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Abstract Contemporary deep learning multi-scale deblur-
ring models suffer from many issues: 1) They perform poorly
on non-uniformly blurred images/videos; 2) Simply increas-
ing the model depth with finer-scale levels cannot improve
deblurring; 3) Individual RGB frames contain a limited mo-
tion information for deblurring; 4) Previous models have a
limited robustness to spatial transformations and noise. Be-
low, we extend our preliminary paper [59] by several mech-
anisms to address the above issues: I) We present a novel
self-supervised event-guided deep hierarchical Multi-patch
Network (MPN) to deal with blurry images and videos via
fine-to-coarse hierarchical localized representations; II) We
propose a novel stacked pipeline, StackMPN, to improve the
deblurring performance under the increased network depth;
III) We propose an event-guided architecture to exploit mo-
tion cues contained in videos to tackle complex blur in videos;
IV) We propose a novel self-supervised step to expose the
model to random transformations (rotations, scale changes),
and make it robust to Gaussian noises. Our MPN achieves
the state of the art on the GoPro and VideoDeblur datasets
with a 40× faster runtime compared to current multi-scale
methods. With 30ms to process an image at 1280 ×720 res-
olution, it is the first real-time deep motion deblurring model
for 720p images at 30fps. For StackMPN, we obtain signif-
icant improvements over 1.2dB on the GoPro dataset by in-
creasing the network depth. Utilizing the event information
and self-supervision further boost results to 33.83dB.
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Fig. 1: The PSNR vs. runtime of state-of-the-art deep image deblurring
methods and our method on the GoPro dataset [28]. The blue region
indicates real-time inference, whereas the green region represents high
performance motion deblurring (over 30 dB). Our method achieves the
best performance at 30 fps for 1280×720 images. The event-guided
version and the stacked variants of our model further improve the per-
formance at a cost of somewhat increased runtime.

1 Introduction

The objective of non-uniform blind image deblurring is
to remove the undesired blur caused by the camera motion
and the scene dynamics [28, 49, 32]. Prior to the success
of deep learning, conventional deblurring methods used to
employ a variety of constraints or regularizations to approx-
imate the motion blur filters, involving an expensive non-
convex non-linear optimization, and overly restrictive as-
sumption of spatially-uniform blur kernel, resulting in a poor
deblurring of complex blur patterns.

Deblurring methods based on deep Convolutional Neu-
ral Networks (CNNs) [21, 43] learn the regression between
a blurry input image and the corresponding sharp image in
an end-to-end manner [28, 49]. To exploit deblurring cues at
varying processing levels, the “coarse-to-fine” scheme has
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Fig. 2: Comparison between different network architectures. From left to right: (a) multi-scale [28], (b) scale-recurrent [49], (c) our hierarchical
multi-patch architecture. We do not employ any skip or recurrent connections which simplifies our model. (d) our event-guided multi-patch network
architecture, in which the event representations are concatenated with original blurry frames as two-stream inputs. Best viewed in color.

been extended to deep CNN scenarios by a multi-scale net-
work architecture [28] and a scale-recurrent architecture [49].
Under the “coarse-to-fine” scheme, a sharp image is gradu-
ally restored at different resolutions in a pyramid. Nah et al.
[28] demonstrated the ability of CNN models in removing
motion blur from multi-scale blurry images, where a multi-
scale loss function is devised to mimic conventional coarse-
to-fine approaches. Following a similar pipeline, Tao et al.
[49] shared network weights across scales to improve train-
ing and model stability, thus achieving highly effective de-
blurring compared with [28]. However, there still exist major
challenges in current deep deblurring methods:

– Under the coarse-to-fine multi-scale scheme, most net-
works use a large number of training parameters due to
large filter sizes. Thus, the multi-scale and scale-recurrent
methods suffer from an expensive runtime (see Fig. 1)
and struggle to improve the deblurring quality.

– Increasing the network depth for a low-resolution input
in multi-scale approaches does not seem to improve the
deblurring performance [28].

– The model is not capable of capturing motion informa-
tion from RGB frames under complex blur, thus they
cannot effectively address video deblurring.

– The learnt model has limited robustness to spatial trans-
formations and random noises, which limits its useful-
ness in real-world applications.

In this paper, we address the challenges with the multi-
scale and scale-recurrent architectures. We propose a novel
architecture which exploits deblurring cues at different scales
via a hierarchical multi-patch model. Specifically, we pro-
pose a simple yet effective multi-level CNN model called
deep Multi-Patch Network (MPN) which uses multi-patch
hierarchy as input. In this way, the residual cues from de-
blurring local regions are passed via residual-like links to

the next level of network which deals with coarser regions.
Feature aggregation over multiple patches has been used in
image classification [23, 14, 26, 20]. For example, [23] pro-
poses Spatial Pyramid Matching (SPM) which divides im-
ages into coarse-to-fine grids in which histograms of fea-
tures are computed. In [20], a second-order fine-grained im-
age classification model uses feature embeddings of over-
lapping patches and positional embeddings for aggregation.
Sun et al. [48] learn a patch-wise motion blur kernel through
a CNN for restoration via an expensive energy optimization.

The advantages of our network are threefold: 1) As the
inputs at different levels have the same spatial resolution,
we apply residual-like learning which requires smaller filter
sizes and leads to a fast inference; 2) We use an SPM-like
model exposed to more training data at the finest level due
to relatively more patches available for that level; 3) Our
architecture encourages model to learn to deblurring from
easier tasks (small patches) to harder tasks (large patches), a
gradual learning process that encourages the consistency of
deblurring over different locations and spatial sizes.

To overcome the limitation of stacking depth in multi-
scale and multi-patch models, simply increasing the model
depth by introducing additional coarser or finer grids cannot
improve the overall deblurring performance of known mod-
els. Thus, we present the novel stacked version of our MPN,
whose performance can be effectively and continuously im-
proved by stacking multiple submodels.

