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Abstract We present a novel masked image model-

ing (MIM) approach, context autoencoder (CAE), for

self-supervised representation pretraining. We pretrain

an encoder by making predictions in the encoded rep-

resentation space. The pretraining tasks include two

tasks: masked representation prediction - predict the

representations for the masked patches, and masked

patch reconstruction - reconstruct the masked patches.

The network is an encoder-regressor-decoder architec-

ture: the encoder takes the visible patches as input;

the regressor predicts the representations of the masked

patches, which are expected to be aligned with the

representations computed from the encoder, using the

representations of visible patches and the positions of

visible and masked patches; the decoder reconstructs the

masked patches from the predicted encoded represen-
tations. The CAE design encourages the separation of

learning the encoder (representation) from completing

the pertaining tasks: masked representation prediction

and masked patch reconstruction tasks, and making pre-

dictions in the encoded representation space empirically

shows the benefit to representation learning. We demon-

strate the effectiveness of our CAE through superior

transfer performance in downstream tasks: semantic

segmentation, object detection and instance segmen-

tation, and classification. The code will be available

at https://github.com/Atten4Vis/CAE.
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Fig. 1: The pipeline of context autoencoder. Our ap-

proach (a) feeds visible patches into the encoder and
extracts their representations Zv and then (b) com-

pletes the pretext tasks: predict the representations Zm

of the masked patches from the visible patches in the

encoded representation space through latent contextual

regressor and prediction alignment, and reconstruct the

masked patches from the predicted representations Zm

of masked patches. The pretrained encoder in (a) is

applied to downstream tasks by simply replacing the

pretext task part (b) with the downstream task part.

// means stop gradient.

1 Introduction

We study the masked image modeling (MIM) task for

self-supervised representation learning. It aims to learn

an encoder through masking some patches of the input

image and making predictions for the masked patches

from the visible patches. It is expected that the resulting

encoder pretrained through solving the MIM task is able

to extract the patch representations taking on semantics

that are transferred to solving downstream tasks.

The typical MIM methods, such as BEiT [4], the

method studied in the ViT paper [26], and iBoT [104],

use a single ViT architecture to solve the pretraining
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task i.e., reconstructing the patch tokens or the pixel

colors. These methods mix the two tasks: learning the

encoder (representation) and reconstructing the masked

patch. The subsequent method, masked autoencoder

(MAE) [38] adopts an encoder-decoder architecture, par-

tially decoupling the two tasks. As a result, the represen-

tation quality is limited. Most previous methods, except

iBoT [104], lack an explicit modeling between encoded

representations of visible patches and masked patches.

We present a context autoencoder (CAE) approach,

illustrated in Figure 1, for improving the encoding qual-

ity. We pretrain the encoder through making predictions

for the masked patches in the encoded representation

space. The pretraining task is a combination of masked

representation prediction and masked patch reconstruc-

tion. the pretraining network is an encoder-regressor-
decoder architecture. The encoder takes only the visible

patches as input and learns the representations only for

the visible patches. The regressor predicts the masked

patch representations, which is expected to be aligned

with the representations of the masked patches com-

puted from the encoder, from the visible patch represen-

tations. The decoder reconstructs the masked patches

from the predicted masked patch representations with-

out receiving the representations of the visible patches.

The prediction in the encoded representation space

from the visible patches to the masked patches gener-

ates a plausible semantic guess for the masked patches,

which lies in the same semantic space for the visible

patches. We assume that the prediction is easier if the

encoded representations take higher semantics and that

the accurate prediction encourages that the encoded

representations take on a larger extent of semantics,

empirically validated by the experiments.

The CAE design also encourages the separation of

learning the encoder and completing the pretraining

tasks: the responsibility of representation learning is

mainly taken by the encoder and the encoder is only

for representation learning. The reasons include: the

encoder in the top stream in Figure 1 operates only

on visible patches, only focusing on learning semantic

representations; the regression is done on the encoded

representation space, as a mapping between the repre-

sentations of the visible patches and the masked patches;
the decoder operates only on the predicted representa-

tions of the masked patches.

We present the empirical performance of our ap-

proach on downstream tasks, semantic segmentation,

object detection and instance segmentation, and classifi-

cation. The results show that our approach outperforms

supervised pretraining, contrastive self-supervised pre-

training, and other MIM methods.

2 Related Work

Self-supervised representation learning has been widely

studied in computer vision , including: context predic-

tion [24,75], clustering-based methods [88,93,8,1,105,

45,9,36], contrastive self-supervised learning [55,65,41,

80], instance discrimination [28,27], image discretiza-

tion [34,35], masked image modeling [59,31,74], and in-

formation maximization [30,97,5]. The following mainly

reviews closely-related methods.

Autoencoding. Traditionally, autoencoders were used

for dimensionality reduction or feature learning [53,32,

43,42,70,78,51]. The denoising autoencoder (DAE) is

an autoencoder that receives a corrupted data point

as input and is trained to estimate the original, un-

corrupted data point as its output. The variants or

modifications of DAE were adopted for self-supervised

representation learning, e.g., corruption by masking pix-

els [79,66,15], removing color channels [100], shuffling

image patches [64], denoising pixel-level noise [2] and so

on.

