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Input: Sparse bounding boxes for chosen keyframes

Output:  Dense region boundaries/masks for all the frames 

(keyframes & intermediate frames)

Figure 1: Our goal is to derive a video region annotation tool that can automatically anno-
tate dense per-frame region boundaries from sparse user-provided bounding boxes given for
sparse keyframes.

Abstract
Video analysis has been moving towards more detailed interpretation (e.g. segmen-

tation) with encouraging progresses. These tasks, however, increasingly rely on densely
annotated training data both in space and time. Since such annotation is labour-intensive,
few densely annotated video data with detailed region boundaries exist. This work aims
to resolve this dilemma by learning to automatically generate region boundaries for all
frames of a video from sparsely annotated bounding boxes of target regions. We achieve
this with a Volumetric Graph Convolutional Network (VGCN), which learns to iteratively
find keypoints on the region boundaries using the spatio-temporal volume of surround-
ing appearance and motion. The global optimization of VGCN makes it significantly
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stronger and generalize better than existing solutions. Experimental results using two
latest datasets (one real and one synthetic), including ablation studies, demonstrate the
effectiveness and superiority of our method.

1 Introduction

Advances in deep learning techniques have brought about remarkable progress in many com-
puter vision tasks such as detection, segmentation, tracking, and recognition. One major
caveat with most deep learning algorithms is that they need to be trained with a huge amount
of data that have been carefully labeled with ground truth [8, 14, 24]. Furthermore, in many
applications such as autonomous driving, visual analysis has to be done on every captured
frame for real-time processing or for tasks that require dense spatio-temporal information.
For these, dense per-frame region-level annotation becomes essential for training the models.

Manually annotating detailed region boundaries for every video frame is a highly time-
consuming, tedious, if not impossible, task. To our best knowledge, no publicly available
dataset offers per-frame annotation. The lack of densely annotated video data has limited
the research on detailed region-level video analysis and have forced researchers to explore
image-based models instead. Frame-wise processing, however, misses the spatial-temporal
relationships and can lead to inferior results. As such, dense per-frame region annotation
with an affordable and efficient means becomes critical. Bounding box is a widely used
and rather cheap supervision. What if we only need annotators to provide region bounding
boxes for sparsely chosen keyframes and then the annotation tool automatically generates
boundaries for the region of interest in every frame, as illustrated in Figure 1?

We introduce a novel dense video annotation method that only requires sparse bounding-
box supervision. We fit an iteratively deforming volumetric graph to the video sub-sequence
bounded by two chosen keyframes, so that its uniformly initialized graph nodes gradually
move to the key points on the sequence of region boundaries. The model consists of a set
of deep neural networks, including normal convolutional networks for frame-wise feature
map extraction and a volumetric graph convolutional network for iterative boundary point
finding. By propagating and integrating node-associated information (sampled from feature
maps) over graph edges, a content-agnostic prediction model is learned for estimating graph
node location shifts. The effectiveness and superiority of the proposed model and its major
components are demonstrated on two latest public datasets: a large synthetic dataset Synthia
and a real dataset named KITTI-MOTS capturing natural driving scenes.

2 Related Work

Region Annotation vs. Segmentation Since one can easily get confused by the relation-
ship between our work and large amounts of existing works on segmentation tasks (including
semantic segmentation [7, 13, 16, 17], object segmentation [11], and instance segmentation
[23]), we first clarify the difference. Annotation is the process of labeling data to be used
for machine learning algorithms, including training and evaluation. Whilst there have been
many studies in learning from unlabeled data [6, 12, 22], many state-of-the-art algorithms
still need some sort of labeled data for training, and in any case quantitative performance
evaluation generally requires ground-truth labels. On the other hand, segmentation is the
process of predicting pixel-level class labels. The main difference between annotation and
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segmentation is that annotation is for building a dataset whilst segmentation is a vision task
model trained on an annotated dataset. As such, any segmentation method would benefit
from a better annotated data and hence the annotation tool. This work focuses on region an-
notation for videos, aiming to alleviate the burden of the annotator to help make the process
of creating ground truth data easier, and thus support the development of new video analysis
models, including those for image/video based segmentation.

