
International Journal of Computer Vision manuscript No.
(will be inserted by the editor)

Semantic Contrastive Bootstrapping for Single-positive
Multi-label Recognition

Cheng Chen† · Yifan Zhao† · Jia Li∗

Received: date / Accepted: date

Abstract Learning multi-label image recognition with

incomplete annotation is gaining popularity due to its

superior performance and significant labor savings when

compared to training with fully labeled datasets. Exist-

ing literature mainly focuses on label completion and

co-occurrence learning while facing difficulties with the

most common single-positive label manner. To tackle

this problem, we present a semantic contrastive boot-

strapping (Scob) approach to gradually recover the cross-

object relationships by introducing class activation as

semantic guidance. With this learning guidance, we then

propose a recurrent semantic masked transformer to ex-

tract iconic object-level representations and delve into

the contrastive learning problems on multi-label clas-

sification tasks. We further propose a bootstrapping

framework in an Expectation-Maximization fashion that
iteratively optimizes the network parameters and re-

fines semantic guidance to alleviate possible disturbance

caused by wrong semantic guidance. Extensive exper-

imental results demonstrate that the proposed joint

learning framework surpasses the state-of-the-art mod-

els by a large margin on four public multi-label im-
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age recognition benchmarks. Codes can be found at

https://github.com/iCVTEAM/Scob.
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1 Introduction

Recognizing multiple visual objects within one image is

a natural and fundamental problem in computer vision,

as it provides prerequisites for many downstream appli-

cations, including segmentation (Zhang et al. 2021b),

scene understanding (Sener and Koltun 2018), and at-

tribute recognition (Jia et al. 2021). With the help

of sufficient training annotations, existing research ef-
forts (Rao et al. 2021; Chen et al. 2019b; Hu et al. 2020;

Zhao et al. 2021; Chen et al. 2019a; Wang et al. 2016;

Huynh and Elhamifar 2020; Bucak et al. 2011; Car-

ion et al. 2020) have undoubtedly made progress via

supervised deep learning models. However, annotating

all occurrences of candidate objects, especially small

ones, is extremely tedious and labor-consuming, which

also usually introduces incorrect noisy labels. Recent

approaches towards this challenge prefer to use partial

weak labels rather than full annotations, making data

collecting considerably easier. In addition, Durand et al.

(2019) have demonstrated that training sufficient weak

labels shows more promising results than those trained

with fully labeled but noisy datasets.

Motivated by this huge potential in multi-label learn-

ing, representative works tend to learn the co-occurrence

correlations between instances (Wu et al. 2018; Chen

et al. 2021, 2022). The other line of work attempts

to refine the labeling matrix by pretraining on an ac-

curate fully labeled dataset (Jiang et al. 2018; Chen
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Fig. 1 Illustrations of our motivation. Images usually
consist of multiple semantic objects while only one is labeled.
To mitigate the lack of supervision, we propose a semantic
contrastive bootstrapping method that first introduces the
gradient-based Class Activation Maps (CAMs) to guide the
object-level feature extraction and then build semantic con-
trastive learning among the positive samples and negative In-
stance Priority Trees (IPT). To ensure the quality of CAMs,
we conduct an EM-based bootstrapping optimization to it-
eratively update the network features (including IPT) and
CAMs.

et al. 2019a) or annotating additional negative train-

ing samples (Durand et al. 2019). Nevertheless, these

works inevitably fail to handle extreme circumstances

when there are extremely few objects labeled in the

same image. As the pioneering work in this field, Cole

et al. (2021) established the single positive setting for

multi-label visual recognition, where only one positive

label is annotated in each image. As a less-explored
task for recognition, single positive multi-label learning

is a real problem because most existing datasets, e.g.,

ImageNet (Deng et al. 2009), are only labeled with one

single label but with multiple objects occurred (Tsipras

et al. 2020; Wu et al. 2019).

Benefiting from the strong fitting ability of deep

learning systems, optimizing models with only one pos-

itive label would lead to severe negligence on indistinc-

tive objects, while only focusing on the predominant

ones. To solve this dilemma, we present a Semantic

COntrastive Bootstrapping (Scob) approach, which ar-

gues to gradually recover the cross-object relationships

from single-positive labels and is constructed from three

aspects. i) Recent advances in Contrastive Learning

(CL) approaches (Khosla et al. 2020) show that deep

models have the ability to learn generalized represen-

tations without the supervision of manual labels. How-

ever, these models are invariably constrained by the

discovery of image-level consistencies and discrepan-

cies (Li et al. 2022), indicating their heavy dependencies

on object-centric salient images. For multi-label learn-

ing, introducing contrastive learning intuitively would

force models to learn “fake” relationships between dif-

ferent objects. As in Fig. 1, images only labeled with

bicycle usually fail to compare with other images owing

that the person plays a predominant role in feature ex-

traction. Hence to model the object-level relationships,

we introduce the gradient-based Class Activation Maps

(CAM) (Chattopadhay et al. 2018) to grasp the ob-

ject foreground by back-propagating the corresponding

class labels, and we then encode them with a Recurrent

Semantic Masked Transformer to extract spatial-aware

object features in the right side of Fig. 1.

Although the proposed module shows promising ben-

efits for feature extraction, the class activation maps

trained by weak labels are usually ambiguous. Regular-

izing with contrastive learning would lead to accumu-

lative errors when optimizing with such incorrect CAM

initialization. On the other hand, accurate CAM guid-

ance is also highly relied on the network training gradi-

ents, which leads to an optimization dilemma between

network parameters and semantic CAM guidance. To-

ward this end, we ii) develop an instance priority tree

to maintain a heap structure for each class, which se-

lects the most confident objects for constructing neg-

ative samples. iii) We then propose a semantic con-

trastive bootstrap learning framework to iteratively up-

date the network parameters, and CAM guidance by

a generalized Expectation-Maximization model. With

the proposed joint learning framework, experimental

evidence demonstrates that our proposed method sur-

passes the state-of-the-art methods by a large margin

in both single-positive and conventional partial label

settings. To sum up, this paper makes the following

contributions:

1. We introduce Semantic contrastive bootstrapping

(Scob) to explore contrastive learning and transform

representations in single-positive multi-label recog-

nition, achieving the leading performance on public

benchmarks.

2. We propose the recurrent semantic masked trans-

formers to purify the object-level information and

the instance priority tree for selecting representa-

tive negative samples.

3. We construct a bootstrap learning framework to

formulate network learning and activation updat-

ing with the Expectation-Maximization model, re-

vealing its stable convergence in weak label learning

systems.

The remainder of this paper is organized as follows:

Section 2 provides the literature review and Section 3

describes the proposed semantic contrastive bootstrap-
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ping approach. Qualitative and quantitative experimen-

tal results are reported in Section 5. Section 6 finally

concludes the paper.

2 Related Works

In this section, we first present a literature review of

multi-label recognition with incomplete labels and then

introduce two related techniques which are closely re-

lated to our methods, i.e., the contrastive learning and

vision transformers.

2.1 Multi-Label Recognition with Incomplete Labels

Multi-label recognition is one of the most fundamental

problems in computer vision society (Tsoumakas and

Katakis 2009) and has attracted increasing research at-

tention (Chen et al. 2019b; Zhao et al. 2021; Chen et al.

