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Abstract The past decade has witnessed the rapid de-

velopment of autonomous driving systems. However,

it remains a daunting task to achieve full autonomy,

especially when it comes to understanding the ever-

changing, complex driving scenes. To alleviate the dif-

ficulty of perception, self-driving vehicles are usually

equipped with a suite of sensors (e.g., cameras, Li-

DARs), hoping to capture the scenes with overlapping

perspectives to minimize blind spots. Fusing these data

streams and exploiting their complementary properties

is thus rapidly becoming the current trend.
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Nonetheless, combining data that are captured by

different sensors with drastically different ranging/ima-

ging mechanisms is not a trivial task; instead, many fac-

tors need to be considered and optimized. If not careful,

data from one sensor may act as noises to data from an-

other sensor, with even poorer results by fusing them.

Thus far, there has been no in-depth guidelines to de-

signing the multi-modal fusion based 3D perception al-

gorithms. To fill in the void and motivate further inves-

tigation, this survey conducts a thorough study of tens

of recent deep learning based multi-modal 3D detection

networks (with a special emphasis on LiDAR-camera

fusion), focusing on their fusion stage (i.e., when to

fuse), fusion inputs (i.e., what to fuse), and fusion gran-

ularity (i.e., how to fuse). These important design choices

play a critical role in determining the performance of

the fusion algorithm.

In this survey, we first introduce the background of

popular sensors used for self-driving, their data proper-

ties, and the corresponding object detection algorithms.

Next, we discuss existing datasets that can be used for

evaluating multi-modal 3D object detection algorithms.

Then we present a review of multi-modal fusion based

3D detection networks, taking a close look at their fu-

sion stage, fusion input and fusion granularity, and how

these design choices evolve with time and technology.

After the review, we discuss open challenges as well as

possible solutions. We hope that this survey can help

researchers to get familiar with the field and embark

on investigations in the area of multi-modal 3D object

detection.

Keywords 3D Object Detection · Multi-modal

Fusion · Sensor Fusion · Autonomous Driving
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Fig. 1 The typical architecture for an autonomous driving
system, consisting of three subsystems: perception, localiza-
tion and decision making

1 Introduction

Recent breakthroughs in deep learning and computer

vision [16, 67, 138] have fostered the rapid develop-

ment of autonomous driving, which promises to free the

drivers, to decrease traffic congestion, and to improve

road safety. The potential of autonomous driving is,

however, not yet fully unleashed, largely due to the un-

satisfactory perception performance in real-world driv-

ing scenarios. As a result, even if autonomous vehicles

(AVs) have seen applications in many confined and con-

trolled environments, deploying them in urban environ-

ments still poses dire technological challenges [51, 153].

Fig. 1 illustrates a typical AV system that consists

of three subsystems: perception, localization and deci-

sion making. The AV system capitalizes multiple sen-

sors (e.g., LiDAR, camera) to collect raw sensor data.

Taking the raw sensor data as input, the perception and

localization subsystems execute several important tasks

to identify and localize objects of interest, namely, ob-

ject detection, tracking, 3D map generation and map-

ping, etc. Given the objects and their locations, the

decision making subsystem can navigate and make self-

driving decisions. Among all the tasks, object detection,

aiming to localize and categorize objects of interest, is

of great significance.

With the breakthrough of deep learning techniques,

2D object detection has drawn a great deal of attention,

resulting in a plethora of algorithms [46, 47, 88, 90, 92,

128, 129]. However, localizing the objects in the 2D im-

age plane is far from the demand of AVs to perceive

the 3D real world. To this end, the task of 3D object

detection is proposed with the requirement of predict-

ing the object’s three-dimensional location, shape, and

rotational angles. Compared to the well-studied 2D ob-

ject detection, 3D object detection is not only more im-

portant to autonomous vehicles but also more challeng-

ing. The challenges mainly stem from the fact that 3D

driving scenes are also much more complex for percep-

tion [194]. For example, we need additional depth and

rotation parameters to locate an object in 3D space.

In the real world, performing 3D object detection

through a single type of sensor data is far from be-

ing sufficient. Firstly, each type of sensor data has its

inherent limitation and shortcomings. For example, a

camera-based system suffers from the lack of accurate

depth information, while a LiDAR-only system is ham-

pered by lower input data resolution, especially at long

distances. As shown in Fig. 2 and Tab. 1, in average,

for objects which are far from the ego-sensor (> 60m in

KITTI), there are usually less than 10 LiDAR points

but are still with more than 400 image pixels. Secondly,

the perception system must be robust against sensor

malfunctioning, failure, or simply under-performing, hence

mandating the necessity of having more than one type

of sensor. Thirdly, data from different sensors comple-

ment each other naturally. Their combination could

lead to a more comprehensive depicting of the envi-

ronment and thus better detection results.

Therefore, a recent trend in 3D object detection

is to combine data streams from different sensors and

develop multi-modal detection methods. Fig. 3 shows

multiple sensors in the AV system. AVs are typically

equipped with cameras, LiDARs (i.e., Light Detection

And Ranging sensors), Radars (Radio detection and

ranging sensors), GPS (Global Positioning System) and

IMUs (Inertial Measurement Units) [154, 193]. In the

multi-modal methods, data from multiple types of sen-

sors that have complementary characteristics are fused

to capture the scenes with overlapping perspectives,

aiming at minimizing blind spots.

Though recent studies have demonstrated the ben-

efits of fusion in various settings, conducting efficient

and effective multi-modal detection in the real world

still largely remains a myth and faces many challenges.

Below we list some of these open challenges:
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(a) person (10m): image pixels(b) person (10m): LiDAR
points

(c) person (60m): image pixels(d) person (60m): LiDAR
points

Fig. 2 The image for a person 10 meters away is shown in
(a), and the corresponding point cloud data is shown in (b).
The image for another person 60 meters away is shown in (c),
and the corresponding point cloud data is shown in (d). It is
clear that point clouds get very sparse at long distances. We
modify the picture from Fig. 1 in [191].

Fig. 3 The autonomous car Sonic is equipped with one Li-
DAR sensor (Velodyne VLP-16), four cameras, and one GPS.
Note that the image is modified from [193].

– Multi-Sensor Calibration: Sensors of different

types are not synchronized either temporally or spa-

tially. In the temporal domain, it is hard to collect

data at the same time due to independent acquisi-

tion cycles for each sensor. In the spatial domain,

sensors have different angles of view when they are

deployed. Thus, multi-sensor calibration is the first

step before data fusion, which has not received much

attention so far.

– Information Loss During Fusion: Due to the

large gap between different types of sensor data (il-

lustrated in Tab. 1), it is difficult to precisely align

these data streams either in the input stage or in

the feature space. To convert the sensor data into a

representation format in which they can be aligned

and fused correctly, a certain amount of information

loss becomes inevitable.

– Consistent Data Augmentation Across Mul-

tiple Modalities: Data augmentation plays a vi-

tal role in 3D object detection to enhance the size

of training samples, and to ameliorate the problem

of model over-fitting [186]. Augmentation strategies

such as global rotation [198] and random flip [141]

are widely adopted by LiDAR-based and camera-

based methods but are absent in many multi-modal

methods due to the concerns of leading to inconsis-

tencies across modalities.

At present, how to address the above challenges and

conduct efficient data fusion still remains an open prob-

lem. If not carefully done, data fusion may cause differ-

ent data streams to act as noises to each another [5, 10],

leading to even poorer results. In this paper, we set

out to conduct a comprehensive review of recent fusion-

based 3D object detection methods. Such a review can

help pinpoint technical challenges in sensor fusion, and

help us compare and contrast various models proposed

to address these challenges. In particular, since cam-

eras and LiDARs are the most common sensors for au-

tonomous driving, our review mainly focuses on the fu-

sion of these two types of sensor data. Specifically, when

we discuss a multi-modal fusion based 3D detection al-

gorithm, we focus on how the algorithm deals with the

following three crucial design considerations:

– Fusion Stage: The first design consideration is con-

cerned with at what pipeline stage the multi-modal

fusion module takes place, i.e., “where to fuse”. It

has three options here: early fusion [156, 173], late

fusion [112], and cascade fusion [123]. Early fusion

usually occurs in the input stage or feature extrac-

tion stage before each branch reaches its prediction.

Late fusion takes place in the prediction stage. Cas-

cade fusion employs the hybrid mode by fusing one

branch’s prediction with the other’s input.

The fusion stage is the most influential design con-

sideration as it determines the overall network ar-

chitecture of the fusion based detection algorithm,

and early fusion is the predominant choice.

– Fusion Input: The second design consideration is

concerned with how the multi-modal data are in-

put into the fusion module, i.e., “what to fuse”.

The fusion module can be designed to take the raw

data as input, or some type of intermediate fea-

tures. For example, the fusion module can take in

the LiDAR data as raw point clouds [173, 65], voxel

grids [187, 23, 22], and projection on the bird’s eye

view (BEV) or the range view (RV) [19, 151]. Mean-

while, the fusion module can take in the camera data
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as the feature maps, segmentation masks, and even

pseudo-LiDAR point clouds [165].

The fusion input is a crucial design consideration be-

cause data representation plays a significant role in

the overall detection performance. Among the three

considerations, it has the most options. We will care-

fully review these options in Sec. 4, and discuss how

they evolve with time and technology.

– Fusion Granularity: The third design considera-

tion is concerned with at what granularity the two

data streams are combined, i.e., “how to fuse”. It

usually has the three options: region of interest (RoI)-

level, voxel-level, and point-level (with the last one

at the finest granularity).

The fusion granularity plays an important role in

determining the complexity and effectiveness of fu-

sion; usually, finer fusion granularity requires more

computing and leads to superior performance.

Previous surveys on deep learning based multi-modal

fusion methods [3, 26, 40] cover a broad range of sen-

sors, including radars, cameras, LiDARs, ultrasonic sen-

sors, etc., and provide a relatively brief review on a list

of topics including multi-object detection, tracking, en-

vironment reconstruction, etc. While they are consid-

ered as a useful guide for readers to browse through

the general area, our survey serves a distinctly differ-

ent purpose: it targets at researchers who would like to

carefully investigate the field of multi-modal 3D detec-

tion. As such, our survey intends to provide a deep and

detailed review of recent research on this topic. Our

contributions are summarized as below:

• We conduct an in-depth review of sensor fusion based

3D detection networks, with a special focus on LiDAR-

camera fusion. We organize our discussions around

the three core design considerations: fusion stage,

fusion input, and fusion granularity, which answer

the questions of where to fuse, what to fuse, and

how to fuse, respectively.