Contrastive self-supervised learning. Contrastive

self-supervised learning, referring in this paper to the

self-supervised approaches comparing random views

with contrastive loss or simply MSE loss that are related

as shown in [33], has been popular for self-supervised rep-

resentation learning [18,39,73,21,37,11,20,10,85,67]. The

basic idea is to maximize the similarity between the

views augmented from the same image and optionally

minimize the similarity between the views augmented

from different images. Random cropping is an important

augmentation scheme, and thus typical contrastive self-

supervised learning methods (e.g., MoCo v3) tend to
learn knowledge mainly from the central regions of the

original images. Some dense variants [82,90] eliminate

the tendency in a limited degree by considering an extra

contrastive loss with dense patches.

Masked image modeling. Motivated by BERT for

masked language modeling [23], the method studied

in [26] and BEiT [4] use the ViT structure to solve the

masked image modeling task, e.g., estimate the pixels

or the discrete tokens. The follow-up work, iBOT [104],

combines the MIM method (BEiT) and a contrastive

self-supervised approach (DINO [11]). But they do not

have explicitly an encoder for representation learning

or a decoder for pretraining task completion, and the

ViT structure is essentially a mixture of encoder and

decoder, limiting the representation learning quality.

Several subsequent MIM methods are developed to

improve the encoder quality, such as designing pretrain-

ing architectures: Masked Autoencoder (MAE) [38],

SplitMask [29], and Simple MIM (SimMIM) [91]; adopt-
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ing new reconstruction targets: Masked Feature Predic-

tion (MaskFeat) [83], Perceptual Codebook for BEiT

(PeCo) [25], and data2vec [3]. The technical report 1

of our approach was initially published as an arXiv pa-

per [19], and was concurrent to data2vec [3], MAE [38],

and other methods, such as [29,91]. After that, MIM

methods have developed rapidly, e.g., extended to fre-

quency/semantic domain [87,61,84,58], combined with

contrastive self-superivsed learning [72,49,94,47], effi-

cient pretraining [101,46,13], mask strategy design [50,

54,57], scalability of MIM [92], and interpretation of
MIM [89,56,52].

The core idea of our approach is making predictions

in the encoded representation space. We jointly solve

two pretraining tasks: masked representation prediction

- predict the representations for the masked patches,

where the representations lie in the representation space

output from the encoder, and masked patch reconstruc-

tion - reconstruct the masked patches.

Our approach is clearly different from MAE [38]

(Figure 2 (top)). Our approach introduces an extra

pretraining task, masked representation prediction, and

encourages the separation of two roles: learning the

encoder and completing pretraining tasks; in contrast,

MAE partially mixes the two roles, and has no explicit
prediction of masked patch representations.

On the other hand, our approach differs from data2vec [3]

and iBoT [104] (Figure 2 (bottom)). Similar to BEiT,

in data2vec and iBoT, there is no explicit module sepa-

ration of learning the encoder and estimating the mask

patch representations, and the target representations

are formed from the full view (as the teacher) with the

same network as the student network for processing the

masked view and predicting the masked patch repre-

sentations (except a centering process in iBoT for the

teacher following DINO). In contrast, our approach is

simple: form the target representations merely from the

output of the encoder, and the encoder-regressor design

is straightforward and explainable: the regressor pre-

dicts the representations of masked patches to match

the representations computed directly from the encoder.

3 Approach

3.1 Architecture

Our context autoencoder (CAE) is a masked image

modeling approach. The network shown in Figure 1 is

an encoder-regressor-decoder architecture. The key is to

make predictions from visible patches to masked patches
in the encoded representation space. The pretraining

1 https://arxiv.org/abs/2202.03026
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Fig. 2: The pipeline of MAE (top), and the MIM part

of iBoT (bottom). The centering module is not depicted

in the bottom stream. The pretrained encoder in (a) is

applied to downstream tasks by simply replacing the

pretext task part (b) with the downstream task part.

// means stop gradient.

tasks include: masked representation prediction and

masked patch reconstruction.

We randomly split an image into two sets of patches:

visible patchesXv and masked patchesXm. The encoder

takes the visible patches as input; the regressor predicts

the representations of the masked patches, which are

expected to be aligned with the representations com-

puted from the encoder, from the representations of the

visible patches conditioned on the positions of masked

patches; the decoder reconstructs the masked patches

from the predicted encoded representations.

Encoder. The encoder F maps the visible patchesXv to

the latent representations Zv. It only handles the visible

patches. We use the ViT to form our encoder. It first

embeds the visible patches by linear projection as patch

embeddings, and adds the positional embeddings Pv.

Then it sends the combined embeddings into a sequence

of transformer blocks that are based on self-attention,

generating Zv.

Regressor. The latent contextual regressor H predicts

the latent representations Zm for the masked patches

from the latent representations Zv of the visible patches

output from the encoder conditioned on the positions

of the masked patches. We form the latent contextual

regressor H using a series of transformer blocks that are

based on cross-attention.