Single-Image Annotation Tools In general, one can still choose to annotate each frame
using image annotation tools. Representative works are briefly discussed here. One of the
earliest annotation tool that aimed to cut down the time required to annotate was Grab-
Cut [18] which does interactive foreground/background segmentation in still images using
bounding boxes and foreground and background marking strokes as its inputs. Polygon-
RNN [4] and Polygon-RNN++ [1] use a CNN-RNN architecture to sequentially trace object
boundaries given a bounding box. The RNN can only output one vertex at a time which
could mean slow inference time depending on the number of vertices to be inferred. In sub-
sequent work, Curve-GCN [15] attempts to get around this limitation by modeling object
annotation as a boundary control point regression problem and using graph convolutions to
do the joint regression for all the control points (i.e., graph nodes). It was demonstrated to
be faster and also more effective than Polygon-RNN. Since these models/tools do not use
temporal information among successive frames, simply extending them for the desired video
region annotation task is likely to be inferior than our proposed solution. To demonstrate it,
we build two extensions of the state-of-the-art model Curve-GCN [15] and compare them
with our proposed model in the experiment section (section 4).

Video Annotation Tools Annotating objects in video is not as straight-forward as anno-
tating them in images as it requires observing their motion paths and taking into account the
possibility of change in shape over time. One of the earliest video annotation tools publicly
available is VATIC [20] which uses inter-frame interpolation to generate bounding boxes
automatically. Bounding boxes, however, are not enough for detailed analyses including
pixel-wise segmentation. There have also been efforts on annotating regions in videos using
active contours [21], approximation of closed boundaries using polygons [3] and partition
trees [9]. Despite the differences in getting the region boundaries within a frame, all these
tools do some kind of annotation propagation or interpolation across video frames to achieve
video annotation. Instead, our proposed model jointly optimizes the boundaries in all frames.

3 Volumetric Graph Convolutional Network (VGCN)

Our aim is to automatically generate dense per-frame region boundary labels for all the re-
gions of interest in all video frames, assuming only the bounding boxes of the target regions
in sparse keyframes are given by human annotator(s). The whole task can be decomposed
into subtasks each of which focuses on a key step: generating dense per-frame region bound-
ary labels for a sub-sequence of video frames bounded by two keyframes, where a single
region inside the target appears across all the frames, as shown in Figure 1. This is a rea-
sonable setting as human annotators can scan the whole video before annotation and place
keyframes to cut the whole sequence of the target region (object, object part, or even stuff)
into sub-sequences with reasonably consistent region shapes.
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Figure 2: The overall framework of Volumetric Graph Convolutional Network (VGCN).
Per-frame feature maps are illustrated on the right.

We have three desiderata for a video annotation model. First, besides the raw video data,
the model can only assume sparse bounding boxes as the input during testing and infer-
ence. Second, the method should be applicable to arbitrary regions (of different shapes and
contents) appearing in sub-sequences of arbitrary lengths. Last, spatial-temporal inference
should be employed to ensure global joint optimization. In this paper, we propose a novel
model which we refer to as Volumetric Graph Convolutional Network (VGCN) that meets
all three requirements. It takes as input a pair of bounding boxes from two keyframes for
data cropping and normalization, as well as initialization. Its local graph connections (i.e.,
edges) and weight sharing over same types of connections allow uniform formulation and
robust modeling of arbitrary local shapes. The volumetric graph convolutions integrate and
propagate information spatially and temporally, leading to global spatial-temporal inference
and the ability to handle arbitrary video of various lengths.

3.1 Overall Framework

As shown in Figure 2, given an input video sub-sequence bounded by two chosen keyframes,
the annotator-provided keyframe bounding boxes are used to crop the video frames, normal-
ize them (following [15]), and extract frame-wise feature maps whose contents are shown
on the right. The bounding boxes also help VGCN initialize the locations of its volumetric
nodes that correspond to the keypoints of desired boundaries of all video frames. Then the
model samples features from the feature maps according to the node (i.e., boundary keypoint)
locations, and such sampled features are fed into a group of graph convolutional blocks (8 of
them in our implementation) for information integration and propagation. A fully-connected
(FC) layer is adopted to map the updated features of each node to its predicted location
shifts. After the actual shifting of node locations, another round of feature sampling and
graph convolutions can be applied to predict a new round of location shifts. This process can
be iterated several times to ensure an accurate fit to the actual region boundaries.
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Frame k-1 Frame k Frame k+1 Frame k-1 Frame k Frame k+1

Full Local Connection Decomposable Local Connection

Figure 3: Graph structures of two variants of VGCN, full local connection (recommended)
and decomposable local connection (simplest), illustrated with three adjacent frames. Note
that all the nodes of an intermediate frame will have exactly the same number of edges. Some
edges for “full local connection” are omitted for better visibility.

