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Abstract Ideally, visual learning algorithms should
be generalizable, for dealing with any unseen domain
shift when deployed in a new target environment; and
data-efficient, for reducing development costs by us-
ing as little labels as possible. To this end, we study
semi-supervised domain generalization (SSDG), which
aims to learn a domain-generalizable model using multi-
source, partially-labeled training data. We design two
benchmarks that cover state-of-the-art methods devel-
oped in two related fields, i.e., domain generalization
(DG) and semi-supervised learning (SSL). We find that
the DG methods, which by design are unable to han-
dle unlabeled data, perform poorly with limited labels
in SSDG; the SSL methods, especially FixMatch, ob-
tain much better results but are still far away from
the basic vanilla model trained using full labels. We
propose StyleMatch, a simple approach that extends
FixMatch with a couple of new ingredients tailored
for SSDG: 1) stochastic modeling for reducing over-
fitting in scarce labels, and 2) multi-view consistency
learning for enhancing domain generalization. Despite
the concise designs, StyleMatch achieves significant im-
provements in SSDG. We hope our approach and the
comprehensive benchmarks can pave the way for fu-
ture research on generalizable and data-efficient learn-
ing systems. The source code is released at https:
//github.com/KaiyangZhou/ssdg-benchmark.
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1 Introduction

Visual recognition models are often deployed in a new
target environment where the test data diverge signif-
icantly from the training data distribution—known as
the domain shift problem (Tzeng et al., 2015; Liu et al.,
2020; Recht et al., 2019; Zhou et al., 2021a; Li et al.,
2017; Hoffman et al., 2018). For example, a dog clas-
sifier trained using only photo-realistic images might
encounter images with a drastically different style at
test time, such as sketch or cartoon, which the model
has never seen during training and would thus incur
huge performance drops. To overcome the domain shift
problem, we would like to train a model in such a way
that it becomes generalizable enough to handle any un-
seen domain shift. To this end, domain generalization
(DG) (Blanchard et al., 2011) is introduced, which stud-
ies how to develop domain-generalizable models using
training data composed of a diverse set of sources, such
as a combination of photo, sketch and cartoon images.

Besides the generalization capability, learning algo-
rithms should ideally be data-efficient as well, meaning
that we can train a model using as less labels as possible
to lower down development costs. This topic is relevant
to semi-supervised learning (SSL) (Lee, 2013; Grand-
valet and Bengio, 2004; Tarvainen and Valpola, 2017;
Sohn et al., 2020; Berthelot et al., 2019), which aims
to exploit abundant unlabeled data along with limited
labeled data for model training.

In this paper, we study semi-supervised domain
generalization (SSDG), a new problem that considers
both model generalization and data-efficiency under the
same framework. Both DG and SSDG aim to learn
models that can generalize to unseen target domains
using only source data for training. However, DG has
a strong assumption that all source domains are fully
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(a) Nlustration of three related problems.

(b) Empirical results in the SSDG setting.

Fig. 1 Semi-supervised domain generalization (SSDQG) is closely related to domain generalization (DG) and semi-supervised
learning (SSL), but poses unique challenges that cannot be solved by DG or SSL methods alone, i.e., multiple sources, domain

shifts and partially-labeled training data.
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Fig. 2 Directly applying FixMatch, which was developed for
SSL, to SSDG is suboptimal as evidenced by the deteriora-
tion in pseudo-labeling accuracy. The proposed StyleMatch
exhibits a better capability in handling unlabeled data in
SSDG.

labeled. In contrast, SSDG adopts the SSL setting as-
suming only a handful of images within each source do-
main are labeled while a large quantity are unlabeled. A
comparison of the three related problems is illustrated
in Fig. 1(a).

To better understand the problem, we design two
SSDG benchmarks based on two widely used DG
datasets, and evaluate current state-of-the-art methods
developed in the DG and SSL communities. A preview
of the results is shown in Fig. 1(b). We find that the DG
methods—which by design cannot use unlabeled data—
obtain weak performance with limited labels. While the
SSL methods, especially FixMatch (Sohn et al., 2020),
perform much better due to the use of unlabeled data,
the gap with full-labels training—the pseudo oracle—is
still noticeable. We also show in the experiments that
a naive combination of DG and SSL methods does not
fare well, either.