• Most of the previous surveys have largely overlooked

the fusion inputs of 3D multi-modal networks. In

fact, compared to the other two design consider-

ations, a fusion module’s input exhibits the most

diversity and represents the unique idea of each de-

sign. In our survey, we discuss this design consid-

eration thoroughly. According to their fusion input

choices, we categorize the fusion based 3D detection

networks into a total of five categories. We review

the schemes in each category in detail, and discuss

how the input combination evolve with time and

technology.

• We also summarize the popular multi-modal datasets

that can be employed for 3D object detection evalu-

ation. In addition, we carefully discuss a list of open
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Fig. 4 (a) Example of 2D (green) and 3D (red) object detec-
tion bounding boxes, (b) Parameters of a 3D box in the BEV
including its width w, length l, and vehicle heading angle θ

challenges in the field as well as possible solutions,

which can hopefully inspire some future research in

the area of multi-modal 3D object detection.

In this paper, we first provide a brief background

of typical sensors used in autonomous driving, their

data properties, and 3D object detectors through single

modality respectively in Sec. 2. In Sec. 3, We present a

summary of popular datasets that can be employed for

evaluating multi-modal 3D object detection networks.

In Sec. 4, we present a review of multi-modal fusion

methods based on three crucial design choices: fusion

stage, fusion input, and fusion granularity. Finally, we

discuss open challenges and possible solutions in Sec. 5.

2 Background

In this section, we provide a background overview of

typical sensors employed in autonomous driving, espe-

cially on 3D object detection methods that rely on each

type of sensor. We mainly focus our discussions on cam-

eras and LiDARs. Besides, we also introduce other sen-

sors that can be employed for 3D object detection.

2.1 3D Object Detection Task

Before introducing 3D object detection methods through

different camera settings, we first give an overview of

3D object detection. In the 3D object detection task,

we need to provide the 3D bounding boxes of objects

in the scene. As depicted in Fig. 4, we are required to

predict the object center’s 3D coordinates c, length l,

width w, height h as well as its deflection angle θ to

obtain the red 3D bounding box.

2.2 3D Object Detection through Cameras

Cameras are the most common sensors for self-driving

cars. A series of mature methods in 2D object detec-
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Table 1 Using the sensors employed in the KITTI dataset as example, we compare the LiDAR and camera sensors [44]. In
addition to important sensor parameters, we also qualitatively compare how external factors may affect the data quality of
different sensors, with 4 indicating minor influences, 44 moderate influences and 444 significant influences [195].

sensor parameters and external factors in KITTI [44, 191] external factors from [195]

number cost
data
format

data
dimension

density/
per frame

FPS
object
dis.>60m

strong
light

smog
vis.>2km

installation

LiDAR 1 $8,0000
binary float
matrix

3D ≈10,000 points 10 ≈10 points 4 44 easy

Camera
2 grey
2 color

$268
$511.25

png format 2D 466,240 pixels 15 ≈400 pixels 444 444 easier

tion have been developed in recent years, which can be

reused in 3D object detection [46, 129]. Accordingly,

image-based 3D object detection methods can achieve

satisfactory performance at low expenses, often outper-

forming human experts [105, 146]. Several types of cam-

eras have been widely deployed in AV, each with pros

and cons. Below we talk about the 3D object detection

algorithms via different camera settings.

Monocular 3D Object Detection. Monocular cam-

eras provide dense information in the form of pixel in-

tensity, which reveals shape and texture properties [2,

35]. The shape and texture information can also be uti-

lized to detect lane geometry, traffic signs, and type

of objects. The main disadvantage of using monocu-

lar cameras for 3D detection stems from the lack of

depth information, which is necessary for accurate ob-

ject size and position estimation for AVs [11]. To com-

pensate for this, many studies have been devoted to

enhancing detection accuracy through monocular cam-

eras [18, 24, 56, 95, 99, 106, 113, 126, 165]. For exam-

ple, Mousavian et al. [106] employ a designed CNN to

estimate the missing depth information, which is used

later to upgrade the 2D bounding box to the 3D space.

Chu et al. [24] perform monocular depth estimation

first and lifts the 2D pixels to pseudo 3D points. They

design a novel neighbor-voting method that incorpo-

rates neighbor predictions to improve object detection

from severely deformed pseudo-LiDAR point clouds.

Park et al. [113] propose an end-to-end single-stage

monocular-based detector. With the large-scale unla-

beled data pre-training, it achieves promising detection

results.

Stereo 3D Object Detection. Compared to monoc-

ular cameras, stereo cameras estimate a more accu-

rate depth map [34, 80]. Specifically, multi-view cam-

eras can cover different ranges of scenes through dif-

ferent cameras and capture depth maps more accu-

rately [73, 74, 114]. Meanwhile, the complexity and cost

involved in processing stereo images will also increase

considerably. Some works exploit stereo images to gen-

erate dense point clouds to conduct 3D object detec-

tion tasks [20, 83, 120, 127, 189]. For example, Chen

et al. [20] focus on generating 3D proposals by encoding

object size prior, ground-plane prior, and depth infor-

mation into an energy function. Li et al. [83] add ex-

tra branches after the stereo Region Proposal Network

(RPN) to predict sparse keypoints, viewpoints, and ob-

ject dimensions, which are used to calculate coarse 3D

object bounding boxes. Next, the accurate 3D bound-

ing boxes are recovered by a region-based photometric

alignment. Guo et al. [52] encode the depth information

in the stereo cost volume, taking LiDAR features as the

guidance to distill high-level geometry-aware represen-

tations for the stereo detection network.

Shortcomings of Camera-based 3D Object De-

tection. To summarize, camera-based 3D object detec-

tion has several shortcomings. Firstly, it is difficult for

monocular cameras to estimate depth, which severely

limits the detection accuracy [15, 64]. Secondly, camera-

based detection further suffers from adverse conditions

such as poor lighting, dense smoke, or heavy fog [194,

199] So far, camera-only 3D object detection has not

been able to obtain reliable performance. As far as

KITTI [44] dataset is concerned, the state-of-the-art

stereo-based method LIGA-Stereo [52] achieves 64.66%

mAP while monocular-based DD3D [113] achieves only

16.87% mAP. To accomplish a more reliable AV system,

We need to explore more powerful sensors for AVs.

2.3 3D Object Detection through LiDARs

LiDAR sensors use lasers as the light source to complete

remote sensing measurements. LiDARs detect the light-

wave signal between the LiDAR sensor and the detected

object [158]. It continuously emits lasers and collects

the information of the reflection points to obtain a full

range of environmental information. When the LiDAR

sensor rotates one circle, all the reflected point coordi-

nates form a point cloud. As an active sensor, external

illumination is not required and thus we can achieve

more reliable detection under extreme lighting condi-

tions. The typical resolution of LiDAR points ranges

from 16 channels to 128 channels. As shown in Tab. 2,

we conduct a detailed comparison to help readers form

a clear understanding of the two popular LiDAR sen-

sors: Velodyne HDL-64L and VLS-128. From specific
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Table 2 Technical specifications for two typical Velodyne LiDARs. Note that point cloud images are from [130].

type
point cloud

image
channel range

points scanned
per second

Horizontal
Field of View

Vertical
Field of View

price

Velodyne
HDL-64E

64 120m 2.2 million 360° 26.9° $80,000

Velodyne
VLS-128

128 220m 4.8 million 360° 40° $100,000

figures, it can be seen that all parameters of the 128-

channel LiDAR are better than those of the 64-channel

LiDAR. Obviously, LiDARs are quite costly compared

to cameras. We can see the price of a Velodyne HDL-64

sensor is officially at $80,000. The latest VLS-128 sen-

sor has better performance but is also more expensive.

Below, we briefly review existing works on 3D object

detection based on the LiDAR data.

View-Based Detection. Many LiDAR-based meth-

ods project the LiDAR point clouds into the BEV, or

RV, to leverage the off-the-shelf 2D Convolutional Neu-

ral Networks (CNNs). Early on, Yang et al. [176] pro-

pose an efficient, proposal-free single-stage detector. It

transforms the point cloud to BEV and performs 2D

CNNs to extract the point cloud features. Compact and

dense RV-based methods are also proposed for 3D ob-

ject detection. Recently, Liang et al. [87] employ a 2D

backbone on the RV to learn the spatial features di-

rectly, and then adopt an R-CNN to get the 3D bound-

ing boxes. H23D R-CNN [29] first learns RV and BEV

features in a sequential pattern, then fuses the two 3D

representations in a multi-view fusion block.

Voxel-Based Detection. Voxel-based methods first

divide points into regular 3D voxels, and then lever-

age the sparse convolutional neural networks [175] and

transformers [103, 38] for feature extraction and bound-

ing box prediction. VoxelNet [198] extracts discrimina-

tive voxel features to speed up the model execution.

SECOND [175] reduces the computational overhead of

dense 3D CNNs by applying sparse convolution. Point-

Pillars [79] introduces a pillar representation (a par-

ticular form of the voxel) for the point cloud. Pillars

are fast because all key operations can be formulated

as 2D convolutions. Voxel R-CNN [28] further improves

the accuracy and speed of voxel-based detectors by in-

troducing a voxel RoI pooling operation. In addition,

Mao et al. [103] introduce a Transformer-based archi-

tecture that enables long-range relationships between

voxels by self-attention.

Point-Based Detection. Recent point cloud encoders

such as PointNet [14], PointNet++ [122], Pointformer [110],

and other point cloud backbones [68, 133] could learn

representations from raw point clouds. Point-based de-

tectors employ them to extract the spatial geometry

information for downstream tasks [141, 144, 183]. For

example, Shi et al. [141] employ PointNet++ [122] as

point clouds encoder and generate 3D proposals based

on the extracted semantic and geometric features. Shi

and Rajkumar [144] propose a graph neural network to

detect objects from a LiDAR point cloud. To this end,

they encode the point cloud efficiently in a fixed radius

near-neighbors graph.

Point-Voxel hybrid Detection. In addition to the

point and voxel representation introduced above, there

are some works [53, 142, 182] that adopt a hybrid pat-

tern, utilizing both point and voxel features for 3D ob-

ject detection. For example, STD [182] first generates

proposals based on the point features, then employs

the voxel representation in the box refinement stage.

PV-RCNN [142] integrates the multi-scale voxel fea-

tures and point cloud features for accurate 3D object

detection. M3DETR [49] encodes point and voxel fea-

tures with multi-level scale via transformers. In general,

point-voxel hybrid detectors benefit from both repre-

sentations, which is superior to point or voxel-only de-

tectors [142].