2019a; Wang et al. 2016; Huynh and Elhamifar 2020;

Bucak et al. 2011; Carion et al. 2020; Wu et al. 2018;

Yun et al. 2021; Guo and Wang 2021) in recent years.

However, accurate multi-label data are extremely dif-

ficult to obtain when given large sets of candidate la-

bels or images. Recent settings on incomplete annota-

tions have attracted much attention. In semi-supervised

learning settings, several works (Zhang et al. 2021a;

Balcan and Sharma 2021) assume a subset of the train-

ing data is fully labeled while the rest is completely

unlabeled. In some partial-label settings, each image

is associated with a candidate set containing a correct

positive label and many negatives (Gong et al. 2021;

Wang et al. 2022a), whereas in others only a small

percentage of labels is known for each image. To solve

this problem, several works proposed to handle difficul-

ties meeting in recognition with incomplete labels. Cole

et al. (2021) propose to restore labels of the training

data as distribution regularization. Shao et al. (2021)

propose to learn the correlations among multi-label in-

stances. Jiang et al. (2018) propose to clean the noise

introduced by missing labels. The other line of works

employ a matrix completion algorithm (Cabral et al.

2011; Xu et al. 2013; Chen et al. 2019a) to fill in the

missing labels or learn the semantic features between

instances and recover the missing labels by the similar-

ity (Chen et al. 2019a, 2021; Yang et al. 2016; Pu et al.

2022). Some weakly-supervised works (Liu et al. 2018;

Ge et al. 2018; Gao and Zhou 2021; Song et al. 2021;

Zhang et al. 2019) also focus on extracting object-level

features to enhance the recognition or detection on la-

beled datasets. However, most of these methods assume

that at least a certain percentage of labels is known for

each training image, or additional information is pro-

vided for learning, which is usually infeasible for the

commonly-used single-positive dataset.

In our work, we explore the single positive multi-

label learning proposed by Cole et al. (2021), where

only a single positive label is provided for each train-

ing image. The single positive label dataset can only

provide very little information for multi-label classifi-

cation training. To overcome it, we leverage contrastive

learning to provide more information from instance dis-

ambiguation. This single positive multi-label has signif-

icant advantages to collect a large single-label dataset,

which can lead to better performances (Durand et al.

2019). It is also easier for human annotators to mark

the presence of only a class than notice multiple differ-

ent presenting classes or what is absent from various

images (Wolfe et al. 2005).

2.2 Contrastive Learning

Contrastive learning (Khosla et al. 2020) is widely used

in self-supervised visual representation learning, which

aims at learning representations by distinguishing dif-

ferent images. He et al. (2020) propose a momentum en-

coder and improve the negative samplings with a novel

queue structure. Grill et al. (2020) propose the BYOL

model further proves that it is possible to apply con-

trastive learning with only positive samples. Meantime,

Chen et al. (2020) show that a large enough batch in the

training phase is equivalent to the memory bank. Wang

et al. (2022a) introduce contrastive learning to partial

label learning (Gong et al. 2021). It migrates contrastive

learning to mitigate label disambiguation, which is a

core challenge of the task. Liu et al. (2019) leverage con-

trastive learning to improve the distribution of hash of

different images in Hamming space. Nevertheless, these

methods heavily rely on the training data to satisfy se-

mantic consistency (Li et al. 2022) or sufficient object-

central images for representation learning, which are

usually infeasible in multi-label datasets. On the other

hand, conventional contrastive learning methods tend

to construct the generalized representation in an unsu-

pervised manner. This learning mechanism faces a huge

dilemma in discovering objects with specific semantic

meanings and severely neglects the semantic informa-

tion of multi-object scenarios.

Recent works also explore the unsupervised object

mask with unsupervised learning, For example, DE-

TReg (Bar et al. 2022) relies on the pre-trained agnos-

tic object detectors DETR as coarse supervision, and

FreeSOLO (Wang et al. 2022b) aims to use the pre-

dictions of pre-trained network parameters as coarse

segmentation masks. Both of these methods do make
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contributions to focus on the main objects (i.e., relying

on object-centric data), but neglect the contrastive re-

lationship between different semantic categories, which

still face great challenges in the multi-label classifica-

tion tasks.

2.3 Vision Transformers

Different from CNNs with inherently limited receptive

fields, Transformer (Devlin et al. 2019) is a new struc-

ture widely used in natural language processing tasks,

which captures the global intrinsic features and rela-

tions with self-attention mechanism (Vaswani et al. 2017).

Recent research has indicated that Transformer archi-

tectures show great potential in promoting computer

vision applications. For example, Wang et al. (2021);

Dosovitskiy et al. (2021a) split 2D images into a num-

ber of patches and use transformer to produce image

features. Yuan et al. (2021); Liu et al. (2021); Chu et al.

(2021) build new transformer suitable for vision tasks.

Li et al. (2021) propose a method based on transformer

for self-supervised visual representation learning. Zhao

et al. (2021) use transformer to capture long-term con-

textual information. Transformer has also shown its

successes in solving cross-modal tasks in computer vi-

sion (Shin et al. 2022). In our work, we resort to our

proposed semantic mask transformer to discover object-

level features and maintain the semantic consistency on

multi-object images.

3 Approach

3.1 Problem Formulation

Single-positive multi-label learning Let x be the

inputs sampled from image space X and y ∈ {0, 1}L
be the associated full labels of input x, where L is

the length of predefined label coding space Y. In the

single-positive learning, the provided annotation z is

randomly sampled from the positive labeling space Y+.

Each image is only annotated with one positive label

zn = 1, indicating the objects of the nth category exist

in image x. While zj = 0 for j = {1, 2, 3, . . . , L}\{n}
indicates that the other labels are unknown and could

be positive or negative either. For other partial label

learning settings, z ∈ Z can provide more than one

label for easier learning. To sum up, our objective is

to find a mapping function R : X 7→ Z with partially

annotated data z ∈ Z for predicting in fully labeling

space Y:

argmin
Θ

E(x,y)∈X×Yξ(R(x;Θ),y), (1)

where Θ is the model parameters for mapping function

and ξ : {0, 1}L×Y is the evaluation criterion e.g., mAP.

Intuitions and framework overview As afore-

mentioned, one crucial problem caused by single-positive

labeling is that most objects are not iconic or salient

in images, hence directly constructing image-level re-

lationships would introduce noisy features caused by

other objects. Intuitively, we propose to build an object-

level relationship instead of the image levels, which re-

lies on two meaningful modules: 1) recurrent seman-

tic masked transformers to extract purified object-level

features; 2) contrastive representation with instance pri-

ority trees to select representative negative samples.

3.2 Recurrent Semantic Masked Transformer

As the prerequisites for constructing object-level rela-

tionships, the major motif of our model is to discover

the localization of objects. As there are usually multi-

ple objects occurring in one scenario, it would lead to a

severe inductive bias for deep models confusing contex-

tual objects related to the labeled target. For example,

models would take the bicycle as a part of person ob-

jects as they are usually present simultaneously in one

image. To amend this learning bias during training, we

present recurrent semantic masked transformers with

Class Activation Maps (CAM) to decompose clusters

of multiple objects as separate identities.