We address SSDG with a principled approach called
StyleMatch, which extends FixMatch with a couple
of new ingredients tailored for SSDG. In particular,
StyleMatch’s designs are motivated to solve FixMatch’s
shortcomings identified by digging into the core compo-
nent based on pseudo-labeling: as shown in Fig. 2 (left
vs middle), FixMatch works well in a single-source SSL
scenario—which the algorithm is originally designed
for—but suffers a substantial drop in accuracy when

applied to a multi-source SSDG setting. We hypothe-
size that such a deterioration is caused by the shift in
data distributions among different sources as well as
the limited size of labels—challenges that are distinct

to SSDG.

The first extension made in StyleMatch aims to
prevent the model from overfitting small labeled data
so that the model does not produce excessive wrong
pseudo-labels with overconfidence. Specifically, we in-
troduce uncertainty (Gal and Ghahramani, 2016; Blun-
dell et al., 2015) to the learning by modeling the clas-
sifier’s weights with Gaussian distributions. This can
be viewed as learning an ensemble of classifiers implic-
itly, which are sampled from the learnable distribution
parameters.

The second extension is to convert FixMatch’s two-
view consistency learning framework into a multi-view
version by adding style augmentation (Huang and Be-
longie, 2017) as the third complementary view. Specif-
ically, in addition to enforcing prediction consistency
between weakly augmented images and the strongly
augmented ones as in FixMatch, we further enforce
prediction consistency between images from one do-
main and their style-transferred counterparts. Such a
design has two benefits: first, the labeled group in each
source domain is enlarged, which leads to more accu-
rate pseudo-labels (see Fig. 2, right); second, the style
augmentation-based learning essentially aligns the pos-
terior probability among source domains, hence facili-
tating the learning of domain-invariant representations.

In summary, we make the following contributions:

1. A new problem: We study a new problem that
takes into account model generalization and data-
efficiency under the same framework, both critical
for real-world vision applications but isolated in ex-
isting research.
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2. New benchmarks: We design two benchmarks that
cover a wide range of methods developed in relevant
fields to facilitate future research.

3. New insights: We show that under the challenging
SSDG setting, directly applying DG or SSL meth-
ods alone is insufficient, nor a naive combination of
them.

4. A new approach: We propose a simple yet effec-
tive approach that seamlessly integrates two specif-
ically designed components into an efficient pseudo-
labeling method.

2 Related Work
2.1 Domain Generalization (DG)

Many DG methods fall into the category of domain
alignment, which aims to learn a domain-invariant
feature space by aligning features across source do-
mains. This is typically implemented by minimizing
some distance measures such as first- and second-order
moments (Ghifary et al., 2017), maximum mean dis-
crepancy (MMD) (Li et al., 2018b), and adversarial
losses (Li et al., 2018¢). Meta-learning has also been ex-
tensively studied for DG (Li et al., 2018a; Balaji et al.,
2018; Li et al., 2019; Dou et al., 2019; Shu et al., 2021).
Most meta-learning methods construct episodes by di-
viding source domains into a meta-train and a meta-test
set without overlap, and learn a model on the meta-
train set such that its performance on the meta-test set
is improved.

Most related to our work are data augmentation
methods, which can be generally categorized into four
groups. The first group investigates traditional label-
preserving transformations (Volpi and Murino, 2019),
such as adjusting image contrast and brightness. The
second group is based on adversarial gradients for aug-
mentation in the pixel space (Shankar et al., 2018;
Volpi et al., 2018; Qiao et al., 2020). A representative
work is CrossGrad (Shankar et al., 2018), which back-
propagates adversarial gradients from a domain classi-
fier to the input of a label classifier. The third family of
methods also perform augmentation in the pixel space,
but build the augmentation function using neural net-
works Zhou et al. (2020a); Xu et al. (2021); Zhou et al.
(2020Db). For example, DDAIG developed by Zhou et al.
(2020b) learns a neural network to transform images’
appearance such that a domain classifier cannot iden-
tify their source domain labels. The last group transi-
tions from pixel- to feature-level augmentation by, e.g.,
mixing feature statistics (Zhou et al., 2021b) or learning
feature perturbation networks (Qiao and Peng, 2021).