Compared with camera images, LiDAR points pro-

vide strong 3D geometric information, which is essential

for 3D object detection. Furthermore, LiDAR sensors

can better adapt to external factors such as strong light,

which is depicted in Tab. 1. At present, LiDAR-based

methods achieve better detection accuracy and higher

recall than camera-based methods [19]. As far as the

KITTI 3D object detection benchmark is concerned,

the top monocular-images-based method DD3D [113]

achieves 16.87% mAP while quite a few LiDAR-based

methods [28, 29, 142, 174] achieve over 80% mAP. How-

ever, LiDAR-only algorithms are not yet ready to be

widely deployed on AVs for the following reasons: 1)

LiDARs are expensive and bulky, especially compared

with cameras [117]. 2) The working distance of the Li-

DAR is rather limited, point clouds far away from the

LiDAR are extremely sparse [191]. 3) LiDARs can not
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work properly under extremely severe weather such as

heavy rain [157].

2.4 3D Object Detection through Other Sensors.

In addition to cameras and LiDARs, AVs are often

equipped with sensors such as millimeter wave (mmWave

in short) radar sensors, infrared cameras, etc. In partic-

ular, mmWave radar has long been used on self-driving

cars because it is more robust to severe weather con-

ditions than cameras and LiDARs [195]. More impor-

tantly, radar points provide the velocity information of

the corresponding object, which is crucial for avoiding

dynamic objects [116]. Next, we give a brief background

of mmWave radars below.

MmWave Radar Sensor. MmWave radars are ac-

tive sensors that operate in the millimeter-wave bands.

They can measure the reflected waves to determine the

location and velocity of objects [1]. They are consider-

ably cheaper than LiDARs, resistant to adverse weather

conditions (fog, smoke, and dust), and insensitive to

lighting variations [195]. However, compared with the

camera and LiDAR, there are limited large-scale and

public mmWave radar datasets [190]. Moreover, due to

the low resolution of the mmWave radar, it is hard to

directly detect the shape of an object through sparse 2D

radar points. Compared with the 3D point cloud, radar

points are much noisier because of multi-path reflection,

rendering it hard to perform 3D detection alone [81].

The mmWave radar outputs can be organized at

three levels: 1) raw data in the form of time-frequency

spectrograms; 2) clusters from applying clustering algo-

rithms [71] on raw data; and 3) tracks from performing

object tracking on the clusters. Here, we process raw

data which is collected on campus for visualization. As

shown in Fig. 5, we perform two fast Fourier transforms

on raw data to get the range-azimuth heatmap. The

brightness in (b) represents the signal strength at that

location and indicates high confidence of objects. Nor-

mally, datasets containing radar points generally uti-

lize the representation of clusters, which are radar re-

flections with information containing position, velocity,

and signal strength. The clusters are newly evaluated

every cycle [8].

MmWave Radar based 3D Object Detection. The

mmWave radar has been widely exploited in AV sys-

tems [104]. Radars usually report the detected objects

as 2D points in BEV and provide the azimuth angle

and radial distance to the object. For each detection,

the radar also reports the instantaneous velocity of the

object in the radial direction. To the best of our knowl-

edge, Major et al. [101] propose the first radar-based

(a) the RGB image

(b) mmWave radar: the range-azimuth heatmap

Fig. 5 An RGB image (a) and a mmWave radar heatmap
(b) on the same scene. The brightness in (b) indicates high
confidence of objects. The data was collected by the authors
at the north entrance of the West Campus of the University
of Science and Technology of China.

deep neural network object detection with reliable re-

sults. However, radar-based 3D detectors face many

challenges. Compared with LiDAR points, radar points

are much noisier and less accurate, which brings difficul-

ties in adapting LiDAR pipeline to the radar. Another

bottleneck in radar-based detectors is the lack of pub-

licly usable data annotated with ground-truth informa-

tion [140]. In practice, mmWave radars are more often

used for fusion with other sensors: e.g., radar-camera,

radar-LiDAR [108, 178].

2.5 Discussion

As discussed above, different sensors have different ad-

vantages, sometimes are complementary. For example,

cameras are high-resolution and low-cost sensors, but

lack depth information and are sensitive to light con-

ditions. On the contrary, LiDAR points can provide

3D spatial information of the surrounding environment,

but capture only sparse points at high price.

In general, camera-based methods generate less ac-

curate 3D bounding boxes than LiDAR-based methods.

Currently LiDAR-based methods lead in popularity in

3D object detection, while with some shortcomings. For

example, the density of point clouds tends to decrease

quickly as the distance increases while image-based de-
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tectors could still detect faraway objects. To make good

use of the complementary features and improve the

overall performance, more methods try to design fusion

networks to combine images with point clouds. These

methods have achieved superior performance in 3D ob-

ject detection tasks compared to methods relying on a

single sensor. We will discuss this in Sec. 4 afterwards.

3 Datasets and Metrics

Datasets are an integral part of the field of deep learn-

ing. The availability of large-scale image datasets such

as ImageNet, PASCAL, and COCO motivate outstand-

ing evolution of image classification task [27, 36, 89].

Benefiting from the vigorous development of 2D im-

ages, 3D object detection eagerly requires plentiful la-

beled data to adapt to a changeable environment. Con-

sequently, we discuss some widely used datasets for 3D

object detection in autonomous driving.

3.1 KITTI

One of the earliest datasets for autonomous driving,

KITTI [43], provides stereo color images, LiDAR point

clouds, GPS coordinates, etc. The dataset supports mul-

tiple tasks: stereo matching, visual odometry, 3D track-

ing, 3D object detection, etc.1 It collects data with a

car equipped with a 64-channel LiDAR, 4 cameras, and

a combined GPS/IMU system. There are over 20 scenes

covering cities, residential and roads in the dataset. In

particular, the object detection dataset contains 7,481

training and 7,518 testing frames with calibration infor-

mation and annotated 2D/3D bounding boxes. KITTI

annotates 8 different classes. Each class is categorized

as “easy”, “moderate” and “hard” cases.

mAP (mean Average Precision) is a commonly used

metrics in object detection. Some datasets containing

multiple classes usually average the AP (Average Pre-

cision) score of each class, denoted as mAP. KITTI re-

quires detection results of “car”, “pedestrian” and “cy-

clist” and calculates mAP of each class. It considers a

predicted box as true positive (TP) if the IoU with the

ground-truth box is greater than the threshold, other-

wise as false positive (FP). The not detected ground-

truth boxes are denoted as false negative (FN). We de-

fine precision and recall as:

precision =
TP

TP + FP
, (1)

recall =
TP

TP + FN
. (2)

1 http://www.cvlibs.net/datasets/kitti/index.php

Based on the predicted and ground-truth boxes, we get

a function of p(r) with respect to recall r, the calcula-

tion of Average Precision (AP) is as below:

AP =

∫ 1

0

p(r)dr. (3)

Remarkably, in order to facilitate the development

of multi-modal detection methods in autonomous driv-

ing, the KITTI development team proposes a dataset

KITTI360 [171] with richer sensor information and 360◦

annotations. Specifically, they annotate 3D scene ele-

ments with rough bounding primitives and then trans-

fer this information into the image domain. As such,

KITTI360 has dense semantic and instance annotations

for both 3D point clouds and 2D images.

3.2 NuScenes

Developed by Motional, the nuScenes dataset is one of

the largest datasets with ground-truth labels for au-

tonomous driving [8]. It consists of 700 scenes for train-

ing, 150 scenes for validation, and 150 scenes for testing.

The dataset is collected using six cameras and a 32-

beam LiDAR to provide 3D annotations for 23 classes

in a 360-degree field of view. NuScenes also provides 5

radar sensors for the measurement of the object veloc-

ity. The full dataset includes approximately 1.4M cam-

era images, 390k LiDAR sweeps, 1.4M radar sweeps,

and 1.4M object bounding boxes in 40k key frames.

The driving scenes are collected in Boston and Singa-

pore, which are known for their dense traffic and highly

challenging driving situations. Additionally, nuScenes
annotates object-level attributes such as visibility, ac-

tivity, pose, etc.

As far as the object detection task2 is concerned,

the nuScenes requires the detection of 10 classes, in-

cluding traffic cone, bicycle, pedestrian, car, bus, etc.

When calculating AP for a class, instead of adopting

the traditional bounding box overlap, nuScenes employs

center-distance-based metrics. When matching the pre-

diction and ground-truth, nuScenes computes their cen-

ter distance and obtains AP based on a list of distance

thresholds. mAP is calculated by averaging AP.

Unlike KITTI, nuScenes also considers TP’s average

translation, scale, orientation, velocity, and attribute

error with ground-truth, marked as ATE, ASE, AOE,

AVE, and AAE, respectively. The final metric, nuScenes

detection score (NDS), is derived from a weighted sum

of mAP and errors, leading to a more comprehensive

2 https://www.nuscenes.org/object-
detection?externalData=all&mapData=all&modalities=

Any

http://www.cvlibs.net/datasets/kitti/index.php
https://www.nuscenes.org/object-detection?externalData=all&mapData=all&modalities=Any
https://www.nuscenes.org/object-detection?externalData=all&mapData=all&modalities=Any
https://www.nuscenes.org/object-detection?externalData=all&mapData=all&modalities=Any
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Table 3 Popular multi-modal dataset comparison, including year, number of LiDARs, number of LiDAR channels (we report
the number of channels of the top LiDAR for Waymo dataset and the maximum number of channels among 4 LiDARs for
AIODrive dataset), number of cameras, whether with radar, number of 2D boxes (we don’t distinguish between 2D boxes and
2D instance segmentation annotation), number of 3D boxes, number of annotated classes, and location (KA: Karlsruhe; SF:
San Francisco; SG: Singapore; PT: Pittsburgh). Note that ApolloScape’s LiDARs scan with 1 beam at a high frequency to get
dense point clouds.

dataset year n-LiDAR n-chn n-Cam radar n-2D n-3D n-cls loc

KITTI [43] 2012 1 64 4 No 80K 80K 8 KA

ApolloScape [66] 2018 2 1 6 No 2.5M 70K 35 4x China

H3D [115] 2019 1 64 3 No - 1.1M 8 SF

nuScenes [8] 2019 1 32 6 Yes - 1.4M 23 Boston, SG

Argoverse [13] 2019 2 32 9 No - 993K 15 PT, Miami

Waymo [150] 2019 5 64 5 No 9.9M 12M 4 3x USA

AIODrive [168] 2021 4 1280 10 Yes 26M 26M 23 synthetic

description of detection performance. We give the offi-

cial formula below:

NDS =
1

10

[
5mAP +

∑
mTP∈TP

(1 − min(1,mTP))

]
. (4)

3.3 Waymo Open Dataset

The Waymo Open Dataset3 is a high-quality annotated

multi-modality dataset for autonomous driving [150]. It

consists of annotated data collected by Waymo’s self-

driving vehicles. The dataset covers a wide variety of

scenes from urban to suburban areas. There are a total

of 798 scenes for training and 202 scenes for valida-

tion with 2D and 3D annotated labels, which are col-

lected by five LiDAR sensors and five pinhole cameras.