As proposed in the field of natural language pro-

cessing, Transformer models (Devlin et al. 2019) have

the intrinsic characteristic to model the relationships of

contextual information. We first split high-level features

of ResNet backbones as W ×H patches and then feed

them into the Transformer network for modeling con-

textual relationships and constraining the features to

concentrate on regions corresponding to object classes.

Beyond this self-attention modeling manner, we then

introduce the gradient-based class activations (Chat-

topadhay et al. 2018) as semantic masks, which are

back-propagated by gradients from the last two stages

of ResNet backbones. Assume the backbone feature F =

Φ(x; θb) ∈ RHW×K is extracted from ResNet stages

with parameter θb ∈ Θ. Hence each gradient feature

map corresponded to class c, Gc ∈ RH×W , can be

back-propagated by predicted confidence score pc. The

gradient-based activation Gc can be formally presented

as:

Gc = ReLU(
1

K

K∑
k=1

1

WH

WH∑
i=1

∂pc

∂Fk
i︸ ︷︷ ︸

class-related weights

· Fk

︸︷︷︸
feature map

). (2)



Semantic Contrastive Bootstrapping for Single-positive Multi-label Recognition 5

Fig. 2 The pipeline of the proposed Semantic contrastive bootstrapping (Scob). Our framework first extracts the
object-level class activation maps as feature extraction guidance for Semantic Masksed Transformer (SMT) and then builds a
contrastive semantic relationship among the positive samples and negative samples from Instance Priority Tree (IPT). With
the previously optimized networks, the object-level CAMs are then calculated by the gradient flow of ground truth labels. The
overall bootstrapping framework iteratively optimizes the network parameters and object CAMs.

To avoid noisy features during this process, we only se-

lect the single-positive label to calculate class activation

maps. For each location (i, j), we then calculate CAMs

Mc related to class c:

Mc
i,j = ind

 1

l2

i+⌊ l
2 ⌋∑

u=i−⌊ l
2 ⌋

j+⌊ l
2 ⌋∑

v=j−⌊ l
2 ⌋

Gc
u,v

 ≥ γcam

 ,

(3)

where l = H
s is sampled with window size s, γcam is

the threshold hyperparameter, and ind[·] is the indi-

cator function, which is 1 when condition is true, oth-

erwise 0. One dilemma in solving Eqns. (3) and (2)

is that these activations can only be calculated after

back-propagation, while at this moment the network is

not forward-propagated to obtain the confidence scores

pc. Hence to solve this dilemma, we introduce a recur-

rent scheme by using the activations of the (t − 1)th

iteration as guidance for the next forward propagation.

On the other hand, inspired by the masked learning

trend (He et al. 2021), we employ the masked multi-

head attention mechanism to obtain object features of

the tth iteration Hc
i,j(t), which are highly responded to

class probabilities:

Hc
i,j(t) = Attention(WqryM(Fi,j(t))

,W⊤
keyM(Ei,j(t))

⊤) ·WvalFi,j(t),
(4)

M(Fi,j(t)) = (Fi,j(t) +∆(i, j))

· (1−Mc
i,j(t− 1)),

(5)

whereW{·} is the learnable attention weights and∆(·) :
NW×H → R1 is the learnable positional encoding. Mc

has active regions, where the values are 1, indicating

the foreground, therefore we use (1 −Mc
i,j(t − 1)) to

mask the background information during learning pro-

cess. In this manner, the extracted features Hc
i,j(t) in

each multi-head attention show a high response to the

specific semantic classes, serving as perquisites for the

relationship discovery among different object instances.

The detailed network implementation is elaborated in

Appendix.

3.3 Instance Priority Tree for Contrastive Learning

Contrastive learning for multi-label recognition

Recent advances (Khosla et al. 2020) in contrastive

learning demonstrate that using additional contrastive

constraints could help the generalization ability of model

learning by alleviating overfitting issues. The main ob-

jective in prevailing contrastive learning methods is to

construct positive and negative instances to learn se-

mantic consistency across images. However, their suc-

cess heavily relies on object-centric images and learning

general concepts from a large amount of data, which are

usually unavailable for the multi-label dataset. Hence

our goal is to construct object-level relationships for

contrastive learning with our proposed object-level se-

mantics. Our contrastive architecture follows the state-

of-the-art works, including MoCo (He et al. 2020) and

BYOL (Grill et al. 2020), which is composed of an on-

line network Ton and target network Ttar.
Given an image xn associated with a single-positive

label zn = {0, 1}L, we randomly select the positive
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Fig. 3 The contrastive learning pattern at different
levels. (a) Image-level contrastive learning (He et al. 2020;
Grill et al. 2020): introducing the queue structure to collect
image-level instances as negative samples. (b) Our instance
priority tree: the images are masked and instances are in-
serted into the instance priority tree with confidence. By op-
erating the heaps, the instance priority tree always selects the
most confident instances to construct the negative samples,
which are used in object-level contrastive learning.

samples x+
t from X+

n = {xi; zi = zn}Ni=1, and nega-

tive ones x−
t from X−

n ,X−
n = Xn\X+

n and then generate

two distinctive samples by view augmentation Aug. The

augmented views are then encoded with the proposed

transformers to obtain feature H̃:

H̃on = Ton(Augo(xn); θon), (6)

H̃
{+,−}
tar = Ttar(Augt(x

{+,−}
t ); θtar),

where x+
t ∈ X+

n ,x−
t ∈ X−

n .
(7)

After obtaining contrastive samples, we then attach a

classification head g to predict multi-label probability

pn for image xn.

Instance priority tree Constructing object-level

contrastive constraint requests representative object fea-

tures of each class. However, learning with weak image-

level labels usually gets inferior CAMs for object lo-

calization, especially for those with co-occurrence rela-

tionships. For example, it is hard to disentangle iconic

CAMs for horse and person in a riding scenario (Fig. 3

a). Hence we propose a heap structure to select repre-

sentative samples from each class as negative instances

for contrastive learning. As in Fig. 3 b, for each class c,

we maintain a complete binary tree graph G = {E ,N}
for selecting the samples with high confidence. Each

node N is composed of masked semantic node feature

H̃ with corresponding activation confidence scores s.

And each edge e ∈ E indicates an affiliation relationship

where the parent node is with higher confidence than

the leaf ones. To avoid noisy features, we only use the

object features that are supervised by single-positive

ground truth to construct the proposed tree structure.

By leveraging this tree structure, we then obtain

the top-K confident negative samples for each class,

resulting in an affordable complexity of O(K logNc).

Nc is the node number of the priority tree of the c-th

class, which is much larger than the batch size. With

the constructed representative samples, the contrastive

InfoNCE loss (Oord et al. 2018) could be adapted as:

Lcont(H̃, H̃{+,−},N )

= −λc
1

1 + |N\N i|

· log exp(H̃ · H̃+/τ)

exp(H̃ · H̃+/τ) +
∑

H̃−∈N\N i exp(H̃ · H̃−/τ)
,

(8)

where H̃{+,−} come from the target network indirectly,

N\N i are samples maintained by G except those la-

beled with i. τ and λc is temperature and weighting

parameter. H̃ is then used to update instance priority

tree G. By Eqns. (6) ∼ (8), our object-level contrastive

learning then regularizes the network to be aware of

representative object features for each class.

