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Abstract Vision transformers have shown great po-
tential in various computer vision tasks owing to their
strong capability to model long-range dependency using
the self-attention mechanism. Nevertheless, they treat
an image as a 1D sequence of visual tokens, lacking an
intrinsic inductive bias (IB) in modeling local visual
structures and dealing with scale variance, which is in-
stead learned implicitly from large-scale training data
with longer training schedules. In this paper, we lever-
age the two IBs and propose the ViTAE transformer,
which utilizes a reduction cell for multi-scale feature
and a normal cell for locality. The two kinds of cells are
stacked in both isotropic and multi-stage manners to
formulate two families of ViTAE models, i.e., the vanilla
ViTAE and ViTAEv2. Experiments on the ImageNet
dataset as well as downstream tasks on the MS COCO,
ADE20K, and AP10K datasets validate the superior-
ity of our models over the baseline and representative
models. Besides, we scale up our ViTAE model to 644M
parameters and obtain the state-of-the-art classification
performance, i.e., 88.5% Top-1 classification accuracy
on ImageNet validation set and the best 91.2% Top-1
classification accuracy on ImageNet Real validation set,
without using extra private data. It demonstrates that
the introduced inductive bias still helps when the model
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size becomes large. The source code and pretrained
models are publicly available at code.
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1 Introduction

Transformers (Vaswani et al, 2017; Kenton and Toutanova,
2019) have become the popular frameworks in NLP stud-
ies owing to their strong ability in modeling long-range
dependencies by the self-attention mechanism. Such suc-
cess and good properties of transformers have inspired
many following works that apply them in various com-
puter vision tasks (Dosovitskiy et al, 2020; Zheng et al,
2021; Wang et al, 2021a). Among them, ViT (Dosovit-
skiy et al, 2020) is the pioneering work that adapts a pure
transformer model for vision by embedding images into
a sequence of visual tokens and modeling the global de-
pendencies among them with stacked transformer blocks.
Although it achieves promising performance on image
classification, it experiences a severe data-hungry issue,
i.e., requiring large-scale training data and a longer
training schedule for better performance. One impor-
tant reason is that ViT does not efficiently utilize the
prior knowledge in vision tasks and lacks such inductive
bias (IB) in modeling local visual clues (e.g ., edges and
corners) and dealing with objects at various scales like
convolutions. Alternatively, ViT has to learn such IB
implicitly from large-scale data.

Unlike vision transformers, Convolution Neural Net-
works (CNNs) are naturally equipped with the intrinsic
IBs of locality and scale-invariance and still serve as
prevalent backbones in vision tasks (He et al, 2016;
Szegedy et al, 2017; Chen et al, 2017; Zhao et al, 2017).
The success of CNNs inspires us to explore the benefits of
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Fig. 1 Comparison of data and training efficiency of DeiT-
T (Touvron et al, 2021a), T2T-ViT-7 (Yuan et al, 2021b) and
ViTAE-T on ImageNet.

introducing intrinsic IBs in vision transformers. We start
by analyzing the above two IBs of CNNs, i.e., locality
and scale-invariance. Convolution that computes local
correlation among neighbor pixels is good at extracting
local features such as edges and corners. Consequently,
CNNs can provide great low-level features at the shallow
layers (Zeiler and Fergus, 2014), which are then aggre-
gated into high-level features progressively by a bulk of
sequential convolutions (Huang et al, 2017; Simonyan
and Zisserman, 2015; Szegedy et al, 2015). Moreover,
CNNs have a hierarchy structure to extract multi-scale
features at different layers (Simonyan and Zisserman,
2015; Krizhevsky et al, 2012; He et al, 2016). Intra-layer
convolutions can also learn features at different scales
by varying their kernel sizes and dilation rates (He et al,
2015; Szegedy et al, 2017; Chen et al, 2017; Lin et al,
2017; Zhao et al, 2017). Consequently, scale-invariant
feature representations can be obtained via intra- or
inter-layer feature fusion. Nevertheless, CNNs are not
well suited to model long-range dependencies1, which is
the key advantage of transformers. An interesting ques-
tion then comes up: can we improve vision transformers
by leveraging the good properties of CNNs? Recently,
DeiT (Touvron et al, 2021a) explores the idea of distill-
ing knowledge from CNNs to transformers to facilitate
training and improve performance. However, it requires
an off-the-shelf CNN model as the teacher and incurs
extra training costs.

1 Despite the projection layer in a transformer can be viewed
as 1×1 convolution (Chen et al, 2021c), the term of convolution
here refers to those with larger kernels, e.g., 3× 3, which are
widely used in typical CNNs to extract spatial features.

Different from DeiT, we explicitly introduce intrinsic
IBs into vision transformers by re-designing the network
structures in this paper. Current vision transformers
always obtain tokens with single-scale context (Dosovit-
skiy et al, 2020; Yuan et al, 2021b; Wang et al, 2021a;
Liu et al, 2021) and learn to adapt to objects at different
scales from data. For example, T2T-ViT (Yuan et al,
2021b) improves ViT by delicately generating tokens in a
soft split manner. Specifically, it uses a series of Tokens-
to-Token transformation layers to aggregate single-scale
neighboring contextual information and progressively
structures the image to tokens. Motivated by the success
of CNNs in dealing with scale variance, we explore a sim-
ilar design in transformers, i.e., intra-layer convolutions
with different receptive fields (Szegedy et al, 2017; Yu
et al, 2017), to embed multi-scale context into tokens.
Such a design allows tokens to carry useful features of
objects at various scales, thereby naturally having the
intrinsic scale-invariance IB and explicitly facilitating
transformers to learn scale-invariant features more ef-
ficiently from data. On the other hand, low-level local
features are fundamental elements to generate high-
level discriminative features. Although transformers can
also learn such features at shallow layers from data,
they are not skilled as convolutions by design. Recently,
(Yan et al, 2021; Li et al, 2021; Graham et al, 2021)
stack convolutions and attention layers sequentially and
demonstrate that locality is a reasonable compensation
of global dependency. However, this serial structure ig-
nores the global context during locality modeling (and
vice versa). To avoid such a dilemma, we follow the
“divide-and-conquer” idea and propose modeling local-
ity and long-range dependencies in parallel and fusing
the features to account for both. In this way, we em-
power transformers to learn local and long-range features
within each block more effectively.

Technically, we propose a new Vision Transformers
Advanced by Exploring Intrinsic Inductive Bias (Vi-
TAE), which is a combination of two types of basic cells,
i.e., reduction cell (RC) and normal cell (NC). RCs are
used to downsample and embed the input images into
tokens with rich multi-scale context, while NCs aim to
jointly model locality and global dependencies in the
token sequence. Moreover, these two types of cells share
a simple basic structure, i.e., paralleled attention mod-
ule and convolutional layers followed by a feed-forward
network (FFN). It is noteworthy that RC has an extra
pyramid reduction module with atrous convolutions of
different dilation rates to embed multi-scale context into
tokens. Following the setting in (Yuan et al, 2021b), we
stack three reduction cells to reduce the spatial resolu-
tion by 1/16 and a series of NCs to learn discriminative
features from data. ViTAE outperforms representative
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vision transformers in terms of data efficiency and train-
ing efficiency (see Figure 1) as well as classification
accuracy and generalization on downstream image clas-
sification tasks. In addition, we further scale up ViTAE
to large models and show that the inductive bias still
helps to obtain better performance, e.g., ViTAE-H with
644M parameters achieves 88.5% Top-1 classification
accuracy on ImageNet without using extra private data.

Beyond image classification, backbone networks should
adapt well to various downstream tasks such as object
detection, semantic segmentation, and pose estimation.
To this end, we extend the vanilla ViTAE to the multi-
stage design, i.e., ViTAEv2. Specifically, a natural choice
is to construct the model by re-arranging the reduction
cells and normal cells according to the strategies in
(Wang et al, 2021a; Liu et al, 2021) to have multi-scale
feature outputs, i.e., several consecutive NC cells are
used following one RC module at each stage (feature
resolution) rather than using a series of NCs only at
the last stage. As a result, the multi-scale features from
different stages can be utilized for those various down-
stream tasks. One remaining issue is that the vanilla
attention operations in transformers have a quadratic
computational complexity, requiring a large memory
footprint and computation cost, especially for feature
maps with a large resolution. To mitigate this issue, we
further explore another inductive bias, i.e., local window
attention introduced in (Liu et al, 2021), in the RC and
NC modules. Since the parallel convolution branch in
the proposed two cells can encode position information
and enable inter-window information exchange, special
designs like the relative position encoding and window-
shifting mechanism in (Liu et al, 2021) can be omitted.
Consequently, our ViTAEv2 models outperform state-of-
the-art methods for various vision tasks, including image
classification, object detection, semantic segmentation,
and pose estimation, while keeping a fast inference speed
and reasonable memory footprint.

The contribution of this study is threefold. First,
we explore two types of intrinsic IB in transformers,
i.e., scale invariance and locality, and demonstrate the
effectiveness of this idea by designing a new transformer
architecture named ViTAE based on two new reduction
and normal cells that incorporate the above two IBs.
ViTAE outperforms representative vision transformers
regarding classification accuracy, data efficiency, training
efficiency, and generalization on downstream vision tasks.
Second, we scale up our ViTAE model to 644M pa-
rameters and obtain 88.5% Top-1 classification accuracy
on ImageNet without using extra private data, which
is better than the state-of-the-art Swin Transformer,
demonstrating that the introduced inductive bias still
helps when the model size becomes large. Third, we

extend the vanilla ViTAE to the multi-stage design,
i.e., ViTAEv2. It learns multi-scale features at different
stages efficiently while keeping a fast inference speed
and reasonable memory footprint for large-size input
images. Experiments on popular benchmarks demon-
strate that it outperforms state-of-the-art methods for
various downstream vision tasks, including image classi-
fication, object detection, semantic segmentation, and
pose estimation.

The following of this paper is organized as follows.
Section 2 describes the relevant works to our paper. We
then detail the two basic cells, the vanilla ViTAE model,
the scaling strategy for ViTAE, as well as the multi-
stage design for ViTAEv2 in Section 3. Next, Section 4
presents the extensive experimental results and analysis.
Finally, we conclude our paper in Section 5 and discuss
the potential applications and future research directions.

2 Related Work

2.1 CNNs with intrinsic inductive bias

CNNs (Krizhevsky et al, 2012; Zeiler and Fergus, 2014;
He et al, 2016) have explored several inductive biases
with specially designed operations and have led to a
series of breakthroughs in vision tasks, such as image
classification, object detection, and semantic segmenta-
tion. For example, following the fact that local pixels
are more likely to be correlated in images (LeCun et al,
1995), the convolution operations in CNNs extract fea-
tures from the neighbor pixels within the receptive field
determined by the kernel size (LeCun et al, 2015). By
stacking convolution operations, CNNs have the induc-
tive bias in modeling locality naturally.

In addition to the locality, another critical inductive
bias in visual tasks is scale-invariance, where multi-scale
features are needed to represent the objects at differ-
ent scales effectively (Luo et al, 2016; Yu and Koltun,
2016). For example, to effectively learn features of large
objects, a large receptive field is needed by either using
large convolution kernels (Yu and Koltun, 2016; Yu et al,
2017) or a series of convolution layers in deeper archi-
tectures (He et al, 2016; Huang et al, 2017; Simonyan
and Zisserman, 2015; Szegedy et al, 2015). However,
such operations may ignore the features of small ob-
jects. To construct multi-scale feature representation for
objects at different scales effectively, various image pyra-
mid techniques (Chen et al, 2017; Adelson et al, 1984;
Olkkonen and Pesola, 1996; Burt and Adelson, 1987;
Lai et al, 2017; Demirel and Anbarjafari, 2010) have
been explored, where features are extracted from a pyra-
mid of images at different resolutions respectively (Lin
et al, 2016; Chen et al, 2017; Ng and Henikoff, 2003;
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Rublee et al, 2011; Ke and Sukthankar, 2004; Bay et al,
2006), either in a hand-crafted manner or learned man-
ner. Accordingly, features from the small-scale images
mainly encode the large objects, while features from the
large-scale images respond more to small objects. Then,
features extracted from different resolutions are fused
to form the scale-invariant feature, i.e., the inter-layer
fusion. Another way to obtain the scale-invariant feature
is to extract and aggregate multi-scale context by using
multiple convolutions with different receptive fields in a
parallel manner, i.e., the intra-layer fusion (Zhao et al,
2017; Szegedy et al, 2015, 2017, 2016). Either the inter-
layer or intra-layer fusion empowers the CNNs with the
scale-invariance inductive bias. It helps improve their
performance in recognizing objects at different scales.