Each scene captures 20 seconds of continuous driving.
The annotations provide four object categories includ-

ing “car”, “pedestrian”, “cyclist” and “sign”.

Same as the KITTI dataset, Waymo Open Dataset

adopts AP as the metric. Waymo Open Dataset also

proposes a new metric APH which incorporates the

heading accuracy of the predicted objects into the tra-

ditional AP metric. Waymo also supports the task of

domain adaptation. Domain adaptation is a popular

technology that learns knowledge from the source do-

main with sufficient annotations and transfers it to the

target domain with limited or no annotations, which

mitigates the lack of huge amount of labeled data [162].

3.4 Other Datasets

In addition to the three widely used datasets introduced

above, there are a few recent datasets that are gaining

3 https://waymo.com/intl/en us/open

rapid popularity [66, 115, 13, 169, 168, 118, 41, 72]. We

select some of them for detailed introduction as follows.

– ApolloScape [66] consists of data from 4 regions

in China under various weather conditions. Apol-

loScape dataset is collected with 2 LiDAR sensors, 6

video cameras, and a combined IMU/GNSS system.

It supports a variety of autonomous driving tasks

such as scene parsing, lane segmentation, trajectory

prediction, object detection, tracking. The dataset

contains 140K+ annotated images with annotation

of lane lines. For 3D object detection, ApolloScape

provides 6K+ point cloud frames with annotated

3D bounding boxes. ApolloScape’s evaluation met-

rics are the same as KITTI. It requires the detection

of vehicles, pedestrians, and bicyclists.

– H3D [115]is a large-scale full-surround 3D object

detection and tracking dataset, with a special fo-

cus on crowded traffic scenes in the urban areas.

The dataset is collected with 3 cameras with 260-

degree field of view (FoV), and a 64-beam Velodyne

LiDAR sensor. It contains over 27K frames in 160

scenes with over 1 million objects. For evaluation,

H3D employs a similar protocol as KITTI with a

0.5 IoU threshold for car and a 0.25 IoU threshold

for pedestrian.

– Argoverse [13, 169] supports advancements in 3D

tracking, motion forecasting, and other perception

tasks for self-driving vehicles. It provides rich se-

mantic annotation for maps. For sensor setup, it is

equipped with two 32-channel LiDARs, seven surround-

view cameras, and two stereo cameras. It provides

rich semantic information about road infrastructure

and traffic rules. Argoverse dataset also provides HD

maps for automatic map creation.

– Cityscapes 3D [41] extends the original Cityscapes

dataset [25] with 3D bounding box annotations to

https://waymo.com/intl/en_us/open
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support the task of 3D vehicle detection. It also

provides benchmarks of pixel-level or instance-level

semantic labeling and panoptic semantic labeling

tasks. It annotates 3D bounding boxes and corre-

sponding 2D instance segmentation masks for each

vehicle. The 3D bounding boxes are annotated with

stereo RGB images and with nine degrees of free-

dom. It also proposes a new metric for monocular

3D objection detection.

– AIODrive [168] is a large-scale synthetic dataset gen-

erated by the urban driving simulator, namely CARLA [33].

It synthesizes data from multiple sensors including

3D LiDARs, RGB cameras, depth cameras, radars,

and IMU/GPS. All sensors collect data at a fre-

quency of 10Hz. With the help of the simulator, it

provides petty detailed annotation with the object’s

2D/3D bounding boxes, trajectories, velocities, and

accelerations. The dataset also synthesizes some ad-

verse scenes such as terrible weather and car acci-

dents.

3.5 Discussion

Datasets for autonomous driving are developing rapidly.

From Fig. 6, we observe that the size of the three pop-

ular datasets ranges from only 15,000 frames to over

230,000 frames. However, compared to the image datasets

in 2D computer vision, 3D datasets are still relatively

small. For example, ImageNet [27] provides image frames

of over 1.4 million. Besides, the object classes are lim-

ited and unbalanced. Fig. 6 compares the percentages of

car, person, and cyclist classes. We also make a compre-

hensive comparison for all discussed datasets in Tab. 3.

Fig. 7 shows top-ranked methods on the three datasets.

Interestingly, we observe that top-ranked methods on

the nuScenes leaderboard are mainly fusion-based meth-

ods [184, 96, 21, 69]. For example, the top 8 methods on

the nuScenes leaderboard are all fusion-based methods.

In contrast, out of the top 10 methods on the KITTI

/ Waymo leaderboard, only 4 / 2 of them are multi-

modal based [170, 179, 200, 100, 96, 84]. The main

reason is that the LiDAR sensors employed in these

datasets have different resolutions. KITTI and Waymo

employ a spinning LiDAR sensor of 64 beams, while

nuScenes uses a rotating 32-beam LiDAR. We may in-

fer that multi-modal methods are much more necessary

for high-performance perception when point clouds are

relatively sparse.

KITTI nuScenes Waymo
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Fig. 6 Comparison of KITTI, nuScenes, and Waymo Open
Dataset. From left Y-axis, we find the proportions of objects
belonging to “car”, “person”, and “cyclist” classes are im-
balanced clearly. From right Y-axis, we mark the total image
frame number of the three datasets, ranging from 15K to
230K.
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Fig. 7 Top-10 methods of the popular datasets. Among the
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methods are fusion-based on Waymo, respectively. Note that
we only report methods with paper link on the KITTI leader-
board, while for the nuScenes and Waymo leaderboards, we
report all the listed methods except repeated entries.

4 Deep Learning Based Multi-Modal 3D

Detection Networks

In this section, we present our review of deep learning

based multi-modal 3D detection networks, with a spe-

cial focus on LiDAR and camera data. We organize our

review by the following three important design consid-

erations for fusion:

– fusion stage, i.e., at what pipeline stage the fusion

occurs, answering the question “where to fuse”;

– fusion input, i.e., what representations are used for

fusion data, answering the question “what to fuse”;

– fusion granularity, i.e., at what granularity the fu-

sion data are combined, answering the question “how

to fuse”.

Fig. 8 lists the possible options for each design consid-

eration. In the rest of this section, we discuss how the
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Fusion Design Consideration

Fusion Stage
(3 options)

Fusion Input
(5 options)

Fusion Granularity
(3 options)

early fusion

late fusion

cascade fusion

point cloud's BEV/RV + 
image feature maps

voxelized point clouds + 
image feature maps

raw point clouds +
image feature maps

raw point clouds + 
image maks

RoI-level

voxel-level

point-level

others

Fig. 8 Overview of the three crucial design considerations
for a fusion network. We briefly summarize all the options for
these considerations here.

recent deep multi-modal 3D detection networks address

these three design questions.

More importantly, compared to the other two de-

sign considerations, a fusion module’s input exhibits

the most diversity and represents the characteristic net-

work design. Hence, we categorize the fusion based 3D

detection networks into a total of five categories. In

each category, we review the relative fusion schemes in

detail.

4.1 Fusion Stage: where to fuse?

This design issue is concerned with which pipeline stage

performs the fusion operation. Here, we broadly par-

tition a detection network pipeline into the following

three stages: the input stage, the feature extraction

stage, and the prediction stage (illustrated in Fig. 9).

Depending upon which of the three stages perform fu-

sion, we have three options: early fusion, late fusion,

and cascade fusion.

4.1.1 Early Fusion

Early fusion usually occurs in the input stage or feature

extraction stage before each branch reaches its predic-

tion [19, 156, 173]. It enables more direct interactions

among multi-modal features of the intermediate layers,

as shown in Fig. 9. The fused feature is then utilized to

perform classification and regression tasks in the predic-

tion stage. Early fusion can better leverage rich inter-

mediate information from modalities, and is currently

the most widely used fusion stage.

4.1.2 Late Fusion

In contrast with early fusion, late fusion employs sep-

arate branches for each modality, and then combine

individual decision-level outputs through a fusion net-

work in the prediction stage [39]. Fig. 10 outlines such

a framework. Late fusion can better leverage existing

networks for each modality. It also does not require to

deal with issues such as how to align the data from

different modalities.

Notably, Pang et al. [112] employ late fusion and

outperforms single modality detectors on the KITTI

leaderboard. It exploits the geometric and semantic con-

sistencies between 2D and 3D predictions and learns the

probabilistic dependencies between the two from the

training data. Specifically, it obtains 2D and 3D propos-

als and then encodes all proposals into a sparse tensor.

As summarized in Tab. 4, its shortcoming lies in the

inability to exploit rich intermediate features [4, 137].

4.1.3 Cascade Fusion

Cascade fusion employs the hybrid mode by fusing one

branch’s prediction with the other’s input, which builds

a cascade relationship between multiple modalities. As

illustrated in Fig. 11, we first obtain 2D proposals from

the prediction stage of the image stream. Next, with a

known camera projection matrix, a 2D proposal can be

lifted to a frustum which defines a 3D search space [123].

We collect all points within the frustum to form a 3D

frustum proposal that is used to classify and locate the

object. Consequently, one modality provides prior infor-

mation that can greatly reduce the other’s search space

in cascade fusion.
The first fusion approach using the cascading struc-

ture was F-PointNet [123]. Nevertheless, its performance

is greatly limited by the accuracy of the 2D detector.

Subsequently, several following methods have been pro-

posed [145, 167, 181] to further improve the accuracy.

4.1.4 Discussion

Tab. 4 summarizes the advantages and disadvantages of

the three fusion stages, and Tab. 5 gives typical multi-

modal methods for each fusion stage. From Tab. 5, we

observe that most fusion-based algorithms employ early

fusion, which is also the focus of our survey.