Most existing DG methods cannot handle unla-
beled data except those based on self-supervised learn-
ing (Carlucci et al., 2019; Wang et al., 2020). The in-
tuition behind using self-supervised losses for DG is to
allow a model to discover patterns that are less cor-
related with class labels, hence reducing overfitting to
source data. Nonetheless, our experiments show that
the proposed approach fits the SSDG problem much
better than previous DG methods. For a more compre-
hensive review in the DG area, we refer readers to the
survey by Zhou et al. (2021a).

2.2 Semi-Supervised Learning (SSL)

SSL is a well-established area with a plethora of meth-
ods developed in the literature. Most related to our
work are those based on consistency learning (Miyato
et al., 2018; Tarvainen and Valpola, 2017) and pseudo-
labeling (Sohn et al., 2020; Xie et al., 2020b). The basic
idea in consistency learning is to force a model’s pre-
dictions on two different views of the same input to be
similar to each other (Zhou et al., 2004). A consistency
loss is often imposed on top-layer features (Abuduweili
et al., 2021) or the output probabilities (Sohn et al.,
2020). Recent studies have found that using a model’s
exponential moving average to generate the target for
consistency learning can stabilize training (Tarvainen
and Valpola, 2017).

Pseudo-labeling (Lee, 2013) provides either soft or
hard pseudo-labels for unlabeled data using, e.g., a pre-
trained model (Xie et al., 2020b) or the model being
trained (Sohn et al., 2020). Recent advances in pseudo-
labeling (Xie et al., 2020b; Berthelot et al., 2019; Sohn
et al., 2020; Xie et al., 2020a) have suggested that in-
troducing strong noise to the student model can greatly
improve performance, such as applying strong augmen-
tation to the input or/and dropout to model param-
eters. To overcome distribution shifts between labeled
and unlabeled data caused by sampling bias, a couple
of studies (Wang et al., 2019; Abuduweili et al., 2021)
have borrowed ideas from domain adaptation (Hoffman
et al., 2018) to minimize feature distance.

SSDG is related to SSL as both need to deal with
unlabeled data. However, in SSDG the unlabeled data
are much more challenging to handle than those in
SSL since the former are collected from heterogeneous
sources. Our experiments show that simply applying
SSL methods to the SSDG problem is suboptimal.



Kaiyang Zhou et al.

8 pseudo
R SRR e R e
N ot) Npzioh) .. Nuc,o?) J oL
2 2 2 e 5
class ' —~— I (O
prototypes 4 —bqﬂ[ CNN ]ﬁ —»[ SNN ] — O — Estrong
strong — g
unlabeled \ augmentation =
image .

|
e @

cosine

features similarity probability

(a) Stochastic neural network (SNN) classifier.

) - - () |-

style
augmentation

[o...oo}

- Estyle

probability

features

(b) Multi-view consistency learning.

Fig. 3 Two core components in StyleMatch. (a) The SNN-based design allows an ensemble of classifiers to be learned in an
implicit manner. (b) The multi-view consistency learning framework is based on strong augmentation (geometric and color
transformations) and style transfer (appearance and texture changes).

2.3 Stochastic Neural Networks

Our work is also related to research in stochastic neural
networks (SNNs), also known as Bayesian deep learn-
ing (Gal and Ghahramani, 2016). The key idea is to
drive exploration in the parameter space via stochastic
modeling, i.e., casting weights as probability distribu-
tions (Blundell et al., 2015).

Blundell et al. (2015) show that modeling neural
networks’ weights with Gaussian distributions allows
the model to produce more reasonable predictions on
a regression task with noisy data. Gal and Ghahra-
mani (2016) use Bernoulli distributions to model con-
volutional kernels, which are efficiently implemented by
applying dropout at both training and test time (Sri-
vastava et al., 2014). From an application perspective,
SNNs have been successfully applied to domain adapta-
tion (Lu et al., 2020), semantic segmentation (Kendall
et al., 2017), and person re-identification (Yu et al.,
2019). However, their application in the DG area has
not been identified before, and we are the first to suc-
cessfully apply SNNs to SSDG.

