by bitwise
operations, such as XNOR, Bitcount, and Bit-shift. And the model size of
DIR-Net can also be greatly reduced, the shift-based scalars in DIR-Net bring
almost no extra time consumption and memory footprint compared with the
vanilla binarization method without scalars.
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6 Conclusion

In this paper, we introduce a novel DIR-Net that retains the information during
the forward /backward propagation of binary neural networks. The DIR-Net
is mainly composed of three practical technologies: the IMB for ensuring di-
versity in the forward propagation, the DTE for reducing the gradient errors
in the backward propagation, and the RBD for retaining the representation
information with the help of external representations. From the perspective of
information entropy, IMB performs a simple but effective transformation on
weights, which maximizes the information loss of both weights and activations at
the same time, with no additional operations on activations. In this way, we can
maintain the diversity of binary neural networks as much as possible without
compromising efficiency. A well-designed gradient estimator DTE also reduces
the information errors of gradients in the backward propagation. Because of
the powerful updating capability and accurate gradients, the performance of
DTE exceeds that of STE by a large margin. Additionally, with well-trained
corresponding full-precision networks, the RBD scheme improves BNNs or-
thogonally with the improved internal propagation by introducing external
representations. Our adequate experiments show that DIR-Net consistently
outperforms the existing SOTA BNNs.
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