4.2 Fusion Input: what to fuse?

The second design choice is concerned with what form

or representation the multi-modal data are input into

the fusion module. A fusion module’s input exhibits
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Fig. 9 An early fusion pipeline. We first extract the image and point cloud features respectively, and then conduct fusion on
these features in the feature extraction stage.
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Fig. 10 A late fusion pipeline. We first get the predictions from each modality, and then take these predictions as fusion
inputs. As such, the fusion network is in the prediction stage.
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Fig. 11 A cascade fusion network. We first obtain the predictions from the image branch, and then fuse the image predictions
with point cloud data for further 3D object detection. Therefore, cascade fusion usually occupies the hybrid mode by fusing
one branchs prediction with the others input.

the most diversity and represents the unique idea of

each design. For LiDAR-camera fusion, we are allowed

to take raw sensor data, various intermediate features,

or even result-level output from the image/point cloud

branch as fusion input. Specifically, the fusion module

can take in the LiDAR data in the form of voxel grids,

raw point clouds, or point cloud’s projection on BEV

or RV, camera data in the form of image feature maps,

segmentation masks, or even the corresponding pseudo-

LiDAR point clouds.

In this section, we first present typical inputs that

can be utilized by the image and point cloud branches

respectively, and then we categorize the fusion based

3D detection networks into a total of five categories

according to input combinations. Here, we focus our

review on early fusion methods.

4.2.1 Typical Fusion Inputs for LiDAR-Camera Fusion

We first introduce the typical fusion inputs employed

for the image branch and the point cloud branch, re-

spectively, in fusion-based detection pipelines, as illus-

trated in Fig. 12. To be more precise, a modality’s input

to the fusion module is the output of a certain middle

layer, be it a simple data preprocessing function or a

neural network block.

Typical Fusion Input for the Image Branch. Most

of the LiDAR-camera fusion methods take one of the

following three fusion inputs from the image branch,

namely feature maps, segmentation masks and pseudo-

LiDAR point clouds (depicted in Fig. 13).

feature maps: Deep neural networks are capable of

extracting appearance and geometry feature maps
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Table 4 Advantages and disadvantages for different fusion stages

Categories Advantages Disadvantages

Early Fusion

+ Can leverage rich intermediate features from
multiple modalities.
+ Large feature vectors can lead to better detection
results with suitable learning methods.

- Sensitive to inherent data misalignment between
modalities.
- Large feature vectors lead to longer train-
ing/inference time.

Cascade Fusion + Can reduce the search space with prior informa-
tion.

- Rely heavily on initial proposal generation.

Late Fusion + Can utilize off-the-shelf networks for each modal-
ity.

- Unable to take advantage of useful intermediate
features.

Table 5 Summary of typical multi-modal 3D detection methods: stage (fusion stage), PC-Input (point cloud Input), RGB-
Input (image input), gran (fusion granularity), HW (hardware), lat (latency), DS (dataset used for evaluation), and mAP
(mean average precision)

stage PC-Input RGB-Input gran HW lat DS mAP

MV3D [19]

early

view feature map

RoI Titan X 0.36s KITTI 63.63%

AVOD [78] RoI Titan XP 0.08s KITTI 71.76%

Contfuse [85] voxel GTX1080 0.06s KITTI 68.78%

SCANet [98] RoI GTX1080 0.09s KITTI 66.30%

FuseSeg [151] point - - KITTI -

MVX-Net [148]

voxel feature map

voxel GTX1080 - KITTI 72.70%

3D-CVF [187] voxel & RoI - 0.06s KITTI 80.45%

VPF-Net [200] point 2080Ti 0.06s KITTI 83.21%

PointAugmenting [159] point - - nuScenes 66.80%

PointFusion [173]

point feature map

RoI GTX1080 1.3s KITTI 63.00%

EPNet [65] point Titan XP 0.1s KITTI 81.23%

PI-RCNN [172] point & RoI - 0.06s KITTI 78.53%

PointPainting [156]

point mask

point GTX1080 0.4s KITTI 75.80%

CenterPointV2 [185] point - - nuScenes 67.10%

HorizonLiDAR3D [32] point - - Waymo 78.49%

MMF [86] view
feature map &

pseudo LiDAR
point GTX1080 0.08s KITTI 77.43%

MVAF [160]

early

voxel &view feature map voxel Titan X 0.06s KITTI 78.71%

F-PointNet [123]

- - RoI

GTX1080 0.17s KITTI 69.79%

IPOD [181] - 0.1s KITTI 72.57%

F-ConvNet [167] - 0.1s KITTI 75.50%

RoarNet [145] Titan X - KITTI 73.04%

SIFRNet [196]

cascade

- - KITTI -

CLOCs [112] late - - - - - KITTI 82.25%

from raw images [75, 77, 188], which are the most

commonly used input for fusion between cameras

and other sensors [19, 78, 85]. Compared with raw

images (Fig. 13 (a)), the utilization of feature maps

explores richer appearance cues and larger receptive

fields, which enables more in-depth and thorough

interactions between modalities. For example, as il-

lustrated in Fig. 13 (b), we observe that the edges

and textures of feature maps are more distinct than

other areas. We refer the readers to Sec. 4.2.2 for

more in-depth review of fusion algorithms that use

image feature maps as input. Here, we list some pop-

ular backbones that can be used to obtain feature

maps, which can be fed to a fusion module: e.g.,

VGG-16 [147], ResNet [54], DenseNet [61].

masks: Images are passed through a semantic segmen-

tation network to obtain pixel-wise segmentation

masks [45, 97]. Image masks are often utilized for

fusion with other sensor data, as a stand-alone prod-

uct from the image processing branch. Compared

with feature maps, using masks as camera data fu-

sion input has the following advantages. Firstly, im-

age masks can serve as more compact summary fea-

tures of the image. Secondly, pixel-level image masks
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Fig. 12 Illustration of typical fusion inputs from the image
branch and the point cloud branch, respectively. For the im-
age branch, its fusion input is usually the output of a neural
network block; for the point cloud branch, its fusion input is
usually from simple data preprocessing such as voxelization.

can easily be used to “paint” or “decorate” the Li-

DAR points by conducting a point-to-pixel mapping

using a known calibration matrix [156]. We refer

the readers to Sec. 4.2.2 for more in-depth review

of fusion algorithms that use image masks as in-

put. Here, we list some popular image segmenta-

tion networks for the fusion-based algorithms: e.g.

DeepLabV3 [17], Mask-RCNN [55], and lightweight

network Unet [135].

pseudo-LiDAR point clouds: The camera data can

also be converted to pseudo point clouds as fusion

input [86]. As pointed out in [165], the pseudo point

cloud representation raises image pixels to the 3D

space, whose signal is much denser than actual Li-

DAR point cloud. On the downside, it often has a

long tail problem since the estimated depth may

not be accurate around the boundaries of the ob-

ject [189], as depicted in Fig. 13 (d) with yellow cir-

cles. According to [165], the pseudo-LiDAR points

are obtained by back-projecting image pixels into

pseudo 3D points according to the estimated depth

map. In the context of 3D multi-modal detection,

this representation contributes to multi-task learn-

ing [86]. Using the pseudo point clouds as fusion

input, we can readily facilitate dense feature map

fusion between images and point clouds.

Typical Fusion Input for the Point Cloud Branch.

A LiDAR point cloud is often synthesized from depth

measurements collected from different viewpoints. It is

basically a set of points in a 3D coordinate system,

commonly defined by x, y, z, and the reflection inten-

sity. Below, we discuss the typical LiDAR inputs that

are commonly used for LiDAR-camera fusion, i.e., voxel

grids, raw point clouds, and point cloud’s projection on

BEV or RV, whose visualization results are shown in

Fig. 16 respectively.

voxelized point clouds or voxel grids: A voxelized

point cloud is widely utilized as the fusion input due

to the efficient parallel processing potentials on a

regular voxel grid [7, 60, 79, 143, 176, 177, 198]. We

first discretize the 3D space into 3D voxel grids, and

then obtain the voxel features through the voxel fea-

ture encoding (VFE) layer as shown in Fig. 14. We

can thus utilize 3D CNNs to extract deeper point

cloud features. We refer the readers to Sec. 4.2.2

for more in-depth review of fusion algorithms that

employ voxel grids as input for point cloud branch.

However, fusion with voxelized points also has sev-

eral disadvantages. Firstly, it suffers from informa-

tion loss. The voxel size is highly correlated with

how much spatial information is lost. To illustrate

this point, let us look at Fig. 16 (b) where voxels

(in blue color) are much more sparse than the orig-

inal points in (a). Secondly, during voxelization, a

large number of empty voxels will be produced as

the LiDAR points are only on the surface of the

objects [109], which may adversely affect the fusion

performance. Thirdly, processing 3D voxels require

time-consuming 3D convolution operations. Accord-

ingly, the training time of the fusion network will in-

evitably increase. In practice, the point cloud data

is usually voxelized into an evenly spaced grid only

in the x-y plane (which we call pillars) to meet the

computation and effectiveness demands [79].

raw point clouds: Thanks to efficient 3D point cloud

processing networks, the raw 3D point cloud can

be directly processed to obtain suitable point fea-

tures without voxelization loss [173]. Specifically, in

Fig. 15, we employ the point cloud encoder [14,

122] to process raw points and obtain point fea-

ture vectors. Sec. 4.2.2 provides more detailed re-

view of the fusion algorithms that use raw points

as input from the point cloud branch. Directly tak-

ing raw points as input can retain more informa-

tion, compared with voxel-based methods [124, 142,

183]. However, point-based methods are generally

computationally expensive, especially when dealing

with large scenes. For example, for a widely used

Velodyne LiDAR HDL-64E, it collects more than

100,000 points per frame (in Tab. 1). Therefore,

considering the efficiency and performance, down-

sampling point cloud data appropriately is neces-

sary for data preprocessing.

BEV or RV projection: Another typical point cloud

input for the fusion module is point cloud’s BEV or

RV projection. The resulting pseudo image could be

thereby processed efficiently by 2D CNNs. BEV is

commonly adopted to fuse with image features be-



Multi-Modal 3D Object Detection in Autonomous Driving: A Survey 15

(a) the original image

224×224

VGG16

(b) the feature map (output of the 5-th Conv2d block)

(c) the mask (output of mask R-CNN [55])

Long Tail

(d) the pseudo point cloud (shown in BEV)

Fig. 13 Different inputs for the image branch in fusion-based 3D object detection. An RGB image (a), one of its feature maps
(b), its segmentation mask (c), and its pseudo-LiDAR point cloud’s projection on BEV (d). The raw image is taken from the
KITTI training set. We use a pretrained VGG16 [147] to obtain the feature map on the resized image (224×224).
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Fig. 14 A typical voxelized point cloud processing net-
work [198]
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Fig. 15 A typical raw point cloud processing network [14]

cause there is much less overlapping between objects

on the BEV plane. Another popular view-based in-

put used for fusion is RV, which is also a native

representation of the rotating LiDAR sensor [161].