However, it is unclear whether these inductive bi-
ases can help the visual transformer to achieve better
performance. This paper explores the possibility of in-
troducing two types of inductive biases in the vision
transformer, namely locality by introducing convolu-
tion in the vision transformer and scale-invariance by
encoding a multi-scale contxt into each visual token
using multiple convolutions with different dilation rates,
following the convention of intra-layer fusion.

2.2 Vision transformers with inductive bias

ViT (Dosovitskiy et al, 2020) is the pioneering work that
applies a pure transformer to vision tasks and achieves
promising results. It treats images as a 1D sequence,
embeds them into several tokens, and then processes
them by stacked transformer blocks to get the final
prediction. However, since ViT simply treats images as
1D sequences and thus lacks inductive bias in modeling
local visual structures, it indeed implicitly learns the IB
from a large amount of data. Similar phenomena can
also be observed in models with fewer inductive biases
in their structures (Tolstikhin et al, 2021; Ali et al, 2021;
He et al, 2021).

To alleviate the data-hungry issue, the following
works explicitly introduce inductive bias into vision
transformers, e.g ., leveraging the IB from CNNs to fa-
cilitate the training of vision transformers with less
training data or shorter training schedules. For example,
DeiT (Touvron et al, 2021a) proposes to distill knowl-
edge from pre-trained CNNs to transformers during
training via an extra distillation token to imitate the
behavior of CNNs. However, it requires an off-the-shelf
CNN model as a teacher, introducing extra computation
cost. Recently, some works try to introduce the intrinsic
IB of CNNs into vision transformers explicitly (Han
et al, 2021; Peng et al, 2021; Graham et al, 2021; Li
et al, 2021; d’Ascoli et al, 2021; Yan et al, 2021; Wu et al,

2021; Yuan et al, 2021a; Chen et al, 2021b; Liu et al,
2021). For example, (Li et al, 2021; Graham et al, 2021;
Wu et al, 2021; Dai et al, 2021) stack convolutions and
attention layers sequentially, resulting in a serial struc-
ture and modeling the locality and global dependency
accordingly. (Wang et al, 2021a) design sequential multi-
stage structures while (Liu et al, 2021) apply attention
within local windows. However, these serial structures
may ignore the global context during locality model-
ing (and vice versa). (Wang et al, 2021b) establishes
connection across different scales at the cost of heavy
computation. To jointly model global and local context,
Conformer (Peng et al, 2021) and MobileFormer (Chen
et al, 2022) employ a model-parallel structure, consist-
ing of parallel individual convolution and transformer
branches and a complicated bridge connection between
the two branches. Different from them, we follow the
“divide-and-conquer” idea and propose to model locality
and global dependencies simultaneously via a parallel
structure within each transformer layer. In this way, the
convolution and attention modules are designed to com-
plement each other within the transformer block, which
is more beneficial for the models to learn better features
for both classification and dense prediction tasks.

2.3 Self supervised learning and model scaling

As demonstrated in previous studies, scaled-up models
are naturally few-shot learners and beneficial to ob-
tain better performance no matter in language, image,
or cross-modal domains (Kenton and Toutanova, 2019;
Zhai et al, 2022; Radford et al, 2021). Recently, many
efforts have been made to scale up vision models, e.g .,
BiT (Kolesnikov et al, 2020) and EfficientNet (Tan and
Le, 2019) scale up the CNN models to hundreds of
millions of parameters by employing wider and deeper
networks, and obtain superior performance on many
vision tasks. However, they need to train the scaled-up
models with a much larger scale of private data, i.e.,
JFT300M (Kolesnikov et al, 2020). Similar phenomena
can be observed when training the scaled-up vision trans-
former models for better performance (Dosovitskiy et al,
2020; Zhai et al, 2022).

However, it is not easy to gather such large amounts
of labeled data to train the scaled-up models. On the
other hand, self-supervised learning can help train scaled-
up models using data without labels. For example,
CLIP (Radford et al, 2021) adopts paired text and image
data captured from the Internet and exploits the consis-
tency between text and images to train a big transformer
model, which obtains good performance on image and
text generation tasks. (Liu et al, 2019) adopt masked
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language modeling (MLM) as pretext tasks and gener-
ate supervisory signals from the input data. Specifically,
they take masked sentences with several words overrode
with mask and predicted the masked words with the
words from the sentence before masking as supervision.
In this way, these models do not require additional labels
for the training data and achieve superior performance
on translation, sentiment analysis, etc. Inspired by the
superior performance of MLM tasks in language, masked
image modeling (MIM) tasks have been explored in vi-
sion tasks recently. For example, BEiT (Bao et al, 2021)
tokenizes the images into visual tokens and randomly
masks some tokens using a block-wise manner. The vi-
sion transformer model must predict the original tokens
for those masked tokens. In this way, BEiT obtains su-
perior classification and dense prediction performance
using publicly available ImageNet-22K dataset (Deng
et al, 2009). MAE (He et al, 2022) simplifies the require-
ment of tokenizers and simply treats the image pixels as
the targets for reconstruction. Using only ImageNet-1K
training data, MAE obtains impressive performance. It
is under-explored whether the vision transformers with
introduced inductive bias can be scaled up, e.g ., in a
self-supervised setting. Besides, whether inductive bias
can still help these scaled-up models achieve better per-
formance remains unclear. In this paper, we make an
attempt to answer this question by scaling up the Vi-
TAE model and training it in a self-supervised manner.
Experimental results confirm the value of introducing
inductive bias in scaled-up vision transformers.

2.4 Comparison to the conference version

A preliminary version of this work was presented in (Xu
et al, 2021). This paper extends the previous study by
introducing three major improvements.

1. We scale up the ViTAE model to different model
sizes, including ViTAE-B, ViTAE-L, and ViTAE-
H. With the help of inductive bias, the proposed
ViTAE-H model with 644M parameters obtains the
state-of-the-art classification performance, i.e., 88.5%
Top-1 classification accuracy on ImageNet validation
set and the best 91.2% Top-1 classification accuracy
on ImageNet Real validation set, without using extra
private data. It demonstrates that the introduced in-
ductive bias still helps when the model size becomes
large. We also show the excellent few-shot learning
ability of the scaled-up ViTAE models.

2. We extend the vanilla ViTAE to the multi-stage
design and devise ViTAEv2. The efficiency of the
RC and NC modules is also improved by exploring
another inductive bias from local window attention.

ViTAEv2 outperforms state-of-the-art models for im-
age classification tasks as well as downstream vision
tasks, including object detection, semantic segmen-
tation, and pose estimation.

3. We also present more ablation studies and exper-
iment analysis regarding module design, inference
speed, memory footprint, and comparisons with the
latest works.

3 Methodology

3.1 Revisit vision transformer

We first give a brief review of the vision transformer
in this part. To adapt transformers to vision tasks,
ViT (Dosovitskiy et al, 2020) first splits an image x ∈
RH×W×C into several non-overlapping patches with the
patch size p, and embeds them into visual tokens (i.e.,
xt ∈ RN×D) in a patch-to-token manner, where H, W ,
C denote the height, width, and channel dimensions
of the input image respectively, N and D denote the
token number and token dimension, respectively, and
N = (H ×W )/p2. Then, an extra learnable embedding
with the same dimension D, considered as a class token,
is concatenated to the visual tokens before adding po-
sition embeddings to all the tokens in an element-wise
manner. In the following part of this paper, we use xt

to represent all tokens, and N is the total number of
tokens after concatenation for simplicity unless specified.
These tokens are fed into several sequential transformer
layers for the final prediction. Each transformer layer is
composed of two parts, i.e., a multi-head self-attention
module (MHSA) and a feed-forward network (FFN).

MHSA extends single-head self-attention (SHSA) by
using different projection matrices for each head. In
other words, MHSA is obtained after repeating SHSA
for h times, where h is the number of heads. Specifically,
for SHSA, the input tokens xt are first projected to
queries (Q), keys (K) and values (V ) using three differ-
ent projection matrices, i.e., Q,K, V = xtWQ, xtQK ,

xtQV , where WQ/K/V ∈ RD×D
h denotes the projection

matrix for query/key/value, respectively. Then, the self-
attention operation is calculated as:

Attention(Q,K, V ) = softmax(
QKT

√
D

)V, (1)

where the output of each head is of size RN×D
h . Then

the features of all the h heads are concatenated along the
channel dimension and formulate the MHSA module’s
output.
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Fig. 2 The structure of the proposed ViTAE model in the isotropic manner. It is constructed by stacking three RCs and
several NCs. Both types of cells share a simple basic structure, i.e., an MHSA module and a parallel convolutional module
followed by an FFN. In particular, RC has an extra pyramid reduction module using atrous convolutions with different dilation
rates to embed multi-scale context.

FFN is placed on top of the MHSA module and
applied to each token identically and separately. It con-
sists of two linear transformations with an activation
function in between. Besides, a layer normalization (Ba
et al, 2016) and a shortcut are added before and aside
from the MHSA and FFN, respectively.

3.2 The isotropic design of ViTAE

ViTAE aims to introduce the intrinsic IB in CNNs
to vision transformers. As shown in Figure 2, ViTAE
is composed of two types of cells, i.e., RCs and NCs.
RCs are responsible for downsampling while embedding
multi-scale context and local information into tokens,
and NCs are used to further model the locality and
long-range dependencies in the tokens. Taken an image
x ∈ RH×W×C as input, three RCs are used to gradually
downsample x with a total of 16× ratio by 4×, 2×, and
2×, respectively. Thereby, the output tokens of the RCs
after downsampling are of size [H/16,W/16, D] where
D is the token dimension (64 in our experiments). The
output tokens of RCs are then flattened as R(HW/256)×D,
concatenated with the class token (red in the figure),
and added by the sinusoid position encoding. Next, the
tokens are fed into the following NCs, which keep the
length of the tokens. Finally, the prediction probability
is obtained using a linear classification layer on the class
token from the last NC.

3.2.1 Reduction cell

Instead of directly splitting and flattening images into
visual tokens based on a linear image patch embedding
layer, we devise the reduction cell to embed multi-scale
context and local information into visual tokens, intro-
ducing the intrinsic scale-invariance and locality IBs
from convolutions into ViTAE. Technically, RC has two
parallel branches responsible for modeling locality and
long-range dependency, followed by an FFN for feature
transformation. We denote the input feature of the ith
RC as fi ∈ RHi×Wi×Di . The input of the first RC is the
image x. In the global dependency branch, fi is firstly
fed into a Pyramid Reduction Module (PRM) to extract
multi-scale context, i.e.,

fms
i , PRMi(fi)

= Cat([Convij(fi; sij , ri)|sij ∈ Si, ri ∈ R]),
(2)

where Convij(·) indicates the jth convolutional layer in
the ith PRM (i.e., PRMi(·)). It uses a dilation rate sij
from the predefined dilation rate set Si corresponding
to the ith RC. Note that we use stride convolution to
reduce the spatial dimension of features by a ratio ri
from the predefined reduction ratio set R. The features
after convolution are concatenated along the channel
dimension, i.e., fms

i ∈ R(Wi/ri)×(Hi/ri)×(|Si|Di), where
|Si| denotes the number of dilation rates in the set Si.
fms
i is then processed by an MHSA module to model
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long-range dependencies, i.e.,

fg
i = MHSAi(Img2Seq(fms

i )), (3)

where Img2Seq(·) is a simple reshape operation to flat-
ten the feature map to a 1D sequence. In this way, fg

i

embeds the multi-scale context in each token. Note that
the traditional MHSA individually attends each token
at the same scale and thus lacks the ability to model
the relationship between tokens at different scales. By
contrast, the introduced multi-scale convolutions in re-
duction cells can (1) mitigate the information loss when
merging tokens by looking at a larger field and (2) embed
multi-scale information into tokens to aid the following
MHSA to model the better global dependencies based
on features at different scales.