3.2 Graph Structure

Suppose the sub-sequence where a target region exists is bounded by two keyframes with a
sparsity factor K indicating the frame ID difference between them. The task is to find the
region boundary in each frame. The 1st frame and the “K + 1”-th frame are the keyframes
with bounding-box supervision. Assume the shape of the region boundary in each frame can
be well-represented by N control points Vk = {cp0

k , . . . ,cpN−1
k }, where k indicates the k-th

frame and cpi
k = [xi

k,y
i
k]

T is the location of the i-th control point in this frame, we construct
a volumetric graph Gv = (V,E) covering all the frames of the sub-sequence, for which a
three-frame slice is illustrated in Figure 3. Let V =

⋃K+1
k=1 Vk denote the graph nodes which

are the union of control points from all the frames, we define the edge set E = Es ∪Et by
introducing two types of connections for each node cpi

k. The spatial connections Es cover
both the node’s self-connection and the links between the node and its four neighboring
nodes (the black lines in Figure 3), while the temporal connections Et link the node to its
corresponding nodes in the two neighboring frames (cross-frame green lines) and optionally
also those nodes’ four spatial neighbors (orange lines). Depending on the temporal links,
the former case is called “decomposable local connection” as the spatial and temporal links
are orthogonal, and the later is called “full local connection” or simply “full-connection”
which is the recommended structure. These spatial-temporal connections enable effective
and efficient information integration and propagation among the graph nodes. For a better
model-data fit, we add one more frame to each end of the sub-sequence. As a result, our
model deals with K +3 frames and has V =

⋃K+2
k=0 Vk.

3.3 Feature Extraction and Representation

With the two keyframe bounding boxes, we get the bounding boxes for other frames with
linear interpolation. Then a 15% margin is added to each size of the bounding box to ensure
a sufficient coverage of data even when the bounding boxes are tight. The extended bound-
ing boxes are used to crop the frames and normalize the cropped areas to uniform sizes
(with spatial coordinates normalized to [0,1] by [0,1]). Following [15], we extract three
types of features from the normalized data as shown in Figure 2: appearance features com-
puted using the DeepLab-v2 [5] model pre-trained, and fine-tuned for semantic segmentation
on ImageNet and PASCAL, respectively, and boundary features computed using additional
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Figure 4: The graph convolutional block of VGCN. Both full local connection (recom-
mended) and decomposable local connection (simplest) are illustrated. The right subfigure
shows how the information from graph nodes (boundary keypoints) is integrated spatially
and temporally, using the decomposable model as an example.

branches to predict the probability of existence of an object edge/vertex on a 28 x 28 grid
and position features (normalized pixel coordinates). In contrast to Curve-GCN [15], we
add motion information into the feature extraction in two ways: concatenating the optical
flow map (obtained by FlowNet2.0 [10]) to the original image data before feature extraction,
and directly concatenating the flows to the three types of extracted features to form the final
frame-wise feature maps. The first one contributes to the boundary features via early fusion,
making it motion-aware, and the second one directly adds in the flow information via late
fusion. In our implementation, we found that it is better to have the late fusion only involved
in the first iteration of graph convolutions rather than all of them. This is likely due to the
potentially noisy flows around the region boundaries. When the graph nodes get close to the
boundaries in later iterations, such noise can obstruct the model from learning proper shifts.