Essentially, it forms a compact 2.5D scene [59] in-

stead of a sparse 3D point cloud. Projecting the

point cloud on RV preserves the full resolution of

the LiDAR sensor data and avoiding the spatial

loss. However, RV suffers from the problem of the

scale variation between nearby and far away ob-

jects [37]. In the fusion pipeline, these mentioned

point cloud’s projections are usually first processed

with 2D CNNs to get view-based features, and then

pooled to the same size as the image features.

4.2.2 Typical Input Combinations for LiDAR-Camera

Fusion

In our survey, we find the following combinations of fu-

sion inputs are the most popular for the LiDAR-camera

fusion module: (1) point clouds’ BEV/RV + image fea-

ture maps, (2) voxelized point clouds + image feature

maps, (3) raw point clouds + image feature maps and

(4) raw point clouds + image masks. In addition, ex-

ploiting more than one type of inputs for images/point

clouds to form a more comprehensive fusion has become

a recent trend. We also review these methods here. Be-

low we discuss the fusion-based methods that fall into

one of these 5 fusion input categories, with a special fo-

cus on how these fusion input combinations evolve with

time and technology.

point cloud’s BEV/RV + image feature maps.

Before 3D object detection became popular, 2D object

detection based on images had drawn a great deal of

attention [129]. Therefore, as soon as LiDAR was con-

sidered for 3D object detection, several LiDAR-camera



16 Yingjie Wang∗ et al.

(a) the raw point cloud (b) the voxel grid with a voxel size of (0.2m, 0.2m, 0.2m)

(c) the BEV projection (d) the RV projection

Fig. 16 Different inputs for the point cloud branch in fusion-based 3D object detection. A raw point cloud (a), its voxel grids
with the voxel size of [0.2m, 0.2m, 0.2m] (b), its projection on BEV (c), and its projection on RV (d). The raw point cloud
data is taken the from KITTI training set.

fusion algorithms were proposed to project 3D point

clouds on a 2D plane, and combine the resulting 2D

view of the point cloud with image feature maps. We

discuss typical algorithms in this category below.

MV3D [19] is a pioneering work in this category.

As shown in Fig. 17, it takes the FV (front view) and

BEV of a point cloud as input and exploits a 3D Re-

gion Proposal Network (RPN) to generate 3D propos-

als. Next, MV3D integrates multi-view features vectors

from multi-proposals into the same length and puts

them through a region-based fusion network. AVOD [78]

achieves better performance than MV3D, especially in

the small object category by designing a more advanced

RPN that employs high-resolution feature maps. It also

merges features from multiple views in the RPN phase

to generate more accurate positive proposals. AVOD

only takes point cloud’s BEV and image as input, which

effectively decreases the computation cost. Based on

AVOD, SCANet [98] utilizes an encoder-decoder based

proposal network with a Spatial-Channel Attention (SCA)

module to capture multi-scale contextual information

and an Extension Spatial Upsample (ESU) module to

recover the spatial information.

Nevertheless, these methods have limitations, espe-

cially when detecting small objects such as pedestri-

ans and cyclists. To overcome these limitations, Cont-

fuse [85] performs continuous convolutions [163] to ex-

tract multi-scale convolutional feature maps from point

 Fusion inputs

BEV

FV

image proposals

3D proposal 
networks

FV proposals

BEV proposals

Region-based 
fusion network

3D Bounding Boxes

image feature map

Fig. 17 The MV3D pipeline that fuses point cloud’s projec-
tions and image feature map [19]

cloud’s BEV and fuse them with image features. The

engagement of continuous convolution captures local

information from neighboring observations and leads

to less geometric information loss. In addition, another

downside of using point cloud’s BEV or FV as fusion

input lies in the inevitable 3D spatial information loss

when projecting the 3D point cloud to the 2D plane.

The point cloud’s range view (RV) can avoid the

mentioned information loss problem. Compared to the

BEV and FV projections, a RV is a compact, and more

importantly, an intrinsic representation from LiDAR.

As such, a very recent trend is to combine the point

cloud’s RV with RGB image feature maps directly with-

out incurring the projection loss. With the RV repre-

sentation as input, FuseSeg [151] establishes the point-

pixel mapping and maximizes the multi-modal infor-

mation. In Tab. 6, we summarize the contributions and

limitations of fusion methods in this category.
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Table 6 Summary of methods that fuse point cloud’s projections and image feature maps

Methods Year Venue
image

backbone

point cloud’s

projections
Contributions

MV3D [19] 2017 CVPR VGG-16 BEV, FV

• Pioneer in exploiting BEV and FV LiDAR projections

and monocular camera frames to detect vehicles.

• Design a deep fusion architecture which allows interaction

between LiDAR and camera data.

AVOD [78] 2018 IROS VGG-16 BEV
• Improve the detection of small targets via a feature

extractor that produces high-resolution feature maps.

Contfuse [85] 2018 ECCV ResNet BEV
• Exploit continuous convolutions to fuse at different levels

of resolution.

SCANet [98] 2019 ICASSP VGG-16 BEV
• Propose a spatial-channel attention module that is capable

of encoding multi-scale and global context information.

FuseSeg [151] 2020 WACV MobileNetV2 RV

• Pioneer to utilize dense range views of point clouds.

• Establish point-wise correspondences between the range

view and image features.

Fusion inputs
Feature fusion �

network
3D RPN

3D Bounding Boxes

DeConv2Ds

Conv2Ds

probability score 

map

regression 

map

voxel

feature

 encoder
voxel-

wise

concat

voxel grid

image feature map
image feature map

+

Fig. 18 The MVX-Net pipeline that fuses voxelized point
clouds and image feature maps [148]

voxelized point clouds + image feature maps.

Voxelization turns irregular point clouds into regular

3D voxels. With voxelization becomes popular with point

cloud processing [28, 142, 175, 198], voxel grids have

been commonly used as fusion input. The methods that

fall in this category are summarized in Tab. 7.

As shown in Fig. 18, Sindagi et al. [148] use voxels

and image feature maps as input, projecting non-empty

voxel features to the image plane through calibration.

The image features are then concatenated to the voxel

features through a designed fusion network. At the last

stage, the 3D RPN processes the aggregated data and

produces the 3D detection results. Similarly, in another

work 3D-CVF [187], the spatial attention maps [155]

are applied to weigh each modality depending on their

contributions to the detection task. 3D-CVF [187] em-

ploys auto-calibrated projection to construct smooth

joint LiDAR-camera features.

Nonetheless, methods in this category face the fea-

ture blurring problem when only the center point of

every voxel grid is projected onto the image feature.

This results in the loss of detailed spatial information

within each voxel. Recently, to overcome this bottle-

neck, VPF-Net[200] cleverly aligns and aggregates the

point cloud and image features at the “virtual” points.

Particularly, with the density lying between 3D vox-

els and 2D pixels, the virtual points can nicely bridge

the resolution gap between the two sensors and preserve

more information for processing. Later, PointAugment-

ing [159] solves the blurring problem by first “decorat-

ing” raw points with corresponding features extracted

by pre-trained 2D detection models. Then decorated

points are voxelized and further processed. PointAug-

menting also benefits from an occlusion-aware point fil-

tering algorithm, which consistently pastes virtual ob-

jects into images and point clouds during training.

raw point clouds + image feature maps. As men-

tioned before, voxelized point clouds could cause certain

degree of information loss due to voxelization process.

Later, the advent of PointNet [14] makes it possible to

process the raw point cloud directly without any projec-

tion or voxelization. Consequently, PointNet inspires a

series of studies to combine points directly with feature

maps as fusion input (summarized in Tab. 8).

Different from previous fusion-based methods, Point-

Fusion [173] combines global image features from ResNet-

50 and point cloud features from PointNet in a con-

catenation fashion, as demonstrated in Fig. 19. Such

concatenation operations, though simple, cannot align

the multi-modal features nicely. Therefore, Huang et al.

[65] propose LI fusion layer that explicitly establishes

the mapping between point features and camera im-

age features, thus providing finer and more discrimi-

native representations. It also exploits point cloud fea-

tures to estimate the importance of corresponding im-

age features, which reduces the influence of occlusion

and depth uncertainty.

raw point clouds + image masks. Xie et al. [172]

conduct continuous convolution directly on 3D points,

and meanwhile, it retrieves deeper semantic features in-

stead of image features as image input. The main ratio-
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Table 7 Summary of methods that fuse voxelized point clouds and image feature maps

Methods Year Venue
image

backbone
Contributions

MVX-Net [148] 2019 ICRA VGG-16

• Propose two fusion schemes to fuse multi-modal information.

• PointFusion: to aggregate 3D point is aggregated by an image

feature to capture a dense context; VoxelFusion: a relatively later

fusion strategy where image features are appended at the voxel level.

3D-CVF [187] 2020 ECCV ResNet

• Combine the camera and LiDAR features using the cross-view

spatial feature fusion strategy.

• Employ an attention map to weigh the information from each

modality depending on their contributions.

VPF-Net [200] 2021 TMM 2D CNNs

• Effectively alleviate the resolution mismatch problem in fusing

LiDAR and camera data.

• Explore further optimization through cut-n-paste based data

augmentation.

PointAugmenting [159] 2021 CVPR ResNet

• Decorate point clouds with the corresponding CNN features.

• Design a novel cross-modal data augmentation algorithm considering

the modality consistency.

Table 8 Summary of methods that fuse raw point clouds and image feature maps

Methods Year Venue
Image

backbone
Contributions

PointFusion [173] 2018 CVPR ResNet

• Can directly unitize ResNet and PointNet.

• Integrate the global and local features to predict

the bounding box.

PI-RCNN [172] 2020 AAAI U-Net

• Directly apply continuous convolution on raw points

to preclude the quantization loss.

• Employ representation of deeper semantic features.

EPNet [65] 2020 ECCV
Four light-weighted

convolutional blocks

• Enhance the point features with semantic image

features at a point-wise level.

• Exploit a consistency loss to encourage both

localization and classification.

      Fusion inputs
Multi-modal

feature concat 
Dense fusion 

network

point-wise

feature

global feature

image feature map

PointNet

M
L
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3D box 

corner 

offsets

score
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Fig. 19 The PointFusion pipeline that fuses raw point clouds
and image feature maps [173]

nales lie in the two aspects. 1) Features learned under

the supervision of semantic segmentation are generally

more expressive and compact when representing image.