4 Bootstrapping Optimization with

Expectation-Maximization

For each optimization tuple (x,M, z) of the input im-

age, CAM guidance, and observed label, one natural

concern is that class activation M can only be obtained

by prediction p via back-propagation processes, which

can not be obtained afore the optimization. In other

words, as activation M serves as the semantic guid-

ance for feature extraction, a bad initialization of M

would lead to the failure of whole learning optimiza-

tion. For such a “chicken-and-egg” conundrum, we thus

pursue a bootstrapping optimization with Expectation-

Maximization (EM) modeling. For simplicity, if we ig-

nore terms not depending on Θ, e.g., distribution reg-

ularization, the expected log-likelihood can be defined
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as:

Q(Θt, Θt−1)

=
∑
M

P(M | x, z;Θt−1) logP(x,M;Θt). (9)

For the hidden activation map M̂ using the t-1th model,

we then simplify Eqns. (2) and (3) as function CAM, thus

the E-step optimization on M̂ is:

M̂ = argmax
M
P(M | x;Θt−1)

≈ CAM(
∂g(Φ(x;Θt−1))

∂Φ(x;Θt−1)
Φ(x;Θt−1)),

(10)

where g(·) denotes the classification head. Instead of

directly calculating the most confidence region, we ap-

proximate M̂ by the Gradient CAM (Chattopadhay

et al. 2018) via back-propagating the prediction proba-

bility p.

In the Maximization-step of our framework, the

Q optimization is composed of two parts, i.e., opti-

mization on the online network Q(·; θon) and target

network Q(·; θtar). For the main online network, we in-

troduce auxiliary distribution constraints to encourage

the discovery of multiple objects. In each mini-batch

B of size b, we denote PB ,ZB , ỸB ∈ Rb×L as pre-

dictions and labels of batch B, and pn, zn, ỹn indicate

rows of them respectively. Following Cole et al. (2021),

the single-positive multi-label classification loss is com-

posed of three parts: 1) single-positive binary cross-

entropy (BCE) L+
BCE: only calculated with one-hot pos-

itive label z; 2) standard BCE loss LBCE: updated us-

ing the estimated multi-label ỹn stored in the estima-

tor matrices; 3) distribution regularization: maintain-

ing the averaged prediction share similarities with dis-

tributions of training data. For batch-wise predictions

PB and estimated weak label ỸB which are predicted

by the network and the estimator, it has the following

form:

Lsp(PB | ỸB ; θon)

=
1

|B|

∑
n∈B

LBCE(pn,S(ỹn))︸ ︷︷ ︸
pseudo multi-label

+
∑
n∈B

L+
BCE(pn, zn)︸ ︷︷ ︸
single-positive


+
(
(k̂(PB)− k)/L

)2

︸ ︷︷ ︸
distribution constraint

,

(11)

where S(·) denotes the stop-gradient function and k̂, k

are the expectation of number of positive labels per

image (refer to Cole et al. (2021) for details). Switching

Algorithm 1: Bootstrapping Optimization

with Expectation-Maximization

Data: Training data X with associated label space
Z, online network θon, target network θtar.

Initialize Gc, c ∈ {1, 2, . . . , C}, t = 0;
Initialize Θ0 ← optimizer(Θ,∇ΘLclass);
while not convergence or t < MaxIter do

for (xn, zn) ∼ B(X × Z) do
t← t+ 1 ;
Get prediction PB = g(Φ(x;Θt−1));
Obtaining class activation map
M̂t−1 = CAM(x;Θt−1) by Eqn. (3) ;
/* E-Step */

Gpk ← Gpk ∪ {H(M̂pk
), spk

} by Eqn. (4) ;

H̃on = Ton(Augo(xn), M̂t−1; θon);
θton ←
optimizer(θon,∇θon

Lclass(P, Ỹt−1
B )),

update Ỹt
B ; /* M-Step */

H̃+
tar = Ttar(Augt(x

+
t ), M̂t−1; θtar);

Sample top-k negative samples from instance
priority tree H̃−

tar ∼ Gc, c ̸= zn ;
θton ←
optimizer(θon,∇θon

Lcont(H̃on, H̃
{+,−}
tar ));

end

θttar ← αθt−1
tar + (1− α)θton ; /* Target Net

Updating */

end

the arguments FB , ỸB and combining them, we get

Lclass(FB , ỸB ; θon)

=
Lsp(FB | ỸB ; θon) + Lsp(ỸB | FB ; θon)

2
,

(12)

where in the initialization phase of Ỹ, we set the prob-

ability after the sigmoid function of known labels close

to 1 and initialize the probability after the sigmoid of

unknown labels into u, where u ∼ [0.5 − ξ, 0.5 + ξ]

and ξ = 0.3 empirically following Cole et al. (2021).

Besides the classification loss, the proposed contrastive

loss Lcont(·; θon) in Eqn. (8) also regularizes the network

after updating M̂ in the E-step. Following other con-

trastive learning schemes (Grill et al. 2020), the target

network θtar follows momentum updating trend:

θtar ← αθtar + (1− α)θon, (13)

where θtar and θon is the parameters of target network

Ttar and online network Ton, α ∈ [0, 1) is a momentum

coefficient. Our bootstrapping framework is elaborated

in Alg. 1.
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Table 1 mAP Comparisons (%) with the state-of-the-art methods on the VOC 2007/2012, CUB and COCO datasets. 10%
Pos. Neg.: training with 10% of full labels. 1 Positive: single positive setting. *: values are averaged over three runs. The best
results on each dataset are highlighted in bold.

Methods Backbone Labels Per Image VOC 2007 VOC 2012 CUB Microsoft COCO

SSGRL ResNet-101 10% Pos. Neg. 77.7 - - 62.5
GCN-ML ResNet-101 10% Pos. Neg. 74.5 - - 63.8
KGGR ResNet-101 10% Pos. Neg. 81.3 - - 66.6

Curriculum labeling ResNet-101 10% Pos. Neg. 44.7 - - 26.7
Partial BCE ResNet-101 10% Pos. Neg. 80.7 - - 61.6

SST ResNet-101 10% Pos. Neg. 81.5 - - 68.1
SARB ResNet-101 10% Pos. Neg. 83.5 - - 71.2
ROLE ResNet-50 1 Positive - 88.2 16.8 69.0

Scob (Ours)* ResNet-50 1 Positive 88.5 89.7 20.4 74.8
Scob (Ours)* ResNet-50 10% Pos. Neg. 88.9 89.8 21.4 75.2

5 Experiments

5.1 Experiment Setup

Datasets Following the previous studies (Cole et al.

2021; Chen et al. 2021), we conduct experiments on

four representative benchmarks, i.e., PASCAL VOC

2007 (Everingham et al. 2007), PASCAL VOC 2012 (Ev-

eringham et al. 2012), Microsoft COCO 2014 (Lin et al.