3.4 Graph Convolutional Block

Following Curve-GCN, we also adopt the multi-layer GCN architecture, where each layer
has a Graph ResNet structure as shown in Figure 4. Mathematically, the graph convolution
for an arbitrary node cpi

k can be formulated as

f̂ l
k,i =W l

o f l
k,i + ∑

cp j
kεEs(cpi

k)

W l
s f l

k, j + ∑
cp j

k−1εEt (cpi
k)

W l
t f l

k−1, j + ∑
cp j

k+1εEt (cpi
k)

W l
t f l

k+1, j, (1)

where W l
o , W l

s , and W l
t are the weight matrices at layer l to be learned for transforming the

control point’s own features, the features of its spatial neighbors (i.e., the nodes connected to
cpi

k via edges in Es(cpi
k)), and the features of its temporal neighbors (i.e., the nodes connected

to cpi
k via edges in Et(cpi

k)), respectively, and f̂ l
k,i is the updated feature for cpi

k at layer l after
one round of information propagation. Note that in the “full-connection” case the two types
of temporal edges (the ones connecting corresponding nodes, and the others) have different
weight matrices. After that, there is a ReLU activation gl

k,i = ReLU( f̂ l
k,i).
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Then, there is another round of convolution

ĝl
k,i = W̃ l

ogl
k,i + ∑

cp j
kεEs(cpi

k)

W̃ l
s gl

k, j + ∑
cp j

k−1εEt (cpi
k)

W̃ l
t gl

k−1, j + ∑
cp j

k+1εEt (cpi
k)

W̃ l
t gl

k+1, j,

where W̃ l
o , W̃ l

s , and W̃ l
t are the corresponding weight matrices. Finally, the residual structure

combines the updated feature ĝl
k,i and the original feature f l

k,i to generate the input feature
for the next layer, together with a ReLU activation f l+1

k,i = ReLU(ĝl
k,i + f l

k,i).

After L layers (l = 0, . . . ,L− 1), f L
k,i is fed into a single fully connected layer to predict

the location shift (∆xi
k,∆yi

k) for cpi
k. Then its coordinates can be updated as c̃pi

k = [xi
k +

∆xi
k,y

i
k +∆yi

k]
T . With the new control point location, we can get the new features f̃ l+1

k,i and
have it go through the whole VGCN module again to get another location shift. Such shifting
of control points can be done several times to nudge the graph nodes to move to the actual
region boundaries.

As shown in Figure 4, the convolution can be viewed as spatio-temporal information
integration and propagation. When several blocks are applied, each node can get information
from a significantly large area of the video.

We use the Normalized Bi-directional Chamfer Distance (NBCD) for the loss to get
supervision from the ground-truth boundaries. It directly measures the accuracy on keypoints
and corresponds to the NBCD metric in our performance evaluation.

4 Experiment

4.1 Experimental settings

Datasets. Synthia [2] is a recently released synthetic driving dataset that has ground truth
object boundaries for every frame. This dataset contains 178 training video sequences cap-
tured at 25fps, with lengths ranging from 15 seconds to 30 seconds. We consider dynam-
ically moving objects relevant to driving scenarios: person, car, truck, bus, and bicycle.
KITTI MOTS [19] is a newly built real dataset for Multi-Object Tracking and Segmen-
tation (MOTS). It contains 21 training sequences (12 for training, 9 for validation), and 4
testing sequences are reserved for MOTS Challenge. The dataset only has two object cate-
gories: pedestrian and car, with 99 pedestrians and 431 cars for training, 68 pedestrians and
151 cars for validation. We use the 12 training sequences for training and the validate set for
testing. Synthia is about 5 times larger in terms of frame/sub-sequence numbers.
Evaluation Metrics. Besides the widely used mIoU and F1-score (1px) measure [15] that
measures mask and boundary matching accuracy, respectively, we also use the Normalized
Bi-directional Chamfer Distance (NBCD) to directly measure the keypoint matching accu-
racy, so that the performance can be checked from different perspectives.
Implementation Details Though VGCN can handle sub-sequences of various lengths, we
use equal lengths by fixing K (default: 10) to ease model transfer and comparisons across-
datasets and ablation study on the factor of sparsity. The sequence numbers of train, valida-
tion and test split for our experiments on both are 11k:0.9k:1.3k and 1.5k:0.3k:0.4k (here ‘k’
denotes the unit of a thousand), with train and validation from the original training sets and
the test split from the original test sets.