2) It is feasible to obtain the homogeneous transforma-

tion matrix, which can build relationship between 2D

masks and 3D points [156]. As such, quite a few recent

      Fusion inputs Point painting LiDAR detector

CenterPoint

······

probability score

regression 

raw point cloud

image mask

3D Bounding Boxes

Fig. 20 The PointPainting pipeline that fuses raw point
clouds and image masks [156]

studies use result-level features such as segmentation

masks to fuse with raw points, which is shown in Tab. 9.

In order to fuse the point cloud data and image

masks, the LiDAR points are projected by a homoge-

neous transformation into the image plane, which estab-

lishes the 3D-2D mapping between the two. This trans-

formation on the KITTI dataset [44] is Tcamera←LiDAR,

while it requires extra care for the nuScenes [8] trans-
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formation since the LiDAR and camera sensors operate

at different frequencies. Let Tcar←LiDAR be the transfor-

mation from the LiDAR sensor to the reference frame

of cars, and let Tcamera←car be the transformation from

the reference frame of cars to the camera sensor. The

complete matrix calculation is as below:

Tcamera←LiDAR = Tcamera←car × Tcar←LiDAR. (5)

Consequently, we can append the 2D mask as an addi-

tional channel of the corresponding 3D point.

In Fig. 20, we present PointPainting [156] as a typ-

ical example fusion network. It takes raw points and

segmentation results as fusion input. Next, in the fu-

sion module (PointPaining dotted box of Fig. 20), we

first project the points onto the image, and then append

segmentation scores to the raw LiDAR point. More im-

portantly, PointPainting could be freely applied to both

point-based and voxel-based LiDAR detectors and fur-

ther improves the overall performance.

Inspired by the successful PointPainting, Center-

PointV2 [185] gets almost the state-of-the-art result on

nuScenes, and HorizonLiDAR3D [32] ranks the top on

Waymo Open Dataset Challenge.

Multi-Inputs for a Modality. Meanwhile, as deep

learning networks that are designed to process point

clouds and images become increasingly diverse, it is also

common for a single modality to adopt multiple inputs

for fusion.

MMF [86] is a pioneer in this category. It presents

an end-to-end architecture that performs multiple tasks

including 2D and 3D object detection, depth comple-

tion, etc. Specifically, the fusion module takes the image

feature map as well as the pseudo-LiDAR point clouds

from the image branch, and BEV from the point cloud

branch. These inputs are then fused jointly for 3D ob-

ject detection. Recently, Wang et al. [160] propose a

multi-representation fusion framework that takes voxel

grids, point cloud’s RV projection, and image feature

maps as input. They further estimate the importance

of these three sources with attention modules to achieve

adaptive fusion.

4.2.3 Discussion

To summarize, point cloud inputs evolve from point

cloud’s projections, voxel grids, to raw points, which

strives to minimize the information loss incurred in

point cloud projection or voxelization. Meanwhile, RGB

image inputs evolve from lower-level feature maps to

higher-level semantic segmentation results, which strives

to exploit the richness of image data.

Furthermore, to leverage the different perspectives

from the same data stream, recent fusion networks start

RoI poolings

3D RPN

BEV

FV

image

RoI-level
Fusion

3D RoIs 

Fig. 21 Illustration of RoI-level fusion. To perform fusion
at RoI-level, we first obtain 3D RoIs from a shared set of
3D proposals and we employ RoI pooling [46] to get feature
vectors of the same length.

to take advantage of multiple inputs from the same

modality. These trends are enabled by the rapidly grow-

ing computing capabilities as well as the fast develop-

ment of powerful deep learning networks. These factors

combined, more accurate LiDAR-camera fusion results

are delivered.

4.3 Fusion Granularity: how to fuse?

In this section, we discuss the third design choice for

fusion-based algorithms. It is defined by at what gran-

ularity the two data streams are combined, which also

addresses the question of “how to fuse”.

There are usually three options: RoI-level, voxel-

level, and point-level (with the last one at the finest

granularity). In general, fusion granularity is crucial to

the complexity and effectiveness of the fusion frame-

work. Finer fusion granularity requires more computa-

tion but often leads to superior performance. Below we

discuss the three granularity levels in detail (summa-
rized in Tab. 5).

4.3.1 RoI-level

In essence, RoI-level fusion only fuses features at se-

lected object regions instead of dense locations on the

feature maps. Hence RoI-level fusion is normally per-

formed at a relatively late stage (i.e., after the 3D re-

gion proposal generation stage). This fusion granular-

ity happens when applying RoI-pooling for each view

to obtain feature vectors of the same length [19, 78], as

illustrated in Fig. 21. Also, it usually happens at the

object proposal level in order to get 3D frustums from

2D RoIs through geometrical relationships [166, 173].

As a result, RoI-level fusion limits the ability of the

neural network to capture the cross-modality interac-

tions at earlier stages. To overcome this drawback, RoI-

level fusion is often combined with other fusion granu-

larity for further refinement of proposals [86, 187].
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Table 9 Summary of methods that fuse raw point clouds and image masks

Methods Year Venue Contributions

PointPainting [156] 2020 CVPR
• Pioneer in painting LiDAR point clouds with image-based semantic mask.

• Achieve fine-grained point-wise correspondence.

HorizonLiDAR3D [32] 2020 Arxiv
• Introduce a one-stage, anchor-free, and NMS-free detector.

• Effectively enhance the point cloud using point painting and test time augmentation.

CenterPointV2 [185] 2021 CVPR
• Represent, detect, and track 3D objects as points.

• The representation is compatible with off-the-shelf 3D encoders.

4.3.2 Voxel-level

Voxel-level fusion exploits a relatively earlier fusion stage

compared with RoI-level. Voxelized point cloud data is

usually projected onto the image plane so we can ap-

pend the image feature to each voxel, which is described

in Fig. 22. Here, we establish a relatively approximate

correspondence between the voxel features and image

features. Specifically, we project each voxel feature cen-

ter to the image plane through camera projection ma-

trix. After obtaining a reference point in the image

domain, the corresponding image feature is appended

to the LiDAR voxel feature branch. Voxel-level fusion

leads to a certain degree of information loss, resulting

from both the spatial information loss in voxelization

and the non-smooth camera feature maps. To address

this issue, one can combine neighboring image feature

pixels by the interpolated projection to correct the spa-

tial offsets, which can achieve more accurate correspon-

dence between voxels and the image feature. [85, 187].

Furthermore, instead of adopting a one-to-one match-

ing pattern, we could explore cross attention mecha-

nism that enables each voxel to perceive the whole im-

age domain and adaptively attend corresponding 2D

features.

In contrast to RoI-level fusion, this voxel-level gran-

ularity is finer and more precise. Besides, to deal with

empty voxels derived from LiDAR sparsity, voxel-level

fusion could aggregate dense image information to com-

pensate for sparse LiDAR features [148].

4.3.3 Point-level

Point-level fusion is usually early fusion, where every 3D

point is aggregated by an image feature or mask in order

to capture a dense context. By “lifting” the correspond-

ing image features or masks to the coordinates of the 3D

points, point-level fusion provides an additional chan-

nel for each 3D point. Specifically, we use the known

transformation matrix [149] to project 3D points to 2D

image pixels and thereby establish a 3D-2D mapping.

Next, we can decorate the point or voxel features with

feature map
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Fig. 22 Illustration of voxel-level fusion. We can gain the re-
lationship between voxel centers and image features through:
1) use camera projection matrix to obtain reference point; 2)
fetch the corresponding feature in the image domain.

the corresponding image masks through the mapping

index. Fig. 23 outlines this process. The outstanding

advantage of point-level fusion is the capability of sum-

marizing useful information from both modalities since

the image features are concatenated at a very early

stage. Compared with the above two fusion granular-

ity levels, we can simply build corresponding relations

between dense images and sparse point clouds without

the blurring problem (refer to Sec. 4.2.2) [156, 172].

Although experimental results show that point-level

fusion effectively improves the overall performance [156,

185], there are still limitations. Firstly, due to the inher-

ent occlusion problem in the image domain, 3D points

which are mapped to the occluded image region may

get the invalid image information [156]. Secondly, point-

level fusion is less efficient in terms of memory consump-

tion as compared to voxel-level fusion, as pointed out

in [148].

4.3.4 Discussion

Fig. 24 clearly shows the years in which the deep learn-

ing based multi-modal 3D detection methods appeared.

We also mark the fusion granularity of each method.

With the passage of time, we observe that the granu-

larity was relatively coarse at first and becomes finer.

Meanwhile, some fusion methods adopt more than one

fusion granularity level for further refinement.
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Fig. 23 Illustration of point-level fusion. We first perform
a 3D-2D projection between points and pixels, and then the
corresponding image mask can be added as the additional
channel to decorate the 3D point cloud. For each decorated
point, we flexibly select the voxel-based or point-based detec-
tor.

4.4 LiDAR-Camera Fusion: summary and development

In summary, RoI-level fusion is rather limited as this fu-

sion lacks deep feature interaction. The later voxel-level

and point fusion methods allow deep feature exchange

and has its own merits. However, some researches re-

cently reveal that such methods are easily affected by

the sensor misalignment due to the hard association be-

tween points and pixels established by calibration ma-

trices.

Most recently, the success of BEV-based methods

in BEV map segmentation encourages us to extend

it to the fusion-based 3D object detection task [134,

180, 197, 93, 94, 63, 62]. Follow-up works [6, 96] have

proved that fusing LiDAR features with camera fea-

tures in BEV is robust against degenerated image qual-

ity and sensor misalignment. As such, a new BEV-

level paradigm for LiDAR-camera fusion has emerged.

Instead of collecting 2D masks or features by the 3D-

2D hard association, these methods directly lift image
features to the 3D world, and these lifted features can

be processed to the BEV level to fuse with the LiDAR

BEV feature at a certain stage of the detection pipeline.

For example, BEVfusion [96] lifts every image feature

to the BEV space with an off-the-shelf depth estimator

LSS [119] in a learnable fashion, then these lifted points

are processed by a separate 3D encoder to produce a

BEV map, the LiDAR-camera fusion happens at the

BEV level by merging the two BEV maps from both

modalities.

4.5 Fusion with Other Sensors

So far, we have discussed LiDAR-camera fusion meth-

ods in depth. We next briefly summarize methods that

involve the fusion with millimeter wave radar (which

we refer to as mmWave radar in this paper for brevity)

sensors. The employment of mmWave radar is getting

popular recently due to its long ranges, low cost, and

sensitivity to motions [76]. Accordingly, we briefly dis-

cuss Radar-Camera fusion and LiDAR-Radar fusion.