The initial queriesQm, called mask queries, are mask

tokens that are learned as model parameters and are

the same for all the masked patches. The keys and the

https://arxiv.org/abs/2202.03026
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values are the same before linear projection and consist

of the visible patch representations Zv and the output

of the previous cross-attention layer (mask queries for

the first cross-attention layer). The corresponding posi-

tional embeddings of the masked patches are considered

when computing the cross-attention weights between

the queries and the keys. In this process, the latent rep-

resentations Zv of the visible patches are not updated.

Decoder. The decoder G maps the latent represen-

tations Zm of the masked patches to some forms of

masked patches, Ym. The decoder, similar to the en-

coder, is a stack of transformer blocks that are based on

self-attention, followed by a linear layer predicting the

targets. The decoder only receives the latent represen-

tations of the masked patches (the output of the latent

contextual regressor), and the positional embeddings of

the masked patches as input without directly using the

information of the visible patches.

3.2 Objective Function

Masking. Following BEiT [4], we adopt the random

block-wise masking strategy (illustrated in Figure 3) to

split the input image into two sets of patches, visible

and masked patches. For each image, 98 of 196 (14× 14)

patches are masked.

Targets. The targets Z̄m for the representations of

the masked patches are formed as follows. We feed the

masked patches Xm into the encoder, which is the same

as the one for encoding visible patches, and generate

the representations Z̄m of the masked patches as the

representation targets.

The targets Ȳm for the patch reconstruction are

formed by the discrete tokenizer, e.g., the tokenizer

trained with d-VAE on ImageNet-1K without using the

labels or the DALL-E tokenizer (trained with d-VAE on

400M images) [69] used in BEiT [4]. The input image

is fed into the tokenizer, assigning a discrete token to

each patch for forming the reconstruction targets Ȳm.

Loss function. The loss function consists of a re-

construction loss: ℓy(Ym, Ȳm), and an alignment loss:

ℓz(Zm, Z̄m), corresponding to masked patch reconstruc-
tion and masked representation prediction, respectively.

The whole loss is a weighted sum:

ℓy(Ym, Ȳm) + λ ℓz(Zm, sg[Z̄m]). (1)

We use the MSE loss for ℓz(Zm, Z̄m) and the cross-

entropy loss for ℓy(Ym, Ȳm). sg[·] stands for stop gradi-

ent. λ is 2 in our experiments.

Fig. 3: Illustration of random block-wise sampling (1st

and 3rd images) and random cropping (2nd and 4th

images). The colored regions are masked regions. The

boxes correspond to cropped regions. Random block-

wise sampling is used in our approach. Random cropping

is a key data-augmentation scheme for contrastive self-

supervised pretraining.

4 Discussions

4.1 Analysis

Predictions are made in the encoded represen-

tation space. Our CAE attempts to make predictions

in the encoded representation space: predict the rep-

resentations for the masked patches from the encoded

representations of the visible patches. In other words, it

is expected that the output representations of the latent

contextual regressor also lie in the encoded representa-

tion space, which is ensured by prediction alignment.

This encourages the learned representation to take on

a large extent of semantics for prediction from visible

patches to masked patches, benefiting the representation

learning of the encoder.

We empirically verify that the predicted representa-

tions lie in the encoded representation space through

image reconstruction. We train the CAE using the pixel

colors as the prediction targets, for two cases: with

and without the alignment, i.e., masked representation

prediction. For reconstruction, we feed all the patches

(without masking, all the image patches are visible)

of an image (from the ImageNet validation set) into

the pretrained encoder, then skip the latent contextual

regressor and directly send all the encoded patch repre-

sentations to the pretrained decoder for reconstructing

the whole image.

Figure 4 provides reconstruction results for several

examples randomly sampled from the ImageNet-1K val-

idation set. One can see that our approach can success-

fully reconstruct the images, implying that the input

and output representations of latent contextual regressor

are in the same space. In contrast, without the align-

ment, the reconstructed images are noisy, indicating the

input and output representations of latent contextual

regressor are in different spaces. The results suggest that

the explicit prediction alignment is critical for ensuring
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Fig. 4: Illustrating that predictions are made in the representation space. We reconstruct the image by feeding the

full image (1st, 4th, and 7th) into the pretrained CAE encoder and then the pretrained CAE decoder outputting

the reconstructed image (2nd, 5th, and 8th). It can be seen that the image can be constructed with the semantics

kept when skipping latent contextual regressor, verifying the input and the predicted representations lie in the same

space. We also show the reconstructed images (3rd, 6th, and 9th) from the encoder and the decoder pretrained

without the alignment constraint. We can see that those images are meaningless, indicating that the alignment

constraint is critical for ensuring that predictions are made in the representation space.

that predictions are made in the encoded representation

space.

Representation alignment in CAE and contrastive

self-supervised learning. Representation alignment is

also used in contrastive self-supervised learning methods,

such as MoCo, BYOL, SimCLR, and methods mixing

contrastive self-supervised learning and masked image

modeling, such as iBOT, and MST. The alignment loss

could be the MSE loss or the contrastive loss that CAE

may also take advantage of.

