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Abstract
Self-similarity refers to the image prior widely used in image restoration algorithms that small but similar patterns tend
to occur at different locations and scales. However, recent advanced deep convolutional neural network-based methods
for image restoration do not take full advantage of self-similarities by relying on self-attention neural modules that only
process information at the same scale. To solve this problem, we present a novel Pyramid Attention module for image
restoration, which captures long-range feature correspondences from a multi-scale feature pyramid. Inspired by the fact
that corruptions, such as noise or compression artifacts, drop drastically at coarser image scales, our attention module is
designed to be able to borrow clean signals from their “clean” correspondences at the coarser levels. The proposed pyramid
attention module is a generic building block that can be flexibly integrated into various neural architectures. Its effectiveness
is validated through extensive experiments on multiple image restoration tasks: image denoising, demosaicing, compression
artifact reduction, and super resolution. Without any bells and whistles, our PANet (pyramid attention module with simple
network backbones) can produce state-of-the-art results with superior accuracy and visual quality. Our code is available at
https://github.com/SHI-Labs/Pyramid-Attention-Networks
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1 Introduction

Image restoration algorithms aim to recover a high-quality
image from the contaminated counterpart, and is viewed as
an ill-posed problem due to the irreversible degradation pro-
cesses. They have many applications depending on the type
of corruptions, for example, image denoising Zhang et al.
(2017a, 2019); Liu et al. (2018), demosaicing Zhang et al.
(2017b, 2019), compression artifacts reduction Dong et al.
(2015); Chen and Pock (2017); Zhang et al. (2017a), super-
resolutionKim et al. (2016); Lai et al. (2017); Tai et al. (2017)
and many others Li et al. (2017); He et al. (2010); Chen et
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al. (xxx). To restore missing information in a contaminated
image, a variety of approaches based on leveraging image
priors have been proposed Buades et al. (2005); Zontak et al.
(xxx); Roth and Black (2005); Zoran and Weiss (2011).

Among these approaches, the prior of self-similarity in an
image is widely explored and proved to be important. For
example, non-local mean filtering Buades et al. (2005) uses
self-similarity prior to reduce corruptions, which averages
similar patches within the image. This notion of non-local
pattern repetition was then extended to across multiple
scales and demonstrated to be a strong property for natural
images Zontak and Irani (2011); Glasner et al. (2009). Sev-
eral self-similarity based approaches Glasner et al. (2009);
Freedman and Fattal (2011); Singh and Ahuja (2014) were
first proposed for image super-resolution, where they restore
image details by borrowing high-frequency details from self-
recurrences at larger scales. The idea was then explored in
other restoration tasks. For example, in image denoising,
its power is further strengthened by observing that noise
reduces drastically at coarser scales Zontak et al. (xxx). This
motivates many advanced approaches Zontak et al. (xxx);
Michaeli and Irani (2014) to restore clean signals by find-
ing “noise-free” recurrences in a built image-space pyramid,
yielding high-quality reconstructions. The idea of utilizing
multi-scale non-local prior has achieved great successes in
various restoration tasks Bahat and Irani (2016); Zontak et
al. (xxx); Michaeli and Irani (2014); Lotan and Irani (2016).

Recently deep neural networks trained for image restora-
tion have made unprecedented progress. Following the
importance of self-similarity prior, most recent approaches
based on neural networks Zhang et al. (2019); Liu et al.
(2018) adapt non-local operations into their networks, fol-
lowing the non-local neural networks Wang et al. (2018).
In a non-local block, a response is calculated as a weighted
sum over all pixel-wise features on the feature map, thus it
can obtain long-range information. Such a module was ini-
tially designed for high-level recognition tasks and proven
to be also effective in low-level vision problems Zhang et al.
(2019); Liu et al. (2018).

However, these approaches which adapt the naive self-
attention module to low-level tasks have certain limitations.
First, to our best knowledge, multi-scale non-local prior
is never explored. It has been demonstrated in the liter-
ature that cross-scale self-similarity can bring impressive
benefits for image restoration Zontak et al. (xxx); Bahat
and Irani (2016); Michaeli and Irani (2014); Glasner et al.
(2009). Unlike high-level semantic features for recognition
which makes not too much difference across scales, low-
level features represent richer details, patterns, and textures
at different scales. Nevertheless, the leading non-local self-
attention fails to capture the useful correspondences that
occur at different scales. Second, pixel-wisematching used in
the self-attentionmodule is usually noisy for low-level vision

tasks, thus reducing performance. Intuitively, enlarging the
searching space raises possibility for finding better matches,
but it is not true for the existing self-attention modules Liu et
al. (2018). Unlike high-level feature maps where numerous
dimension reduction operations are employed, image restora-
tion networks oftenmaintain the input spatial size. Therefore,
feature is only highly relevant to a localized region, making
them easily affected by noisy signals. This is in line with
conventional non-local filtering, where pixel-wise matching
performs much worse than block matching Buades et al.
(2011).

In this paper, we present a novel non-local pyramid atten-
tion as a simple and generic building block for exhaustively
capturing long-range dependencies, as shown in Fig. 1. The
proposed attention takes full advantages of traditional non-
local operations but is designed to better accord with the
nature of image restoration. Specifically, the original search
space is largely extended froma single featuremap to amulti-
scale feature pyramid. The proposed operation exhaustively
evaluates correlation among features across multiple speci-
fied scales by searching over the entire pyramid. This brings
several advantages: (1) It generalizes existing non-local
operation, where the original searching space is inherently
covered in the lowest pyramid level. (2) The long-range
dependency between relevant features of different sizes is
explicitlymodeled. Since the operation is fully differentiable,
it can be jointly optimized with networks through back prop-
agation. (3) Similar to traditional approaches Zontak et al.
(xxx); Bahat and Irani (2016); Michaeli and Irani (2014),
one may expect noisy signals in features can be drastically
reduced via rescaling to coarser pyramid level via opera-
tions like bi-cubic interpolation. This allows the network
to find “clean signal” from multi-scale correspondences.
Next, we enhance the robustness of correlation measure-
ment by involving neighboring features into computation,
inspired by traditional block matching strategy. Region-to-
region matching imposes additional similarity constraints on
the neighborhood. As such, the module can effectively single
out highly relevant correspondences while suppressing noisy
ones.

We demonstrate the power of non-local pyramid attention
on various image restoration tasks: image denoising, image
demosaicing, compression artifacts reduction and image
super-resolution. In all tasks, a single pyramid attention,
which is our basic unit, can model long-range dependency
without scale restriction, in a feed forward manner. With one
attention block inserted into a very simple backbone net-
work, the model achieves significantly better results than the
latest state-of-the-art approach with well-engineered archi-
tecture and multiple non-local attention units. In addition,
we also conduct extensive ablation studies to analyze our
design choices. All these evidences demonstrate our module
is a better alternative of current non-local operation and can
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Fig. 1 Visualization of most correlated patches captured by our pyramid attention. Pyramid attention exploits multi-scale self-exemplars to improve
reconstruction

be used as a fundamental unit in neural networks for generic
image restoration.