2014), CUB-200-2011 (Wah et al. 2011), which are fully

labeled and widely-used in multi-label image recogni-

tion. PASCAL VOC (Everingham et al. 2012) contains

20 categories, where each image in the dataset has 1.4

labels on average. Microsoft COCO (Lin et al. 2014)

is the most widely-used and challenging benchmark in

multi-label classification tasks, which contains 80 cate-

gories. Each image in the MS-COCO dataset contains

2.9 labels on average. It explores the object recognition

task, altering the task from recognizing only the promi-

nent object to understanding multiple objects in holis-

tic scenarios. CUB-200-2011 (Wah et al. 2011) is the

most widely-used dataset for fine-grained visual classi-

fication tasks. It has 312 binary attributes per image de-

scribing various details, which is more challenging than

the first three datasets.

Baselines settings We adopt the re-implemented

ROLE (Cole et al. 2021) as our baselines in the follow-

ing experiments. i) While different from ROLE (Cole

et al. 2021) using linear initialization, in our baseline

model (i.e., Scob w/o all) all proposed modules are re-

placed with two convolutional layers as a simple clas-

sification head and contrastive learning is disabled in

training. ii) To evaluate the effectiveness of our model,

we implement the large-CNN network with more train-

ing parameters by adding convolutional blocks, which

is detailed in Tab. 3.

Evaluation metrics For fair comparisons, we fol-

low Chen et al. (2021); Cole et al. (2021); Durand et al.

(2019) and adopt the mean Average Precision (mAP)

as evaluation metrics. As there are few works reported

their results on the single-positive setting, we compare

our methods with the partial label learning methods

(Chen et al. 2019a,b, 2022; Durand et al. 2019; Chen

et al. 2021; Pu et al. 2022) on the 10% partial label

settings. that Scob is proposed in single-positive multi-

label setting as aforementioned. Besides the mAP re-

sults, we additionally report average overall precision

(OP), overall recall (OR), overall F1-score (OF1), per-

class precision (CP), per-class recall (CR), and per-class

F1-score of some approaches. For fair comparisons, we

report the mean values with three random seeds, while

the results of other works are reported by their original

paper.

5.2 Implementation Details

Data preprocessing Following the single-positive learn-

ing setting (Cole et al. 2021), we firstly drop the existing

annotations of datasets and randomly retain a positive

label per image. While for partial-label settings, follow-

ing state-of-the-art works (Chen et al. 2021), we ran-

domly reserve 10% labels per image for a fair compari-

son. These operations are performed only once so that

the randomly retained label is fixed for all approaches.

To evaluate the performance of these approaches, we

keep all the labels of the official validation sets. The

results are reported on the whole validation set.

Training details We adopt ResNet-50 (He et al.

2016) pretrained on ImageNet (Deng et al. 2009) as

backbone for fair comparison. The backbone can be eas-

ily replaced with other networks like ViT (Dosovitskiy

et al. 2021b). Following Grill et al. (2020), images are re-

sized into 448×448 with data augmentation. Similar to

Carion et al. (2020), P is implemented as a self-learning

positional encoding function. We adopt the Adam opti-

mizer and train the model for 30 epochs. The learning
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Table 2 Detailed comparisons on different evaluation metrics. The baseline model (Cole et al. 2021) is re-implemented by
ours, which shows slightly higher performances.

Benchmark Methods Labels OP OR OF1 CP CR CF1

PASCAL VOC 2007
Baseline (Cole et al. 2021) 1 Positive 91.7 77.4 84.0 90.3 74.5 81.6

Scob (Ours) 1 Positive 90.0 80.2 84.9 86.7 79.2 82.8
Scob (Ours) 10% Pos. Neg. 87.3 84.4 85.8 84.4 82.8 83.6

PASCAL VOC 2012
Baseline (Cole et al. 2021) 1 Positive 85.2 83.3 84.2 83.9 81.1 82.5

Scob (Ours) 1 Positive 88.2 82.1 85.0 84.6 81.7 83.1
Scob (Ours) 10% Pos. Neg. 87.1 85.2 86.2 85.3 83.5 84.4

MS COCO 2014
Baseline (Cole et al. 2021) 1 Positive 70.1 68.3 69.2 68.0 63.1 65.5

Scob (Ours) 1 Positive 81.1 66.2 72.9 78.7 61.1 68.8
Scob (Ours) 10% Pos. Neg. 79.3 68.6 73.6 79.7 62.8 70.2

Table 3 Ablation studies of different components. Rec. SMT: Recurrent semantic masked transformers. CL: Contrastive
learning. IPT: instance priority tree for negative sampling. /: the proposed module is not used. +: the proposed module is
enabled. w/o CAM: only remove CAM but retain other parts in SMT.

Rec. SMT CL Sampling Parameter mAP on MS-COCO

/ / / 36.6 M 69.8
Large CNN / / 45.0 M 70.9

CAM / / 38.3 M 73.8
/ + IPT 36.6 M 68.9

w/o CAM + Random 38.3 M 73.2
w/o CAM + IPT 38.3 M 73.9

CAM + Random 38.3 M 74.3

CAM + IPT 38.3 M 74.8

rates for the estimator, SMT, mapping layers, and oth-

ers in the online network are 0.01, 4× 10−4, 0.01, 0.001

respectively. The batch size is set as 8. The dimension

of features is set as 512. The hidden dimension of the

transformer is set as 2048. Each transformer unit con-

sists of 2 layers and each layer has 8 attention heads.

The threshold γcam is set as 0.5. The scalar k is set

as 1.5, 31.4, and 3.0 for VOC 2007/2012, CUB, and

COCO, following Cole et al. (2021). The hyperparam-

eters λc is set as 0.1. The temperature τ of contrastive

learning loss is set as 1.0. The momentum factor α is

set as 0.999 following Grill et al. (2020). The size of G
is set as 80. The backbone is frozen during training.

5.3 Comparison with State-of-The-Art Approaches

We respectively compare our approach on PASCAL

VOC 2007, VOC 2012, COCO and CUB datasets with 8

state-of-the-art methods, including SSGRL (Chen et al.

2019a), GCN-ML (Chen et al. 2019b), KGGR (Chen

et al. 2022), Curriculum labeling (Durand et al. 2019),

Partial BCE (Durand et al. 2019), SST (Chen et al.

2021), SARB (Pu et al. 2022), and ROLE (Cole et al.

2021). As there are few works that reported their re-

sults on the single-positive setting, we also compare our

methods with these aforementioned partial label learn-

ing works. However, these methods usually rely on the

label-aware co-occurrence, which is corrupted for opti-

mization in this single-positive setting. The mAP re-

sults on four benchmark datasets are exhibited in Tab.

1. It is clear that our approach achieves leader-board

performance and significantly outperforms SARB (Pu

et al. 2022) on both VOC and COCO by 5.8% and 4.1%,

ROLE (Cole et al. 2021) by 1.6% (VOC 2012) and 5.8%

(COCO). Moreover, our approach achieves much higher

performance than these leading works by only lever-

aging much fewer annotations (1 Positive) than those

with 10% partial labels. With the increase of annota-

tion in the last two rows, our proposed method shows a

notable improvement, verifying the robustness and ef-

fectiveness of different propositions of incomplete data

annotations.