As an extension of our preliminary paper [59], we pro-
pose the event-guided MPN to deal with complex motion
blurs in rapidly evolving scenes. To this end, we employ
the Dynamic and Active Pixel Sensor (DAVIS) to simulta-
neously produce the grey-scale Active Pixel Sensor (APS)
and event frames, in which object motions are captured at
a very high temporal resolution (1µs), thus increasing the
ability of our model to deblur complex real-world blurs.
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Moreover, we notice that deep deblurring models have a
limited robustness to different types of transformations and
perturbations, e.g., random rotations, scale transforms, and
Gaussian noises. For example, once we apply a weak Gaus-
sian noise to blurry images on input, the PSNR score sharply
drops to around 20dB. Therefore, we propose a novel self-
supervised robust training strategy to explicitly align de-
blurred outputs of an input image and its augmented ver-
sion (deblurred output of augmented image is de-augmented
prior to alignment), thus enhancing the robustness of our
model. Our contributions are summarized below:

I. We propose an end-to-end CNN hierarchical model that
performs deblurring in the fine-to-coarse grids by ex-
ploiting multi-patch localized-to-coarse operations. Each
finer level acts in the residual manner by contributing
its residual image to the coarser level, thus letting each
level of network focus on different scales of blur. We
perform baseline comparisons in the common testbed
(where possible) for fair comparisons.

II. We identify the limitation to stacking depth of current
deep deblurring models and introduce a novel stacking
approach which effectively overcomes this limitation.

III. We introduce the use of events in deep multi-patch ar-
chitecture to capture richer motion information, thus help
the model deblur videos with complex blurs and scenes.

IV. We propose to apply an auxiliary self-supervised con-
sistency loss leveraging pretext augmentation tasks to
enhance the robustness of model w.r.t. different geomet-
ric transformations and photometric distortions, thus re-
ducing overfitting to specific training poses, which helps
deblur real-world images.

Our experiments demonstrate clear benefits of our event-
guided SPM-like model in non-uniform motion deblurring.
To the best of our knowledge, our model is the first multi-
patch take on blind motion deblurring, e.g., MPN is the first
model that supports deblurring of 720p images real-time (at
30fps). The self-supervised step is demonstrated useful in
deep deblurring scenario also for the first time.

2 Related Work

Below we discuss the related works on image deblur-
ring. Conventional image deblurring methods [4, 16, 57, 24,
35, 17, 15, 40] fail to remove non-uniform motion blur due
to the use of spatially-invariant deblurring kernel. Moreover,
their complex computational inference leads to long pro-
cessing times, which cannot satisfy the ever-growing needs
for real-time deblurring.
Deep Deblurring. Recently, CNNs have been applied for
non-uniform image deblurring to deal with the complex mo-
tion blur in a time-efficient manner [58, 48, 28, 39, 30, 46].

Xu et al. [58] proposed a deconvolutional CNN which re-
moves blur in non-blind setting by recovering a sharp image
given the estimated blur kernel. Their network uses sepa-
rable kernels which can be decomposed into a small set of
filters. Sun et al. [48] estimated and removed a non-uniform
motion blur from an image by learning the regression be-
tween 30×30 image patches and their corresponding ker-
nels. The conventional energy-based optimization scheme
was employed to estimate the latent sharp image.

Su et al. [46] presented a deep learning framework to
process blurry video sequences and accumulate information
across frames. This method does not require spatially-aligned
pairs of samples. Nah et al. [28] exploited a multi-scale CNN
to restore sharp images in an end-to-end fashion from im-
ages whose blur is caused by various factors. A multi-scale
loss was employed to mimic the coarse-to-fine pipeline in
conventional deblurring approaches.

Recurrent Neural Network (RNN) is often used in de-
blurring due to its sequential information processing. Take
as an example a network [62] consisting of three deep CNNs
and one RNN. The RNN is used as a deconvolutional de-
coder on feature maps extracted by the first CNN module.
Another CNN module learns weights for each layer of RNN.
The last CNN module reconstructs the sharp image. Scale-
Recurrent Network (SRN-DeblurNet) [49] uses ConvLSTM
cells to aggregate feature maps from coarse-to-fine scales.
Finally, Nah et al. [29] proposed a recurrent network, which
iteratively updates the hidden state with existing parameters.

Generative Adversarial Nets (GANs) have also been em-
ployed in deblurring due to their advantage in preserving
texture details and generating photorealistic images. Kupyn
et al. [22] presented a conditional GAN which produces
high-quality delburred images via the Wasserstein loss.

Gao et al. [11] proposed a novel selective parameter shar-
ing scheme to improve the dynamic deblurring task. Though
their approach achieves impressive results, the complicated
nested connections lead to very long processing runtime,
which cannot satisfy real-rime applications.

Notably, some recent works have been based on our multi-
patch network [59]. Suin et al. [47] proposes a modified
MPN, which can handle the blur variations across different
spatial locations, and adaptively process test images to im-
prove the performance. Dipta et al. [6] propose a fast multi-
patch architecture to address image dehazing task.

Event-based modeling. Events are playing an important role
in recent motion deblurring tasks. Event cameras such as
DAVIS [3] and DVS [25] record log intensity changes at the
microsecond scale with negligible motion blurs, allowing
them to compensate the lost information from motion blur.
The output of event camera is a stream of events formed into
quadruplets (x,y, t, p) that encode the position of brightness
changes, time and polarity.
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Fig. 3: Our proposed Event-guided Multi-Patch Network (E-MPN) consists of two parts: (a) a generator of event representation, based on a 10-
layer residual U-Net, (b) multi-patch deblurring network which consists of multi-level coarse-to-fine branches. As the patches do not overlap with
each other, they may cause boundary artifacts which are removed by the consecutive upper levels of our model. Symbol + is a summation akin to
residual networks.

Recent works study how to directly transform events into
sharp images, e.g., Bardow et al. [1] simultaneously esti-
mated the optical flow and intensity images with a fixed-
length sliding spatial-temporal window by solving an energy
minimizing problem. Barua et al. [2] proposed to learn a
sparse patch-based dictionary to match event patches with
gradient patches, then use the so-called Poison integration
to reconstruct the intensity images. Munda et al. [27] re-
stored intensity images through the manifold regularization.
Rebecq et al. [37] proposed a novel recurrent network to
reconstruct videos from a stream of events. As events are
asynchronous, they are raised if there is a local intensity
change within the scene, so single events can model static
scenes/textures, and sequences of events can model very rapid
motions.