In addition, we use a Parallel Convolutional Module
(PCM) to embed local context within the tokens, which
are fused with fg

i as follows:

f lg
i = fg

i + PCMi(fi). (4)

Here, PCMi(·) represents the PCM of the ith RC, which
is composed of an Img2Seq(·) operation and three
stacked convolution layers with BN layers and activa-
tion layers in between. It is noteworthy that the parallel
convolution branch has the same spatial downsampling
ratio as the PRM by using stride convolutions. In this
way, the token features can carry both local and multi-
scale context, implying that RC acquires the locality
IB and scale-invariance IB by design. The fused tokens
are then processed by the FFN and reshaped back to
feature maps, i.e.,

fi+1 = Seq2Img(FFNi(f
lg
i ) + f lg

i ), (5)

where the Seq2Img(·) is a simple reshape operation to
reshape a token sequence back to feature maps. FFNi(·)
represents the FFN in the ith RC. In our ViTAE, three
RCs are stacked sequentially to gradually reduce the
input image’s spatial dimension by 4×, 2×, and 2×, re-
spectively. As the first RC handles images with high res-
olution, we adopt Performer (Choromanski et al, 2020)
to reduce the computational burden and memory cost.

3.2.2 Normal cell

As shown in the bottom right part of Figure 2, NCs share
a similar structure with the RC except for the absence
of the PRM, which can provide rich spatial information
via aggregating multi-scale information and compensate
the spatial information loss caused by downsampling
in RC. Given the features containing the multi-scale
information, NCs are expected to focus on modeling
long- and short-range dependency among the features.

Besides, omitting the PRM module in NCs also helps to
reduce the computational cost due to the large number
of NCs in the stacked models. Therefore, we do not use
PRM in NC. Specifically, given f3 from the third RC,
we first concatenate it with the class token tcls, and then
add it to the positional encodings to get the input to-
kens t for the following NCs. We ignore the subscript for
clarity since all NCs have an identical architecture but
different learnable weights. tcls is randomly initialized
at the start of training and fixed during the inference.
Similar to the RC, the tokens are fed into the MHSA
module, i.e., tg = MHSA(t). Meanwhile, they are re-
shaped to 2D feature maps and fed into the PCM, i.e.,
tl = Img2Seq(PCM(Seq2Img(t))). Note that the class
token is discarded in PCM because it has no spatial con-
nections with other visual tokens. To further reduce the
parameters in NCs, we use group convolutions in PCM.
The features from MHSA and PCM are then fused via
element-wise sum, i.e., tlg = tg + tl. Finally, tlg are fed
into the FFN to get the output features of NC, i.e.,
tnc = FFN(tlg) + tlg. Similar to ViT (Dosovitskiy et al,
2020), we apply layer normalization to the class token
generated by the last NC and feed it to the classification
head to get the final classification result.

3.3 Scaling up ViTAE via self-supervised learning

Except stacking the proposed RCs and NCs to construct
the isotropic ViTAE models with 4M, 6M, 13M, and
24M parameters, we also scale up ViTAE to evaluate
the benefit of introducing the inductive bias in vision
transformers with large model sizes. Specifically, we fol-
low the setting in ViT (Dosovitskiy et al, 2020) to scale
up the proposed ViTAE model, i.e., we embed the im-
age into visual tokens and process them using stacked
NCs to extract features. The stacking strategy is exactly
the same as the strategy adopted in ViT (Dosovitskiy
et al, 2020), where we use 12 NCs with 768 embedding
dimensions to construct the ViTAE base model (i.e.,
ViTAE-B with 89M parameters), 24 NCs with 1,024
embedding dimensions to construct the ViTAE large
model (i.e., ViTAE-L with 311M parameters), and 36
normal cells with 1,248 embedding dimension to con-
struct the ViTAE huge model (i.e., ViTAE-H with 644M
parameters). The normal cells are stacked sequentially.
However, the scaled-up models are easy to overfit if only
trained using the ImageNet-1K dataset under a fully
supervised training setting. Self-supervised learning (He
et al, 2022), on the contrary, can eliminate this issue and
facilitate the training of scaled-up models. In this paper,
we adopt MAE (He et al, 2022) to train the scaled-up
ViTAE model due to its simplicity and efficiency. Specif-
ically, we first embed the input images into tokens and
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then randomly remove 75% of the tokens. The removed
tokens are filled with randomly initialized mask tokens.
After that, the remained visual tokens are processed by
the ViTAE model for feature extraction. The extracted
features and the mask tokens are then concatenated and
fed into the decoder network to predict the values of
the pixels belonging to the masked regions. The mean
squared errors between the prediction and the masked
pixels are minimized during the training.

However, as the encoder only processes the visual
tokens, i.e., the remained tokens after removing, the
built-in locality property of images has been broken
among the visual tokens. To adapt the proposed Vi-
TAE model to the self-supervised task, we simply use
convolution with kernel size 1 × 1 instead of 3 × 3 to
formulate the ViTAE model for pretraining. This simple
modification helps us to preserve a similar architecture
between the network’s pretraining and finetuning stage
and helps the convolution branch to learn a meaningful
initialization, as demonstrated in (Zhang et al, 2018).
After the pretraining stage, we convert the kernels of
the convolutions from 1 × 1 to 3 × 3 by zero-padding
to recover the complete ViTAE models, which are fur-
ther finetuned on the ImageNet-1k training data for 50
epochs. Inspired by (Bao et al, 2021), we use layer-wise
learning rate decay during the finetuning to adapt the
pre-trained models for specific vision tasks.

3.4 The multi-stage design for ViTAE

Apart from classification, other downstream tasks, in-
cluding object detection, semantic segmentation, and
pose estimation, are also very important that a gen-
eral backbone should adapt to. These downstream tasks
usually need to extract multi-level features from the
backbone to deal with those objects at different scales.
To this end, we extend the vanilla ViTAE model to the
multi-stage design, i.e., ViTAE-v2. A natural choice for
the design of ViTAE-v2 can be re-constructing the model
by re-organizing RCs and NCs. As shown in Figure 3,
ViTAE-v2 has four stages where four corresponding RCs
are used to gradually downsample the features by 4×,
2×, 2×, and 2×, respectively. At each stage, a number
of Ni normal cells are sequentially stacked following the
ith RC. Note that a series of NCs are used only at the
most coarse stage in the isotropic design. The number of
normal cells, i.e., Ni, controls the model depth and size.
By doing so, ViTAE-v2 can extract a feature pyramid
from different stages which can be used by the decoders
specifically designed for various downstream tasks.

One remaining issue is that the vanilla attention
operations in transformers have a quadratic computa-
tional complexity, therefore requiring a large memory

footprint and computation cost, especially for feature
maps with a large resolution. In contrast to the fast
resolution reduction in the vanilla ViTAE design, we
adopt a slow resolution reduction strategy in the multi-
stage design, e.g ., the resolution of the feature maps
at the first stage is only 1/4 of the original image size,
thereby incurring more computational cost especially
when the images in downstream tasks have high resolu-
tions. To mitigate this issue, we further explore another
inductive bias, i.e., local window attention introduced
in (Liu et al, 2021), in the RC and NC modules. Specifi-
cally, the window attention split the whole feature map
into several non-overlap local windows and conducts the
multi-head self-attention within each window, i.e., each
query token within the same window shares the same key
and value sets. Since the parallel convolution branch in
the proposed two cells can encode position information
and enable inter-window information exchange, special
designs like the relative position encoding and window-
shifting mechanism in (Liu et al, 2021) can be omitted.
We empirically find that replacing the full attention
with local window attention at early stages can achieve
a good trade-off between computational cost and perfor-
mance. Therefore, we only use local window attention
in the RC and NC modules at the first two stages. Con-
sequently, our ViTAEv2 models can deliver superior
performance for various vision tasks, including image
classification, object detection, semantic segmentation,
and pose estimation, while keeping a fast inference speed
and reasonable memory footprint.

3.5 Model details

In this paper, we propose ViTAE and further extend it
to the multi-stage version ViTAEv2 as described above.
We devise several ViTAE and ViTAEv2 variants in our
experiments to be compared with other models with
similar model sizes. The details of them are summarized
in Table 1. The ‘dilation’ column determines the dila-
tion rate sets S in each RC. The two rows in the ‘RC’
and ‘NC’ columns denote the specific configurations of
RCs and NCs, respectively, where ‘P’, ’W’, ’F’ refers
to Performer (Choromanski et al, 2020), local window
attention, and the vanilla full attention, respectively,
and the number in the second rows denotes the num-
ber of heads in the corresponding attention module.
The ‘arrangement’ column denotes the number of NC
at each stage, while the ‘embedding’ denotes the token
embedding size at each stage. Specifically, the default
convolution kernel size in the first RC is 7 × 7 with a
stride of 4 and dilation rates from S1 = [1, 2, 3, 4]. In
the following two RCs (or three RCs for ViTAEv2), the
convolution kernel size is 3 × 3 with a stride of 2 and
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Fig. 3 The structure of the proposed ViTAEv2 in the multi-stage manner. The RCs and NCs are re-arranged in a stage-wise
manner. At each stage, a number of NCs are sequentially stacked following each RC, which gradually downsamples the features
by a certain ratio, i.e., 4×, 2×, 2×, and 2×, respectively.

Table 1 Model details of ViTAE and ViTAEv2 variants. The two rows in the ‘RC’ and ‘NC’ columns denote the specific
configurations of RCs and NCs, i.e., the attention type and number of heads, respectively. ’-’ denotes there is no RC at the
corresponding stage. ‘arrangement’ and ‘embedding’ denote the number of NCs and the token embedding size at each stage. ’P’,
’T’, ’W’ represents performer, vanilla transformer, and local window attention, respectively.

Model Dilation RC NC Arrangement Embedding Params (M) Flops (G)

ViTAE-T [1,2,3,4] P, P, P
1, 1, 1

F
4 0, 0, 7 64, 64, 256 4.8 1.5

ViTAE-6M [1,2,3,4] P, P, P
1, 1, 1

F
4 0, 0, 10 64, 64, 256 6.5 2.0

ViTAE-13M [1,2,3,4] P, P, P
1, 1, 1

F
4 0, 0, 11 64, 64, 320 13.2 3.3

ViTAE-S [1,2,3,4] P, P, P
1, 1, 1

F
4 0, 0, 14 96, 192, 384 23.6 5.6

ViTAE-B - -
-

F
12 0, 0, 12 768 89.3 36.9

ViTAE-L - -
-

F
16 0, 0, 24 1024 311.7 125.8

ViTAE-H - -
-

F
16 0, 0, 32 1280 644.3 335.7

ViTAEv2-S [1,2,3,4] ↓ W, W, F, F
1, 1, 2, 4

W, W, F, F
1, 2, 4, 8 2, 2, 8, 2 64, 128, 256, 512 19.3 5.7

ViTAEv2-48M [1,2,3,4] ↓ W, W, F, F
1, 1, 2, 4

W, W, F, F
1, 2, 4, 8 2, 2, 11, 2 96, 192, 384, 768 48.7 13.3

ViTAEv2-B [1,2,3,4] ↓ W, W, F, F
1, 1, 2, 4

W, W, F, F
1, 2, 4, 8 2, 2, 12, 2 128, 256, 512, 1024 89.7 24.3

dilation rates from S2 = [1, 2, 3] and S3 = [1, 2] (and
S4 = [1, 2] for ViTAEv2), respectively. Since the number
of tokens decreases at later stages, there is no need to
use large kernels and dilation rates at later stages. PCM
in both RCs and NCs comprises three convolutional
layers with a kernel size of 3× 3.

4 Experiments

4.1 Implementation details

Unless explicitly stated, we train and test the pro-
posed ViTAE and ViVTAEv2 model on the ImageNet-
1k (Krizhevsky et al, 2012) dataset, which contains
about 1.3 million images from 1k classes. The image
size during training is set to 224 × 224. We use the
AdamW (Loshchilov and Hutter, 2018) optimizer with

the cosine learning rate scheduler and use the data
augmentation strategy exactly the same as T2T (Yuan
et al, 2021b) for a fair comparison regarding the training
strategies and the size of models. We use a batch size
of 512 for training ViTAE and 1024 for ViTAEv2. The
learning rate is set to be proportion to 512 batch size
with a base value 5e-4. The results of our models can be
found in Table 2, where all the models are trained for
300 epochs. The models are built on PyTorch (Paszke
et al, 2019) and TIMM (Wightman, 2019).

4.2 Comparison with the state-of-the-art

We compare our ViTAE and ViTAEv2 with both CNN
models and vision transformers with similar model sizes
in Table 2 and Table 3. Both Top-1/5 accuracy and
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Table 2 Comparison with SOTA methods. ↑ 384 denotes finetuning the model using images of 384×384 resolution.