In our previous conference version Mei et al. (2020), the
original cross-scale non-local attention (CSNLA), although it
makes some successful attempts, has limited ability to lever-
age cross-scale similarity. This is because the searching space
is restricted to a scale specified by the SR task, and thus fails
to fully utilize self-recurrences across multiple scales. On the
other hand, it is designed as an upsampling operation, where
it replaces a small patch (e.g. 3× 3) with larger patches (e.g.
6×6) from the same feature map. This makes it inapplicable
for general image restoration tasks, where the output image
keeps the original resolution.

As discussed, our pyramid attention tackles these short-
comings by drawing inspirations from traditional self-
similarity-based methods Zontak et al. (xxx); Michaeli and
Irani (2014), where it has been demonstrated that corrup-
tions can be effectively reduced by downscaling. Thus a
cleaner image can be recovered by finding “noise-free” self-
recurrences in a built image-space pyramid Zontak et al.
(xxx). Inspired by these classical approaches, the proposed
pyramid attention improves the searching range of CSNLA
to a downscaled feature pyramid. This leaves the resolution
unchanged while allowing the network to effectively lever-
age abundant multi-scale information, making it suitable for
various image restoration tasks. As such, this work method-

ologically extends and significantly generalizes the previous
conference version.

2 RelatedWorks

2.1 Self-similarity Prior for Image Restoration

Self-similarity property that small patterns tend to recur
within a image powers natural images with strong self-
predictive ability Bahat and Irani (2016); Glasner et al.
(2009); Zontak and Irani (2011), which forms a basis for
many classical image restoration methods Zontak and Irani
(2011); Zontak et al. (xxx); Bahat and Irani (2016); Michaeli
and Irani (2014); Huang et al. (2015). The initial work,
non-local mean filtering Buades et al. (2005), globally aver-
ages similar patches for image denoising. Later on, Dabov
et al Dabov et al. (2007b) introduced BM3D, where repet-
itive patterns are grouped into 3D arrays to be jointly
processed by collaborative filters. In LSSC Mairal et al.
(2009), self-similarity property is combined with sparse
dictionary learning for both denoising and demosaicing.
This “fractal like" characteristic was further strengthened to
across different scales and shown to be a very strong prop-
erty for natural images Glasner et al. (2009); Zontak and
Irani (2011). To enjoy cross-scale redundancy, self-similarity
based approaches were proposed for image super-resolution
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Glasner et al. (2009); Freedman and Fattal (2011); Huang
et al. (2015), where high frequency information is retrieved
uniquely from internal multi-scale recurrences. Observing
that corruptions drop drastically at coarser scales, Zontak
Zontak et al. (xxx) demonstrated that a clean version of
noisy patches (99%) exists at coarser level of the original
image. This idea was developed into their denoising algo-
rithm, which achieved promising results. The cross-scale
self similarity is also of central importance for many image
deblurringMichaeli and Irani (2014); Bahat et al. (2017) and
image dehazing approaches Bahat and Irani (2016).

2.2 Non-local Operation in Deep CNNs

Non-local operation in deep CNNs was initially proposed
by Wang et al Wang et al. (2018) for video classification.
In their networks, non-local units are placed on high-level,
sub-sampled feature maps to compute long-range semantic
correlations. By assigning weights to features at all loca-
tions, it allows the network to focus on more informative
areas. Adapting non-local operation also showed consider-
able improvements in other high-level tasks, such as object
detection Cao et al. (2019), semantic segmentation Fu et al.
(2019) and person Re-id Xia et al. (2019). For image restora-
tion, recent approaches, such as NLRN Liu et al. (2018),
RNAN Zhang et al. (2019) and SAN Dai et al. (2019),
incorporate non-local operations in their networks. However,
without careful modification, their performances are lim-
ited by simple single-scale correlations and further reduced
by involving many ill-matches during the pixel-wise feature
matching in attention units.

Recently, CSNLN Mei et al. (2020) (the conference ver-
sion) first extends non-local attention to model cross-scale
correlation for image SR. The concurrent work IGNN Zhou
et al. (2020) explores a similar idea but extracts cross-scale
information in the LR image with a graph-based formula-
tion.While being effective for image SR, existing cross-scale
methods still suffer from certain limitations. First, they can-
not benefit general image restoration tasks such as image
denoising, compression artifacts reduction and demosaicing.
This is because, by design, they are essentially upsample
operations, where they replace a small patch (e.g. 3× 3) with
larger ones (e.g. 6×6).Moreover, the low-quality input image
itself contains severe degradation and thus may not provide
high-quality information to best facilitate image restoration,
if directly utilize recurrences from the original feature map.
In contrast, the proposed pyramid attention adopts a pyramid
structure, where the downsampling operation can naturally
reduce noise and corruption, a fact validated inmany classical
methodsZontak et al. (xxx);Michaeli and Irani (2014); Bahat
and Irani (2016). By searching for clean patches of same size
in a pyramid, ourmethod effectively improves image restora-
tion quality without changing the resolution. Further, they

have limited ability in exploring cross-scale self-similarity
by restricting the search space to the single scale defined
by the super-resolution task. On the other hand, it has been
well-demonstrated that natural images are“fractal like" and
small patches tend to repeatedly occur at multi-scales. The
pyramid attention is designed to tackle these shortcomings
by making full use of multi-scale image prior.

2.3 Deep CNNs for Image Restoration

Adopting deep-CNNs for image restoration has shown evi-
dent improvements by embracing their representative power.
In the early work, Vincent et al Vincent et al. (2008) pro-
posed to use stacked auto-encoder for image denoising. Later,
ARCNN was introduced by Dong et al Dong et al. (2015)
for compression artifacts reduction. Zhang et al Zhang et
al. (2017a) proposed DnCNN for image denosing, which
uses advanced techniques like residual learning and batch
normalization to boost performance. In IRCNN Zhang et al.
(2017b), a learned set of CNNs are used as denoising prior for
other image restoration tasks. Recent extensive efforts have
been spent into designing advanced architectures and learn-
ing methods, such as progressive structureLai et al. (2017);
Zamir et al. (2021), residual Lim et al. (2017) and dense
connection Zhang et al. (2018c); Liu et al. (2020), back-
projection Haris et al. (2018), scale-invariant convolution
Fan et al. (2019), channel Zhang et al. (2018b); Magid et
al. (2021); Anwar and Barnes (2019); Zamir et al. (2020)
and holistic attention Niu et al. (2020), look-up table Li
et al. (2022); Jo and Kim (2021) context guided convolu-
tion Zhang et al. (2021b), structured pruning Zhang et al.
(2021a), dropout mechanism Kong et al. (2022) and trans-
former models Liang et al. (2021); Zamir et al. (2022); Wang
et al. (2022); Chen et al. (2021).We refer readers to recent lit-
erature survey for a more comprehensive review Anwar et al.
(2020); Li et al. (2019); Tian et al. (2020). Most state-of-the-
art approaches Liu et al. (2018); Zhang et al. (2019); Dai et al.
(2019); Liang et al. (2021); Zamir et al. (2022); Wang et al.
(2022) incorporate non-local attention into networks to boost
representation ability. Although extensive efforts have been
made in architectural engineering, existing methods relying
on convolution and standard non-local operation can only
exploit information at a same scale.