3 Problem Definition

In this section, we formally define the semi-supervised
domain generalization (SSDG) problem. Let X and Y
denote the input and label space respectively, a domain
is defined as a joint distribution P(X,Y) over X x ).
P(X) and P(Y) denote the marginal distribution of X
and Y, respectively. In this work, we only consider dis-
tribution shifts in P(X) while P(Y') remains the same,
i.e., all domains share the same label space.

Similar to the conventional DG setting, we have
access to K distinct but related source domains & =

{Sk}E_ |, each associated with a joint distribution
P®)(X,Y). Note that P®)(X,Y) # P*)(X,Y) for
k # k'. In SSDG, only a small portion of the source
data have labels while many of them are unlabeled
for which we can only access the (empirical) marginal
distribution P(X). For each source domain S, the
labeled part is defined as SF = {(z®,y*)} with
(x®), y*)) ~ P*)(X,Y), and the unlabeled part as
S = {u®} with u® ~ P®)(X). The size of unla-
beled data is much bigger than that of labeled data,
ie., |SY| > |SE|

The goal in SSDG is to learn a domain-generalizable
model using both labeled and unlabeled source data. At
test time, the model is directly deployed in an unseen
target domain 7 = {&*} with * ~ P*(X). The target
domain differs from any source domain, P*(X,Y) #
PHR(X,Y) for k € {1,...,K}.

4 Methodology

Our StyleMatch is a simple approach based on assigning
pseudo-labels to unlabeled data and using uncertainty
and data augmentation to tackle issues caused by do-
main shifts. The architecture consists of two parts: 1)
a neural network-based feature extractor, which takes
images as input and produces vectorized feature repre-
sentations, and 2) a linear classifier. In this work, we
construct the feature extractor using a CNN.

The pseudo-labeling part is based on Fix-
Match (Sohn et al.,, 2020), a state-of-the-art SSL
method that forces predictions made on strongly aug-
mented images to match pseudo-labels estimated using
weakly augmented images.

The other two core components, i.e., stochastic clas-
sifier and multi-view consistency learning, are illus-
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trated in Fig. 3. Below we detail the designs of these
two components.

4.1 Stochastic Classifier

The main idea of designing a stochastic classifier is
to optimize an ensemble of classifiers implicitly during
training for reducing overfitting (Zhou, 2012). We start
by discussing a standard linear classifier. Let z € R
denote a D-dimensional feature vector of image x and
C the total number of classes, a linear classifier with
weights W € R*P and biases b € R can be for-
mulated as Wz + b. By ignoring the bias vector—
which is common in recent contrastive learning meth-
ods (He et al., 2020; Chen et al., 2020)—we can view
the weight matrix W = [wy, ..., wc|?, where w,. € RP
and ¢ = 1,...,C, as containing a set of class proto-
types (Snell et al., 2017). From this perspective, the
matrix-vector multiplication W z essentially computes
the (cross-correlation) similarity between the image x
and each class prototype w..

In our stochastic classifier, each class prototype is
modeled using a Gaussian distribution parameterized
by N(pe,0?), where p.,0, € RP. At each training
step, we sample for each class the prototype vector
from the corresponding probability distribution, w, ~
N (pte,02). To allow end-to-end optimization, we em-
ploy a reparameterization trick (Kingma and Welling,
2014; Blundell et al., 2015) to bypass the discrete sam-
pling process,
e~N(0,I). (1)

w. = p. + softplus(o.) ® € where

Once all class prototypes are obtained, the similar-
ity scores are computed based on cosine similarity (de-
noted by sim(-,-)), which are then passed to the soft-
max function for generating a normalized probability
distribution,

exp(sim(z, wy)/T) )
Zle exp(sim(z, wc)/T)’ (2)

pyle) =

where 7 is a temperature hyper-parameter fixed to 0.05.
See Fig. 3(a) for a sketch of the classifier.

Since the uncertainty parameters (i.e., the standard
deviations) converge to small values, meaning that the
sampled classifiers become more and more similar to
each other toward the end of training (Blundell et al.,
2015; Lu et al., 2020; Yu et al., 2019), we simply use
the mean parameters (i.e., w. = p.) to classify images
at test time.

4.2 Multi-view Consistency Learning

Here we discuss how to train the model using a multi-
source, partially-labeled dataset. We propose an ef-
ficient learning framework called multi-view consis-
tency learning to deal with unlabeled images and do-
main shifts. The framework is an extension of Fix-
Match (Sohn et al., 2020) and sketched in Fig. 3(b).
There are three losses: one labeled loss and two unla-
beled losses.