In the CAE, the alignment is imposed over the rep-

resentations Zm = H(F(Xv)) - predicted from the rep-

resentations F(Xv) of visible patches through the re-

gressor H, and the representations Z̄m = F(Xm) - com-

puted from the encoder F . Both Zm and Z̄m are about

the masked patches, and lie in the representation space
output from the encoder.

Differently, the alignment in the most contrastive

self-supervised learning methods is imposed over the rep-

resentations {P(F(V1)),P(F(V2)), · · · ,P(F((VN ))},
where P is a projector, and some views may be processed

with the EMA version of the encoder and the projector.

The N representations to be aligned are about different

views {V1,V2, · · · ,VN} (in iBoT and MST, the views

are masked views and full views), and are not directly

output from the encoder. It is not quite clear how the

projector works, and it is reported in [68] that the pro-

jector is a part-to-whole process mapping the object

part representation to the whole object representation

for contrastive self-supervised learning.

4.2 Connection

Relation to autoencoder. The original autoencoder [53,

32,43] consists of an encoder and a decoder. The encoder

maps the input into a latent representation, and the

decoder reconstructs the input from the latent represen-

tation. The denoising autoencoder (DAE) [79], a variant

of autoencoder, corrupts the input by adding noises and

still reconstructs the non-corrupted input.

Our CAE encoder is similar to the original autoen-

coder and also contains an encoder and a decoder. Dif-

ferent from the autoencoder where the encoder and the

decoder process the whole image, our encoder takes a

portion of patches as input and our decoder takes the

estimated latent representations of the other portion of

patches as input. Importantly, the CAE makes predic-

tions in the latent space from the visible patches to the

masked patches.

Relation to BEiT, iBoT and MAE. The CAE en-

coder processes the visible patches, to extract their

representations, without making predictions for masked

patches. Masked representation prediction is made through

the regressor and the prediction alignment, ensuring

that the output of the regressor lies in the representa-

tion space same with the encoder output. The decoder

only processes the predicted representations of masked

patches. Our approach encourages that the encoder
takes the responsibility of and is only for representation

learning.

In contrast, BEiT [4] and the MIM part of iBOT

do not separate the representation extraction role and

the task completion role and uses a single network,

with both the visible and masked patches as the input,
simultaneously for the two roles. In MAE [38], the so-

called decoder may play a partial role for representation

learning as the representations of the visible patches are

also updated in the MAE decoder. Unlike CAE, MAE,

iBoT, BEiT do not explicitly predict the representations

of masked patches from the representations of visible

patches (that lie in the encoded representation space)

for masked patches.

When the pretrained encoder is applied to down-

stream tasks, one often replaces the pretext task com-

pletion part using the downstream task layer, e.g., seg-

mentation layer or detection layer. The separation of

representation learning (encoding) and pretext task com-
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Fig. 5: The computational graphs for (a) a context autoencoder (CAE), (b) BEiT [4], (c) a denoising autoencoder

(DAE), and (d) MAE [38] and the one stream in SplitMask [29]. The parts in cornflower blue are for loss function.

(a) The encoder F receives visible patches Xv and outputs their latent representations Zv. The latent contextual

regressor H predicts the latent representations Zm for masked patches from Zv. The decoder predicts the targets

Ym for masked patches from Zm. ℓz and ℓy are the loss functions. During training, the gradient is stopped for Z̄m.

See the detail in Section 3. (b) The input includes both visible patches Xv and mask queries Qm representing

masked patches, and the representations for them are updated within the function R. (c) The function N is a

noising function generating the noisy version X̃ from the input X. F and G are the normal encoder and decoder,

respectively. (d) The two functions, F ′ and R, are both based on self-attention. F ′ (called encoder in MAE) only

processes the visible patches Xv, and R (called decoder in MAE) processes both the latent representations Zv of

the visible patches and the mask queries (Qm) and updates them simultaneously. For simplicity, the positional
embeddings are not included in computational graphs. (a) CAE and (c) DAE perform the encoding and MIM task

completion roles explicitly and separately, (b) BEiT and (d) MAE perform the encoding and MIM task completion

roles implicitly and simultaneously.

pletion helps that downstream task applications take

good advantage of representation pretraining.

We provide the computational graph for CAE, BEiT [4],

denoising autoencoder, Masked Autoencoder [38] and

SplitMask [29] (one stream) in Figure 5. Compared to

our CAE, the main issue of MAE is that the so-called de-

coder R might have also the encoding role, i.e., learning

semantic representations of the visible patches.

Comparison to contrastive self-supervised learn-
ing. Typical contrastive self-supervised learning meth-

ods, e.g., SimCLR [18] and MoCo [39,21], pretrain the

networks by solving the pretext task, maximizing the

similarities between augmented views (e.g., random

crops) from the same image and minimizing the similar-

ities between augmented views from different images.