3 Pyramid Attention

Both convolution operation and non-local attention are
restricted to same-scale information. In this section, we
introduce the novel pyramid attention, which can deal with
non-local dependency across multiple scales, as a general-
ization of non-local operations.
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3.1 Formal Definition

Non-local attention calculates a response by averaging fea-
tures over an entire image, as shown in Fig. 2a. Formally,
given an input feature map x , this operation is defined as:

yi = 1

σ(x)

∑

j

φ(xi , x j )θ(x j ), (1)

where i , j are index on the input x and output y respec-
tively. The function φ computes pair-wise affinity between
two input features. θ is a feature transformation function that
generates a new representation of x j . The output response
yi obtains information from all features by explicitly sum-
ming over all positions and is normalized by a scalar function
σ(x). While the above operation manages to capture long-
range correlation, information is extracted at a single scale.
As a result, it fails to exploit relationships to many more
informative areas of distinctive spatial sizes.

To break this scale constraint, we propose pyramid atten-
tion (Fig. 2c), which captures correlations across scales. In
pyramid attention, affinities are computed between a tar-
get feature and regions. Therefore, a response feature is a
weighted sum over multi-scale correspondences within the
input map. Formally, given a series of scale factor S =
{1, s1, s2, ..., sn}, pyramid attention can be expressed as

yi = 1

σ(x)

∑

s∈S

∑

j

φ(xi , x j
δ(s))θ(x j

δ(s)). (2)

Here δ(s) represents a s2 neighborhood centred at index j
on input x .

In other words, pyramid attention behaves in a non-local
multi-scale way by explicitly processing larger regions with
sizes specified by scale pyramid s at all position j . Note
that when only a single scale factor s = 1 is specified, the
proposed attention degrades to current non-local operation.
Hence, our approach is a more generic operation that allows
the network to fully enjoy the predictive power of natural
images.

Finding a generic solution, whichmodels cross-scale rela-
tionships, is a non-trivial problem and requires carefully
engineering. In the following section, we first address the
non-local operation between two scales and then extend it to
pyramid scales.

3.2 Scale Agnostic Attention

Given an extra scale factor s, how to evaluate the correlation
between x j and x j

δ(s) and aggregate information from x j
δ(s) to

form yi are two key steps. Here, the major difficulty comes
frommisalignment in their spatial dimensions.Commonsim-

ilarity measurements, such as dot product and embedded
Gaussian, only accept features with identical dimensions,
thus are infeasible in this case.

To mitigate the above problem, we propose to squeeze the
spatial information of x j

δ(s) into a single region descriptor.

This step is conducted by down-scaling the region x j
δ(s) in a

pixel feature z j . As we need search over the entire feature
map, we can therefore directly down-scale the original input
x (H×W) to obtain a descriptor map z ( Hs × W

s ). The cor-

relation between xi and x j
δ(s) is then represented by xi and

the region descriptor z j . Formally, scale agnostic attention
(Fig. 2b) is formulated as

yi = 1

σ(x, z)

∑

j

φ(xi , z j )θ(z j ), (3)

where z = x ↓ s.
This operation brings additional advantages. As discussed

in Sect. 1, downscaling regions into coarser descriptors
reduces noisy levels. On the other hand, since the cross-
scale recurrence represents a similar content, the structure
information will be still well-preserved after down-scaling.
Combing these two facts, region descriptors can serve as a
“cleaner version" of the target feature and a better alternative
of noisy patch matches at the original scale.

3.3 Pyramid Attention

To make full use of self-predictive power, the scale agnos-
tic attention can be extended to pyramid attention, which
computes correlations across multiple scales. In such units,
pixel-region correspondences are captured over an entire
feature pyramid. Specifically, given a series of scales S =
{1, s1, s2, .., sn}, it forms a feature pyramidF = {F1, F2, ..., Fn},
where Fi ( Hsi × W

si
) is a region descriptor map of the input x ,

obtained by down-scaling operation. In such case, the cor-
relations between any pyramid levels and the original input
x can be seen as a scale agnostic attention. Therefore, the
pyramid attention is defined as:

yi = 1

σ(x,F)

∑

z∈F

∑

j∈z
φ(xi , z j )θ(z j ). (4)

The cross-scale modeling ability is due to the fact that region
descriptor zi at different levels summarizes information over
regions of various sizes. When they are copied back to orig-
inal position i , non-local multi-scale information is fused
together to form a new response, which intuitively contains
richer and more faithful information than the matches from
a single scale.
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Fig. 2 Comparison of attentions. a Classic self-attention computes pair-wise feature correlation at scale. b Scale agnostic attention augments (a)
to capture correspondences at one additional scale. c Pyramid attention generalizes (a) and (b) by modeling multi-scale non-local dependency

3.4 Instantiation

Choices of φ, θ and σ . There are many well-explored
choices for pair-wise function φ Wang et al. (2018); Liu
et al. (2018), such as Gaussian, embedded Gaussian, dot
pot and feature concatenation. In this paper, we use embed-
ded Gaussian to follow previous best practices Liu et al.
(2018): φ(xi , z j ) = e f (xi )T g(z j ), where f (xi ) = W f xi and
g(z j ) = Wgz j .

For feature transformation function θ , we use a simple
linear embedding: θ = Wθ z j . Finally, we set σ(x,F) =∑

z∈F
∑

j∈z φ(xi , z j ). By specifying above instantiations,

the term 1
σ(x,F)

∑
x∈F �(xi , z j ) is equivalent to softmax

over all possible positions in the pyramid.

Patch based region-to-region attention. As discussed in
Sect. 1, information contained in features (for image restora-
tion tasks) is very localized. Consequently, thematching pro-
cess is usually affected by noisy signals. Previous approach
relieves this problem by restriction search space to local
region Liu et al. (2018). However, this also prevents them
from finding better correspondences that are far away from
current position.

To improve the robustness during matching, we impose
extra neighborhood similarity, which is in line with classical
non-local filtering Buades et al. (2005). As such, the pyramid
attention (Eq.3) is expressed as:

yi = 1

σ(x,F)

∑

z∈F

∑

j∈z
φ(xiδ(r), z

j
δ(r))θ(z j ), (5)

where the neighborhood is specified by δ(r). This adds a
stronger constraint on matching content that two features are
highly correlated if and only if their neighborhood are highly
similar as well. The block-wise matching allows the network
to pay more attention on relevant areas while suppressing
unrelated ones.

Implementation. The proposed pyramid attention is imple-
mented using basic convolution and deconvolution opera-
tions, as shown in Fig. 3. According to Eq.5, the pyramid
attention is equivalent to first compute the S-A attention at
each scale with the original feature map and then fuse the
results later. The inner summation

∑
j∈z φ(xiδ(r), z

j
δ(r))θ(z j )

corresponds to the scale agnostic attention between a down-
scaled feature map z ∈ F and the original feature map x .
The results are then aggregated over z and normalized by
σ . Matching scores can be expressed as convolution over
the input x using r × r patches extracted from the feature
pyramid, followed by a softmax. To obtain a final response,
we extract patches from the transformed feature map (by θ )
to conduct a deconvolution over the matching score. Note
that the proposed operation is fully convolutional, differen-
tiable and accepts any input resolutions,which can beflexibly
embedded into many standard architectures.