DAVIS [3] can simultaneously output events and Ac-
tive Pixel Sensor (APS) intensity images that contain the
static texture. It directly integrates events on the APS frame
and refreshes the event accumulation. Scheerlinck et al. [38]
proposed an asynchronous event-driven complementary fil-
ter to integrate the APS frame with events for continuous-
time intensity estimation. Pan et al. [33] formulated a de-
blurring task as an optimization problem that solves a single
variable non-convex problem with a double integral model.
Jiang et al. [18] presented a convolution recurrent network
to integrate visual and temporal knowledge at the global and
local scales. With a novel directional event filtering module,
sharp edge boundary guidance is extracted which increases
the quality of reconstructed details. The eSL-Net model [52]
constructed an event-based sparse learning network to im-

prove the deblurring performance. E-CIR [44] proposed to
leverage events to construct the parametric bases, and in-
troduced a refinement module to propagate visual features
among frames. Wang et al. [55] proposed to recreate inten-
sity images using an asynchronous Kalman filter based on a
unified event and frame uncertainty model. The images re-
constructed using these methods, however, include artifacts
due to the accumulation of event noises.

Self-supervised learning. A network can be trained with
so-called pretext tasks, e.g., predicting augmentation labels,
or predicting easily obtainable self-information as auxiliary
objective to improve the performance by making network
‘aware’ of auxiliary tasks. Self-supervised learning has been
used in object recognition [8, 7, 13, 42, 51], video repre-
sentation learning [9, 41, 10, 50, 54, 53], and also few-shot
image and video recognition [12, 45, 61, 60].

Two types of self-supervision are popular: i) contrastive
loss; and ii) prediction of label of pretext task. For instance,
Gidaris et al. [13] predict labels of random image rotations,
Doersch et al. [7] predict the relative pixel positions, Doso-
vitskiy et al. [8] learn to discriminate a set of surrogate classes,
and approaches [12, 45] improve the few-shot performance
by predicting labels of image rotations and jigsaw patterns.

In contrast to previous self-supervised pipelines, we lever-
age self-supervision to promote the consistency of deblur-
ring under augmentations to improve the robustness of model
to geometric transformations and photometric distortions.
The self-supervision strategy in this paper aligns features
obtained from the same augmentation applied at the early
and late stage, respectively. This is somewhat related to the
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so-called knowledge distillation, which encourages one stream
of information to distil its knowledge to the other, therefore
improving the deblurring performance of our model. How-
ever, notice that such a self-supervision is not the distillation
pipeline, i.e., it does not use two network streams such as the
teacher and student networks.

3 Approach

In this paper, we propose to exploit the multi-patch hier-
archy for efficient and effective blind motion deblurring. The
overall architecture of our proposed MPN network is shown
in Fig. 3 for which we use the (1-2-4-8) model (explained in
Sec. 3.2) as an example. Our network is inspired by coarse-
to-fine Spatial Pyramid Matching [23], which has been used
for the problem of scene recognition [20] to aggregate multi-
ple image patches for better performance. In contrast to the
expensive inference in multi-scale and scale-recurrent net-
work models [28, 49] shown in Fig. 2, our approach (also
in Fig. 2) uses a residual-like architecture, thus requiring
small-size filters which result in fast processing. Despite our
model uses a very simple architecture (skip and recurrent
connections have been removed), it is very effective. In con-
trast to Nah et al. [28] which uses deconvolution/upsampling
links, we use operations such as feature map concatenations,
which are possible due to the multi-patch setup we propose.
Moreover, our self-supervised unit differs from typical self-
supervised representations: we impose the deblurring con-
sistency between augmented and non-augmented images by
reversing the augmentation from the deblurred output.

3.1 Encoder-decoder Architecture

Each level of our MPN network consists of one encoder
and one decoder whose architecture is illustrated in Fig. 4.
Our encoder consists of 15 convolutional layers, 6 resid-
ual links and 6 ReLU units. The layers of decoder and en-
coder are identical except that two convolutional layers are
replaced by deconvolutional layers to generate images.

Our encoder and decoder use ∼3.6 MB parameters due
to the small convolutional kernel size and the residual nature
of our model, which contribute to the fast deblurring run-
time. By contrast, the multi-scale deblurring network [28]
has 303.6 MB parameters leading to the slower inference.

3.2 Network Architecture

Fig. 3 shows the architecture of our MPN, in which we
use the (1-2-4-8) model for illustration purposes. Notation
(1-2-4-8) indicates the numbers of non-overlapping image
patches from the coarsest to the finest level, i.e., a vertical

split at the second level, 2×2= 4 splits at the third level, and
2×4 = 8 splits at the fourth level. For third and fourth lev-
els that output multi-patch residuals, we impose the region-
aware consistency loss between adjacent boundaries.

We denote the initial blurry image input as B1, while
Bi, j is the j-th patch at the i-th level. Moreover, Fi and Gi
are the encoder and decoder at level i, Ci, j is the output of
Gi for Bi, j, and Si, j represents the output patches from Gi.

Each level of our network consists of an encoder-decoder
pair. The input for each level is generated by dividing the
original blurry image input B1 into multiple non-overlapping
patches. The output of encoder from a lower level (corre-
sponds to finer grid) is added to the output of encoder one
level up. The output of decoder from the lower level (corre-
sponds to finer grid) is added to the upper level input grids
passed to the input of encoder (one level above) so that the
top level contains all information inferred in the finer levels.
Note that the numbers of input and output patches at each
level are different as the main idea of our work is to make
the lower level focus on local information (finer grid) to pro-
duce a residual information for the coarser gird (obtained by
concatenating convolutional features).