Labeled Loss For labeled source images, we compute
the cross-entropy loss, defined as

glabeled = - logp(y|Tweak (SC)), (3)

where (x,y) is an image-label pair; Tyeqr(-) denotes a
weak augmentation function, such as random crop and
flip; p(y|Twear(x)) is computed using Eq. (2).

For simplicity, the domain index is omitted and the
loss formulation is based on an individual image (same

below).

Unlabeled Losses Following FixMatch, given an un-
labeled image wu, we first forward the weakly aug-
mented version Tyeqr () to the model to produce a
probability distribution g(u) € R® and a pseudo-label
G(u) = argmax g(u). Then, we force the model’s pre-
diction on the strongly augmented version Tsirong(ut)
to match the pseudo-label,

Ustrong = —1(max(g(u)) > 7)log p(§(w)|Tstrong (w)),

(4)

where 1(+) is an indicator function and = is a confidence
threshold. We follow Sohn et al. (2020) to set = = 0.95
and compute this loss (and the other unlabeled loss) for
both labeled and unlabeled images.

The strong augmentation function Tgirong(-) is
based on RandAugment (Cubuk et al., 2020) and
Cutout (DeVries and Taylor, 2017).

To complement strong augmentation that is mainly
related to geometric and color intensity-based trans-
formations, we add a third view based on style trans-
fer (Huang and Belongie, 2017). Specifically, we enforce
prediction consistency for the same image but of dif-
ferent styles (domains). The motivation is two-fold: 1)
to augment the labeled data within each source so the
model can be better learned to produce more accurate
pseudo-labels for the unlabeled data; 2) such a design
aligns the posterior probability among source domains,
ie., p(ylz®) = p(ylx™)) where k # K, hence facili-
tating the learning of domain-invariant representations.
The loss is defined as

Cstyie = —1(max(g(u)) > m) log p(q(w)[Tsrye(w)),  (5)
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Fig. 4 Example images from PACS (Li et al., 2017) and OfficcHome (Venkateswara et al., 2017), each consisting of four
domains with drastically different image statistics. PACS mainly concerns image style changes while OfficcHome contains
more sophisticated domain shifts like changes in image style, viewpoint, background, etc.

where Tszyie is implemented using AdaIN (Huang and
Belongie, 2017). Note that Ty (u) maps u to a differ-
ent source domain than itself.

Final Loss The final learning objective is a combina-
tion of Eq. (3), (4) and (5),

Eall = glabeled + gstrong + éstyle~ (6>

We do not need any balancing weights for these losses.

5 Experiments

SSDG Benchmarks We re-purpose two widely used
DG datasets, PACS (Li et al., 2017) and Office-
Home (Venkateswara et al., 2017), for benchmark-
ing SSDG methods. PACS consists of four distinct
domains—art painting, cartoon, photo, and sketch—
and contains 9,991 images of 7 classes in total. The
domain shifts mainly concern image style changes. Of-
ficeHome also has four domains: art, clipart, product,
and real world. It contains more images than PACS,
around 15,500 images of 65 classes, and more complex
domain shifts, e.g., changes in image style, viewpoint,
background, etc. See Fig. 4 for example images from
these two datasets.

Evaluation The common leave-one-domain-out pro-
tocol (Li et al., 2017) is adopted: three domains are
used as the sources and the remaining one as the target.
Note that only the source data are available for model
training and the trained model is directly deployed in
the target domain. Top-1 classification accuracy is re-
ported. Two SSDG settings are designed. In the first
setting, we randomly sample 10 images per class from
each source domain as labeled data and treat the rest

as unlabeled data. The second setting tests a more chal-
lenging scenario where only 5 labeled images are avail-
able for each class in each source domain. Results are
averaged over five random splits.