Type Model
Params FLOPs Input ImageNet Real Venue
(M) (G) Size Top-1 Top-5 Top-1

CNN

ResNet-18 (He et al, 2016) 11.7 1.8 224 70.3 86.7 77.3 CVPR’16
ResNet-50 (He et al, 2016) 25.6 3.8 224 76.7 93.3 82.5 CVPR’16
ResNet-101 (He et al, 2016) 44.5 7.6 224 78.3 94.1 83.7 CVPR’16
ResNet-152 (He et al, 2016) 60.2 11.3 224 78.9 94.4 84.1 CVPR’16

EfficientNet-B0 (Tan and Le, 2019) 5.3 0.4 224 77.1 93.3 83.5 ICMR’19
EfficientNet-B4 (Tan and Le, 2019) 19.3 4.2 380 82.9 96.4 88.0 ICMR’19

RegNetY-600M (Radosavovic et al, 2020) 6.1 0.6 224 75.5 - - CVPR’20
RegNetY-4GF (Radosavovic et al, 2020) 20.6 4.0 224 80.0 - 86.4 CVPR’20
RegNetY-8GF (Radosavovic et al, 2020) 39.2 8.0 224 81.7 - 87.4 CVPR’20

Transformer

DeiT-T (Touvron et al, 2021a) 5.7 1.3 224 72.2 91.1 80.6 ICML’21
DeiT-T⚗ (Touvron et al, 2021a) 5.7 1.3 224 74.5 91.9 82.1 ICML’21

PiT-Ti (Heo et al, 2021) 4.9 0.7 224 73.0 - - ICCV’21
LocalViT-T (Li et al, 2021) 5.9 1.3 224 74.8 - - Arxiv’21

T2T-ViT-7 (Yuan et al, 2021b) 4.3 1.2 224 71.7 90.9 79.7 ICCV’21
ViTAE-T 4.8 1.5 224 75.3 92.7 82.9 NeurIPS’21

CeiT-T (Yuan et al, 2021a) 6.4 1.2 224 76.4 93.4 83.6 ICCV’21
ConViT-Ti (d’Ascoli et al, 2021) 6.0 1.0 224 73.1 - - ICML’21
CrossViT-Ti (Chen et al, 2021b) 6.9 1.6 224 73.4 - - ICCV’21

ViTAE-6M 6.5 2.0 224 77.9 94.1 84.9 NeurIPS’21
PVT-T (Wang et al, 2021a) 13.2 1.9 224 75.1 - - ICCV’21

ConViT-Ti+ (d’Ascoli et al, 2021) 10.0 2.0 224 76.7 - - ICML’21
PiT-XS (Heo et al, 2021) 10.6 1.4 224 78.1 - - ICCV’21
ConT-M (Yan et al, 2021) 19.2 3.1 224 80.2 - - Arxiv’21
XCiT-T24 (Ali et al, 2021) 12.1 2.35 224 79.4 - - NeurIPS’21

PoolFormer-S12 (Yu et al, 2022) 11.9 1.82 224 77.2 - - CVPR’22
MPViT-XS (Lee et al, 2022) 10.5 2.97 224 80.9 - - CVPR’22
VAN-Small (Guo et al, 2022) 13.8 2.50 224 81.1 - - Arxiv’22

ViTAE-13M 13.2 3.3 224 81.0 95.4 86.8 NeurIPS’21
DeiT-S (Touvron et al, 2021a) 22.1 4.6 224 79.9 95.0 85.7 ICML’21

DeiT-S⚗ (Touvron et al, 2021a) 22.1 4.6 224 81.2 95.4 86.8 ICML’21
Local-ViT (Li et al, 2021) 22.4 4.6 224 80.8 - - Arxiv’21
PVT-S (Wang et al, 2021a) 24.5 3.8 224 79.8 - - ICCV’21

Conformer-Ti (Peng et al, 2021) 23.5 5.2 224 81.3 - - ICLR’21
Swin-T (Liu et al, 2021) 29.0 4.5 224 81.3 - - ICCV’21

CeiT-S (Yuan et al, 2021a) 24.2 4.5 224 82.0 95.9 87.3 ICCV’21
CvT-13 (Wu et al, 2021) 20.0 4.5 224 81.6 - 86.7 ICLR’21

ConViT-S (d’Ascoli et al, 2021) 27.0 5.4 224 81.3 - - ICML’21
CrossViT-S (Chen et al, 2021b) 26.7 5.6 224 81.0 - - ICCV’21

PiT-S (Heo et al, 2021) 23.5 4.8 224 80.9 - - ICCV’21
TNT-S (Han et al, 2021) 23.8 5.2 224 81.3 95.6 - NeurIPS’21

Twins-PCPVT-S(Chu et al, 2021) 24.1 3.8 224 81.2 - - NeurIPS’21
Twins-SVT-S (Chu et al, 2021) 24.0 2.9 224 81.7 - - NeurIPS’21
T2T-ViT-14 (Yuan et al, 2021b) 21.5 5.2 224 81.5 95.7 86.8 ICCV’21

XCiT-S12 (Ali et al, 2021) 26.2 18.92 224 82.0 - - - NeurIPS’21
Crossformer-T (Wang et al, 2021b) 27.7 2.86 224 81.5 - - ICLR’22
PoolFormer-S36 (Yu et al, 2022) 30.8 5.00 224 81.4 - - CVPR’22

DAT-T (Xia et al, 2022) 28.3 4.58 224 82.0 - - CVPR’22
ViTAE-S 23.6 5.6 224 82.0 95.9 87.0 NeurIPS’21

ViTAE-S ↑ 384 23.6 20.2 384 83.0 96.2 87.5 NeurIPS’21
ViTAEv2-S 19.2 5.7 224 82.6 96.2 87.6 -

ViTAEv2-S ↑ 384 19.2 17.8 384 83.8 96.7 88.3 -

real Top-1 accuracy (Beyer et al, 2020) on the Ima-
geNet validation set are reported. We categorize the
methods into CNN models, vision transformers with
learned IB, and vision transformers with introduced in-
trinsic IB. Compared with CNN models, our ViTAE-T
achieves a 75.3% Top-1 accuracy, which is better than
ResNet-18 with more parameters. The real Top-1 accu-

racy of the ViTAE model is 82.9%, which is comparable
to ResNet-50 that has four more times of parameters
than ours. Similar phenomena can also be observed
when comparing ViTAE-T with MobileNetV1 (Howard
et al, 2017) and MobileNetV2 (Sandler et al, 2018),
where ViTAE obtains better performance with fewer
parameters. ViTAE-S achieves 82.0% Top-1 accuracy
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Table 3 Comparison with SOTA methods (Table 2 continued). ↑ 384 denotes finetuning the model using images of 384×384
resolution, while * denotes the model pretrained using ImageNet-22k.

Type Model
Params FLOPs Input ImageNet Real Venue
(M) (G) Size Top-1 Top-5 Top-1

Transformer

ViT-B/16 (Dosovitskiy et al, 2020) 86.5 35.1 384 77.9 - - ICLR’21
ViT-L/16 (Dosovitskiy et al, 2020) 304.3 122.9 384 76.5 - - ICLR’21
DeiT-B (Touvron et al, 2021a) 86.6 17.5 224 81.8 95.6 86.7 ICLR’21
PVT-M (Wang et al, 2021a) 44.2 13.2 224 81.2 - - ICCV’21
PVT-L (Wang et al, 2021a) 61.4 9.8 224 81.7 - - ICCV’21

Conformer-S (Peng et al, 2021) 37.7 10.6 224 83.4 - - ICLR’22
Swin-S (Liu et al, 2021) 50.0 8.7 224 83.0 - - ICCV’21
ConT-B (Yan et al, 2021) 39.6 6.4 224 81.8 - - Arxiv’21
CvT-21 (Wu et al, 2021) 32.0 7.2 224 82.5 - 87.2 ICLR’21

ConViT-S+ (d’Ascoli et al, 2021) 48.0 10.0 224 82.2 - - ICML’21
ConViT-B (d’Ascoli et al, 2021) 86.0 17.0 224 82.4 - - ICML’21
ConViT-B+ (d’Ascoli et al, 2021) 152.0 30.0 224 82.5 - - ICML’21

PiT-B (Heo et al, 2021) 73.8 12.5 224 82.0 - - ICCV’21
TNT-B (Han et al, 2021) 65.6 14.1 224 82.8 96.3 - NeurIPS’21

T2T-ViT-19 (Yuan et al, 2021b) 39.2 8.9 224 81.9 95.7 86.9 ICCV’21
ViL-Base (Zhang et al, 2021) 55.7 13.4 224 83.2 - - ICCV’21

PoolFormer-M48 (Yu et al, 2022) 73.4 11.59 224 82.5 - - CVPR’22
ViTAEv2-48M 48.5 13.3 224 83.8 96.6 88.4 -

ViTAEv2-48M ↑ 384 48.5 41.1 384 84.7 97.0 88.8 -
Swin-B (Liu et al, 2021) 88.0 15.4 224 83.3 - - ICCV’21

Twins-SVT-L (Chu et al, 2021) 99.2 14.8 224 83.7 - - NeurIPS’21
PVTv2-B5 (Wang et al, 2022) 82.0 11.8 224 83.8 - - CVMJ’22
Focal-B (Yang et al, 2021) 89.8 16.0 224 83.8 - - NeurIPS’21
DAT-B (Xia et al, 2022) 88.0 15.4 224 84.0 - - CVPR’22

CrossFormer (Wang et al, 2021b) 92.0 16.1 224 84.0 - - ICLR’22
Conformer-B (Peng et al, 2021) 83.3 23.3 224 84.1 - - ICCV’21

ViTAEv2-B 89.7 24.3 224 84.6 96.9 88.7 -
ViTAEv2-B ↑ 384 89.7 74.4 384 85.3 97.1 89.2 -

ViTAEv2-B* 89.7 24.3 224 86.1 97.9 89.9 -

with half of the parameters of ResNet-101 and ResNet-
152, showing the superiority of learning both local and
long-range features from specific structures with corre-
sponding intrinsic IBs by design. When adopting the
multi-stage design, ViTAEv2-S further improves the
Top-1 accuracy to 82.6% significantly. When finetuning
the model using images of a larger resolution, e.g ., using
384× 384 images as input, ViTAE-S’s performance is
further improved significantly by 1.2% absolute Top-1
accuracy. ViTAEv2-48M in Table 3 also benefits from
it, and the performance increases from 83.8% to 84.7%,
which further shows the potential of vision transformers
with intrinsic IBs for large resolution images that are
common in downstream dense prediction tasks. When
the model size increases to 88M, ViTAEv2-B reaches
84.6% Top-1 accuracy, significantly outperforming other
transformer models including Swin-B (Liu et al, 2021),
Focal-B (Yang et al, 2021), and CrossFormer-B (Wang
et al, 2021b). When finetuning using images of larger
resolution or pretraining the model with ImageNet-22k,
ViTAEv2-B’s performance increases to 85.3% and 86.1%
Top-1 accuracy, respectively, confirming the scalability
of using IBs for large models and trained on large-scale
datasets.

4.3 Analysis of the isotropic design of ViTAE

4.3.1 Data efficiency and training efficiency

To validate the effectiveness of introducing intrinsic IBs
in improving data efficiency and training efficiency, we
compare our ViTAE-T model with the baseline model
T2T-ViT-7 at different training settings: (a) training
them using 20%, 60%, and 100% ImageNet training set
for equivalent 100 epochs regarding the full ImageNet
training set, e.g ., we employ 5 times epochs when using
20% data for training compared with using 100% data;
and (b) training them using the full ImageNet training
set for 100, 200, and 300 epochs, respectively. The re-
sults are shown in Figure 1. As can be seen, ViTAE-T
consistently outperforms the T2T-ViT-7 baseline by a
large margin in terms of both data efficiency and train-
ing efficiency. For example, ViTAE-T using only 20%
training data achieves comparable performance with
T2T-ViT-7 using all data. When 60% training data are
used, ViTAE-T significantly outperforms T2T-ViT-7 us-
ing all data by about an absolute 3% accuracy. It is also
noteworthy that ViTAE-T trained for only 100 epochs
has outperformed T2T-ViT-7 trained for 300 epochs. Af-
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ter training ViTAE-T for 300 epochs, its performance is
significantly boosted to 75.3% Top-1 accuracy. With the
proposed RCs and NCs, the transformer layers in our
ViTAE only need to focus on modeling long-range de-
pendencies, leaving the locality and multi-scale context
modeling to its convolution counterparts, i.e., PCM and
PRM. Such a “divide-and-conquer” strategy facilitates
ViTAE’s training, making learning more efficient with
less training data and fewer training epochs.