Citation
Citation
{Bengar, Gonzalez-Garcia, Villalonga, Raducanu, Aghdam, Mozerov, Lopez, and vanprotect unhbox voidb@x penalty @M  {}de Weijer} 2019

Citation
Citation
{Voigtlaender, Krause, Osep, Luiten, Sekar, Geiger, and Leibe} 2019

Citation
Citation
{Ling, Gao, Kar, Chen, and Fidler} 2019



8 XU ET AL.: VIDEO REGION ANNOTATION WITH SPARSE BOUNDING BOXES

Table 1: Results on Synthia, measured by mean Intersection over Union (mIoU). Since dif-
ferent object categories have different amounts of samples, the number of frames in testing
for each category is shown under its name.

Model Person Car Truck Bus Bicycle Average
Name Property (5.96K) (10.50K) (0.21K) (0.18K) (0.35K)

SGCN Frame-wise, based on [15] 68.79 78.17 78.09 67.93 32.95 65.19
SGCN-smoothed Video-wise (indirect) 68.27 78.10 78.46 68.76 33.26 65.37

VGCN-basic Video-wise 71.75 79.09 79.91 65.74 35.53 66.41
VGCN Video-wise, proposed 72.68 80.29 80.48 69.49 36.09 67.80

Table 2: Results on Synthia in Normalized Bi-directional Chamfer Distance (NBCD) and
F1-score (F at 2px), shown in the “NBCD/F1-score(2px)” format for each entry.

Model Person Car Truck Bus Bicycle Average(5.96K) (10.50K) (0.21K) (0.18K) (0.35K)

SGCN 3.4/86.05 7.3/76.86 5.3/80.06 6.1/68.43 11.0/50.51 6.6/72.39
SGCN-smoothed 3.4/85.50 7.4/76.55 5.2/80.07 6.1/69.33 10.7/50.03 6.5/72.30

VGCN-basic 2.9/89.89 7.1/80.08 4.9/85.11 5.076.13 10.0/56.01 6.0/77.44
VGCN 2.8/90.35 6.9/83.20 4.5/86.83 4.8/76.91 10.0/56.98 5.8/78.85

4.2 Experimental Results

Models for Comparison. Instead of video-wise joint boundary inference, one may simply
apply a frame-wise model (here we choose Curve-GCN [15] as it is the state-of-the-art and
also the most relevant model) to each video frame with either the provided bounding box
(in case of keyframes) or some interpolated bounding box (for a intermediate frame). We
refer to this model as Spatial Graph Convolutional Network (SGCN), as it is also based on
GCN and only does the graph convolutions spatially. Despite its simplicity, SGCN has a
natural limitation of omitting the temporal relationships among successive video frames. To
overcome it, one may also think about simply smoothing the results of SGCN on successive
video frames using a B-spline function, so that the overall model can be made indirectly
video-wise. Such a simple solution is named ‘SGCN-smoothed’. However, we believe that
a direct modeling of temporal relationships in the model like the proposed VGCN is nec-
essary and superior. To better show the performance difference of direct spatio-temporal
modeling and indirect result smoothing, we also test a simplified version of VGCN named
‘VGCN-basic’, by only keeping the minimal temporal connection (i.e., the decomposable
local connection as shown in Figure 3) and excluding the motion features. Note that for a
fair comparison, all the compared models are trained with the same data which only have
ground-truths on the sparse key frames.
Effectiveness of VGCN. As shown in Table 1 and Table 2, VGCN significantly outperforms
SGCN under all metrics on the Synthia dataset. Interestingly, the ignorable result differences
between SGCN-smoothed and SGCN also indicate that simple temporal smoothing is not
effective. We found that the training set of KITTI MOTS is too small to support our model,
so we choose to do the generalization experiments on it instead as we detail below.
Generalizability. Since the GCN-based models have no assumption on the data, they can
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Table 3: Results on KITTI-MOTS. Upper part: directly applying the models trained on Syn-
thia; lower part: fine-tuned models (pre-trained on Synthia). ‘Ped’ stands for ‘Pedestrian’.

mIoU NBCD F1-score (2px)

Model Ped Car Ped Car Ped Car

SGCN 57.1 58.2 10.6 19.0 51.5 52.0
SGCN-smoothed 55.4 58.1 10.7 19.0 47.6 49.6

VGCN-basic 63.3 70.3 8.0 12.1 60.6 63.4
VGCN-basic + Full-connection 62.9 70.5 8.2 11.5 62.6 64.0