Training Details Following the common practice (Li
et al.; 2017; Zhou et al., 2020b; Huang et al., 2020; Zhou
et al., 2021b), the ImageNet-pretrained ResNet18 (He
et al., 2016) is used as the CNN backbone (for all mod-
els compared in this work). We randomly sample 16 im-
ages from each source domain to construct a minibatch,
for labeled and unlabeled data respectively. Following
FixMatch, the labeled minibatch is used for computing
the labeled loss in Eq. (3) while both labeled and un-
labeled minibatches are used to compute the two unla-
beled losses in Eq. (4) and (5). The initial learning rate
is set to 0.003 for the pretrained backbone and 0.01
for the randomly initialized stochastic classifier, both
decayed by the cosine annealing rule. More implemen-
tation details can be found in our code.! All models
are trained using a single Tesla V100 GPU. Our imple-
mentation is based on the public Dassl.pytorch tool-
box (Zhou et al., 2020c).?

Competitors We choose top-performing methods
developed in two relevant fields, namely DG and
SSL, for comparison. For DG, we choose Cross-
Grad (Shankar et al., 2018), DDAIG (Zhou et al.,
2020b), RSC (Huang et al., 2020), EISNet (Wang
et al., 2020), and also the vanilla model (also called
ERM (Gulrajani and Lopez-Paz, 2021) or Deep-All (Li
et al, 2017) in the literature). These DG methods
can only use labeled data for training except EISNet,
whose design based on self-supervised learning allows

! https://github.com/KaiyangZhou/ssdg-benchmark.
2 https://github.com/KaiyangZhou/Dassl.pytorch.
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Table 1 Domain generalization results in the low-data regime on PACS. A: Art painting. C: Cartoon. P: Photo. S: Sketch.

u: use unlabeled source data.

# labels: 210 (10 per class)

# labels: 105 (5 per class)

Model ‘ “ ‘ A C P Avg | A C P S Auy
Full-Labels ‘ - ‘ 76.95 75.90 95.96 69.20 79.50‘ 76.95 75.90 95.96 69.20 79.50
Domain generalization methods
Vanilla X | 63.09 5849 86.56 45.56 63.42| 56.71 53.87 71.87 36.92 54.84
CrossGrad X | 6256 58.92 8581 44.11 62.85| 56.39 55.11 72.61 38.08 55.55
DDAIG X | 61.95 58.74 84.44 47.48 63.15| 55.09 52.31 70.53 38.89 54.20
RSC X | 65.13 56.65 86.18 47.90 63.96 | 55.32 48.08 72.15 40.72 54.07
EISNet v/ | 66.84 6133 89.16 51.38 67.18| 62.08 54.75 80.66 42.68 60.04
Semi-supervised learning methods
MeanTeacher v | 6241 5794 8595 47.66 63.49 | 56.00 52.64 73.54 36.97 54.79
EntMin v | 72.77 70.55 89.39 54.38 71.77| 67.01 65.67 79.99 47.96 65.16
FixMatch v/ | 78.01 6893 87.79 73.75 77.12| 7730 68.67 80.49 73.32 74.94
FixMatch+RSC v | 79.57 T71.32 90.97 67.77 77.41 | 76.43 67.06 87.34 63.80 73.66
Semi-supervised domain generalization methods
StyleMatch (ours) | v | 79.43 73.75 90.04 78.40 80.41|78.54 74.44 89.25 79.06 80.32

Table 2 Domain generalization results in the low-data regime on OfficeHome. A: Art. C: Clipart. P: Product. R: Real world.

u: use unlabeled source data.

Model ‘ u ‘ A C P

# labels: 1950 (10 per class)

# labels: 975 (5 per class)

Avg A C P R Avg

Full-Labels | - | 58.88 49.42 7430 7621 64.70 | 58.88 49.42 7430 7621 64.70
Domain generalization methods

Vanilla X | 50.11 43,50 65.11 69.65 57.09| 45.76 39.97 60.04 63.77 52.38

CrossGrad X | 50.32 43.27 65.16 69.49 57.06 | 45.68 40.04 59.95 64.09 52.44

DDAIG X | 49.60 4252 63.54 67.89 5589 | 45.73 38.82 59.52 63.37 51.86

RSC X | 49.65 4233 64.88 69.26 56.53 | 45.06 38.72 59.97 63.13 51.72

EISNet v | 51.16 43.33 64.72 68.36 56.89 | 47.32 40.07 59.33 62.59 52.33
Semi-supervised learning methods