It is shown in [18] that random cropping plays an

important role in view augmentation for contrastive self-

supervised learning. Through analyzing random crops

(illustrated in Figure 3), we observe that the center pix-

els in the original image space have large chances to

belong to random crops. We suspect that the global

representation, learned by contrastive self-supervised

learning for a random crop possibly with other aug-

mentation schemes, tends to focus mainly on the center

pixels in the original image, so that the representations

of different crops from the same image can be possibly

similar. Figure 6 (the second row) shows that the center

region of the original image for the typical contrastive

self-supervised learning approach, MoCo v3, is highly

attended. The part in random crops corresponding to

the center of the original image is still attended as shown

in Figure 8.

In contrast, our CAE method (and other MIM meth-

ods) randomly samples the patches from the augmented

views to form the visible and masked patches. All the

patches are possible to be randomly masked for the aug-

mented views and accordingly the original image. Thus,

the CAE encoder needs to learn good representations

for all the patches, to make good predictions for the

masked patches from the visible patches. Figure 6 (the

third row) illustrates that almost all the patches in the

original images are considered in our CAE encoder.

Considering that the instances of the 1000 categories

in ImageNet-1K locate mainly around the center of the

original images [71], typical contrastive self-supervised

learning methods, e.g., MoCo v3, learn the knowledge

mainly about the 1000 categories, which is similar to
supervised pretraining. But our CAE and other MIM

methods are able to learn more knowledge beyond the

1000 categories from the non-center image regions. This

indicates that the CAE has the potential to perform

better for downstream tasks.

4.3 Interpretation

Intuitive Interpretation for CAE. Humans are able

to hallucinate what appears in the masked regions and

how they appear according to the visible regions. We
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Fig. 6: Illustrating the attention map averaged over 12 attention heads between the class token and the patch

tokens in the last layer of the ViT encoder pretrained on ImageNet-1K. The region inside the blue contour is

obtained by thresholding the attention weights to keep 50% of the mass. The four rows are: (1) input image, (2)

MoCo v3, a typical contrastive self-supervised learning method, (3) MAE, and (4) our CAE. One can see that

MoCo v3 tends to focus mainly on the centering regions and little on other patches, and our CAE tends to consider

almost all the patches.

Fig. 7: t-SNE visualization (one color for one category) of

representations extracted from the images in ADE20K.

Left: ViT pretrained with our CAE; Right: ViT with

random weights.

speculate that humans do this possibly in a way similar

as the following example: given that only the region of

the dog’s head is visible and the remaining parts are

missing, one can (a) recognize the visible region to be

about a dog, (b) predict the regions where the other

parts of the dog appear, and (c) guess what the other

parts look like.

Our CAE encoder is in some sense like the human

recognition step (a). It understands the content by map-

ping the visual patches into latent representations that

lie in the subspace that corresponds to the category

dog2. The latent contextual regressor is like step (b). It

produces a plausible hypothesis for the masked patches,

and describes the regions corresponding to the other

parts of the dog using latent representations. The CAE

decoder is like step (c), mapping the latent representa-

tions to the targets. It should be noted that the latent
representations might contain other information besides

the semantic information, e.g., the part information and

the information for making predictions.

We adopt t-SNE [77] to visualize the high-dimensional

patch representations output from our CAE encoder on

ADE20K [103] in Figure 7. ADE20K has a total of 150

categories. For each patch in the image, we set its label to

be the category that more than half of the pixels belong

to. We collect up to 1000 patches for each category from

sampled 500 images. As shown in the figure, the latent

representations of CAE are clustered to some degree for

different categories (though not perfect as our CAE is

pretrained on ImageNet-1K). Similar observations could
be found for other MIM methods.

Probabilistic interpretation for CAE. The MIM

problem can be formulated in the probabilistic form,

maximizing the probability of the predictions Ym of
the masked patches given the conditions, the visible

patches Xv, the positions Pv of the visible patches,

2 Our encoder does not know that the subspace is about a
dog, and just separates it from the subspaces of other cate-
gories.
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Fig. 8: The attention maps over two sets of randomly cropped images (the 1st the 5th rows) for MoCo v3 (the

2nd the 6th rows), MAE (the 3rd the 7th rows), and our CAE (the 4th the 8th rows) pretrained on ImageNet-1K.

The contrastive self-supervised learning method, MoCo v3, tends to focus mainly on the object region and little

on other regions. In contrast, MIM-based models, CAE and MAE, tend to consider almost all the patches. The

attention maps over the original images are shown in Figure 6.

and the positions Pm of the masked patches: P (Ym |
Xv,Pv,Pm). It can be solved by introducing latent

representations Zm and Zv, with the assumption that

Zv and Pm (Ym and Pv) are conditionally independent
(the probabilistic graphical model is given in Figure 9):

p(Ym | Xv,Pv,Pm) (2)

=p(Zv | Xv,Pv,Pm)p(Zm | Zv,Pv,Pm)

p(Ym | Zm,Pv,Pm) (3)

=p(Zv | Xv,Pv)p(Zm | Zv,Pv,Pm)p(Ym | Zm,Pm).