For Radar-Camera fusion, Chadwick et al. [12] project

radar detection results to the image plane to boost the

object detection accuracy for distant objects. Similarly,

Nabati and Qi [107] use radar detection results to first

generate 3D object proposals, then project them to the

image plane to perform joint 2D object detection and

depth estimation. CenterFusion [108] proposes to ex-

ploit both radar and camera data for 3D object detec-

tion. It first utilizes a center point detection network to

detect objects by identifying their center points on the

image. Next, it solves the key data association problem

using a novel frustum-based method to associate radar

detections with the corresponding 2D proposals. The

above methods all directly use radar detection results

without exploring features of radar points. Instead, Kim

et al. [76] propose a low-level sensor fusion 3D object

detector that combines two RoIs from radar and cam-

era feature maps by a Gated RoI Fusion (GRIF), which

provides more robust vehicle detection performance.

For LiDAR-Radar fusion, RadarNet [178] fuses radar

and LiDAR data for 3D object detection. It employs

an early fusion approach to learn joint representations

from the two sensors and a decision fusion mechanism

to exploit the radars radial velocity evidence. Disap-

pointingly, RadarNet faces significant performance degra-

dation in rare but critical adverse weather conditions.

To remedy this, Qian et al. [125] exploit complemen-

tary radar which is less impacted by adverse weather

and becomes prevalent on vehicles. They present a two-

stage deep fusion detector to enhance the overall detec-

tion results. Specifically, this method first generates 3D

proposals from LiDAR and complementary radar and

then fuse region-wise features between multi-modal sen-

sor streams.

Finally, we would like to point out that it is also of

use to fuse multiple sensors of the same kind. Horizon-

LiDAR3D [32] combines all point clouds generated by

five LiDAR sensors to augment the information of the

point cloud data. In this work, a simple concatenation

of point clouds from all LiDAR sensors is performed.

5 Open Challenges and Possible Solutions

Sensor modalities hold different properties and capture

the same scene from various perspectives, rendering it a

challenging task to combine data from multiple modal-

ities into a coherent data stream. In this section, we

discuss open challenges and possible solutions for multi-

modal 3D object detection, which we hope to provide

helpful guidelines on how to improve the performance

of the multi-sensor perception systems.
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Fig. 24 Timeline of the fusion-based 3D object detection methods. We use different colors to mark their fusion granularity.

5.1 Open Challenge I: Multi-Sensor Calibration

As shown in Fig. 25, multiple sensors mounted on the

autonomous vehicle are from different sensor coordi-

nates. Fusion based methods are required the alignment

of these sensor data. Here, we use LiDAR-camera fusion

as example to explain this challenge. Point clouds are a

set of points indicating 3D coordinates of the objects.

RGB images are matrices of pixels, with each pixel’s co-

ordinate represented as (x, y), where x, y is the pixel’s

row and column index, respectively. To build the map

from 3D LiDAR coordinates to the 2D image plane, we

must perform calibration between the two.

Traditional calibration methods use a calibration

target to derive the intrinsic and extrinsic camera pa-

rameters. This cumbersome process requires lots of man-

ual efforts. A common practice is to develop a target-

less, automatic calibration method that can continu-

ously calibrate the LiDAR sensor and camera on the

fly. Target-less calibration is currently an active topic

of research in this field [82, 111, 139]. These methods

automatically calibrate among multiple sensors without
human experts. However, inevitable bumps and jitters

when driving AVs lead to the variation of the extrinsic

parameters for the well calibrated LiDAR-camera sys-

tem. Much worse, the error will gradually accumulate

if not corrected in time, which may eventually affect

the perception results. A possible solution to prevent

this problem is to integrate the LiDAR and camera in

a suite[66, 150], preventing their relative displacement

to the greatest extent.

5.2 Open Challenge II: Information Loss during Fusion

When fusing data from multiple modalities, a certain

amount of information will be lost inevitably due to

projection, quantization, feature burring, etc. When de-

vising a multi-modal fusion network, we need to pay at-

tention to the stage, input, and granularity of the fusion

operation, in order to minimize the information loss.

Laser: FRONTLaser: REAR
Vehicle

Laser: SIDE_LEFT

Laser: SIDE_RIGHT

Laser: TOP

SIDE_LEFT

FRONT_RIGHT

Cameras FRONT

FRONT_LEFT

SIDE_RIGHT

x-axis
y-axis
z-axis is positive upwards

Fig. 25 Cameras and LiDAR sensors deployed on the
Waymo autonomous vehicle [150]

The choice of fusion stage results in a different level

of information loss. A later fusion stage is easy to imple-

ment, but cannot enjoy the rich information embedded

in the raw data or earlier feature maps. Considering the

complexity of the problem, it is very challenging, if at

all possible, to pinpoint the optimal fusion stage that

balances information loss and ease of implementation.

To this end, a possible solution is to consider utilizing

Neural Architecture Search (NAS) technique [91, 152]

to find the appropriate fusion stage within a pipeline. It

defines search space and then devises a search algorithm

to propose near-optimal neural architectures.

The choice of fusion inputs has the greatest bearing

on the amount of information loss, as a result of data

projection or voxelization. For example, converting a

point cloud to its BEV compresses the point cloud in

the vertical direction and thus leads to the loss of height

information. Converting a point cloud to its RV suffers

from the problem of scale variation. Accordingly, it’s

important to find suitable input representations that re-

serve rich geometric and semantic information as much

as possible. Moving forward, we could investigate sev-

eral possible solutions. Specifically, we could exploit the

attention mechanism [155, 164] to enhance certain fea-

tures for each modality. Or, we could employ multi-

ple representations to retain important information. For
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(a) the raw image

(b) the synthetic point cloud

Fig. 26 An example RGB image (a) and the correspond-
ing synthetic point cloud with semantic segmentation anno-
tations (b). Both images are obtained from KITTI-CARLA
synthetic dataset [31].

example, we can utilize both the point cloud and the

corresponding voxel grid as fusion input for the point

cloud branch [28, 29]. However, existing approaches do

not take full advantage of temporal fusion input, which

potentially limits the performance of multi-modal 3D

object detection. In the further, we believe it is of sig-

nificance to learn the 4D spatio-temporal information

fusion across sensor and time.

The choice of fusion granularity can also affect the

amount of information loss, e.g., aligning the multi-

modal data in a coarse granularity leads to the prob-

lem of feature blurring. A possible solution is to employ

learnable calibration offsets to aggregate neighbor spa-

tial information [187]. In this way, we can maximize the

effect of data fusion.

5.3 Open Challenge III: Efficient Multi-Modal Data

Augmentation

Due to the limited number of objects in the dataset,

data augmentation is usually adopted to ensure effi-

cient learning and avoid overfitting. Existing data aug-

mentation techniques for each single data stream can

be applied to deep fusion methods, such as object cut-

and-paste, random flipping, scaling, rotation, and so

on [175, 198]. However, to keep data augmentation con-

sistent across multiple modalities, we need to build the

fine-grained mapping between data elements (such as

points or pixels). Unfortunately, the augmentation op-

erations usually choose to work on randomly selected

objects and are thus inconsistent across the modalities.

Recently, several methods are proposed [159, 192]

to address this problem. Zhang et al. [192] present a

new multi-modality augmentation approach by cutting

point cloud and imagery patches of ground-truth ob-

jects and pasting them into different scenes in a con-

sistent manner, which prevents misalignment between

multi-modal data. When projecting 3D points to 2D

pixels, it first performs the reverse operation of trans-

lation, rotation, flip, etc. to restore the original point

cloud, then gets point-pixel mapping based on the cal-

ibration information. In the future, more efficient multi-

modal augmentation techniques need to be investigated.

5.4 Open Challenge IV: Low-Cost Multi-Modal 3D

Object Detection

Monocular or stereo cameras are the most common low-

cost sensors that can meet the requirements of mass

production. However, without accurate 3D geometry in-

formation, relying on cameras alone cannot yield 3D de-

tection results comparable to LiDAR-based methods. In

fact, the state-of-the-art monocular method DD3D [113]

achieves only 16.87% mAP on the KITTI 3D object

detection leader board; the best stereo method LIGA-

Stereo [52] can achieve 64.66% mAP. Nevertheless, the

best LiDAR-only method BtcDet [174] has obtained

82.86% mAP.

Moving forward, with the development of knowledge

distillation [57], one could exploit LiDAR data to dis-

till 3D geometric information for camera-based detec-

tors using large-scale and well-calibrated multi-modal

data. Such a method can potentially achieve accurate

detection as well as low system cost.

5.5 Open Challenge V: Shortage of Large Datasets

Another bottleneck in multi-modal 3D detection is the

availability of high-quality, publicly usable datasets an-

notated with ground-truth information. Currently, pop-

ular datasets in 3D detection have the following issues:

small size, class imbalance, and labeling errors, as dis-

cussed in Sec. 3.

Unsupervised and weakly-supervised fusion networks

could allow the networks to be trained on large, unla-

beled or partially labeled datasets [9].
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There are also emerging works on generating syn-

thetic datasets for RGB images and point clouds [31,

33, 42, 70, 102, 121, 131, 136, 168], which provide large-

scale data with rich annotations. Fig. 26 shows an ex-

ample of the KITTI-CARLA [31] synthetic dataset. How-

ever, there may be a domain gap between synthetic

datasets and real-world datasets. Some recent works [58,

30, 50, 132] try to utilize technologies such as photore-

alistic rendering, unsupervised domain adaptation, and

generative adversarial networks (GANs) [48] to bridge

the gap between synthetic and real-world data. Still,

how to use the models trained on the synthetic data

to deal with real-world scenarios remains to be further

investigated.

6 Conclusion

Due to the increasing importance of 3D vision in appli-

cations such as autonomous driving, this paper reviews

the recent multi-modal 3D object detection networks,

especially those that fuse camera images and LiDAR

point clouds. We first carefully compare popular sen-

sors and discuss their advantages and disadvantages

and summarize the common problems of single-modal

methods. We then provide an in-depth summary of sev-

eral popular datasets that are commonly used for au-

tonomous driving. In order to provide a systematic re-

view, we discuss the multi-modal fusion methods based

upon their choices for the following three design con-

siderations: (1) fusion stage, i.e., where does the fusion

take place in the pipeline, (2) fusion input, i.e., what

data inputs are used for fusion, and (3) fusion granular-

ity, i.e., at what granularity level the two data streams

are combined. Finally, we discuss open challenges and

potential solutions in multi-modal 3D object detection.
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