3.5 PANet: Pyramid Attention Networks

To show the effectiveness of our pyramid attention, we
choose a simple ResNet as our backbone without any
architectural engineering. The proposed image restoration
network is illustrated in Fig. 3. We remove batch normaliza-
tion in each residual block, following the practice in Lim et
al. (2017). Similar to many restoration networks, we add a
global pathway from the first feature to the last one, which
encourages the network bypass low frequency information.
We insert a single pyramid attention in the middle of the
network.

Given a set of N paired images I kLQ-I
k
HQ , we optimize the

L1 loss between I kHQ and recovered image I kRQ ,

L1 = 1

N

N∑

i=1

‖I KRQ − I KHQ‖, (6)
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Fig. 3 PANet with the proposed pyramid attention (PA). Pyramid attention captures multi-scale correlation by computing Scale Agnostic (S-A)
attention at each scale with the original feature map x (which corresponds to the inner summation

∑
j∈z φ(xiδ(r), z

j
δ(r))θ(z j ) in eq. 5), and fusing

the results over z ∈ F

4 Experiments

4.1 Datasets and EvaluationMetrics

The proposed pyramid attention and PANet are evaluated on
major image restoration tasks: image denoising, demosaic-
ing and compression artifacts reduction and super-resolution.
For fair comparison, we follow the setting specified by
RNANZhanget al. (2019) for imagedenoising, demosaicing,
and compression artifacts reduction. We use DIV2K Timo-
fte et al. (2017) as our training set, which contains 800 high
quality images. We report results on standard benchmarks
using PSNR and/or SSIM Wang et al. (2004).

4.2 Implementation Details

For pyramid attention, we set the scale factors S =
{1.0, 0.9, 0.8, 0.7, 0.6}, so that we construct a 5 level feature
pyramid within the attention block. To build the pyramid,
we use simple bi-cubic interpolation to rescale feature maps.
While computing correlations, we use 3 × 3 small patches
centered at target features. For fair comparison with repre-

sentative non-local approach RNAN, we adopt a backbone
similar to theirs, but remove all engineered designs such as
multi-scale and multi-branch, resulting in a plain ResNet.
The proposed PANet contains 80 residual blocks with one
pyramid attention module inserted after the 40-th block. All
features have 64 channels, except for those used in embedded
Gaussian, where the channel number is reduced to 32.

During training, each mini-batch consists of 16 patches
with size 48 × 48. We augment training images using ver-
tical/horizontal flipping and random rotation of 90◦, 180◦,
and 270◦. The model is optimized by Adam optimizer with
β1 = 0.9, β2 = 0.999, and ε = 10−8. The learning rate
is initialized to 10−4 and reduced to a half after every 200
epochs. Our model is implemented using PyTorch Paszke et
al. (2017) and trained on Nvidia TITANX GPUs.

4.3 Image Denoising

Following RNAN Zhang et al. (2019), PANet is evalu-
ated on standard benchmarks for image denoising: Kodak24
(http://r0k.us/graphics/kodak/), BSD68 Martin et al. (2001),
and Urban100 Huang et al. (2015). We create noisy images
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Table 1 Quantitative evaluation of state-of-the-art approaches on color image denoising

Method Kodak24 BSD68 Urban100

10 30 50 70 10 30 50 70 10 30 50 70

CBM3D 36.57 30.89 28.63 27.27 35.91 29.73 27.38 26.00 36.00 30.36 27.94 26.31

TNRD 34.33 28.83 27.17 24.94 33.36 27.64 25.96 23.83 33.60 27.40 25.52 22.63

RED 34.91 29.71 27.62 26.36 33.89 28.46 26.35 25.09 34.59 29.02 26.40 24.74

DnCNN 36.98 31.39 29.16 27.64 36.31 30.40 28.01 26.56 36.21 30.28 28.16 26.17

MemNet N/A 29.67 27.65 26.40 N/A 28.39 26.33 25.08 N/A 28.93 26.53 24.93

IRCNN 36.70 31.24 28.93 N/A 36.06 30.22 27.86 N/A 35.81 30.28 27.69 N/A

FFDNet 36.81 31.39 29.10 27.68 36.14 30.31 27.96 26.53 35.77 30.53 28.05 26.39

RNAN 37.24 31.86 29.58 28.16 36.43 30.63 28.27 26.83 36.59 31.50 29.08 27.45

PANet 37.35 31.96 29.65 28.20 36.50 30.70 28.33 26.89 36.80 31.87 29.47 27.87

Best results are highlighted in bold

Fig. 4 Visual comparison for color image denoising with noise level σ = 50
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Table 2 Quantitative evaluation
of state-of-the-art approaches on
color image demosaicing

Method McMaster18 Kodak24 BSD68 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Mosaiced 9.17 0.1674 8.56 0.0682 8.43 0.0850 7.48 0.1195

IRCNN 37.47 0.9615 40.41 0.9807 39.96 0.9850 36.64 0.9743

RNAN 39.71 0.9725 43.09 0.9902 42.50 0.9929 39.75 0.9848

PANet 40.00 0.9737 43.29 0.9905 42.86 0.9933 40.50 0.9854

Best results are highlighted in bold

Fig. 5 Visual comparison for image CAR with JPEG quality q = 10

by adding AWGN noises with σ = 10, 30, 50, 70. We
compare our approach with 8 state-of-the-art methods:
CBM3DDabov et al. (2007a), TNRDChen and Pock (2017),
RED Mao et al. (2016), DnCNN Zhang et al. (2017a),
MemNetTai et al. (2017), IRCNNZhang et al. (2017b), FFD-
Net Zhang et al. (2017c), and RNAN Zhang et al. (2019).

As shown in Table 1, PANet achieved best performance
on all datasets and noise levels. Our method surpassed
FFDNet by around 0.6dB, 0.4dB and 1.3dB on three bench-
marks respectively. PANet also yielded better results than
prior state-of-the-art RNAN, which has well-engineered net-
work and multiple non-local attention blocks. These results
demonstrate that pyramid attention is indeed useful for image
restoration. A single pyramid attention can drive the fair sim-
ple backbone to the state-of-the-art. One may further notice
that PANet performs significantly well on Urban100 dataset,
withmore than 0.3 dB improvements overRNANon all noise
levels. This is because pyramid attention allows the network
to explicitly capture abundant cross-scale self-exemplars in
urban scenes. In contrast, traditional non-local attention, even
with a multi-scale network structure, fails to explore those
multi-scale relationships.

We further present qualitative evaluations on BSD68 and
Urban100. The results are shown in Fig. 4. TNRD, RED,
DnCNN and IRCNN cannot remove the noise pattern and
create blur artifacts over high-frequency patterns. FFDNet
and RNAN are able to reconstruct a clearer image but fail to
recover the underlying textures. In contrast, by relying on a

single learned pyramid attention, PANet managed to produce
the most accurate and faithful restoration results.