Besides the most widely-used mAP, we report aver-

age overall precision (OP), overall recall (OR), overall

F1-score (OF1), per-class precision (CP), per-class re-

call (CR), and per-class F1-score of the baseline (Cole

et al. 2021) and Scob on three datasets in Tab. 2. Con-

sidering the compared methods in the partial label learn-

ing or single-positive learning setting do not report val-

ues on these metrics, we re-implement the state-of-the-

art model ROLE (Cole et al. 2021), which performs

slightly higher results than the paper reports.
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Table 4 Ablations to different contrastive learning and ob-
ject detection-based methods. mAP performance on MS-
COCO dataset is reported.

Methods mAP on MS-COCO

Baseline 69.8 (+0.0)

+BYOL 65.5 (−4.3)
+MoCo 61.6 (−8.2)
+SimCLR 64.9 (−4.9)
+Detco 61.2 (−8.6)
+SoCo 58.2 (−11.6)
+UP-DETR 69.2 (−0.6)

Scob (Ours) 74.8 (+5.0)

5.4 Performance Analyses

Effect of recurrent Semantic Masked Transform-

ers (SMT) To ablate SMT, we replace it with sev-

eral 2D convolutional layers for setting w/o SMT. From

Tab. 3, we can observe that SMT notably improves the

performance by incorporating a self-attention mecha-

nism with reasonable masked semantic guidance com-

pared to the baseline, i.e., from 69.8 to 73.8. By only

removing the CAM guidance in SMT (shown in the

sixth row), the overall performance decreases by 0.9%.

This indicates that semantic guidance plays an impor-

tant role in learning object-level relationships.

To validate our proposed method is mainly improved

by additional parameters. In the second row, we also

train a large-CNN as aforementioned that has much

more parameters than ours without contrastive learn-

ing and observe that the effect of additional parameters

on the performance is very limited, which further clar-

ifies that the improvement is not just due to the addi-

tional parameters, but the cooperation of proposed new

modules and object-level contrastive learning.

Different variants of contrastive regulariza-

tion In Tab. 3, our full model substantially outperforms

the third row without contrastive learning, which shows

the effectiveness of learning object-level contrastive rep-

resentation. Moreover, the performance of Scob w/o

IPT decreases by 0.5%, in which a random sampling

strategy equivalent to the vanilla memory bank used

in MoCo (He et al. 2020) is applied, indicating that

Instance Priority Tree (IPT) provides notable improve-

ments with representative negative object samples. Con-

trastive learning helps the framework learn better rep-

resentations of different labels by object disambigua-

tion. It has been observed that networks can predict

random labels, but the same network can fit informative

data faster (Cole et al. 2021). Better representations let

the model fit single positive data during training, recov-

ering better weak labels.

Fig. 4 mAP performance on VOC12 dataset with dif-
ferent CAM threshold γcam.

Fig. 5 mAP performance on VOC12 dataset with dif-
ferent contrastive learning coefficient λc.

Ablations to other contrastive learning and

detection-based methods We replace our Scob with

prevailing contrastive learning, BYOL (Grill et al. 2020),

MoCo (He et al. 2020), SimCLR (Chen et al. 2020),

Detco (Xie et al. 2021a), SoCo (Xie et al. 2021b), and

object detection-based methods UP-DETR (Dai et al.

2021) in Tab. 4. The baseline is taken from the w/o all

setting in Tab. 3, which is trained without contrastive

learning. As shown in the Tab. 4, other contrastive

learning methods lead to sharp performance drops com-

pared to our approach. To compare with Detco (Xie

et al. 2021a), SoCo (Xie et al. 2021b), we adopt their

official pre-trained model of the MS-COCO dataset and
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Fig. 6 mAP on VOC12 of our method Scob and
Baseline with different t values.

Fig. 7 mAP on MS-COCO dataset of our method
Scob and Baseline with different t values.

Table 5 Ablations to semantic masks on VOC 2012 and MS-COCO dataset.

Datasets Methods mAP OP OR OF1 CP CR CF1

VOC 2012
Baseline 88.2 (+0.0) 85.2 83.3 84.2 83.9 81.1 82.5
GT Masks 90.0 (+1.8) 86.2 86.2 86.2 83.9 84.9 84.4
CAMs 89.8 (+1.6) 88.2 82.1 85.0 84.6 81.7 83.1

MS COCO
Baseline 69.8 (+0.0) 70.1 68.3 69.2 68.0 63.1 65.5
GT Masks 74.8 (+5.0) 79.0 68.4 73.3 78.8 63.2 70.1
CAMs 74.8 (+5.0) 81.1 66.2 72.9 78.7 61.1 68.8

fine-tune these models following the same baseline, i.e.,

ROLE (Cole et al. 2021). Although these methods pro-

vide a satisfactory representation of object detection

but rely on different contrastive manners compared

to ours. We focus on the contrastive learning of se-

mantic views with CAMs to preserve the extraction

of holistic objects. While Detco and SoCo focus on the

relationship between local patches or cropped lo-

cal views without the semantic constraints. The dif-

ferent focuses make the learned representations suitable

for different tasks, i.e., recognition and detection. The

other reason is that our Scob constructed an instance

priority tree for adaptively selecting negative CAMs,

while Detco and SoCo follow a common contrastive

trend with negative image-level representations or sim-

ply omit this relationship.

Considering that multi-label images usually contain

multiple semantic objects, data augmentations used in

them constantly include random cropping to create mul-

tiple views of the original images, which may unexpect-

edly focus on different objects in multi-label learning,

introducing wrong positive or negative samples. The

wrong samples make the contrastive learning fail and

mislead models to distinguish objects by the wrong fea-

tures, which is the main reason for the performance

drops. In our scheme, we resort to object-level repre-

sentation for building contrastive learning. It selects

semantic objects from images with CAM guidance in-

stead of direct data augmentation, which tackles the

problem of semantic inconsistency in multi-label learn-

ing and improves the generalization ability of network

models.

Effect of different ratios γcam of semantic mask

As important guidance to semantic learning, we vali-

date different ratios γcam of Eqn. (3) in Fig. 4. This pa-

rameter determines how responsive the mask guidance

is to the activation maps of objects. A larger value can

make the mask guidance filter more unrelated to noisy

context, while also requiring the masked objects to be

more typical. With the increase of the threshold, the

mask guidance has the potential to focus on the main

object better, while the thresholds larger than 0.5 would

lead to incomplete object understanding during train-

ing, especially when the model is not so confident about

the recognized objects in the early steps.

Ablation to loss weight λc For the contrastive

loss weight λc on term Lcont, we conduct different pa-

rameter settings with different numbers of magnitude,

while this hyperparameter can also be jointly defined

by adjusting the learning rate in the contrastive learn-
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Table 6 Comparisons of different optimization methods on MS-COCO dataset. Higher results are viewed in bold.

Methods mAP OP OR OF1 CP CR CF1

Baseline 69.8 (+0.0) 70.1 68.3 69.2 68.0 63.1 65.5

Joint Optim. 69.7 (−0.1) 75.7 65.8 70.4 72.8 59.7 65.6
Two Stage 74.2 (+4.3) 75.4 70.9 73.1 75.4 64.9 69.8
Scob (Ours) 74.8 (+5.0) 81.1 66.2 72.9 78.7 61.1 68.8

ing phase. As in Fig. 5, when the contrastive learning

weight λc increases to a proper weight, i.e., 0.1, the

performance shows a slight improvement. However, ex-

aggerating the effects of contrastive loss would override

the main objective of multi-label classification and then

lead to inaccurate CAM guidance. Note that in this

paper we do not need to carefully tune these hyperpa-

rameters but validate their effectiveness under diverse

scenarios of multiple datasets.