4.3.2 Generalization on downstream classification tasks

We further investigate the generalization of the proposed
ViTAE models pre-trained on ImageNet-1k for down-
stream image classification tasks by finetuning them
further on the training sets of several fine-grained clas-
sification tasks, including Flowers (Nilsback and Zisser-
man, 2008), Cars (Krause et al, 2013), Pets (Parkhi
et al, 2012), and iNaturalist19. We also finetune the
proposed ViTAE models pre-trained on ImageNet-1k
further on Cifar10 (Krizhevsky et al, 2009) and Ci-
far100 (Krizhevsky et al, 2009). The results are shown
in Table 4. It can be seen that ViTAE achieves SOTA
performance on most of the datasets using comparable
or fewer parameters. These results demonstrate the good
generalization ability of our ViTAE models.

4.3.3 Ablation study of the design of RC and NC

We use T2T-ViT (Yuan et al, 2021b) as our baseline
model in the following ablation study of our ViTAE. As
shown in Table 5, we investigate the hyper-parameter
settings of RC and NC in the ViTAE-T model by iso-
lating them separately. All the models are trained for
100 epochs on ImageNet-1k, following the same training
setting and data augmentation strategy as described in
Section 4.1.

We use X and × to denote whether or not the cor-
responding module is enabled during the experiments.
If all columns under the RC and NC are marked × as
shown in the first row, the model becomes the stan-
dard T2T-ViT-7 model. “Pre” denotes the early fusion
strategy that fuses output features of PCM and MHSA
before FFN, while “Post” denotes a late fusion strategy
alternatively. The Xin “BN” denotes PCM uses BN. “×3”
in the first column denotes that the dilation rate set is
the same in the three RCs. “[1, 2, 3, 4] ↓” denotes using
smaller dilation rates in deeper RCs, i.e., S1 = [1, 2, 3, 4],
S2 = [1, 2, 3], S3 = [1, 2].

As can be seen, using an early fusion strategy and BN
in NC achieves the best 69.9% Top-1 accuracy among
other settings. It is noteworthy that all the variants
of NC outperform the vanilla T2T-ViT, implying the

effectiveness of PCM, which introduces the intrinsic lo-
cality IB in transformers. It can also be observed that
BN plays an important role in improving the model’s
performance as it can help to alleviate the scale devia-
tion between convolution’s and attention’s features. For
RC, we first investigate the influence of using different
dilation rates in the PRM, as shown in the first col-
umn. As can be seen, using larger dilation rates (e.g ., 4
or 5) does not deliver better performance. We suspect
that larger dilation rates may lead to plain features in
the deeper RCs due to the smaller resolution of feature
maps. To validate the hypothesis, we use smaller di-
lation rates in deeper RCs as denoted by [1, 2, 3, 4] ↓.
As can be seen, it achieves comparable performance as
[1, 2, 3]×. However, compared with [1, 2, 3, 4] ↓, [1, 2, 3]×
increases the amount of parameters from 4.35M to 4.6M.
Therefore, we select [1, 2, 3, 4] ↓ as the default setting.
In addition, using PCM in the RC introduces the intrin-
sic locality IB and the performance increases to 71.7%
Top-1 accuracy. Finally, the combination of RCs and
NCs achieves the best accuracy at 72.6%, demonstrating
their complementarity.

4.3.4 Visual inspection of ViTAE

To further analyze the property of our ViTAE, we ap-
ply Grad-CAM (Selvaraju et al, 2017) on the MHSA’s
output in the last NC to qualitatively inspect ViTAE.
The visualization results are provided in Figure 4. Com-
pared with the baseline T2T-ViT, our ViTAE covers
the single or multiple targets in the images more pre-
cisely and attends less to the background. Moreover,
ViTAE can better handle the scale variance issue as
shown in Figure 4(b). That is, it covers birds accurately
whether they are small, medium, or large in size. Such
observations demonstrate that introducing the intrinsic
IBs of locality and scale-invariance from convolutions
to transformers helps ViTAE learn more discriminate
features than the pure transformers.

Besides, we calculate the average attention distance
of each layer in ViTAE-T and the baseline T2T-ViT-7
on the ImageNet validation set, respectively. The results
are shown in Figure 5. It can be observed that with
the usage of PCM, which focuses on modeling locality,
the transformer layers in the proposed NCs can better
focus on modeling long-range dependencies, especially
in shallow layers. In the deep layers, the average atten-
tion distances of ViTAE-T and T2T-ViT-7 are almost
the same, where modeling long-range dependencies is
much more important. It implies that the PCM does
not affect the transformer’s behavior in deep layers.
These results confirm the effectiveness of the adopted
“divide-and-conquer” idea in ViTAE, i.e., introducing
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Table 4 Generalization of ViTAE and SOTA methods on different downstream image classification tasks.

Model Params (M) Cifar10 Cifar100 iNat19 Cars Flowers Pets
Grafit ResNet-50 (Touvron et al, 2021b) 25.6 - - 75.9 92.5 98.2 -

EfficientNet-B5 (Tan and Le, 2019) 30 98.1 91.1 - - 98.5 -
ViT-B/16 (Dosovitskiy et al, 2020) 86.5 98.1 87.1 - - 89.5 93.8
ViT-L/16 (Dosovitskiy et al, 2020) 304.3 97.9 86.4 - - 89.7 93.6
DeiT-B (Touvron et al, 2021a) 86.6 99.1 90.8 77.7 92.1 98.4 -
T2T-ViT-14 (Yuan et al, 2021b) 21.5 98.3 88.4 - - - -

ViTAE-T 4.8 97.3 86.0 73.3 89.5 97.5 92.6
ViTAE-S 23.6 98.8 90.8 76.0 91.4 97.8 94.2

(a) (b)

Input

T2T-ViT

ViTAE

Fig. 4 Visual inspection of T2T-ViT-7 and ViTAE-T using Grad-CAM (Selvaraju et al, 2017). (a) Images containing multiple
or single objects and the heatmaps obtained by T2T-ViT-7 and ViTAE-T. (b) Images containing the same class of objects at
different scales and the heatmaps obtained by T2T-ViT-7 and ViTAE-T. Best viewed in color.
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Fig. 5 The average per-layer attention distance of T2T-ViT-7
and our ViTAE-T on the ImageNet validation set.

the intrinsic locality IB from convolutions into vision
transformers makes it possible that transformer layers
only need to be responsible to long-range dependencies
since convolutions can well model locality in PCM.

4.4 Analysis of the scaled up ViTAE models

4.4.1 Image classification performance

We evaluate the performance of the scaled-up models
on the ImageNet dataset. The scaled-up models are pre-
trained for 1600 epochs using MAE (He et al, 2022),
taking images from the ImageNet-1K training set. Then,
the models are finetuned for 100 (the base model) or
50 (the large and huge model) epochs using the labeled
data from the ImageNet-1K training set. It should be
noted that the original MAE is trained on the TPU
machines with Tensorflow, while our implementation
adopts PyTorch as the framework and uses NVIDIA
GPU for the training. This implementation difference
may cause a slight performance difference in the models’
classification accuracy. We compare our methods with
T2TViT (Yuan et al, 2021b), CvT (Yuan et al, 2021a),
Swin (Liu et al, 2021), SwinV2 (Liu et al, 2022), and
ViT (Dosovitskiy et al, 2020) with either supervised
learning or self-supervised learning like MAE (He et al,
2022), MaskFeat (Wei et al, 2022), and SimMIM (Xie



14 Qiming Zhang, et al.

Table 5 Ablation Study of RC and NC in ViTAE-T. “Pre”
denotes the early fusion strategy that fuses output features
of PCM and MHSA before FFN while “Post” denotes a late
fusion strategy alternatively. The Xin “BN” denotes PCM uses
BN. “×3” in the first column denotes that the dilation rate
set is the same in the three RCs. “[1, 2, 3, 4] ↓” denotes using
smaller dilation rates in deeper RCs, i.e., S1 = [1, 2, 3, 4],
S2 = [1, 2, 3], S3 = [1, 2].

Reduction Cell Normal Cell
Top-1Dilation (S1 ∼ S3) PCM Pre Post BN

× × × × × 68.7
× × X × × 69.1
× × × X × 69.0
× × × X X 68.8
× × X × X 69.9

[1, 2]× 3 × × × × 69.5
[1, 2, 3]× 3 × × × × 69.9

[1, 2, 3, 4]× 3 × × × × 69.2
[1, 2, 3, 4, 5]× 3 × × × × 68.9

[1, 2, 3, 4] ↓ × × × × 69.8
[1, 2, 3, 4] ↓ X × × × 71.7
[1, 2, 3, 4] ↓ X X × X 72.6

Table 6 The performance of scaled up ViTAE models on
the ImageNet1K dataset. ∗ denotes the results that we re-
implement on GPU with PyTorch framework. † indicates
that ImageNet22K are used to further finetune the models
with 224×224 resolution for 90 epochs. ‘Sup’ is the short for
supervised learning.

#Params Test
size Method ImageNet

Top-1
Real
Top-1

T2TViT-24 65 M 224 Sup 82.3 87.2
ViT-B∗ 88 M 224 MAE 83.4 89.1
ViTAE-B 89 M 224 MAE 83.8 89.4
ViTAE-B† 89 M 224 MAE 84.8 89.9
Swin-L† 197 M 384 Sup 87.3 90.0
SwinV2-L† 197 M 384 Sup 87.7 -
CoAtNet-4† 275 M 384 Sup 87.9 -
CvT-W24† 277 M 384 Sup 87.7 -
ViT-L∗ 304 M 224 MAE 85.5 90.1
ViT-L 304 M 224 MaskFeat 85.7 -
ViTAE-L 311 M 224 MAE 86.0 90.3
ViTAE-L† 311 M 224 MAE 87.5 90.8
ViTAE-L† 311 M 384 MAE 88.3 91.1
SwinV2-H 658 M 224 SimMIM 85.7 -
SwinV2-H 658 M 512 SimMIM 87.1 -
ViTAE-H 644 M 224 MAE 86.9 90.6
ViTAE-H 644 M 512 MAE 87.8 91.2
ViTAE-H† 644 M 224 MAE 88.0 90.7
ViTAE-H† 644 M 448 MAE 88.5 90.8

et al, 2022) The results are summarized in Table 6. It
demonstrates that the proposed ViTAE-B model with
the introduced inductive bias outperforms the baseline
ViT-B model by 0.4 Top-1 classification accuracy. For
the ViTAE-L model with 300M parameters, the induc-
tive bias still brings about 0.3 performance gains. After
using ImageNet-22K labeled data for finetuning, the
classification accuracy on the ImageNet-1K validation
set further increases by about 1%. These results show
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Fig. 6 The few-shot image classification results of scaled
up ViTAE models. With only 10% data for finetuning, the
scaled up ViTAE models obtain comparable or even better
performance compared with the small CNNs and transformer
models with 100% data for training.

that the benefit of introducing inductive bias in vision
transformers is scalable to large models and datasets.
Notably, our ViTAE-H, trained with only the ImageNet-
1K dataset, obtains a classification accuracy of 91.2 on
the ImageNet Real dataset (Beyer et al, 2020), which
is the highest accuracy we are aware of. It outperforms
other methods trained with additional private data, such
as EfficientNet (Pham et al, 2021) and ViT-G (Zhai et al,
2022), where the former obtains 91.1 accuracy using the
JFT300M dataset and the latter obtains 90.8 accuracy
using the JFT3B dataset.

4.4.2 Few-shot learning performance

We further evaluate the data efficiency of scaled-up mod-
els by using different percentages of data to finetune
the pre-trained models. We use 1%, 10%, and 100%
data from the ImageNet-1k training set to finetune the
self-supervised pre-trained ViTAE models with different
amounts of parameters. We ensure that each model sees
the same amount of the training images under different
data settings, i.e., we train the ViTAE-B model for
10,000 epochs using 1% training data, for 1,000 epochs
using 10% training data, and for 100 epochs using 1%
training data. Similarly, the ViTAE-L and ViTAE-H
models are trained for 5,000 epochs using 1% train-
ing data and 500 epochs using 10% training data. The
smaller models, i.e., with less than 20M parameters, are
trained from scratch using 100% ImageNet-1k training
data for 300 epochs. As shown in Figure 6, the mod-
els with more parameters are more data-efficient than
those with fewer parameters. For example, the ViTAE-H
model with 644M parameters trained with 10% data out-
performs the small model with 13.2 parameters trained
with 100% data, i.e., 82.4 v.s. 81.0. Such observations
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mirror the findings in previous studies, including both
image classification and language modeling.