4.4 Image Demosaicing

For image demosaicing,we conduct evaluations onKodak24,
McMaster Zhang et al. (2017b), BSD68, and Urban100, fol-
lowing settings in RNAN Zhang et al. (2019). We compare
our approach with recent state-of-the-arts IRCNN Zhang
et al. (2017b) and RNAN Zhang et al. (2019). As shown
in Table 2, mosaic corruption significantly reduced image
quality in terms of PSNR and SSIM. RNAN and IRCNN
can remove these corruptions to some degree and lead to
relatively high-quality restoration. Our approach yields the
best reconstruction, outperforming RNAN by 0.3dB, 0.2dB,
0.3dB and 0.7dB on four datasets respectively. These demon-
strate advantages of exploiting multi-scale correlations.

4.5 Image Compression Artifacts Reduction

For image compression artifacts reduction (CAR), we com-
pare our method with 5 most recent approaches: SA-
DCT Foi et al. (2007), ARCNN Dong et al. (2015),
TNRDChen and Pock (2017), DnCNN Zhang et al. (2017a),
and RNAN Zhang et al. (2019). We present results on
LIVE1 Sheikh et al. (2005) and Classic5 Foi et al. (2007),
following the same settings in RNAN. To obtain the low-
quality compressed images, we follow the standard JPEG
compression process and use Matlab JPEG encoder with
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Table 4 Model size comparison Methods RED DnCNN MemNet RNAN(1LB1NL) RNAN PANet-S PANet

Parameters 4131K 672K 677K 1494K 7409K 665K 5957K

PSNR (dB) 26.40 28.16 26.53 28.36 29.15 28.80 29.47

Table 5 Quantitative results on SR benchmark datasets

Method Scale Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

LapSRN Lai et al. (2017) ×2 37.52 0.9591 33.08 0.9130 31.08 0.8950 30.41 0.9101 37.27 0.9740

MemNet Tai et al. (2017) ×2 37.78 0.9597 33.28 0.9142 32.08 0.8978 31.31 0.9195 37.72 0.9740

SRMDNF Zhang et al. (2018a) ×2 37.79 0.9601 33.32 0.9159 32.05 0.8985 31.33 0.9204 38.07 0.9761

DBPN Haris et al. (2018) ×2 38.09 0.9600 33.85 0.9190 32.27 0.9000 32.55 0.9324 38.89 0.9775

RDN Zhang et al. (2018c) ×2 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353 39.18 0.9780

RCAN Zhang et al. (2018b) ×2 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786

NLRN Liu et al. (2018) ×2 38.00 0.9603 33.46 0.9159 32.19 0.8992 31.81 0.9249 – –

SRFBN Li et al. (2019) ×2 38.11 0.9609 33.82 0.9196 32.29 0.9010 32.62 0.9328 39.08 0.9779

OISR He et al. (2019) ×2 38.21 0.9612 33.94 0.9206 32.36 0.9019 33.03 0.9365 – –

SAN Dai et al. (2019) ×2 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 39.32 0.9792

IGNN Zhou et al. (2020) ×2 38.24 0.9613 34.07 0.9217 32.41 0.9025 33.23 0.9383 39.35 0.9786

NSR Fan et al. (2020) ×2 38.23 0.9614 33.94 0.9203 32.34 0.9020 33.02 0.9367 39.31 0.9782

EDSR Lim et al. (2017) ×2 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773

PA-EDSR (ours) ×2 38.33 0.9617 34.22 0.9224 32.42 0.9027 33.38 0.9392 39.37 0.9782

LapSRN Lai et al. (2017) ×3 33.82 0.9227 29.87 0.8320 28.82 0.7980 27.07 0.8280 32.21 0.9350

MemNet Tai et al. (2017) ×3 34.09 0.9248 30.00 0.8350 28.96 0.8001 27.56 0.8376 32.51 0.9369

SRMDNF Zhang et al. (2018a) ×3 34.12 0.9254 30.04 0.8382 28.97 0.8025 27.57 0.8398 33.00 0.9403

RDN Zhang et al. (2018c) ×3 34.71 0.9296 30.57 0.8468 29.26 0.8093 28.80 0.8653 34.13 0.9484

RCAN Zhang et al. (2018b) ×3 34.74 0.9299 30.65 0.8482 29.32 0.8111 29.09 0.8702 34.44 0.9499

NLRN Liu et al. (2018) ×3 34.27 0.9266 30.16 0.8374 29.06 0.8026 27.93 0.8453 – –

SRFBN Li et al. (2019) ×3 34.70 0.9292 30.51 0.8461 29.24 0.8084 28.73 0.8641 34.18 0.9481

OISR He et al. (2019) ×3 34.72 0.9297 30.57 0.8470 29.29 0.8103 28.95 0.8680 – –

SAN Dai et al. (2019) ×3 34.75 0.9300 30.59 0.8476 29.33 0.8112 28.93 0.8671 34.30 0.9494

IGNN Zhou et al. (2020) ×3 34.72 0.9298 30.66 0.8484 29.31 0.8105 29.03 0.8696 34.39 0.9496

NSR Fan et al. (2020) ×3 34.62 0.9289 30.57 0.8475 29.26 0.8100 28.83 0.8663 34.27 0.9484

EDSR Lim et al. (2017) ×3 34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653 34.17 0.9476

PA-EDSR (ours) ×3 34.84 0.9306 30.71 0.8488 29.33 0.8119 29.24 0.8736 34.46 0.9505

LapSRN Lai et al. (2017) ×4 31.54 0.8850 28.19 0.7720 27.32 0.7270 25.21 0.7560 29.09 0.8900

MemNet Tai et al. (2017) ×4 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630 29.42 0.8942

SRMDNF Zhang et al. (2018a) ×4 31.96 0.8925 28.35 0.7787 27.49 0.7337 25.68 0.7731 30.09 0.9024

DBPN Haris et al. (2018) ×4 32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946 30.91 0.9137

RDN Zhang et al. (2018c) ×4 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028 31.00 0.9151

RCAN Zhang et al. (2018b) ×4 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173

NLRN Liu et al. (2018) ×4 31.92 0.8916 28.36 0.7745 27.48 0.7306 25.79 0.7729 – –

SRFBN Li et al. (2019) ×4 32.47 0.8983 28.81 0.7868 27.72 0.7409 26.60 0.8015 31.15 0.9160

OISR He et al. (2019) ×4 32.53 0.8992 28.86 0.7878 27.75 0.7428 26.79 0.8068 – –

SAN Dai et al. (2019) ×4 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169

IGNN Zhou et al. (2020) ×4 32.57 0.8998 28.85 0.7891 27.77 0.7434 26.84 0.8090 31.28 0.9182

NSR Fan et al. (2020) ×4 32.55 0.8987 28.79 0.7876 27.72 0.7414 26.61 0.8025 31.10 0.9145

EDSR Lim et al. (2017) ×4 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148

PA-EDSR (ours) ×4 32.65 0.9006 28.87 0.7891 27.76 0.7445 27.01 0.8140 31.29 0.9194