Ablation to the number of negative samples

in contrastive learning We validate the effect of the

number of negative samples in contrastive learning. Here

we present results in Fig. 6 on the VOC dataset and

Fig. 7 on MS-COCO dataset, where the baseline re-

sult is exhibited in the orange dotted line. We select

the Top-1, Top-10, Top-100, and Top-1000 confident

instances in each class following the algorithms of IPT.

The curves on different datasets show similar variation

tendencies that selecting the most representative sam-

ples of each class would benefit the final performance

while selecting more than 8,000 samples for the MS-

COCO dataset would lead to a performance drop of

over 1%. Counter-intuitively, when increasing the num-

ber of instances with sufficient training instances, i.e.,

80,000 samples in MS-COCO, the network has the po-

tential to understand the object representations with a

performance improvement. However, constraining the

network to recognize a sufficiently large number of neg-

ative samples will result in a heavy computation bur-

den, i.e., 1000× sample numbers for learning. Hence,

in the trade-off between computational resources and

performances, we respectively use 20 and 80 negative

samples on VOC and MS-COCO datasets, by selecting

the most confident instances in each class.

Semantic CAMs vs. ground truth masks To

understand the influence brought by semantic masks of

different qualities, we modify the CAM guidance with

the ground truth segmentation masks. In order to mi-

grate the segmentations to our tasks, for ground truth,

labels are dropped and a single positive label is re-

tained. Next, we only keep segmentation masks that

contain the objects belonging to the single positive la-

bel and ignore other segmentation annotations. The

segmentation masks are resized with max pooling to

generate masks while fitting the shape of the features.

Table 7 CAM evaluations on feature space of different vari-
ants on the VOC training set.

Methods Precision Recall F1-Score

Scob w/o CL 48.1 63.3 54.7
Scob w/ CL 50.0 68.2 57.7

Fig. 8 Visualization of semantic masks on MS-
COCO. Each group of images from left to right are original
image, Scob and Scob w/o CL respectively.

The experimental results of Scob with CAM and ground

truth on the two benchmark datasets are listed in Tab.

5. It is interesting that the gap in mAP evaluations

is relatively small, i.e., less than 0.2%, demonstrating

that the CAM selected by IPT is of high quality in

contrastive learning. We also conduct detailed analy-

ses with six other evaluation metrics in Tab. 5. Models

with generated CAMs show a higher overall precision

(OP) but with lower overall recall (OR) compared to

the models with GT masks. This implies that the GT

masks can activate more features of positive classes for

the final classification but meanwhile introduces addi-

tional noisy features for classification.

Effect of EM-based Bootstrapping To verify

the effectiveness of the proposed EM-based bootstrap-



Semantic Contrastive Bootstrapping for Single-positive Multi-label Recognition 13

Table 8 Comparisons of inference speed (per image) and
performance on MS-COCO dataset.

Methods Speed Settings mAP

Baseline (Cole et al. 2021) 7.67ms 1-positive 69.8
SST (Chen et al. 2021) 19.84ms 10% partial 68.1
SARB (Pu et al. 2022) 19.09ms 10% partial 71.2
Scob (Ours) 12.14ms 1-positive 74.8

ping, we conduct experiments with two different alter-

natives.

1. Joint Optimization: training the network parame-

ters Θ and object CAMs M simultaneously.

2. Two Stage: training network without CAM guid-

ance M in the first 10 epochs and then conducting

the proposed EM-based bootstrapping in the next

20 epochs.

In Tab. 6, the joint optimization shows similar perfor-

mance with the baseline models while remaining a gap

(5.1 in mAP) with the proposed EM-based bootstrap-

ping model. This indicates the inferior initialization of

CAMs and network parameters would harm the opti-

mization process and cannot be fully corrected during

learning. Results in the third row denote this two-stage

training manner, which shows a clear performance in-

crease (+4.3%) compared to the baseline models, but

still lower than the proposed EM bootstrapping train-

ing scheme. From Tab. 6, the method without using

CAMs in the initial training phase (i.e., Two stage)

would lead to a clear performance drop in overall pre-

cision (OP) but with higher recalls (OR).

Time efficiency In Tab. 8, we conduct experiments

to compare the evaluation speed on a single NVIDIA

3090 GPU with the input resolution of 448× 448. The

baseline model (Cole et al. 2021) without any additional

modules shows a fast inference speed of 7.67ms per im-

age. Compared to recent works i.e., SST (Chen et al.

2021), SARB (Pu et al. 2022), our proposed method

achieves a good trade-off with notable performance im-

provement and acceptable time costs.

5.5 Visualization Analyses

Visualizations of semantic masks In Fig. 8, we vi-

sualize the instances produced by Scob (second col-

umn) and Scob w/o contrastive learning (third col-

umn). We can observe that the semantic masks gen-

erated with contrastive learning show clear silhouettes,

focuses more on the semantic objects, and mitigates

the influence of other contextual objects, e.g., discov-

ering knife out of other foods in the first row. We have

also conducted a detailed comparison of CAMs with

Fig. 9 Distribution of predicted probabilities for un-
known negatives by ROLE (left) and Ours (right) on
single-positive COCO. Each pixel stands for histograms,
indicating a frequency from 1.0 (yellow) to 0.0 (blue) of the
specific confidence value.

ground truth segmentation masks in the feature space,

as in Tab. 7. By adding the contrastive learning on

CAMs, the F1-score has improved by 3.0% with clearer

localizations. Object-level contrastive learning distin-

guishes different instances in multi-object images and

improves the recognition performance. Besides, we also

exhibit more visualization results related to specific cat-

egories in Fig. 10 of our Appendix.

Distributions of unknown predictions Here we

present the distribution of predicted probabilities for

unknown negatives on single-positive COCO in Fig. 9,

which are the major parts of unknown labels. During

training stages, Scob fast predicts more accurate nega-

tive labels. The predicted probabilities by our approach

of ground-truth negatives show a quick convergence to

the 0 side, while the probability distribution predicted

by ROLE (Cole et al. 2021) is dispersed. This indicates

that due to the new module and contrastive learning,

the model obtains more knowledge during training, and

learns more representative features to distinguish the

differences between objects so that the non-existent ob-

jects can be eliminated faster, which improves the over-

all performance.

6 Conclusions and Limitations

In this paper, we focus on the problem of multi-label

image recognition with single-positive incomplete an-

notations. To this end, we argue to use a gradient-

based class activation map from the previous step as

guidance and propose a semantic contrastive bootstrap-

ping learning framework to iteratively refine the guid-
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ance and label predictions. In this framework, we pro-

pose a recurrent semantic masked transformer to ex-

tract accurate clear object-level features and a con-

trastive constraint with instance priority trees for build-

ing cross-object relationships. Experimental results ver-

ify our proposed method achieves superior performance

compared to state-of-the-art methods.