VGCN 61.7 67.2 9.0 12.0 59.3 60.4

SGCN 57.1 66.1 9.8 13.7 51.3 57.8
SGCN-smoothed 55.7 65.3 9.9 13.8 48.1 54.9

VGCN-basic 63.1 70.9 8.9 11.8 59.8 63.5
VGCN-basic + Full-connection 65.2 72.6 7.8 11.6 65.7 68.9

VGCN 65.1 71.8 8.0 12.0 65.6 66.2
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Figure 5: Comparison of the generalizability of VGCN, and two representative failure cases.

be applied to arbitrary video data. We conduct two types of experiments to validate the gen-
eralizability of VGCN, in comparison with its competitors. One is about directly applying
models trained on Synthia to the test set of KITTI MOTS. The results are shown in the up-
per part of Table 3. The other is fine-tuning the pre-trained model (trained on Synthia) on
the small training set of KITTI MOTS and then testing the fine-tuned models on its test set.
The results for this are shown in the lower part of Table 3. We fixed the feature extraction
part, the FC layers of VGCN and its graph convolution layers, and just tuned the network for
feature aggregation. VGCN models all outperform SGCN-based ones by large margins. We
can see that motion features hurt VGCN in both direct application and fune-tuning, but full-
connection significantly helps. Fine-tuning doesn’t benefit VGCN-basic, but it significantly
enhances VGCN when full-connection is adopted. These findings indicate that the major
difference between synthetic data and real data is probably on the motion patterns, instead
of adapting motion features which may be hard, fine-tuning the full temporal connections is
more effective. Examples on how fine-tuning benefits VGCN are shown in Figure 5, together
with two representative failure cases: undesirable region due to badly interpolated boxes and
extra part caused by object interaction.
Running Time. Inference on a 13-frame sequence takes about 1.1s on a NVIDIA RTX2080Ti
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Figure 6: Performance changes w.r.t. annotation sparsity (keyframe interval K).

Table 4: Ablation studies on VGCN components using Synthia dataset, measured by mIoU.

Model Person Car Truck Bus Bicycle Average(5.96K) (10.50K) (0.21K) (0.18K) (0.35K)

VGCN-basic (i.e., w/o both) 71.75 79.09 79.91 65.74 35.53 66.41
VGCN-basic + Motion-features 70.40 79.79 81.20 67.87 35.34 66.92
VGCN-basic + Full-connection 73.42 80.30 81.74 63.92 36.21 67.12

VGCN (i.e., w/ both) 72.68 80.29 80.48 69.49 36.09 67.80

GPU. Note that interactive correction can be much faster, as features can be pre-computed
and result refinement is much faster than inference-from-scratch as shown in [15]. For this,
we believe the computational speed of our method would be sufficient for real usage.

4.3 Ablation Studies

VGCN Components. As shown in Table 4, both the motion features and the full-connection
can help improve the performance. Though full-connection contributes more than motion
features, they are complementary and the VGCN model with both performs the best.
Sparsity of annotation. Figure 6 shows performance variation of the compared models on
KITTI-MOTS, with different K values. The results are averaged over ‘Ped’ and ‘car’. All
the models perform worse when K is increased. VGCN models always outperform SGCN.
Impact of box interpolation. To investigate the influence of box quality, we use GT-bbox
in testing and find the superiority of VGCN to SGCN is even greater: 68.67% (0.87% up)
vs.65.21%(0.02% up) in mIoU on Synthia and 71.1% (6.0% up) for ‘Ped’, 79.2% (7.4% up)
for ‘Car’ vs. 58.4% (1.3% up) and 70.7% (4.6% up) respectively in mIoU on KITTI MOTS.

5 Conclusions

This paper presents a novel tool for video region annotation that can generate dense per-
frame region boundaries with only bounding boxes on sparse keyframes provided by the
annotators. We believe our method opens a new avenue of research for significantly extend-
ing video supervision for general deep vision applications. An important future work is to
extend the method to allow interactive correction in a human-in-the-loop annotation scheme.
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