123



3218 International Journal of Computer Vision (2023) 131:3207–3225

Ta
bl
e
6

B
en
ch
m
ar
k
re
su
lts

w
ith

B
D
an
d
D
N
de
gr
ad
at
io
n
m
od
el
s.
A
ve
ra
ge

PS
N
R
/S
SI
M

va
lu
es

fo
r
sc
al
in
g
fa
ct
or

×3
D
at
as
et

M
od
el

B
ic
ub
ic

SR
C
N
N

FS
R
C
N
N

V
D
SR

IR
C
N
N

R
D
N

R
C
A
N

PA
-E
D
SR

D
on
g
et
al
.(
20
14
)

D
on
g
et
al
.(
20
16
)

K
im

et
al
.(
20
16
)

Z
ha
ng

et
al
.(
20
17
b)

Z
ha
ng

et
al
.(
20
18
c)

Z
ha
ng

et
al
.(
20
18
b)

(o
ur
s)

Se
t5

B
D

28
.7
8/
0.
83
08

32
.0
5/
0.
89
44

26
.2
3/
0.
81
24

33
.2
5/
0.
91
50

33
.3
8/
0.
91
82

34
.5
8/
0.
92
80

34
.7
0/
0.
92
88

34
.8
2/
0.
92
98

D
N

24
.0
1/
0.
53
69

25
.0
1/
0.
69
50

24
.1
8/
0.
69
32

25
.2
0/
0.
71
83

25
.7
0/
0.
73
79

28
.4
7/
0.
81
51

-/
-

28
.6
2/
0.
81
94

Se
t1
4

B
D

26
.3
8/
0.
72
71

28
.8
0/
0.
80
74

24
.4
4/
0.
71
06

29
.4
6/
0.
82
44

29
.6
3/
0.
82
81

30
.5
3/
0.
84
47

30
.6
3/
0.
84
62

30
.7
7/
0.
84
78

D
N

22
.8
7/
0.
47
24

23
.7
8/
0.
58
98

23
.0
2/
0.
58
56

24
.0
0/
0.
61
12

24
.4
5/
0.
63
05

26
.6
0/
0.
71
01

-/
-

26
.6
9/
0.
71
48

B
10
0

B
D

26
.3
3/
0.
69
18

28
.1
3/
0.
77
36

24
.8
6/
0.
68
32

28
.5
7/
0.
78
93

28
.6
5/
0.
79
22

29
.2
3/
0.
80
79

29
.3
2/
0.
80
93

29
.3
6/
0.
81
13

D
N

22
.9
2/
0.
44
49

23
.7
6/
0.
55
38

23
.4
1/
0.
55
56

24
.0
0/
0.
57
49

24
.2
8/
0.
59
00

25
.9
3/
0.
65
73

-/
-

25
.9
9/
0.
66
23

U
rb
an
10
0

B
D

23
.5
2/
0.
68
62

25
.7
0/
0.
77
70

22
.0
4/
0.
67
45

26
.6
1/
0.
81
36

26
.7
7/
0.
81
54

28
.4
6/
0.
85
82

28
.8
1/
0.
86
47

29
.1
5/
0.
87
06

D
N

21
.6
3/
0.
46
87

21
.9
0/
0.
57
37

21
.1
5/
0.
56
82

22
.2
2/
0.
60
96

22
.9
0/
0.
64
29

24
.9
2/
0.
73
64

-/
-

25
.3
4/
0.
75
22

M
an
ga
10
9

B
D

25
.4
6/
0.
81
49

29
.4
7/
0.
89
24

23
.0
4/
0.
79
27

31
.0
6/
0.
92
34

31
.1
5/
0.
92
45

33
.9
7/
0.
94
65

34
.3
8/
0.
94
83

34
.5
6/
0.
95
00

D
N

23
.0
1/
0.
53
81

23
.7
5/
0.
71
48

22
.3
9/
0.
71
11

24
.2
0/
0.
75
25

24
.8
8/
0.
77
65

28
.0
0/
0.
85
91

-/
-

28
.2
4/
0.
86
55

123



International Journal of Computer Vision (2023) 131:3207–3225 3219

Fig. 6 Visual comparison for 4× SR on Urban100 dataset

quality q = 10, 20, 30, 40. For fair comparison, the results
are only evaluated on Y channel in YCbCr Space.

The quantitative evaluation are reported in Table 3. By
incorporating pyramid attention, PANet obtains best results
on bothLIVE1 andClassic5with all quality levels. For exam-
ple, on Classic5 and with q = 20, our approach achieves
around 0.25dB and 0.73dB gains over RNAN and DnCNN
respectively. Similar improvements can also be observed
when comparing with other methods. These results shows
the effectiveness of the proposed pyramid attention.

We further present visual comparisons on the most chal-
lenging quality level q = 10 in Fig. 5. One can see that the
proposed approach successfully reduced compression arti-
facts and recovered the most image details. This is mainly
because our PANet captures non-local relationships in a
multi-scale way, helping to reconstruct more faithful details.

4.6 Model Size Analyses

We report our model size and compare it with other advanced
image denoising approaches in Table 4. To compare with

light weight models, we also bulid a small PANet-S with
only 8 residual blocks. One can see that PANet achieves
the best performance with a lighter and much simpler archi-
tecture, as compared to the prior state-of-the-art approach
RNAN. Similarly, PANet-S significantly outperforms other
light weight models using only less than 50% parameters of
RNAN (1LB+1NLB). Such observations indicate the great
advantages brought by our pyramid attention module. In
practice, our proposed pyramid attention module can be
inserted in related networks.

4.7 Image Super Resolution

To further demonstrate the generality of pyramid attention,
we present image super-resolution experiments. Here we
follow Zhang et al. (2018c) and consider three different
degradation models to simulate LR images. For BI model,
we use bi-cubic downsampling to create LR images with
scale factor ×2, ×3 and ×4, by leveraging matlab imresize
function. For BD setting, LR images are created by filtering
HR images with a Gaussian blur kernel of size 7 × 7 before
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downsampling. For DN model, images are first downsam-
pled and then Gaussian noise with σ = 30 is added to the
LR images. We evaluate methods with scale factor ×3 for
BD and DN settings.

To better show the effectiveness of the proposed pyramid
attention, we choose EDSR Lim et al. (2017), the simplest
network structure consisting of residual blocks and convolu-
tions only, as our backbone. A single pyramid attention block
is inserted after 16th residual block (denote as PA-EDSR).
Network-level designs, such as back-projection (DBPN),
dense connection (RDN) and channel attention (RCAN and
SAN), which are perpendicular to our method, can also be
easily combined with pyramid attention for superior perfor-
mance.

4.7.1 Comparison with BI Degradation Model

We compare it with 11 state-of-the-art approches: LapSRN
Lai et al. (2017), MemNet Tai et al. (2017), SRMDNF Zhang
et al. (2017b), EDSR Lim et al. (2017), DBPN Haris et
al. (2018), RDN Zhang et al. (2018c), RCAN Zhang et al.
(2018b), NLRN Liu et al. (2018), SRFBN Li et al. (2019),
OISR He et al. (2019), SAN Dai et al. (2019), IGNN Zhou
et al. (2020) and NSR Fan et al. (2020).