(4)

Here, the equation from (2) to (3) is obtained from

the probabilistic graphical model of CAE shown in

Figure 9, and the removal of the condition Pm (from

p(Zv | Xv,Pv,Pm) to p(Zv | Xv,Pv)), and the condi-
tion Pv (from p(Ym | Zm,Pv,Pm) to p(Ym | Zm,Pm))

from (3) to (4) is based on the conditional independence

assumption. The three terms in (4) correspond to three

parts of our CAE: the encoder, the latent contextual

regressor, and the decoder, respectively.

Similarly, the latent representation alignment con-
straint can be written as a conditional probability, P (Zm |
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Xv Zv Zm Ym

Z̄m

Fig. 9: The probabilistic graphical model of CAE. The

other conditions of Zv, Zm, and Ym, the positions Pv

and Pm of the visible and masked patches, are not

plotted for simplicity.

Z̄m), where Z̄m is the masked patch representations

computed from the encoder.

Intuitive interpretation for the contrastive self-

supervised learning.We consider the case in ImageNet-

1K that the object mainly lies in the center of an image3.

There are N randomly sampled crops from an image,

and each crop In contains a part of the center object,

On. To maximize the similarity between two crops Im
and In, the pretraining might contain the processes: se-

lect the regions Om and On from the two crops Im and

In, extract their features fom and fon, and predict the

feature of the object, fo, from the part features fom and

fon. In this way, the features of the crops from the same

image could be similar. Among the N random crops,
most crops contain a part of the object in the center,

and a few crops that do not contain a part of the center

object could be viewed as noises when optimizing the

contrastive loss.

After pretrained on ImageNet-1K (where the object

mainly lies in the center) the encoder is able to learn

the knowledge of the 1000 classes and localize the region
containing the object belonging to the 1000 classes. It

is not necessary that the object lies in the center for

the testing image, which is verified in Figure 8. This

further verifies that MoCo v3 (contrastive self-supervised

pretraining) pretrained on ImageNet-1K tends to attend

to the object region, corresponding to the center region

of the original image as shown in Figure 6.

5 Experiments

5.1 Implementation

We study the standard ViT small, base and large archi-

tectures, ViT-S (12 transformer blocks with dimension

384), ViT-B (12 transformer blocks with dimension 768)

and ViT-L (24 transformer blocks with dimension 1024).

The latent contextual regressor consists of 4 transformer

3 There are a few images in which the object does not lie in
the center in ImageNet-1K. The images are actually viewed as
noises and have little influence for contrastive self-supervised
learning.

blocks based on cross-attention in which self-attention

over masked tokens and encoded visible patch represen-

tations is a choice but with slightly higher computation

cost and a little lower performance, and the decoder

consists of 4 transformer blocks based on self-attention,

and an extra linear projection for making predictions.

5.2 Training Details

Pretraining. The pretraining settings are almost the

same as BEiT [4]. We train the CAE on ImageNet-1K.

We partition the image of 224×224 into 14×14 patches

with the patch size being 16 × 16. We use standard

random cropping and horizontal flipping for data aug-

mentation. We use AdamW [63] for optimization and

train the CAE for 300/800/1600 epochs with the batch

size being 2048. We set the learning rate as 1.5e-3 with

cosine learning rate decay. The weight decay is set as

0.05. The warmup epochs for 300/800/1600 epochs pre-

training are 10/20/40, respectively. We employ drop

path [44] rate 0.1 and dropout rate 0.

Linear probing. We use the LARS [95] optimizer with

momentum 0.9. The model is trained for 90 epochs. The

batch size is 16384, the warmup epoch is 10 and the

learning rate is 6.4. Following [38], we adopt an ex-

tra BatchNorm layer [48] without affine transformation

(affine=False) before the linear classifier. We do not

use mixup [99], cutmix [96], drop path [44], or color
jittering, and we set weight decay as zero.

Attentive probing. The parameters of the encoder

are fixed during attentive probing. A cross-attention

module, a BatchNorm layer (affine=False), and a lin-

ear classifier are appended after the encoder. The extra

class token representation in cross-attention is learned

as model parameters. The keys and the values are the

patch representations output from the encoder. There

is no MLP or skip connection operation in the extra

cross-attention module. We use the SGD optimizer with

momentum 0.9 and train the model for 90 epochs. The
batch size is 8192, the warmup epoch is 10 and the

learning rate is 0.4. Same as linear probing, we do not

use mixup [99], cutmix [96], drop path, or color jittering,

and we set weight decay as zero.