Consider the (1-2-4-8) variant as an example. The de-
blurring process of MPN starts at the bottom level 4. B1
is sliced into 8 non-overlapping patches B4, j, j = 1, · · · ,8,
which are fed into the encoder F4 to produce the following
convolutional feature representation:

C4, j = F4(B4, j), j ∈ {1, · · · ,8}. (1)

Then, we concatenate adjacent features (in the spatial
sense) to obtain a new feature representation C∗4, j of the same
size as the convolutional feature representation at level 3:

C∗4, j = C4,2 j−1⊕C4,2 j, j ∈ {1, · · · ,4}, (2)

where ⊕ denotes the concatenation operator. The con-
catenated feature representation C∗4, j is passed through the
encoder G4 to produce S4, j = G4(C∗4, j).

Next, we move one level up to level 3. The input of F3
is formed by summing up S4, j with patches B3, j. Once the
output of F3 is produced, we add to it C∗4, j:

C3, j = F3(B3, j +S4, j)+C∗4, j, j ∈ {1, · · · ,4}. (3)

At level 3, we concatenate the feature representation of
level 3 to obtain C∗3, j and pass it through G3 to obtain S3, j:

C∗3, j = C3,2 j−1⊕C3,2 j, j ∈ {1,2}, (4)

S3, j = G3(C∗3, j), j ∈ {1,2}. (5)

Note that features at all levels are concatenated along
the spatial dimension: imagine neighboring patches being
concatenated to form a larger patch.
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Fig. 4: The architectures and layer configurations of our (a) decoder and (b) encoder.
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Fig. 5: The architecture of Stacked Multi-patch Network (StackMPN), in which multiple MPNs are serially stacked to distribute the deblurring
task among several sub-models, and reduce the training difficulty level by level. Such a design provides the performance gain as the network depth
increases.

At level 2, our network takes two image patches B2,1 and
B2,2 as input. We update B2, j so that B2, j :=B2, j +S3, j and
pass it through F2:

C2, j = F2(B2, j +S3, j)+C∗3, j, j ∈ {1,2}, (6)

C∗2 = C2,1⊕C2,2. (7)

The residual map at level 2 is given by:

S2 = G2(C∗2). (8)

At level 1, the final deblurred output S1 is given by:

C1 = F1(B1 +S2)+C∗2, (9)

S1 = G1(C1). (10)

Different from approaches [28, 49] that evaluate the Mean
Square Error (MSE) loss at each level, we evaluate the MSE
loss only at the output of level 1 (which resembles the resid-
ual network). The loss function of MPN is given as:

Ldeblur =
1
2 ∑

j
‖S1 j−G j‖2

F , (11)

where G j denotes the ground-truth sharp image j. Due to
the hierarchical multi-patch architecture, our network fol-
lows the principle of residual learning: the intermediate out-
puts at different levels Si j capture image statistics at differ-
ent scales. Thus, we evaluate the loss function only at the

first level. We have investigated the use of multi-level MSE
loss which forces the outputs at each level to be close to
the ground truth image. However, as expected, there is no
visible performance gain achieved by using the multi-scale
MSE loss.

3.3 Stacked Multi-Patch Network

As reported by Nah et al. [28] and Tao et al. [49], adding
finer network levels cannot improve the deblurring perfor-
mance of the multi-scale and scale-recurrent architectures.
For our multi-patch network, we have also observed that di-
viding the blurred image into ever smaller grids does not fur-
ther improve the deblurring performance. This is mainly due
to coarser levels attaining low empirical loss on the training
data fast thus excluding the finest levels from contributing
their residuals.

In this section, we propose a novel stacking paradigm for
deblurring. Instead of making the network deeper vertically
(adding finer levels into the network model, which increases
the difficulty for a single worker), we propose to increase
the depth horizontally (stacking multiple network models),
which employs multiple MPN workers horizontally to per-
form deblurring.
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Figure 5 demonstrates how we cascade the MPN to im-
prove the deblurring performance. The stacked model, called
StackMPN, stacks multiple “bottom-top” MPNs. Note that
the output of sub-model i− 1 and the input of sub-model
i are connected, which means that for the optimization of
sub-model i, output from the sub-model i− 1 is required.
All intermediate features of sub-model i− 1 are distilled to
sub-model i. The MSE loss is evaluated at the output of ev-
ery sub-model i by minimizing the StackMPN objective:

Ldeblur =
1
2 ∑

j

N

∑
i=1
‖Si j−G j‖2

F , (12)

where N is the number of sub-models used, Si j is the
output of sub-model i (note that definitions of Si j differ be-
tween Eq. 11 and 12 ), G is the ground-truth sharp image,
and j loops over a subset of images.

Our experiments will illustrate that such a stacked net-
work can significantly benefit from the increased network
depth and improve the deblurring performance accordingly.
Although our stacked pipeline uses MPN units, we believe
they are generic, that is, other deep deblurring methods can
be stacked in the similar manner to improve their perfor-
mance. However, the total processing time may be unaccept-
able if a costly deblurring model is employed for the basic
unit. Thanks to fast and efficient MPN units, we can control
the runtime and size of stacking networks within a reason-
able range to cater for various applications.

3.4 Event-guided MPN

The above proposed MPN model is applied on image de-
blurring task, thus its ability to deal with realistic and com-
plicated blur patterns is insufficient. To improve deblurring
further, one may extend our model to videos in order to re-
store the blur kernel based on the temporal information.

One may simply extend MPN by concatenating multiple
frames along the channel mode to form an input (followed
by the adjustment of the number of input and output chan-
nels). However, such a model does not fully exploit the tem-
poral information: the channel-wise convolutional operator
in the first layer of encoder does not guarantee the model to
develop a sufficient implicit model of motion. Thus, we pro-
pose to introduce the event representation into our MPN to
form a hybrid event-guided deblurring process as in Fig. 3.

Specifically, let us denote T consecutive blurry frames
as {B(t)}T

t=1, a set of events as {E(t)}T
t=1, ∆E(t) as the event

information from time t to t +∆ t, and ∆ t, the infinitesimal
time step. Let {S(t)}T

t=1 be restored sharp frames. Inspired
by the design of event cameras [33], we have:

B( f ) =
1
T

f+T/2

∑
t= f−T/2

S(t), (13)

S(t) = S( f )ecE(t)
, (14)

E(t) =
t

∑
h= f

∆E(h), (15)

where c is the threshold determining if an event should
be recorded, E(t) is the sum of events during time f to t.