4.4.3 Ablation study of the convolutional kernel size in
the scaled up ViTAE models

Table 7 The influence of the convolutional kernel size in the
scaled up ViTAE models during pretraining.

Kernel Size #Params Accuracy
ViT-L 0 304 M 84.1
ViTAE-L 0 311 M 84.1
ViTAE-L 3 311 M 84.4
ViTAE-L 1 311 M 84.6

We conduct experiments to investigate the influence
of the convolutional kernel size in the scaled-up ViTAE
models during pretraining. The results are presented in
Table 7. The kernel size 0 represents that we do not use
the convolution branch in ViTAE-L during pretraining,
which degenerates to the original ViT-L model. Then,
we add the convolution branches during finetuning and
initialize the convolutional kernel weight as 0. If we
use 1 × 1 kernels in ViTAE-L during pretraining, we
pad them to 3 × 3 with zero padding during finetun-
ing. We pretrain the models for 400 epochs and further
finetune them for 50 epochs on the ImageNet-1K train-
ing set. As can be seen, using no convolution branch
during pretraining leads to no improvement over the
baseline ViT-L since those convolutional kernel weights
in ViTAE-L during finetuning are zero-initialized. Di-
rectly pretraining and finetuning ViTAE-L with 3 × 3
convolutional kernels in the convolution branches leads
to slightly better performance over the baseline ViT-L,
but it is inferior to the proposed setting, i.e., using 1 × 1
convolutional kernels in the convolution branches during
pretraining ViTAE-L while zero-padding them to 3 ×
3 during finetuning. We argue the reason is that most
tokens (75%) during pretraining are randomly removed,
and the remaining ones have lost spatial information.
Therefore, using 3 × 3 kernels may lead to overfitting
while 1 × 1 convolutions pay little attention to spatial
structures and could learn better feature representation,
which is in line with the observations in (Zhang et al,
2018).

4.5 Analysis of the multi-stage design ViTAEv2

4.5.1 Ablation study of multi-stage design

In this paper, we extend ViTAE to a multi-stage de-
sign and propose ViTAEv2 accordingly. To achieve a

good trade-off between classification performance and
computational cost, we study the design choice of the
attention type at each stage. The results are summarized
in Table 8, where ‘P’, ‘W’, ‘F’ refer to the Performer
attention, local window attention, and vanilla attention,
respectively. They only differ in the implementation of
attention calculation while having the same number of
parameters. We list the Top-1 classification accuracy
of different model variants trained from scratch using
224×224 images from the ImageNet-1k training set. We
gradually increase the image resolution to compare the
memory footprint and training speed of different models
considering that the backbone models should well adapt
to downstream vision tasks where large resolution im-
ages are common. Specifically, we set the batch size to
128 for all models for the 224×224 resolution and reduce
it for larger resolutions to fit the A100 GPU memory.

We start from a baseline multi-stage design where
the performer attention is used at the first stage while
the vanilla full attention is used at the following three
stages, denoting as ‘P,F,F,F’. Then, we gradually in-
troduce inductive bias into the model by replacing the
performer and full attention with local window atten-
tion. As can be seen, all the models with introduced
inductive bias outperform or are at least comparable to
the baseline in terms of both classification performance
and training cost. Specifically, using local window at-
tention at the first two stages (i.e., ‘W,W,F,F’) leads
to the best trade-off between classification performance
and computational cost for different image resolutions.
Compared with the model with the best performance
(i.e., ‘W,F,F,F’), its classification accuracy only drops
by 0.1 while the memory footprint is significantly re-
duced by 56.4% at the setting 896×896 image resolution.
Moreover, it outperforms the other two designs (i.e.,
‘W,W,W,F’ and ‘W,W,W,W’) by an absolute 0.4% Top-
1 accuracy while having about the same training speed.
Therefore, we choose the design of ‘W, W, F, F’ and
devise the ViTAEv2 models at different model sizes
accordingly.

One following interesting question is whether we still
need the window-shifting mechanism to enable the inter-
window information exchange and the relative position
encoding (RPE) in the original implementation of local
window attention proposed in (Liu et al, 2021) since
the convolutional layers in PRM and PCM can enable
inter-window information exchange and encode position
information. We carry out an ablation study by isolating
them one by one in our ViTAEv2 model to answer this
question. We choose ViTAEv2-S as the base model, and
all model variants are trained using 224×224 images.
The results are summarized in Table 9. As can be seen,
the above two components only contribute marginally in
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Table 8 Ablation study of the stage-wise ViTAE design. ‘P’, ‘W’, and ‘F’ represent using the Performer attention, window
attention, and vanilla attention for each stage respectively. bs is the short name for batch size. We report the memory footprint
and images throughout during training for comparison.

Block type P, F, F, F W, F, F, F W, W, F, F W, W, W, F W, W, W, W
Params (M) 19.4 19.4 19.4 19.4 19.4

Top-1 Accuracy (224 img size) 82.2 82.7 82.6 82.2 82.2
img size 224, Memory (GB) 32.2 31.3 28.1 27.1 27.1

bs 128 per GPU Training speed (img/s) 1328.8 1300.8 1377.6 1333.6 1335.2
img size 448, Memory (GB) 40.5 40.5 32.3 26.8 26.7
bs 32 per GPU Training speed (img/s) 297.6 295.2 338.4 342.4 344.8
img size 672, Memory (GB) 38.7 38.8 23.7 16.3 16.0
bs 8 per GPU Training speed (img/s) 97.4 97.6 116.8 125.2 127.3
img size 896, Memory (GB) 34.4 34.3 15.0 9.5 9.2
bs 2 per GPU Training speed (img/s) 37.0 36.5 44.5 45.0 45.7

Table 9 Ablation study of the window shifting mechanism
and relative position encoding in the local window attention
in the ViTAEv2-S model.

shift Y Y N N
relative position enc. Y N Y N

Top-1 Accuracy 82.7 82.4 82.5 82.6
Memory (GB) 28.8 28.7 28.8 28.7

Training time (s/epoch) 486 477 481 472

our ViTAE model, i.e., about 0.1% accuracy. Therefore,
we do not include them in our default design to make
the model simple and easy to implement.

Table 10 Inference speed comparison of ViTAEv2 with
ViT (Touvron et al, 2021a), T2T-ViT (Yuan et al, 2021b)
and Swin Transformer (Liu et al, 2021).

bs 128,
size 224
(img/s)

bs 64,
size 448
(img/s)

bs 16,
size 896
(img/s)

Acc.

ViT-Small 1459 318 48 79.9
ViT-Base 803 167 25 81.8
T2T-ViT-14 996 220 33 81.2
T2T-ViT-24 575 118 17 82.3

Swin-T 815 246 60 81.3
ViTAEv2-S 722 205 46 82.6

We also compare ViTAEv2 and some representa-
tive transformer models in terms of inference speed in
Table 10. All the experiments are conducted on the
same A100 GPU, and TensorRT is adopted to acceler-
ate all models. As can be seen, our ViTAEv2-S model
outperforms ViT-Small by 2.7% Top-1 accuracy while
keeping a fast inference speed, especially for large size
images, e.g ., 896×896. Compared with the state-of-the-
art Swin transformer, the inference speed of ViTAEv2-S
is slightly slower, i.e., about 10%∼20%, but its clas-
sification performance is significantly improved by an
absolute 1.3% Top-1 accuracy. ViTAEv2-S also outper-
forms T2T-ViT-24 in terms of both performance and
inference speed.

We further evaluate the proposed ViTAEv2 models
on representative downstream vision tasks, including
object detection, semantic segmentation, and pose esti-
mation. The results are detailed below.

4.5.2 The performance on object detection and instance
segmentation

Settings To evaluate ViTAEv2’s performance on object
detection and instance segmentation tasks, we adopt
Mask RCNN (He et al, 2017) and Cascade RCNN (Cai
and Vasconcelos, 2018) as the detection framework and
finetune the models on COCO 2017 dataset, which con-
tains 118K training images, 5K validation images, and
20K test-dev images. We adopt exactly the same training
setting used in Swin (Liu et al, 2021), i.e., multi-scale
training, AdamW optimizer (Loshchilov and Hutter,
2017) and the mmdetection code base. The models are
trained for 12 (the 1x setting) and 36 epochs (the 3x
setting), respectively. We compare the performance of
ViTAEv2-S and other backbones, including the clas-
sic CNNs, i.e., ResNet (He et al, 2016), and current
transformer models.
Results The results are summarized in Table 11 and
ViTAEv2-S achieves the best performance with the least
number of parameters. Thanks to the introduced induc-
tive bias like locality and scale invariance, the proposed
ViTAEv2 model obtains 2.6 AP b and 2.0 APm perfor-
mance gains over Swin when using Mask RCNN as the
decoder for the 1× setting. It also significantly outper-
forms other backbones like Conformer and CrossFormer,
owning to our model’s efficient divide-and-conquer struc-
ture design. When we extend the training schedule to the
3× setting (36 epochs in total), ViTAEv2 reaches 50.6
AP b and 42.6 APm, significantly better than the other
models. It is noteworthy that ViTAEv2 trained for 12
epochs has outperformed Swin-T trained for 36 epochs,
validating the data efficiency of our model by introducing
the inductive bias. The superiority of ViTAEv2 retains
when using Cascade RCNN as the decoder, obtaining
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Table 11 Object detection results on the MS COCO (Lin et al, 2014) validation set regarding different backbones. ‘Sch’ is
short for training schedules.

Decoder Sch Backbone Venue AP bAP b
50AP b

75APmAPm
50mAPm

75Params (M)

Mask RCNN

1x

ResNet-50 (He et al, 2016) CVPR’16 38.0 58.6 41.4 34.4 55.1 36.7 44
PVT-S (Wang et al, 2021a) ICCV’21 40.4 62.9 43.8 37.8 60.1 40.3 44
Swin-T (Liu et al, 2021) ICCV’21 43.7 66.6 47.7 39.8 63.3 42.7 47
Focal-T (Yang et al, 2021) NeurIPS’21 44.8 67.7 49.2 41.0 64.7 44.2 49

PVTv2-B2 (Wang et al, 2022) CVMJ’22 45.3 67.1 49.6 41.2 64.2 44.4 45
RegionViT-B (Chen et al, 2021a) ICLR’21 43.5 66.7 47.4 40.1 63.4 43.0 92
Conformer-S/32 (Peng et al, 2021) ICCV’21 43.6 - - 39.7 - - 58

DAT-T (Xia et al, 2022) CVPR’22 44.4 67.6 48.5 40.4 64.2 43.1 48
CrossFormer-S (Wang et al, 2021b) ICLR’21 45.4 68.0 49.7 41.4 64.8 44.6 50

ViTAEv2-S - 46.3 68.8 51.0 41.8 65.6 44.9 37
(He et al, 2017)

3x

ResNet-50 (He et al, 2016) CVPR’16 41.0 61.7 44.9 37.1 58.4 40.1 44
PVT-S (Wang et al, 2021a) ICCV’21 43.0 65.3 46.9 39.9 62.5 42.8 44
Swin-T (Liu et al, 2021) ICCV’21 46.0 68.2 50.2 41.6 65.1 44.8 48
MViT-T (Fan et al, 2021) ICCV’21 45.9 68.7 50.5 42.1 66.0 45.4 46
DAT-T (Xia et al, 2022) CVPR’22 47.1 69.2 51.6 42.4 66.1 45.5 48

ViTAEv2-S - 47.8 69.4 52.2 42.6 66.6 45.8 37

1x

ResNet-50 (He et al, 2016) CVPR’16 41.2 59.4 45.0 35.9 56.6 38.4 82
Swin-T (Liu et al, 2021) ICCV’21 48.1 67.1 52.2 41.7 64.4 45.0 86
DAT-T (Xia et al, 2022) CVPR’22 49.1 68.2 52.9 42.5 65.4 45.8 86

Cascade ViTAEv2-S - 50.6 69.9 54.9 43.6 66.9 47.2 75
Mask RCNN

3x

ResNet-50 (He et al, 2016) CVPR’16 46.3 64.3 50.5 40.1 61.7 43.4 82
(Cai and Vasconcelos, 2019) Swin-T (Liu et al, 2021) ICCV’21 50.4 69.2 54.7 43.7 66.6 47.3 86

PVTv2-B2 (Wang et al, 2022) CVMJ’22 51.1 69.8 55.3 - - - 83
DAT-T (Xia et al, 2022) CVPR’22 51.3 70.1 55.8 44.5 67.5 48.1 86

ViTAEv2-S - 51.4 70.4 55.6 44.5 67.8 48.2 75

50.6 AP b and 43.6 APm when training 12 epochs and
51.4 AP b and 44.5 APm when training 36 epochs. It
can be concluded that introducing inductive bias into
transformers helps our model better utilize the data and
deliver the best performance for both object detection
and instance segmentation.