Fine-tuning on ImageNet. We follow the fine-tuning

protocol in BEiT to use layer-wise learning rate decay,

weight decay and AdamW. The batch size is 4096, the

warmup epoch is 5 and the weight decay is 0.05. For

ViT-S, we train 200 epochs with learning rate 1.6e-2

and layer-wise decay rate 0.75. For ViT-B, we train 100

epochs with learning rate 8e-3 and layer-wise decay rate

0.65. For ViT-L, we train 50 epochs with learning rate

2e-3 and layer-wise decay rate 0.75.
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Semantic segmentation on ADE20K.We use AdamW

as the optimizer. The input resolution is 512× 512. The

batch size is 16. For the ViT-B, the layer-wise decay rate

is 0.65 and the drop path rate is 0.1. We search from

four learning rates, 1e-4, 2e-4, 3e-4 and 4e-4, for all the

results in Table 2. For the ViT-L, the layer-wise decay

rate is 0.95 and the drop path rate is 0.15. We search

from three learning rates for all the methods, 3e-5, 4e-5,

and 5e-5, We conduct fine-tuning for 160K steps. We

do not use multi-scale testing.

Object detection and instance segmentation on

COCO. We utilize multi-scale training and resize the

image with the size of the short side between 480 and

800 and the long side no larger than 1333. The batch

size is 32. For the ViT-S, the learning rate is 3e-4, the

layer-wise decay rate is 0.75, and the drop path rate is

0.1. For the ViT-B, the learning rate is 3e-4, the layer-

wise decay rate is 0.75, and the drop path rate is 0.2.

For the ViT-L, the learning rate is 2e-4, the layer-wise

decay rate is 0.8, and the drop path rate is 0.2. We

train the network with the 1× schedule: 12 epochs with

the learning rate decayed by 10× at epochs 9 and 11.

We do not use multi-scale testing. The Mask R-CNN

implementation follows MMDetection [14].

Fig. 10: Illustrating the cross-attention unit in attentive

probing. The attention map (bottom) is the average

of cross-attention maps over 12 heads between the ex-

tra class token and the patches. One can see that the

attended region lies mainly in the object, which helps

image classification.

5.3 Pretraining Evaluation

Linear probing. Linear probing is widely used as a

proxy of pretraining quality evaluation for self-supervised

representation learning. It learns a linear classifier over

the image-level representation output from the pre-

trained encoder by using the labels of the images, and

then tests the performance on the validation set.

Attentive probing. The output of the encoder pre-
trained with MIM methods are representations for all

the patches. It is not suitable to linearly probe the repre-

sentation, averagely-pooled from patch representations,

because the image label in ImageNet-1K only corre-

sponds to a portion of patches. It is also not suitable to

use the default class token within the encoder because

the default class token serves as a role of aggregating the

patch representations for better patch representation

extraction and is not merely for the portion of patches

corresponding to the image label.

To use the image-level label as a proxy of evaluating

the pretraining quality for the encoder pretrained with

MIM methods, we need to attend the patches that are

related to the label. We introduce a simple modification

by using a cross-attention unit with an extra class token

(that is different from the class token in the encoder) as

the query and the output patch representations of the

encoder as the keys and the values, followed by a linear

classifier. The introduced cross-attention unit is able to

care mainly about the patches belonging to the 1000

classes in ImageNet-1K and remove the interference of

other patches. Figure 10 illustrates the effect of the cross-

attention unit, showing that the extra cross-attention

unit can to some degree attend the regions that are

related to the 1000 ImageNet-1K classes.

Results. Table 1 shows the results with three schemes,

linear probing (LIN), attentive probing (ATT), and fine-

tuning (FT) for representative contrastive self-supervised

pretraining (MoCo v3 and DINO) and MIM (BEiT and

MAE) methods, as well as our approach with the targets
formed with the DALL-E tokenizer (trained on 400M

images) and the d-VAE tokenizer (trained on ImageNet-

1K without using the labels), denoted as CAE* and

CAE, respectively. The models of MAE with 300 epochs

and BEiT are pretrained by us using the official im-

plementations, and other models are officially released

models.

We highlight a few observations. The fine-tuning per-

formance for these methods are very similar and there is

only a minor difference similar to the observation [104].

We think that the reason is that self-supervised pretrain-
ing and fine-tuning are conducted on the same dataset

and no extra knowledge is introduced for image clas-

sification. The minor difference might come from the

optimization aspect: different initialization (provided by

pretrained models) for fine-tuning.

In terms of linear probing, the scores of the con-

trastive self-supervised learning methods, MoCo v3 and

DINO, are higher than the MIM methods. This is as

expected because contrastive self-supervised learning

focuses mainly on learning the representations for 1000

classes (See discussion in Section 4). The pretraining

is relatively easier than existing MIM methods as con-
trastive self-supervised learning mainly cares about the
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Table 1: Pretraining quality evaluation in terms of fine-

tuning (FT), linear probing (LIN), and attentive probing

(ATT). ‡ means the number of effective epochs in [104] as

they adopt multi-crop augmentation (equivalently take a

larger number of epochs compared to one-crop augmen-

tation). We report the top-1 accuracy (in the column

ATT) of the supervised training approach DeiT [76] to

show how far the ATT score is from supervised training.

The scores for other models and our models are based

on our implementations if not specified. Except that *

denotes using the DALL-E tokenizer, CAE adopts the

d-VAE tokenizer trained on ImageNet-1K only.