Above equations show that the blurry frame is gener-
ated from latent sharp frames during the exposure time [ f −
T/2, f +T/2], and the sharp frame at time t can be gener-
ated by simply interpolating the sharp frame at time t − T
and the events during time step T . Combining Eq. 13, 14
and 15 , we have:

B( f ) =
1
T

f+T/2

∑
t= f−T/2

S(t) =
S( f )

T

f+T/2

∑
t= f−T/2

ec∑
t
h= f ∆E(h)

, (16)

logS( f ) = logB( f )− log

(
1
T

f+T/2

∑
t= f−T/2

ecE(t)

)
. (17)

From the above equations, we conclude that the sharp
frame is associated with the original blurry frame and the
event information. Once the event information from f −T/2
to f +T/2 is collected, the learning formulation of MPN can
be re-written as the following two-stream variant:

S( f ) = MPN(B( f ), E( f−T/2: f+T/2)). (18)

We evaluate our model on realistic event datasets [33]
in which samples are recorded by DAVIS sensor. For non-
event datasets, we employ the method proposed in [36] to
simulate the event information from RGB frames.

The event stream needs to be converted to an image-
like event representation before being fed into the pipeline
for training and evaluation. Integrating the event on a 2D
plane is a natural choice, whereas encoding it with spatial-
temporal voxel grad can be more effective. Thus, we use the
Events-to-Video model [37], which is built upon a 10-layer
residual U-Net, to produce 10 adjacent event representations
with 0.1s time grid for the central frame. Subsequently, 10
event representations are concatenated with original RGB
blurry frames to restore the sharp RGB output. As the events
are collected at a very high frame-rate, we naturally capture
accurate object motions compared to conventional cameras.
Thus, our two-stream deblurring model is expected to sig-
nificantly improve the deblurring performance in end-to-end
manner for both synthetic and realistic blurry images.
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Fig. 6: Deblurring results. The images from left to right show original blurry images, the results of [28], [49], our MPN and MPN + self-superision,
respectively. As can be seen, our method produces the sharpest and most realistic facial details.
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Fig. 7: Self-supervised training step. The consistency loss is applied between the augmented deblurred images of vanilla images and the deblurred
outputs of augmented counterparts, thus promoting the robustness to various transformations and noises during training and inference. Functions
v(·) denote a chosen augmentation. Note that the self-supervised loss does not enforce the ground truth on the output which limits overfitting.

3.5 Boosting MPN with Self-supervision

Below we introduce the self-supervision to boost the per-
formance and robustness of our MPN approach. Figure 7 il-
lustrates the self-supervised aspect of our pipeline, for which
we investigate the impact of rotations, scale transform and
Gaussian noise augmentations.

Rotations. One natural property of blur kernels is the invari-
ance to rotations, which enhances the robustness and gen-
eralization ability in realistic scenarios. However, previous
works [28, 49, 62] do not guarantee such a property even
though they use the random rotation augmentations. Thus,
we propose to improve the robustness of MPN to rotations
by promoting the consistency between original and rotated
restored outputs in a self-supervised manner.

Let B j be a blurred image, Deblur(·) be a deblurring net-
work, e.g., MPN or StackMPN, Rot(·) be the rotation func-

tion (with random choice of rotation by 90◦,180◦, or 270◦).
The self-supervised loss Lss is defined as:

SN j = Deblur(B j), (19)

S′N j = Deblur(v(B j)), (20)

Lss = ∑
j
||v(SN j)−S′N j||2F , (21)

where j loops over a subset of images, N is the number
of stacked levels of network, Deblur(·) is the output from
level N of stacked network, whereas v(·) performs a chosen
augmentation, e.g., Rot(·).

In this manner, the deblurring network is exposed to a
varienty of orientations and can capture the rotation-invariant
blur kernels. With the rotation-based self-supervised loss term,
our final objective of MPN is defined as follows:

L = Ldeblur +αLss, (22)
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Table 1: Quantitative analysis of our model on the GoPro dataset [28].
Size and Runtime are expressed in MB and milliseconds. The reported
time is the CNN runtime (writing generated images to disk is not
considered). Note that we employ (1-2-4) multi-patch architecture for
StackMPN and E-StackMPN. We did not investigate deeper stacking
networks due to the GPU memory limits and long training times.

Models PSNR SSIM Size Runtime
♣Sun et al. [48] 24.64 0.843 54.1 12000
♣Nah et al. [28] 29.23 0.916 303.6 4300
♣Zhang et al. [62] 29.19 0.931 37.1 1400
♣Tao et al. [49] 30.10 0.932 33.6 1600
♣Gao et al. [11] 30.92 0.942 2.8 N/A
♣Park et al. [34] 31.15 0.945 2.6 70
�Nah et al. [29] 29.97 0.895 N/A 34.7
�DBGAN [63] 31.10 0.943 11.8 N/A
♠Pan et al. [33] 29.06 0.943 N/A N/A
♠eSL-Net [52] 30.23 0.870 N/A N/A
♠Jiang et al. [18] 31.79 0.949 N/A N/A
♠Pan et al. [31] 31.89 0.921 286 6500
♠Xiang et al. [56] 32.63 0.935 61.8 6000

(@ indicates the number of RGB frames used)
♣MPN 30.21 0.935 21.7 17
♣StackMPN 31.16 0.945 65.1 233
�MPN @3 30.68 0.940

21.7 17�MPN @5 30.89 0.941
�MPN @7 30.58 0.939
�StackMPN @5 31.63 0.951 65.1 233
♠E-MPN 33.14 0.937 64.7 121
♠E-MPN @5 33.24 0.936 64.7 121
♠E-StackMPN 33.56 0.939 118.2 338
♠E-StackMPN @5 33.83 0.941 118.2 338
♣: single image deblur; �: video deblur; ♠:event-based deblur.

where α ≥ 0 is the hyper-parameter to tune.