We report experiment results in Table 5. Without any
architectural engineering, our simplePA-EDSRachieves best
performance on almost all benchmarks and scales. In partic-
ular, our method outperforms a concurrent work IGNN on
almost all entries, which is also built upon EDSR and reply-
ing on one cross-scale module to improve performances,
indicating our design can make better use of self-similarity
information. With a single pyramid attention, PA-EDSR also
shows huge advantages over NLRN, which is the first non-
local based approach for image SR and contains 12 standard
non-local operations. It is worth noting that SAN is a very
competitive approach,which containsmultiple standard non-
local attentions and more than 200 residual blocks, i.e., ×7
deeper then ours. Even in this case, PA-EDSR still shows
superior results on almost all entries. These results demon-
strate the effectiveness of the proposed pyramid attention.
When comparing with EDSR backbone, one can see that
the additional pyramid attention brings constant improve-
ments on all datasets, especially on Urban100 (0.4dB) and
Manga109 (0.3dB). This is because images in these datasets
contain abundant structural recurrences, such as edges and
corners, which can more benefits from exploring cross-scale
internal hints. We also observed considerable performance
gains on natural image datasets: Set5 (0.2dB), Set14 (0.2dB)
and B100 (0.1dB). This is accorded with previous observa-
tion that cross-scale self-recurrence is a common property
for natural images Glasner et al. (2009). We claim that cross-
scale intrinsic priors are indeed effective for a more faithful
reconstruction.

Visual results are shown in Fig. 6. Our method perceptu-
ally outperforms other state-of-the-arts by a largemargin. For
these repeated high-frequency structures, PA-EDSR yields
the most accurate reconstruction. In contrast, SAN with
standardNLattention fails to handle these cases. This demon-
strates that exploring internal HR hints from multi-scale
self-recurrences indeed leads to a better local recovery.

4.7.2 Comparison with BD and DN Degradation Models

Following Zhang et al. (2018c), we report our results with
BD andDN degradationmodels and compare it with SRCNN
Dong et al. (2014), FSRCNNDong et al. (2016), VDSRKim
et al. (2016), IRCNN Zhang et al. (2018a), RDN Zhang et al.
(2018c) and RCANZhang et al. (2018b). Average PSNR and
SSIMresults on5benchmarkswith scale factor×3 are shown
in Table 6. Ourmethod achieves the best performances for all
entries. The constant performance gains over other methods
indicate the proposed pyramid attention is indeed robust and
powerful for BD and DN degradation models.

4.7.3 Performance on Lightweight Backbone

To better study the effectiveness of the proposed pyramid
attention,we built a smallermodel PANet-Swith amodel size
comparable to DnCNN Zhang et al. (2017a). Specifically,
PANet-S contains 8 ResBlocks with a channel number of 64.
We insert one pyramid attentionmodule after the 4-th blocks.
As shown inTable 7, PANet-S achieves the best performances
on all datasets with the smallest model size, demonstrating
the performance of pyramid attention can be well-preserved
on the lightweight backbone. Moreover, when comparing
with RNAN(1NL), it can be seen that PANet-S with less than
half of the parameters can still maintain 0.4dB performance
gain. This shows that exploring of multi-scale similarity with
pyramid attention is indeed more beneficial.

4.7.4 Performance on Lightweight Blind Image Denoising

To better demonstrate the effectiveness of our method, we
conduct an experiment on blind image denoising with a
lightweight backbone. We use the same training and test pro-
tocol inDnCNNand compare PANet-Swith it. PANet-S has a
similar number of parameters so that allows fair comparison.
Results are reported in Table 8. The pretrained blind DnCNN
model is derived from the official GitHub repository. One can
see that our method outperforms DnCNN by a large margin,
proving its effectiveness on blind image denoising.

4.7.5 Efficiency and Performance Analysis

Here we present the efficiency (FLOPs, running time, and
peak memory consumption) and performance comparison
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Table 7 Quantitative
comparison on lightweight
backbone

σ = 50 DnCNN MemNet RNAN (1NL) PANet-S (1PA)
Size 672K 677K 1494K 655K

Kodak 29.16 27.65 – 29.38

CBSD68 28.01 26.33 – 28.15

Urban100 28.16 26.53 28.36 28.80

Table 8 Quantitative comparison on blind image denoising

Dataset Kodak CBSD68 Urban100

30 50 30 50 30 50

DnCNN 31.28 28.96 30.34 27.95 30.00 27.59

PANet-S 31.67 29.31 30.50 28.11 31.18 28.69

(on Set14 ×2) with prior state-of-the-art SAN Dai et al.
(2019) and our conference version CSNLNMei et al. (2020).
For efficiency comparison, models are evaluated at input size
100×100. The running time is the average of 1K times on a
single Nvidia RTX 2070 GPU.

We report results in Table 9. One may notice that PA-
EDSR is considerablymore efficient than its previous version
CSNLN,with significant reductions in terms of running time,
memory consumption and FLOPs. Specifically, PA-EDSR
managed to reduce more than 60% running time and com-
putational cost of CSNLN, while achieving comparable and
better quantitative results. Moreover, we found it has com-
parable running time and better performance with SAN.
Though PA-EDSR has more parameters due to the EDSR
backbone (40.7M), the attention module itself is lightweight.
The additional pyramid attention only cost 0.2%extra param-
eters in total. Therefore,we conclude that PA-EDSRachieves
better trade-off between efficiency and performance.

A similar conclusion can be derived by evaluating the run-
time on Urban100 dataset which contains large images (with
an average size of around 1K resolution). It can be seen that
our method achieves the best runtime speed. It is interest-
ing to see that the runtime of SAN increases significantly on
large images as it requires computing second-order statistics.
In contrast, our method is 60% more efficient.

4.8 Visualization of AttentionMap

To fully demonstrate that our pyramid attention captures
multi-scale correlations, we visualize its attention map in
Fig. 7. For illustration purpose, the selected images contain
abundant self-exemplars at different locations and scales.

From Fig. 7, we find the attention maps follow distinct
distributions over scales, demonstrating that our attention is
able to focus on informative regions at multiple scales. It is
interesting to point out, as level increases, the most engaged

patches move downwards. This is in line with that larger pat-
terns, such as windows, appear at bottom in selected images.
By capturing multi-scale correlations, the network managed
to utilize these informative patches to improve restoration.

4.9 Ablation Study

4.9.1 Pyramid Attention Module

To verify the effectiveness of pyramid attention, we con-
duct control experiments on image denosing tasks (σ = 30).
The baseline module is constructed by removing the atten-
tion block, resulting in a simple ResNet. We set the number
of residual blocks R = 16 in this experiment. In Table 10,
baseline achieves 30.86 dB on Urban100. To compare with
standard non-local (self-) attention operations, we construct
a non-local baseline by replacing the pyramid attention with
non-local attention.We further construct a scale-agnostic (S-
A) attention baseline, which is a special case of the proposed
pyramid attention with only one additional pyramid level.
From the result in column 2, we can see that single-scale non-
local operation is able to bring improvements. Extending it
to the scale-agnostic attention further brings about 0.09 dB
improvement due to the exploration of information at another
scale. However, the best performance is achieved by using
the proposed pyramid attention, with brings 0.43 dB over
the baseline, 0.15 dB over the standard non-local model and
0.06dB over the scale-agnostic attention. These results indi-
cates the proposed pyramid attention can be served as a better
alternative to model multi-scale long-range dependency than
current non-local operation, which is of central importance
for reconstructing more faithful images.