As our proposed method is a weakly-supervised learn-

ing method, it still faces problems when discovering the

full ground truth annotations, which limits the perfor-

mance compared to the fully-supervised methods. Be-

sides, on the fine-grained multi-label learning with ex-

tremely limited labels, prevailing techniques including

our method remain space for further exploration, in-

cluding investigating fine-grained local parts instead of

the holistic objects, which we would like to investigate

in our future work.
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Appendix

A. Visualizations on Class-specific Semantic Masks

Beyond the ablations on semantic masks in the main

manuscript, here we exhibit more semantic masks gen-

erated on the MS-COCO dataset in Fig. 10. In each

group, the left and right images denote the input im-

age and the masked class activation maps in our pro-

posed Scob approach. As in the first two columns, it

can be found that our proposed approach focuses on

the semantic objects e.g., airplane and bus, while filter-

ing the background information. In the second to the

fourth groups of Fig. 10, two major challenges occur to

distinguish these objects: 1) the semantic objects are

relatively small compared to the image size; 2) these

objects show high dependencies on the other objects or

namely co-occurrences. As can be seen from this gen-

erated semantic guidance, our proposed Scob has the

ability to distinguish the specific object from its related

objects and then forms the representative features.

B. Performances on Recognizing Small Objects

Besides Fig. 10 showing some CAM results of large and

small-scale objects. We additionally list the AP results

of 10 small-scale classes in the MS-COCO dataset to

show our approach is robust to them in Tab. 9.

Table 9 The AP results of 10 small-scale classes in MS-
COCO dataset.

# Classes AP

1 banana 93.0
2 baseball bat 76.0
3 baseball glove 80.9
4 book 70.8
5 mouse 74.6
6 remote 84.3
7 scissors 86.1
8 stop sign 84.6
9 tie 88.4
10 toothbrush 82.4

C. Details on Recurrent Semantic Masked Transformer

The proposed recurrent Semantic Masked Transformer

(SMT) mainly consists of positional encoding, seman-

tic mask, and multiple multi-head attention units as in

previous work (Vaswani et al. 2017). Different from the

implementation of these works, we rely on the feature

maps of ResNet backbones as image feature patches (il-

lustrated as image patches for a better view). Inspired

by the masked coding manner (Devlin et al. 2019) in

the field of natural language processing, here we adopt

the class activation generated from the last optimiza-

tion as the guidance for semantic masked attention. We

present the detailed network architectures in Fig. 11.

Semantic masked encoding Denote F = Φ(x; θb) ∈
RHW×K as the backbone feature extracted from ResNet

stages with parameter θb ∈ Θ. F is split into H ×
W patches {Fi,j | i ∈ {1, 2, . . . ,H}, j ∈ {1, 2, . . . ,W}}
of which each patch has channel size K, as the input of

SMT. As mentioned in Section 3.2, the recurrent SMT

applies a learnable positional encoding ∆(·) : NW×H 7→
R1 and semantic mask to {Fi,j}:

M(Fi,j) = (Fi,j +∆(i, j)) · (1−Mc), (14)

where the symbols are described as aforementioned.

The implementation of ∆ follows the previous Trans-

former architecture, i.e., DETR (Carion et al. 2020).

Let ∆h : NW 7→ R1 and ∆v : NH 7→ R1 be the horizon-

tal and vertical encoding. Then ∆ is the concatenation

of them:

∆(i, j) = ∆h(i)⊕∆v(j), (15)

where ⊕ denotes the feature concatenation operation.

Following Devlin et al. (2019), positional encoding and

masks are applied to the query and key of multi-head

attention, providing global position information and con-

straining the extracted features Hc
i,j showing high re-

sponse to only a specific semantic class related to the

masks.
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Fig. 10 Visualization of semantic masks on MS-COCO. In each group, the left and right images denote the input
image and the masked class activation maps in our proposed Scob approach.
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Fig. 11 The network architecture of the proposed Recurrent Semantic Masked Transformer. We leverage the
masked multi-head attention mechanisms with iterative semantic guidance generated by CAMs.

Multi-scale SMTs As the different network stages

during training are sensitive to semantic objects of dif-

ferent scales, hence incorporating multi-scale and multi-

level features can be beneficial for final feature represen-

tations, which is also one of the challenging problems in

multi-label classification tasks. In our implementation,

we propose to use two SMTs connecting to Stage 3 and

Stage 4 of ResNet-50, and combine their outputs to ex-

tract image features at multiple scales. In this manner,

objects of small scales are more easily to be presented

in earlier network stages without a significant loss in

resolutions.

E. Algorithms of Instance Priority Trees

Instance Priority Tree (IPT) G = {E ,N} is a heap im-

plemented with a complete binary tree structure, main-

taining high confident instances to construct negative

samples for contrastive learning. Each element u ∈ N is

a binary tuple (H̃u, su), where H̃u is a semantic masked

feature and su is the corresponding activation confi-

Algorithm 2: Insert activated node v to G
and adjust priority tree

Data: IPT Gi = (Ei,N i), i ∈ {1, 2, 3, . . . , L}, new
node v associated with label z.

/* Insert activated node v. */

N z ← N z ∪ {v};
/* Adjust priority tree. */

i← |N z| − 1;
Choose elements [u0, u1, u2, . . . , un] in N z;
while i > 0 and s⌊i/2⌋ < si do

Swap u⌊i/2⌋ and ui;

i← ⌊i/2⌋;
end
Adjust N z by removing exceed nodes from the end
of it;

dence score. Each edge e ∈ E indicates an affiliation re-

lationship (u, v) where the parent node u is with higher

confidence than the leaf ones v.

In our implementations, we adopt an array of length

n, [u0, u1, u2, . . . , un], to store the nodes N and de-

scribe the edges E by their indices in the array, i.e.,
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Algorithm 3: Pop top nodes N ′ from Gi for

negative sampling

Data: IPT Gi = (Ei,N i), i ∈ {1, 2, 3, . . . , L},
positive label z, number of negative samples t.

Result: Negative samples N ′.
if i = z then
N ′ ← {};
return;

end
Choose elements [u0, u1, u2, . . . , un] in N i;
if |N z| <= t then

/* If the size of N z is less than t,
simply construct samples with all nodes.

*/

N ′ ← N z;

else
/* Pop top elements t times to construct

samples. */

N ′ ← {};
for i← 1 to t do

j ← 0;
Swap uj and un;
while 2j < |N z| do

if s2j > s2j+1 then
Swap uj and u2j ;
j ← 2j;

else
Swap uj and u2j+1;
j ← 2j + 1;

end

end
N ′ ← N ′ ∪ {uj};
N z ← N z\{un};

end
/* Restore the original N z for future

operations. */

Insert N ′ into N z;

end

ui is the parent node of u2i and u2i+1. The success of

IPT relies on three typical operations: “Insert activated

nodes”, “Adjust priority tree”, and “Pop top nodes”.

In our implementation, the tree adjustment operation

needs to be conducted after every Insert or Pop opera-

tion for maintaining the tree structures. In other words,

the “Insert activated nodes” and “Adjust priority tree”

functions are operated together. Here we elaborate the

detailed algorithms in Alg. 2 and Alg. 3.

In addition, we maintain the size of instance priority

tree G in a proper range to reduce computation costs.

In this manner, instances with lower confidence features

would not be added to our tree storage, indicating the

efficiency of our model.
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