Scale Transformations. Another well-established property
of blurry kernels is their consistency for different scale in-
puts. Recent works [28, 62] exploit the multi-scale inputs for
image deblurring. As discussed in Section 2, the improve-
ment from such a design is not significant compared to our
multi-patch network. Ideally, one might replace each level
of MPN with a multi-scale architecture, thus making it a
multi-scale multi-patch network, denoted as ‘MPN+MSN’
in Table 3, to simultaneously capture non-uniform kernels
from different scales and locations. However, such a design
is extremely costly w.r.t. network parameters, training over-
heads and inference time, thus not practical.

Instead, we follow the self-supervision step designed in
a similar spirit to the rotation-based self-supervision step,
with the goal of promoting the consistency between scales,
and capturing multi-scale information in an efficient self-
supervised manner. The difference compared to the rotation-
based self-supervision is that instead of batch of rotated im-
ages, we randomly downsample or upsample the original
blurry images, and simultaneously feed the original input
and images at different scales to MPN to obtain their out-
puts. We follow Eq. 21 and 22 but simply use a scale aug-
menting function Scale(·) in the place of Rot(·).

Table 2: Ablations on the performance of hierarchical architecture.

Models PSNR SSIM Size Runtime
MPN(1) 28.70 0.9131 7.2 5
MPN(1-2) 29.77 0.9286 14.5 9
MPN(1-1-1) 28.11 0.9041 21.7 12
MPN(1-2-4) 30.21 0.9345 21.7 17
MPN(1-4-16) 29.15 0.9217 21.7 92
MPN(1-2-4-8) 30.25 0.9351 29.0 30
MPN(1-2-4-8-16) 29.87 0.9305 36.2 101

Gaussian Noise. The robustness to an additive pixel noise
drawn from the Normal distribution is a desired property to
equip a deblurring model with. Previous works [28, 49, 62],
including our MPN, have no built-in robustness to Gaussian
noises. To demonstrate this point, Table 6 shows that the
inference performance sharply decreases once small-valued
noises are injected into the blurring test images. Previous
works randomly apply noises to blurred images and use them
during training. Thus, the model is expected to deal with de-
blurring and denoising simultaneously.

4 Experiments

Below, we present experimental evaluations of several
variants of MPN. Firstly, we introduce datasets we use.

4.1 Datasets

We train/evaluate our methods on several versions of the
GoPro dataset [28] and the VideoDeblurring dataset [46],
and perform qualitative analysis on the realistic blurry im-
ages [33] to visually compare the deblurring ability of each
model. Lastly, we capture some realistic heavily blurred im-
ages consisting of both camera motion and object motion to
further justify real-life the effectiveness of each method.

GoPro dataset [28] consists of 3214 pairs of blurred and
clean images extracted from 33 sequences at 720×1280 res-
olution. The blurred images are generated by averaging vary-
ing number (7–13) of successive latent frames to produce
varied blurs. For a fair comparison, we follow the protocol
in [28], which uses 2103 image pairs for training and the
remaining 1111 pairs for testing.

VideoDeblurring dataset [46] contains videos captured by
various devices, such as iPhone, GoPro and Nexus. The quan-
titative part has 71 videos. Every video consists of 100 frames
at 720×1280 resolution. Following the setup in [46], we use
61 videos for training and the remaining 10 videos for test-
ing. In addition, we evaluate the model trained on the GoPro
dataset [28] on the VideoDeblurring dataset to demonstrate
the generalization ability of our method.
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Table 3: The baseline performance of multi-scale and multi-patch
methods on the GoPro dataset [28]. MSN is a baseline that uses our
encoder and decoder following the design of [28] (refer to baselines
from Section 4 for details). Note that MSN(1) and MPN(1) are in fact
the same model.

Models PSNR SSIM Runtime
Nah et al. [28] 29.23 0.9162 4300
MSN(1) 28.70 0.9131 4MPN(1)
MSN(2) 28.82 0.9156 21
MPN(1-2) 29.77 0.9286 9
MSN(3) 28.97 0.9178 27
MPN(1-2-4) 30.21 0.9345 17
MPN + MSN 30.34 0.9351 523

4.2 Evaluation Setup and Results

We feed the original high-resolution 720×1280 pixel
images into MPN. The PSNR, SSIM, model size and run-
time are reported in Table 1 for an in-depth comparison with
competing state-of-the-art motion deblurring models. For the
stacking networks, we employ the (1-2-4) multi-patch archi-
tecture in every model unit, considering the runtime and dif-
ficulty of training.

For the stacked model, the output of every sub-model is
optimized level-by-level, which means the first output has
the poorest quality and the last output achieves the best per-
formance. Fig. 8 presents the outputs of Stack(3)-MPN (3
sub-models stacked together) to demonstrate that each sub-
model gradually improves the quality of deblurring.

4.3 Implementation Details

All our experiments are implemented in PyTorch and
evaluated on a single NVIDIA Tesla P100. To train MPN,

Fig. 8: Outputs of different sub-models of Stack(3)-MPN. From left
to right are the outputs of M1 to M3. The clarity of results improves
level-by-level.

we randomly crop images to 256×256 pixel size. Subse-
quently, we extract patches from the cropped images and
forward them to the inputs of each level. The batch size is
set to 6 during training. The Adam solver [19] is used to
train our models for 3000 epochs. The initial learning rate is
set to 0.0001 and the decay rate to 0.1. We normalize image
to range [0,1] and subtract 0.5.

Performance. Table 1 shows that our proposed MPN out-
performs other competing methods according to PSNR and
SSIM measures, which demonstrates the superiority of non-
uniform blur removal via the localized information our model
uses. The deepest MPN we trained and evaluated is (1-2-
4-8-16) due to the GPU memory limitation. The best per-
formance is obtained with the (1-2-4-8) model, for which
PSNR and SSIM are higher compared to all current state-
of-the-art models. Note that our model is simpler than other
competing approaches, e.g., we do not use recurrent units.
We note that patches that are overly small (below 1/16 size)
are not helpful in removing the motion blur.

Moreover, the stacked variant, StackMPN, outperforms
shallower MPN by around 1.0dB PSNR. SSIM scores in-
dicate the same trend. The performance of StackMPN can
be improved by serially stacking more MPN units, which is
consistent with our expectations.