Table 12 Semantic segmentation results on the
ADE20k (Zhou et al, 2017) validation set regarding
different backbones including ResNet-50 (He et al, 2016),
Swin-T (Liu et al, 2021), DAT-T (Xia et al, 2022), and our
ViTAEv2-S. MS denotes that multi-scale inputs are used
during testing.

backbone Venue mIoU
mIoU params
(MS) (M)

ResNet-50 CVPR’16 42.1 42.9 67
Swin-T ICCV’21 44.5 45.8 60
DAT-T CVPR’22 45.5 46.4 60

ViTAEv2-S - 45.0 48.0 49

4.5.3 The performance on semantic segmentation

Settings We evaluate the ViTAEv2’s performance on
the semantic segmentation task on the ADE20K (Zhou
et al, 2017, 2019) dataset. The ADE20K dataset covers
150 semantic categories with 20K images for training and
2K for validation. We adopt UperNet (Xiao et al, 2018b)
as the segmentation framework and train the UperNet

with ViTAEv2-S as backbone with default setting used
in mmsegmentation (Contributors, 2020), i.e., using the
AdamW (Loshchilov and Hutter, 2017) optimizer and
fixed image size 512× 512. The models are trained for
160K iterations with a polynomial learning rate decay
scheduler.
Results The results can be found in Table 12. With
10M fewer parameters, the segmentation model with
ViTAEv2-S as the backbone obtains 45.0 mIoU and
outperforms the counterparts using either ResNet or
Swin transformer significantly. Besides, when tested
with the multi-scale input, the segmentation model with
ViTAEv2-S as the backbone obtains much better perfor-
mance than others, i.e., obtaining 48.0 mIoU. It implies
that the ViTAE model can better extract the multi-
scale feature owing to the introduced scale-invariance
inductive bias. Therefore, it can be benefited more from
the multi-scale input.

4.5.4 The performance on pose estimation

Settings We evaluate the models’ performance on the
animal pose estimation task on the AP10K (Yu et al,
2021) dataset. The AP-10K dataset contains 50 differ-
ent animal species with animal keypoint annotations.
Compared with human pose estimation tasks, animal
pose estimation is more challenging due to the diverse
species, less labeled data for each species, and signifi-
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Table 13 Pose estimation results on the AP-10K (Yu et al,
2021) test set.

ResNet Swin-T ViTAEv2-S
#Params 34.1 M 32.8 M 23.1 M

AP 0.681 0.689 0.718
AP50 0.923 0.931 0.939
AP75 0.718 0.751 0.786
AR 0.718 0.727 0.751

AR50 0.933 0.939 0.947
AR75 0.776 0.790 0.814

cant appearance variance. Therefore, it is more suitable
to evaluate the model’s generalization ability on this
task. Following the setting in AP-10K, we adopt Sim-
pleBaseline (Xiao et al, 2018a) as the pose estimation
framework and train the models with various backbones
for 210 epochs using Adam optimizer and images of size
256× 256. A step-wise learning rate decay scheduler is
employed, and the learning rate is reduced by a factor
of 10 after 170 and 200 epochs.
Results The results are summarized in Table 4.5.4.
As can be seen, the proposed ViTAEv2-S model has
fewer parameters yet brings an absolute 3% AP per-
formance gain over the ResNet-50 backbone. Besides,
it also outperforms the Swin-T (Liu et al, 2021) back-
bone, especially in the more strict evaluation metric,
i.e., AP75. These results further demonstrate the superi-
ority of the proposed ViTAEv2 model, which can better
handle the tasks with limited data but rich categories,
owing to the introduced inductive bias. Recently, it has
been shown that the isotropic ViTAE can also achieve
superior performance in human pose estimation (Xu
et al, 2022). More research efforts could be made to
establish a foundation model for various pose estimation
tasks based on ViTAE.

4.6 Robustness

ViTAE employs parallel PCM module and attention
module to jointly extract features from both local and
global perceptive. Since the two modules extract fea-
tures in a complementary manner, it is interesting to
explore whether such design will make the backbone
network robust to adversarial attack (Bhojanapalli et al,
2021). As demonstrated in a recent study (Tang et al,
2021) which benchmarks the robustness a series of vision
transformer models, CNN models, and MLP models, Vi-
TAE model obtains better robustness under l∞ attack
compared with ViT (Dosovitskiy et al, 2020), MLP-
Mixer (Tolstikhin et al, 2021), and ResNet (He et al,
2016). The theoretical foundation of vision transformer
and its variants is expected to be established to ex-

plain why introducing the inductive bias into vision
transformers can help improve the robustness.

5 Discussions

This paper explores different types of IBs and incor-
porates them into transformers through the proposed
reduction and normal cells. With the collaboration of
these two cells, our ViTAE model achieves impressive
performance on the ImageNet with fast convergence
and high data efficiency. According to the attention dis-
tance analysis shown in Figure 5, the ensemble nature
enables the transformer and convolution layers to focus
on what they are good at, i.e., modeling long-range
dependencies and locality, respectively. As illustrated
in Figure 2, our ViTAE model can be viewed as an
intra-cell ensemble of complementary transformer layers
and convolution layers owing to the skip connection
and parallel structure. Moreover, the inductive bias also
benefits the transformer models at larger model sizes,
i.e., ViTAE-H, or on larger datasets, i.e., ImageNet-22K.
Besides, we explore the multi-stage design of ViTAE
models and propose ViTAEv2 accordingly, which ob-
tains SOTA performance on image classification and
downstream vision tasks, including object detection, se-
mantic segmentation, and pose estimation. More kinds
of intrinsic or learnable IBs (Sabour et al, 2017; Zhang
et al, 2022) such as constituting viewpoint invariance
can be explored in the future study. On the other hand,
although the proposed parallel structure obtains compa-
rable inference speed with better performance, it may
also slow down the training depending on the deep
learning framework, e.g ., dynamic computation graph
frameworks like PyTorch need to compute the parallel
branches sequentially. Alternatively, static computation
graph frameworks like TensorFlow can be adopted to
mitigate this issue.

6 Conclusion

In this paper, we incorporate two types of intrinsic in-
ductive bias (IB), i.e., locality and scale-invariance, via
reduction and normal cells. By stacking the two cells
in both isotropic and multi-stage manner, the proposed
ViTAE and ViTAEv2 model obtains superior perfor-
mance and data efficiency. Specially, extensive experi-
ments show that the multi-stage ViTAEv2 outperforms
representative vision transformers in various respects,
including classification accuracy, data efficiency, and
generalization ability on downstream tasks. When scal-
ing to large-scale models, the inductive bias still helps
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in improving vision transformers’ performance. In fu-
ture work, we can explore other kinds of IBs to improve
their performance further. We hope that this study
will provide valuable insights to the following studies
introducing intrinsic IB into vision transformers and
understanding the impact of intrinsic and learned IBs.

References

Adelson EH, Anderson CH, Bergen JR, Burt PJ, Ogden JM
(1984) Pyramid methods in image processing. RCA engineer
29(6):33–41

Ali A, Touvron H, Caron M, Bojanowski P, Douze M, Joulin
A, Laptev I, Neverova N, Synnaeve G, Verbeek J, et al
(2021) Xcit: Cross-covariance image transformers. Advances
in neural information processing systems 34:20014–20027

Ba JL, Kiros JR, Hinton GE (2016) Layer normalization.
arXiv preprint arXiv:160706450

Bao H, Dong L, Piao S, Wei F (2021) Beit: Bert pre-training of
image transformers. In: International Conference on Learn-
ing Representations

Bay H, Tuytelaars T, Van Gool L (2006) Surf: Speeded up
robust features. In: Proceedings of the European conference
on computer vision, Springer, pp 404–417

Beyer L, Hénaff OJ, Kolesnikov A, Zhai X, Oord Avd
(2020) Are we done with imagenet? arXiv preprint
arXiv:200607159

Bhojanapalli S, Chakrabarti A, Glasner D, Li D, Unterthiner
T, Veit A (2021) Understanding robustness of transformers
for image classification. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp 10231–
10241

Burt PJ, Adelson EH (1987) The laplacian pyramid as a com-
pact image code. In: Readings in computer vision, Elsevier,
pp 671–679

Cai Z, Vasconcelos N (2018) Cascade r-cnn: Delving into high
quality object detection. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp 6154–6162

Cai Z, Vasconcelos N (2019) Cascade r-cnn: High quality object
detection and instance segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence

Chen CF, Panda R, Fan Q (2021a) Regionvit: Regional-to-
local attention for vision transformers. In: International
Conference on Learning Representations

Chen CFR, Fan Q, Panda R (2021b) Crossvit: Cross-attention
multi-scale vision transformer for image classification. In:
Proceedings of the IEEE/CVF international conference on
computer vision, pp 357–366

Chen LC, Papandreou G, Schroff F, Adam H (2017) Rethink-
ing atrous convolution for semantic image segmentation.
arXiv preprint arXiv:170605587

Chen X, Xie S, He K (2021c) An empirical study of training
self-supervised vision transformers. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp 9640–9649

Chen Y, Dai X, Chen D, Liu M, Dong X, Yuan L, Liu Z
(2022) Mobile-former: Bridging mobilenet and transformer.
In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp 5270–5279

Choromanski KM, Likhosherstov V, Dohan D, Song X, Gane
A, Sarlos T, Hawkins P, Davis JQ, Mohiuddin A, Kaiser
L, et al (2020) Rethinking attention with performers. In:
International Conference on Learning Representations

Chu X, Tian Z, Wang Y, Zhang B, Ren H, Wei X, Xia H, Shen
C (2021) Twins: Revisiting the design of spatial attention
in vision transformers. Advances in Neural Information
Processing Systems 34:9355–9366

Contributors M (2020) MMSegmentation: Openmmlab seman-
tic segmentation toolbox and benchmark. https://github.
com/open-mmlab/mmsegmentation

Dai Z, Liu H, Le QV, Tan M (2021) Coatnet: Marrying convo-
lution and attention for all data sizes. Advances in Neural
Information Processing Systems 34:3965–3977

Demirel H, Anbarjafari G (2010) Image resolution enhance-
ment by using discrete and stationary wavelet decomposi-
tion. IEEE transactions on image Processing 20(5):1458–
1460

Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009)
Imagenet: A large-scale hierarchical image database. In:
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Ieee, pp 248–255

Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X,
Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly
S, et al (2020) An image is worth 16x16 words: Transformers
for image recognition at scale. In: International Conference
on Learning Representations

d’Ascoli S, Touvron H, Leavitt ML, Morcos AS, Biroli G,
Sagun L (2021) Convit: Improving vision transformers with
soft convolutional inductive biases. In: International Con-
ference on Machine Learning, PMLR, pp 2286–2296

Fan H, Xiong B, Mangalam K, Li Y, Yan Z, Malik J, Fe-
ichtenhofer C (2021) Multiscale vision transformers. In:
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp 6824–6835

Graham B, El-Nouby A, Touvron H, Stock P, Joulin A, Jégou
H, Douze M (2021) Levit: a vision transformer in con-
vnet’s clothing for faster inference. In: Proceedings of the
IEEE/CVF international conference on computer vision,
pp 12259–12269

Guo MH, Lu CZ, Liu ZN, Cheng MM, Hu SM (2022) Visual
attention network. arXiv preprint arXiv:220209741

Han K, Xiao A, Wu E, Guo J, Xu C, Wang Y (2021) Trans-
former in transformer. Advances in Neural Information
Processing Systems 34:15908–15919

He K, Zhang X, Ren S, Sun J (2015) Spatial pyramid pooling
in deep convolutional networks for visual recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence
37(9):1904–1916

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning
for image recognition. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp 770–778

He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r-cnn. In:
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp 2961–2969

He K, Chen X, Xie S, Li Y, Dollár P, Girshick R (2022) Masked
autoencoders are scalable vision learners. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp 16000–16009