MeanTeacher v | 49.92 4342 64.61 68.79 56.69 | 44.65 39.15 59.18 62.98 51.49

EntMin v | 51.92 4492 66.85 70.52 58.55 | 48.11 41.72 62.41 63.97 54.05

FixMatch v | 50.36 49.70 63.93 67.56 57.89 | 48.98 47.46 60.70 64.36 55.38

FixMatch+RSC v | 51.49 43.77 63.96 68.29 56.88 | 48.15 41.30 59.36 62.82 52.91

Semi-supervised domain generalization methods
StyleMatch (ours) ‘ v ‘ 52.82 51.60 65.31 68.61 59.59 ‘ 51.53 50.00 60.88 64.47 56.72

the model to use unlabeled data. For SSL, we choose
MeanTeacher (Tarvainen and Valpola, 2017), Entropy-
Minimization (EntMin) (Grandvalet and Bengio, 2004),
and FixMatch (Sohn et al., 2020), which have been
widely used as baselines in the SSL literature.

5.1 Main Results

The results on PACS and OfficeHome are presented in
Table 1 and 2, respectively. Full-Labels refers to the
vanilla model trained using all labels in the source data,
which can be seen as the pseudo oracle.

From both tables we can observe that the DG meth-
ods that rely purely on the limited labeled data do not
work well and hardly beat the vanilla model. This is not
unexpected as most DG algorithms are subject to the
assumption that rich, fully-labeled multi-source data
are available for model training. Among the DG meth-
ods, EISNet’s performance stands out since it takes ad-
vantage of the unlabeled data.

The SSL methods generally outperform the DG
methods on both datasets. It is worth noting that Of-
ficeHome is more challenging than PACS as it contains
more classes (65 vs 7) and cluttered images. Therefore,
a small improvement on OfficeHome can be considered
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Fig. 5 Ablation study on the two core components in StyleMatch: the SNN classifier (Fig. 3(a)) and the multi-view consistency
learning (Fig. 3(b)). Clearly, the two components are complementary to each other and together bring significant improvements

over the baseline model (i.e., FixMatch).

significant. FixMatch clearly outperforms the two peers
in the same group, i.e., MeanTeacher and EntMin.

We also combine FixMatch with RSC—the latter
is based on suppressing dominant features with large
gradients so the model is forced to use more features
for prediction, and currently has the best reported re-
sults in the standard DG setting (Huang et al., 2020).
Clearly, FixMatch+RSC does not bring significant im-
provements, suggesting that a naive combination of the
best techniques from both worlds is insufficient for solv-
ing SSDG.

Our StyleMatch shows clear advantages over all
competitors including FixMatch, which justify the ef-
fectiveness of our designs for SSDG. On PACS, when
the target domains are art painting (A) and sketch (S),
StyleMatch even surpasses Full-Labels with a clear mar-
gin. On OfficeHome, there is still room for improve-
ment when comparing StyleMatch with the “oracle”
Full-Labels. It is noteworthy that when moved from the
10-labels to 5-labels setting, StyleMatch’s average gain
over the vanilla model is increased significantly: from
around 17% to 25% on PACS, and around 2% to 4%
on OfficeHome. The results suggest that StyleMatch is
highly competent in extreme low-data scenarios.

5.2 Ablation Study and Analysis

Key Components We conduct a comprehensive ab-
lation study on the two key components in StyleMatch,
i.e., the SNN classifier (Fig. 3(a)) and the multi-view
consistency learning framework (Fig. 3(b)). We repeat
the experiments on PACS and OfficeHome by sequen-
tially adding these two components to FixMatch—the
base model on top of which StyleMatch is built. Fig. 5
shows the results of this study with a focus on the av-
erage accuracy over all target domains. It is clear that

the SNN classifier contributes an around 2%/1% in-
crease to the performance on PACS/OfficeHome, and
the multi-view design further boosts the performance.
The improvements brought by the multi-view design are
higher in the lower-data setting on both datasets, sug-
gesting that this design is essential when dealing with
extremely scarce labels.