For video deblurring, using multi-frame inputs does not
affect the runtime significantly but it improves the PSNR by
0.41dB. However, as we do not investigate advanced strate-
gies for processing multiple frames, which is out of our fo-
cus in this paper, the performance cannot be continuously
improved by simply using a larger number of frames. The
optimal performance is achieved by using 5 blurry frames.

For event-guided deblurring, we observe that the per-
formance of both image deblurring and video deblurring
is significantly boosted. To demonstrate this point, E-MPN
achieves 33.14dB on the GoPro dataset, which outperforms
the MPN by up to ∼2.9dB. Similar trend is also observed
on video deblurring, which is consistent with our theoretical
analysis that associating the event information with blurry
images as a composite input to the pipeline should capture
accurate motion information, helping the model achieve a
better deblurring performance. When we placed the output
of the popular TV-L1 optical flow/pretrained FlowNet in
place of ‘event representation’ in our pipeline, results of
E-StackMPN dropped from 32.57dB to 32.01dB/32.07dB
(which is still better than results of [31, 56]) but worse than
results of E-StackMPN with ‘event representation’. While
event information may be captured with an extra hardware
such as an event camera, the event information used on Go-
Pro dataset in our experiments is entirely simulated from
RGB frames by Esim [36], which comprises a rendering en-
gine rather than an event camera for ground truth labelling.
In case an event camera is available, the quantitative per-
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Table 4: Quantitative analysis (PSNR) on the VideoDeblurring dataset [46] for models trained on the GoPro dataset. PSDeblur means using
Photoshop CC 2015. We select the “single frame” version of approach [46] for fair comparisons.

Methods #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average
♣PSDeblur [46] 24.42 28.77 25.15 27.77 22.02 25.74 26.11 19.75 26.48 24.62 25.08
♣WFA [5] 25.89 32.33 28.97 28.36 23.99 31.09 28.58 24.78 31.30 28.20 28.35
♣Su et al. [46] 25.75 31.15 29.30 28.38 23.63 30.70 29.23 25.62 31.92 28.06 28.37
�Nah et al. [29] - - - - - - - - - - 30.80
�STFAN [64] - - - - - - - - - - 31.24
�Xiang et al. [56] - - - - - - - - - - 31.68
�Pan et al. [31] - - - - - - - - - - 31.67
♣MPN 29.89 33.35 31.82 31.32 26.35 32.49 30.51 27.11 34.77 30.02 30.76
♣StackMPN 30.48 34.31 32.24 32.09 26.77 33.08 30.84 27.51 35.24 30.57 31.39
♠E-MPN 31.32 34.73 33.21 32.68 27.85 33.81 31.83 28.46 36.09 31.45 32.14
♠E-StackMPN 31.68 35.81 33.35 33.17 28.32 34.17 32.15 29.01 36.27 31.75 32.57
♣: single image deblur; �: video deblur; ♠:event-based deblur.
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Fig. 9: Ablation studies. PSNR w.r.t. (a) the number of pyramid levels, (b) stacking units, (c) the number of frames concatenated. Moreover, we
show PSNR w.r.t. to (d) the number of video frames used (indicated by @) by MPN, and (e) the type of augmentations as a function of epoch
number. Finally, (f) compares the final performance of MPN alone vs. MPN with different self-supervision strategies.

Table 5: Evaluations of the weight sharing scheme on GoPro [28].

Models PSNR SSIM Size (MB)
MPN(1-2) 29.77 0.9286 14.5
MPN(1-2)-WS 29.22 0.9210 7.2
MPN(1-2-4) 30.21 0.9343 21.7
MPN(1-2-4)-WS 29.56 0.9257 7.2
MPN(1-2-4-8) 30.25 0.9351 29.0
MPN(1-2-4-8)-WS 30.04 0.9318 7.2

formance of our E-MPN should improve further due to the
highest quality of event information in such a case.

Another downside of using the optical flow is that it en-
codes the displacement information rather than the change
information, etc. Event models can cope with fast motions

Table 6: Ablation study of the robustness of MPN vs. MPN models
with self-supervision under different transforms/noises on GoPro [28].
The robustness to augmentations is measured by randomly applying
transformations or noises on test images to measure the PSNR.

Type of Aug. None Rot. Gauss. Scale
MPN 30.24 29.89 20.98 24.71
MPN + Rand. Aug. 30.01 29.90 28.05 28.31
MPN + SS (Rot.) 30.85 30.86 - -
MPN + SS (Gauss.) 30.46 - 30.31 -
MPN + SS (Scale) 30.35 - - 29.49
MPN + SS (Mix) 30.92 30.91 30.35 29.91

by design, whereas optical flow algorithms are known to fail
under large displacement.

The deblurred images from the GoPro dataset are shown
in Figures 6, 12 and 9. Specifically, Figure 6 shows the de-
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Fig. 10: Outputs Si for different levels of MPN(1-2-4-8). Images from
right to left visualize bottom level S4 to top level S1.

Fig. 11: Various strategies of injecting events into our MPN: (a) di-
rectly deblurring of original blurred inputs, (b) deblurring of original
blurred input combined with the accumulation of events along the tem-
poral mode (both form the input), (c) deblurring on ‘original blurred
image + event voxel’, and (d) deblurring model using the concatena-
tion of original blurred image and Event-to-Video representation.

blurring performance of several models on an image con-
taining heavy a motion blur. We zoom in the main object for
clarity. Figure 12 shows selected images of different scenes
to demonstrate the advantages of our model which produces
the sharpest details across all cases. In addition, we present
the deblurring performance on realistic blurry images in Fig-
ure 13 to show the benefit of our E-MPN, which clearly out-
performs previous deep models in such a scenario. Figure
14 presents the performance comparison on realistic heav-
ily blurred images consisting of camera and object motions.
Our pipeline achieves better deblurring compared to the base-
line models.