He L, Dong Y, Wang Y, Tao D, Lin Z (2021) Gauge equivariant
transformer. Advances in Neural Information Processing
Systems 34:27331–27343

Heo B, Yun S, Han D, Chun S, Choe J, Oh SJ (2021) Re-
thinking spatial dimensions of vision transformers. In: Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pp 11936–11945

Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W,
Weyand T, Andreetto M, Adam H (2017) Mobilenets: Effi-
cient convolutional neural networks for mobile vision appli-

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation


20 Qiming Zhang, et al.

cations. arXiv preprint arXiv:170404861
Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017)

Densely connected convolutional networks. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp 4700–4708

Ke Y, Sukthankar R (2004) Pca-sift: A more distinctive repre-
sentation for local image descriptors. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, IEEE, vol 2, pp II–II

Kenton JDMWC, Toutanova LK (2019) Bert: Pre-training of
deep bidirectional transformers for language understanding.
In: Proceedings of NAACL-HLT, pp 4171–4186

Kolesnikov A, Beyer L, Zhai X, Puigcerver J, Yung J, Gelly
S, Houlsby N (2020) Big transfer (bit): General visual
representation learning. In: Proceedings of the European
conference on computer vision, Springer, pp 491–507

Krause J, Stark M, Deng J, Fei-Fei L (2013) 3d object represen-
tations for fine-grained categorization. In: 4th International
IEEE Workshop on 3D Representation and Recognition
(3dRR-13), Sydney, Australia

Krizhevsky A, Hinton G, et al (2009) Learning multiple layers
of features from tiny images

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classi-
fication with deep convolutional neural networks. Advances
in neural information processing systems 25:1097–1105

Lai WS, Huang JB, Ahuja N, Yang MH (2017) Deep laplacian
pyramid networks for fast and accurate super-resolution. In:
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp 624–632

LeCun Y, Bengio Y, et al (1995) Convolutional networks for
images, speech, and time series. The handbook of brain
theory and neural networks 3361(10):1995

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. nature
521(7553):436–444

Lee Y, Kim J, Willette J, Hwang SJ (2022) Mpvit: Multi-path
vision transformer for dense prediction. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp 7287–7296

Li Y, Zhang K, Cao J, Timofte R, Van Gool L (2021) Localvit:
Bringing locality to vision transformers. arXiv preprint
arXiv:210405707

Lin G, Shen C, Van Den Hengel A, Reid I (2016) Efficient
piecewise training of deep structured models for semantic
segmentation. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp 3194–3203

Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D,
Dollár P, Zitnick CL (2014) Microsoft coco: Common ob-
jects in context. In: Proceedings of the European conference
on computer vision, Springer, pp 740–755

Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S
(2017) Feature pyramid networks for object detection. In:
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp 2117–2125

Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O,
Lewis M, Zettlemoyer L, Stoyanov V (2019) Roberta: A ro-
bustly optimized bert pretraining approach. arXiv preprint
arXiv:190711692

Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B
(2021) Swin transformer: Hierarchical vision transformer
using shifted windows. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp 10012–
10022

Liu Z, Hu H, Lin Y, Yao Z, Xie Z, Wei Y, Ning J, Cao Y, Zhang
Z, Dong L, et al (2022) Swin transformer v2: Scaling up
capacity and resolution. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pp 12009–12019
Loshchilov I, Hutter F (2017) Decoupled weight decay regu-

larization. arXiv preprint arXiv:171105101
Loshchilov I, Hutter F (2018) Decoupled weight decay regu-

larization. In: International Conference on Learning Repre-
sentations

Luo W, Li Y, Urtasun R, Zemel RS (2016) Understanding the
effective receptive field in deep convolutional neural net-
works. Advances in neural information processing systems
29:4898–4906

Ng PC, Henikoff S (2003) Sift: Predicting amino acid
changes that affect protein function. Nucleic acids research
31(13):3812–3814

Nilsback ME, Zisserman A (2008) Automated flower classifi-
cation over a large number of classes. In: Indian Conference
on Computer Vision, Graphics and Image Processing

Olkkonen H, Pesola P (1996) Gaussian pyramid wavelet trans-
form for multiresolution analysis of images. Graphical Mod-
els and Image Processing 58(4):394–398

Parkhi OM, Vedaldi A, Zisserman A, Jawahar CV (2012) Cats
and dogs. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G,
Killeen T, Lin Z, Gimelshein N, Antiga L, et al (2019) Py-
torch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems
32

Peng Z, Huang W, Gu S, Xie L, Wang Y, Jiao J, Ye Q (2021)
Conformer: Local features coupling global representations
for visual recognition. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp 367–376

Pham H, Dai Z, Xie Q, Le QV (2021) Meta pseudo labels. In:
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp 11557–11568

Radford A, Kim JW, Hallacy C, Ramesh A, Goh G, Agarwal
S, Sastry G, Askell A, Mishkin P, Clark J, et al (2021)
Learning transferable visual models from natural language
supervision. In: International Conference on Machine Learn-
ing, PMLR, pp 8748–8763

Radosavovic I, Kosaraju RP, Girshick R, He K, Dollár P (2020)
Designing network design spaces. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp 10428–10436

Rublee E, Rabaud V, Konolige K, Bradski G (2011) Orb: An
efficient alternative to sift or surf. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision,
Ieee, pp 2564–2571

Sabour S, Frosst N, Hinton GE (2017) Dynamic routing be-
tween capsules. Advances in neural information processing
systems 30

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018)
Mobilenetv2: Inverted residuals and linear bottlenecks. In:
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp 4510–4520

Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D,
Batra D (2017) Grad-cam: Visual explanations from deep
networks via gradient-based localization. In: Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pp 618–626

Simonyan K, Zisserman A (2015) Very deep convolutional
networks for large-scale image recognition

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov
D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going
deeper with convolutions. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp 1–9



ViTAEv2: Vision Transformer Advanced by Exploring Inductive Bias for Image Recognition and Beyond 21

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016)
Rethinking the inception architecture for computer vision.
In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp 2818–2826

Szegedy C, Ioffe S, Vanhoucke V, Alemi A (2017) Inception-
v4, inception-resnet and the impact of residual connections
on learning. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol 31

Tan M, Le Q (2019) Efficientnet: Rethinking model scaling for
convolutional neural networks. In: International Conference
on Machine Learning, PMLR, pp 6105–6114

Tang S, Gong R, Wang Y, Liu A, Wang J, Chen X, Yu F, Liu
X, Song D, Yuille A, et al (2021) Robustart: Benchmarking
robustness on architecture design and training techniques.
arXiv preprint arXiv:210905211

Tolstikhin IO, Houlsby N, Kolesnikov A, Beyer L, Zhai X,
Unterthiner T, Yung J, Steiner A, Keysers D, Uszkoreit
J, et al (2021) Mlp-mixer: An all-mlp architecture for vi-
sion. Advances in Neural Information Processing Systems
34:24261–24272

Touvron H, Cord M, Douze M, Massa F, Sablayrolles A, Jégou
H (2021a) Training data-efficient image transformers &
distillation through attention. In: International Conference
on Machine Learning, PMLR, pp 10347–10357

Touvron H, Sablayrolles A, Douze M, Cord M, Jégou H (2021b)
Grafit: Learning fine-grained image representations with
coarse labels. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp 874–884

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need.
Advances in neural information processing systems 30

Wang W, Xie E, Li X, Fan DP, Song K, Liang D, Lu T, Luo
P, Shao L (2021a) Pyramid vision transformer: A versatile
backbone for dense prediction without convolutions. In:
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp 568–578

Wang W, Yao L, Chen L, Lin B, Cai D, He X, Liu W (2021b)
Crossformer: A versatile vision transformer hinging on cross-
scale attention. In: International Conference on Learning
Representations

Wang W, Xie E, Li X, Fan DP, Song K, Liang D, Lu T,
Luo P, Shao L (2022) Pvt v2: Improved baselines with
pyramid vision transformer. Computational Visual Media
8(3):415–424

Wei C, Fan H, Xie S, Wu CY, Yuille A, Feichtenhofer C (2022)
Masked feature prediction for self-supervised visual pre-
training. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp 14668–14678

Wightman R (2019) Pytorch image models. https://
github.com/rwightman/pytorch-image-models, DOI 10.
5281/zenodo.4414861

Wu H, Xiao B, Codella N, Liu M, Dai X, Yuan L, Zhang L
(2021) Cvt: Introducing convolutions to vision transformers.
In: Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp 22–31

Xia Z, Pan X, Song S, Li LE, Huang G (2022) Vision trans-
former with deformable attention. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp 4794–4803

Xiao B, Wu H, Wei Y (2018a) Simple baselines for human pose
estimation and tracking. In: Proceedings of the European
conference on computer vision, pp 466–481

Xiao T, Liu Y, Zhou B, Jiang Y, Sun J (2018b) Unified
perceptual parsing for scene understanding. In: Proceedings
of the European conference on computer vision, pp 418–434

Xie Z, Zhang Z, Cao Y, Lin Y, Bao J, Yao Z, Dai Q, Hu
H (2022) Simmim: A simple framework for masked image
modeling. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp 9653–9663

Xu Y, Zhang Q, Zhang J, Tao D (2021) Vitae: Vision trans-
former advanced by exploring intrinsic inductive bias. Ad-
vances in Neural Information Processing Systems 34:28522–
28535

Xu Y, Zhang J, Zhang Q, Tao D (2022) Vitpose: Simple vision
transformer baselines for human pose estimation. Advances
in Neural Information Processing Systems

Yan H, Li Z, Li W, Wang C, Wu M, Zhang C (2021) Contnet:
Why not use convolution and transformer at the same time?
arXiv preprint arXiv:210413497

Yang J, Li C, Zhang P, Dai X, Xiao B, Yuan L, Gao J (2021)
Focal self-attention for local-global interactions in vision
transformers. Advances in Neural Information Processing
Systems

Yu F, Koltun V (2016) Multi-scale context aggregation by
dilated convolutions. In: International Conference on Learn-
ing Representations

Yu F, Koltun V, Funkhouser T (2017) Dilated residual net-
works. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp 472–480

Yu H, Xu Y, Zhang J, Zhao W, Guan Z, Tao D (2021) Ap-10k:
A benchmark for animal pose estimation in the wild. In:
Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2)

Yu W, Luo M, Zhou P, Si C, Zhou Y, Wang X, Feng J, Yan S
(2022) Metaformer is actually what you need for vision. In:
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp 10819–10829

Yuan K, Guo S, Liu Z, Zhou A, Yu F, Wu W (2021a) Incor-
porating convolution designs into visual transformers. In:
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp 579–588

Yuan L, Chen Y, Wang T, Yu W, Shi Y, Jiang ZH, Tay FE,
Feng J, Yan S (2021b) Tokens-to-token vit: Training vision
transformers from scratch on imagenet. In: Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pp 558–567

Zeiler MD, Fergus R (2014) Visualizing and understanding
convolutional networks. In: Proceedings of the European
conference on computer vision, Springer, pp 818–833

Zhai X, Kolesnikov A, Houlsby N, Beyer L (2022) Scaling
vision transformers. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp
12104–12113

Zhang J, Cao Y, Wang Y, Wen C, Chen CW (2018) Fully point-
wise convolutional neural network for modeling statistical
regularities in natural images. In: Proceedings of the 26th
ACM international conference on Multimedia, pp 984–992

Zhang P, Dai X, Yang J, Xiao B, Yuan L, Zhang L, Gao J
(2021) Multi-scale vision longformer: A new vision trans-
former for high-resolution image encoding. In: Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pp 2998–3008

Zhang Q, Xu Y, Zhang J, Tao D (2022) Vsa: Learning varied-
size window attention in vision transformers. In: Proceed-
ings of the European conference on computer vision

Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene
parsing network. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp
2881–2890

Zheng S, Lu J, Zhao H, Zhu X, Luo Z, Wang Y, Fu Y, Feng
J, Xiang T, Torr PH, et al (2021) Rethinking semantic

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


22 Qiming Zhang, et al.

segmentation from a sequence-to-sequence perspective with
transformers. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp 6881–6890

Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A
(2017) Scene parsing through ade20k dataset. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp 633–641

Zhou B, Zhao H, Puig X, Xiao T, Fidler S, Barriuso A, Tor-
ralba A (2019) Semantic understanding of scenes through
the ade20k dataset. International Journal of Computer
Vision 127(3):302–321


	1 Introduction
	2 Related Work
	3 Methodology
	4 Experiments
	5 Discussions
	6 Conclusion