4.9.2 Matching: Pixel-Wise Versus Block-Wise

While classic non-local attentions compute pixel-wise (i.e.
1×1) feature correlation,we find block-wisematching yields
much better restorations in practice. Because such design
is perpendicular to the use of feature pyramid, to study its
effectiveness, we build models upon the standard non-local
operation and adopt different matching strategies, where the
patch size is set to 1 × 1 (i.e. pixel-wise), 3 × 3 and 5 × 5.
As shown in Table 11, when using block matching, the per-
formance is improve from 31.14 dB to 31.21 dB. This is
because block-matching involves extra similarity constraint
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Table 9 Efficiency comparison
with attention-based methods

Method PSNR Para. Urban100 100 × 100

Time (s) Time (ms) Mem (MB) FLOPs (G)

SAN 34.07 15.7M 5.84 320 1188 1120

CSNLN 34.12 3.1M 16.5 900 982 7129

PA-EDSR 34.22 40.8M 2.35 327 859 2718

Fig. 7 Visualization of correlationmaps of pyramid attention.Maps are
rescaled to same size for visualization purpose. Brighter color indicates
higher engagement. One can see that the attention focuses on different

locations at each scale, indicating the module is able to exploit multi-
scale recurrences to improve restoration

Table 10 Comparison of
different attention methods on
Urban100

σ = 30 baseline N-L (self-) attention S-A attention Pyramid attention

PSNR 30.86 31.14 31.23 31.29

Table 11 Comparison between
pixel-wise matching and
block-wise matching on
Urban100. Results are based on
the standard non-local attention
(i.e. without pyramidal design)

σ = 30 1 × 1 3 × 3 5 × 5

PSNR 31.14 31.21 31.18

on nearby pixels, thus can better distinguish highly relevant
correspondences from noisy ones. These results demonstrate
that small patches are indeedmore robust descriptors for sim-
ilarity measurements. However, when further enlarging the
patch size to 5×5, the performance begins to decrease. This is
mainly because larger patches tend to impose an over-strong
restriction on the content similarity, and therefore prevent
many correlated patches from being leveraged by the net-
work.

4.9.3 Feature Pyramid Levels

As discussed above, the key difference between classic non-
local operation and pyramid attention is that our module
allows the network to utilize correspondences at multiple
scales. Here we investigate the influences of pyramid lev-
els. We conduct control experiments by gradually adding

Fig. 8 Ablation study on pyramid levels

more levels to the feature pyramid until it covers the full
possible range. The final pyramid consists of 10 layers with
scale factors 1.0 to 0.1. As shown in Fig. 8, when more lay-
ers are added, we observe constant performance gains. The
best performance is obtained when all levels are included.
This is mainly because, as the search space is progressively
expanded to more scales, the attention unit has higher possi-
bilities to find more informative correspondences beyond the
original image scale. Although higher levels only increase a
small portion of the search space, thanks to the downscal-
ing operation, patches at these higher levels contain more
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Table 12 Results for models
with pyramid attention inserted
at different residual blocks on
Urban100 (σ = 30)

Pre ✓ ✓ ✓ ✓
Mid ✓ ✓ ✓ ✓
Post ✓ ✓ ✓ ✓

PSNR 30.86 31.07 31.29 31.18 31.33 31.33 31.39 31.48

Table 13 Effects of pyramid attention on different backbones (σ = 30)

σ = 30 Dense PA-Dense U-Net PA-U-Net

Kodak24 31.45 31.66 31.54 31.67

BSD68 30.34 30.49 30.40 30.48

Urban100 30.72 31.21 30.81 31.23

"clean" information that could still benefit image restoration.
This explains why searching at a very smaller scale (e.g.,
s=0.2) can still improve performance. These results indicate
that modeling multi-scale correlation is indeed beneficial for
improving restoration.

4.9.4 Positions in Neural Networks

Where should we add pyramid attention to the networks,
in order to fully unleash its potential? Table 12 compares
pyramid attentions inserted to different stages of a ResNet.
Here we consider 3 typical positions: after the 1st resid-
ual block representing preprocessing, after the 8th residual
block, which is the middle of the network, and after the last
residual block representing post-processing. From the first
4 columns, we find that inserting our module at any stages
bring evident improvements. The largest performance gain is
achieved by inserting it at middle. Moreover, when multiple
modules are combined, the restoration quality further boosts.
The best result is achieved by including modules at all three
positions.

4.9.5 Effects of Backbones

The proposed pyramid attention is a generic operation and
its effectiveness is robust to specific architecture design.
To demonstrate this, we evaluate the pyramid attention on
DenseNet and U-Net, which are two commonly used net-
work structures for image restoration. Here we construct a
18-layer DenseNet and a 3-level 26-layer U-Net with one
additional pyramid attention at the end. Results are presented
in Table 13. One can see that adding pyramid attention con-
stantly improves the performances. Itworth noting thatU-Net
inherently has multi-scale built in but pyramid attention can
still bring considerable improvements. This is becauseU-Net
can be seen as a specific instantiation of modeling multi-
scale self-similarities, where only in-place self-similarities
are fused together. In contrast, pyramid attention generalizes

this operation by exhaustively modeling multi-scale non-
local correlations.

5 limitation and FutureWork

While ourmethod is capable to reconstruct clear and accurate
image details, exhaustively computing the non-local correla-
tions across scales adds extra computation burden. Therefore,
how to further improve its efficiency for real-time infer-
ence is worth exploring. Recent research demonstrates Mei
et al. (2021) that exploring sparsity in non-local operation
can effectively reduce computational costs from quadratic
to asymptomatic linear, and thus investigating sparse rep-
resentation in pyramid attention may be a promising future
direction. Since pyramid attention is a generic operation, it
can be further applied to other image restoration tasks such as
inpainting, deblurring and deraining or combinedwith recent
vision transformers for superior performance. In addition, it
is also interesting to combine PANetwith adversarial training
and perceptual loss to pursue more visual pleasing restora-
tion.

6 Conclusion

In this paper, we proposed a simple and generic pyramid
attention for image restoration. The module generalizes clas-
sic self-attention to capture non-local relationships at mul-
tiple image scales. It is fully differentiable and can be used
into any architectures. We demonstrate that modeling multi-
scale correspondences brings significant improvements for
the general image restoration tasks of image denosing, demo-
saicing, compression artifacts reduction and super resolution.
On all tasks, a simple backbone with one pyramid attention
achieves superior restoration accuracy over prior state-of-
the-art approaches. We believe pyramid attention should be
used as a common building block in future neural networks.

Data Availability All training/testing data and code that support the
findings of this study have been deposited in our GitHub repository
https://github.com/SHI-Labs/Pyramid-Attention-Networks. Additional
visual results and pre-trained models reported in the paper can be found
through this link.
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