Runtime. In addition to the superior PSNR and SSIM of our
model, to the best of our knowledge, MPN is also the first
deep deblurring model that can work real-time. For example,
MPN (1-2-4-8) takes 30ms to process a 720×1280 image,
which means it supports real-time 720p image deblurring at
30fps. However, there are runtime overheads related to I/O
operations, so real-time deblurring applications require fast
transfers from a video grabber to GPU, larger GPU memory
and/or an SSD drive, etc.

The following factors contribute to our fast runtime: i)
shallower encoder-decoder with small-size convolutional fil-
ters; ii) removal of unnecessary links, e.g., skip or recurrent
connections; iii) reduced number of upsampling/deconvolution
between convolutional features of different levels.
Baseline Comparisons. Despite our model has a much bet-
ter performance than the multi-scale model [28], it is a some-
what unfair comparison as network architectures of our pro-
posed model and [28] differ significantly. Compared with
[28], which uses over 303.6MB parameters, we apply much
shallower CNN encoders and decoders with the model size
10× smaller. Thus, we create a deep Multi-Scale Network
(MSN) that uses our encoder-decoder following the setup
in [28] for the baseline comparison (sanity check) between
multi-patch and multi-scale methods. As shown in Table 3,
the PSNR of MSN is worse than [28], which is expected
due to our simplified CNN architecture. Compared with our
MPN, the best result obtained with MSN is worse than the
MPN(1-2) model. Due to the common testbed, the reported
performance of MSN and MPN is the fair comparison of the
multi-patch hierarchical and multi-scale models [28].

4.4 Ablation Studies

We visualize the outputs of our MPN unit in Figure 10
to analyze intermediate contributions. As previously alluded
to, MPN uses the residual design. Thus, finer levels contain
finer but visually less important information compared to the
coarser levels. In Fig. 10, we illustrate outputs Si of each
level of MPN (1-2-4-8). The information contained in S4 is
the finest and most sparse. The outputs become less sparse,
sharper and richer in color as we move up level-by-level in
MPN.

Weight Sharing over Each Level. Below, we investigate
weight sharing between the encoder-decoder pairs of all lev-
els of our network to reduce the number of parameters. Table
5 shows that weight sharing results in a slight loss of perfor-
mance but reduces the number of parameters significantly.

The Need for Event Pre-processing. Our network uses the
so-called ‘events-to-video’ simulating network to improve
the aggregation of event information and RGB frames. To
justify its necessity, we compare our E-MPN with two recent
deep event-guided deblurring models [52, 44], and we find
that adding a front-end network to pre-process event voxels
is more effective at extracting the motion information from
events than other models. Alternatively, a back-end module
is required to help compensate for the performance loss but
such a module is not easily explainable in the context of
using events.

Various Strategies of Injecting Events. To justify the ne-
cessity of using Event-to-Videos network in our MPN pipeline,
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Blurry [28] [48] Ours E-MPN

Fig. 12: Deblurring performance on the blurry images from the GoPro and the VideoDeblurring datasets. We crop regions indicated by blue and
red bounding boxes, and obtain smaller windows as follows. The first column contains the original blurry crops, the second column is the result
of [28], the third column is the result of [49]. Our results are presented in the last column. We argue that our model achieves the best visual
performance across several different scenes.
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Blurry [28] [48] Ours

Blurry [28] [48] [57] Ours[33]

Fig. 13: The qualitative comparisons of deblurring performance on blurry images [33]. The first column contains original blurry images, the second
column is obtained with approach [28], the third column is obtained with approach [49], the fourth column is obtained with approach [33]. Our
results are presented in the last two columns. The first three deep deblurring models (from left to right) perform poorly when dealing with complex
blurs, whereas applying the event representation E-MPN produces crisp images.

Blurry [28] [48] Ours

Blurry [28] [48] [57] Ours[33]

Fig. 14: The qualitative comparisons of deblurring performance on realistic blurry images. The first column contains original blurry images. The
second column is obtained with approach [28], the third column is obtained with approach [49]. Our results are presented in the last column.

we perform ablation studies w.r.t. different strategies of in-
jecting events. Figure 11 shows that the last model (con-
catenation of the original blurred image and Event-to-Video
representation) significantly outperforms other baselines in
terms of the qualitative comparison, which we attribute to
the fact that the Event-to-Videos network decodes events
to represent the underlying event/motion dynamics within
the image domain rather than the event domain. It is unrea-
sonable to expect a deblurring pipeline could learn decode
events by itself, and for that very reason we employ the spe-
cialized Event-to-Videos network.

Self-supervised Pipelines. Combining our proposed self-
supervision step with MPN improves the robustness w.r.t.
different geometric transformations and photometric noises,
as shown in Table 6. For example, applying a low-level addi-
tive Gaussian noise on original blurred images during testing
decreases the deblurring performance of the original model
down to 20.98dB, which demonstrates that the original model
cannot deblur noisy images. Once the Gaussian noise self-
supervision step is applied, deblurring performance reaches
30.31dB. Applying rotations as self-supervisory task in MPN
brings around 0.6dB PSNR improvement on GoPro dataset.
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5 Conclusions

In this paper, we address the challenging problem of
non-uniform motion deblurring by exploiting the multi-patch
model as opposed to the widely used multi-scale and scale-
recurrent architectures. To this end, we have devised an end-
to-end deep multi-patch hierarchical deblurring network. Com-
pared against existing deep deblurring frameworks, our model
achieves the state-of-the-art performance (according to PSNR
and SSIM) and is able to run at 30fps for 720p images. To
overcome the discrepancy between adjacent patch bound-
aries, we explicitly minimize the `2 metric between these
boundaries to promote the global consistency of patches.
Our stacked variants StackMPN further improve results over
both shallower MPN and competing approaches while be-
ing ∼4× faster than the latter models. Our stacking archi-
tecture appears to have overcome the limitation to stack-
ing depth which other competing approaches exhibit. More-
over, the novel self-supervised mechanism proposed by us
improve the model ability to cope with geometric transfor-
mations and photometric noises. Finally, exploiting the cam-
era event representation together with blurred images results
in the largest improvements on frames containing complex
blur patterns. We hope our work provides several valuable
insights for subsequent works on deblurring.
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