Stochastic Classifier Reduces Overfitting To
understand how the stochastic classifier improves learn-
ing, we compare FixMatch+SNN with FixMatch using
two metrics: pseudo-labeling accuracy and overconfi-
dence rate, which are measured for each minibatch data
received at each training step. The first metric mea-
sures the accuracy of pseudo-labels, while the overcon-
fidence rate counts how many pseudo-labels in a mini-
batch pass the confidence threshold. Ideally, we do not
want the overconfidence rate to climb above the pseudo-
labeling accuracy as this would mean the network pre-
dicts excessive incorrect pseudo-labels with high confi-
dence, which hurt generalization (Zhang et al., 2017).
Fig. 6 shows the comparisons. In (a), the overconfi-
dence rate of FixMatch+SNN steadily increases and
eventually converges to a similar level as the pseudo-
labeling accuracy. In contrast, without SNN, the over-
confidence rate overshoots the pseudo-labeling accuracy
in the middle of training. In (b), the overfitting issue for
FixMatch intensifies—the overconfidence rate outpaces
the pseudo-labeling accuracy at the early training stage
and the pseudo-labeling accuracy stops improving since
then. In contrast, the curves for FixMatch+SNN look
much healthier.

Augmentation Methods To have an in-depth un-
derstanding of the roles of the augmentation methods,
we evaluate three variants of StyleMatch: Tstyong-only,
Tstyle‘0n1y7 and Tstrong"_Tstyle' Tstrang‘only and Tstyle'
only are based on the two-view consistency learning
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Fig. 6 Pseudo-labeling accuracy (solid+circle) vs overconfidence rate (dashed+triangle). Without the SNN classifier, the
model suffers from severe overfitting, which is reflected in the overconfidence rate overshooting the pseudo-labeling accuracy.

paradigm and Tstrong+Tstyie Tefers to the final model.
Table 3 shows the results of this ablation study on
PACS. We observe that 1) Tsirong is more suitable than
Tstyie to be used in the two-view consistency learning
framework, and 2) combining these two augmentation
methods leads to a much better performance, which
justifies their complementarity.

Number of Source Domains So far the experi-
ments are based on the commonly used three-source
setting. How does the approach fare when there are less
sources? To answer this question, we reduce the number
of source domains from three to two and one, and con-
duct the experiments on PACS. When using one domain
as the target, the results are the average over all pos-
sible scenarios with different combinations of sources,
each still following the five random splits protocol. Ta-
ble 4 details the results where StyleMatch is compared
with FixMatch. Note that when K =1 (single-source
case), StyleMatch mixes the image style between ran-
dom instances from the same domain. The results show
that StyleMatch outperforms FixMatch with a clear
margin in all scenarios, even in the single-source case—
this means that mixing instance-level style also helps,
which is also observed in a recent work that mixes
instance-level feature statistics (Zhou et al., 2021b). By
increasing K from 2 to 3, StyleMatch gains 5.91% (from
74.50% to 80.41%) and 8.37% (from 71.95% to 80.32%)
respectively in the 10- and 5-labels settings, while Fix-
Match’s gains are 5.7% (from 71.42% to 77.12%) and
6.42% (from 68.52% to 74.94%) respectively, which are
smaller. This suggests that StyleMatch can better han-
dle heterogeneous data.

Table 3 An analysis of augmentation methods. The pro-
posed design, which combines Ts¢rong With Tstyie proves to
be the optimal choice.

PACS
StyleMatch’s variants 10 lab/cls 5 lab/cls
Tstrong-only 79.61 76.05
Tstyte-only 72.61 69.72
Tst'rong +Tstyle 80.41 80.32

Table 4 Impact on number of sources (K). StyleMatch con-
sistently improves upon FixMatch in all scenarios.

PACS
10 lab/cls 5 lab/cls

K=1 K=2 K=3 K=1 K=2 K=3

FixMatch  53.55 71.42 77.12 4991 68.52 74.94
StyleMatch 57.29 74.50 80.41 52.24 71.95 80.32

6 Conclusion

Model generalization and data-efficiency are two crit-
ical problems for real-world vision applications but
have been studied separately in the literature. This
work explores a unification of the two problems, called
semi-supervised domain generalization (SSDG), which
poses unique challenges and requires specific designs.
Through extensive experiments in the two newly pro-
posed benchmarks, we show that state-of-the-art DG
or SSL methods could not suffice to solve the prob-
lem, nor a naive combination of them. The proposed
approach, despite having concise designs, demonstrates
significant gains in the experiments and can serve as a
strong baseline for future research.
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