Method #Epochs #Crops FT LIN ATT

Methods using ViT-S :

DeiT 300 - - - 79.9

MoCo v3 600‡ 2 81.7 73.1 73.8

BEiT 300 1 81.7 15.7 23.6

CAE* 300 1 82.0 51.8 65.0

Methods using ViT-B :

DeiT 300 - - - 81.8

MoCo v3 600‡ 2 83.0 76.2 77.0

DINO 1600‡ 12 83.3 77.3 77.8

BEiT 300 1 83.0 37.6 49.4

MAE 300 1 82.9 61.5 71.1

MAE 1600 1 83.6 67.8 74.2

SimMIM 800 1 83.8 56.7 -

iBOT 1600‡ 12 83.8 79.5 79.8

CAE* 300 1 83.6 64.1 73.8

CAE* 800 1 83.8 68.6 75.9

CAE* 1600 1 83.9 70.4 77.1

CAE 1600 1 83.9 71.4 77.4

Methods using ViT-L:

MoCo v3† 600‡ 2 84.1 - -

BEiT† 1600 1 85.2 - -

MAE 1600 1 86.0 76.0 78.8

CAE* 1600 1 86.3 78.1 81.2

CAE 1600 1 86.3 77.9 81.2

1000 classes and MIM methods may care about the

classes beyond the 1000 classes.

For the MIM methods, the scores of attentive probing

are much larger than linear probing. This validates our

analysis: the MIM methods extract the representations

for all the patches, and the classification task needs to
attend the corresponding portion of patches.

The LIN and ATT scores are similar for contrastive

self-supervised pretraining on ViT-B, e.g., (76.2 vs 77.0)

for MoCo v3 and (77.3 vs 77.8) for DINO. This means

that the extra cross-attention in attentive probing does

not make a big difference, which is one more evidence

for our analysis in Section 4 that they already focus

mainly on the region where the instance in the 1000

categories lies.

Table 2: Semantic segmentation on ADE20K. All the

results are based on the same implementation for seman-

tic segmentation. #Epochs refers to the number of pre-

training epochs. ‡ means the number of effective epochs

in [104] as the method uses multi-crop pretraining aug-

mentation (See Table 1). SplitMask [29] is pretrained

on ADE20K for 21000 epochs. †: these results are from

[38].

Method #Epochs mIoU

Methods using ViT-B :

SplitMask – 45.7

BEiT 300 45.5

BEiT 800 46.5

mc-BEiT 800 47.0

DeiT 300 47.0

MoCo v3 600‡ 47.2

DINO 1600‡ 47.2

MAE 300 45.8

MAE 1600 48.1

Ge2-AE 800 48.9

A2MIM 800 49.0

iBOT 1600‡ 50.0

CAE* 300 48.3

CAE* 800 49.7

CAE* 1600 50.2

CAE 1600 50.1

Methods using ViT-L:

MoCo v3† 600‡ 49.1

BEiT† 1600 53.3

MAE 1600 53.6

CAE* 1600 54.7

CAE 1600 54.6

5.4 Downstream Tasks

Semantic segmentation on ADE20K [103]. We fol-

low the implementation [4] to use UperNet [86]. The

CAE with the tokenizers learned over ImageNet-1K per-

forms almost the same as the tokenizers learned over

400M images provided by DALL-E (CAE*), implying

that the tokenizer trained on ImageNet-1K (without

using the labels) or a larger dataset does not affect the

pretraining quality and accordingly the downstream task

performance.

Table 2 shows that using the ViT-B, our CAE* with

300 training epochs performs better than DeiT, MoCo

v3, DINO, MAE (1600 epochs) and BEiT. Our CAE*

(1600 epochs) further improves the segmentation scores

and outperforms MAE (1600 epochs), MoCo v3 and

DeiT by 2.1, 3.0 and 3.2, respectively. Using ViT-L, our

CAE* (1600 epochs) outperforms BEiT (1600 epochs)

and MAE (1600 epochs) by 1.4 and 1.1, respectively.
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Table 3: Object detection and instance segmentation on COCO. Mask R-CNN is adopted and trained with the 1×
schedule. All the results are based on the same implementation for object detection and instance segmentation.

#Epochs refers to the number of pretraining epochs on ImageNet-1K. ‡ means the number of effective epochs

in [104] (See Table 1).

Method #Epochs Supervised Self-supervised
Object detection Instance segmentation

APb APb
50 APb

75 APm APm
50 APm

75

Methods using ViT-S :
DeiT 300

√
× 43.1 65.2 46.6 38.4 61.8 40.6

MoCo v3 600‡ ×
√

43.3 64.9 46.8 38.8 61.6 41.1
BEiT 300 ×

√
35.6 56.7 38.3 32.6 53.3 34.2

CAE* 300 ×
√

44.1 64.6 48.2 39.2 61.4 42.2

Methods using ViT-B :
DeiT 300

√
× 46.9 68.9 51.0 41.5 65.5 44.4

MoCo v3 600‡ ×
√

45.5 67.1 49.4 40.5 63.7 43.4
DINO 1600‡ ×

√
46.8 68.6 50.9 41.5 65.3 44.5

BEiT 300 ×
√

39.5 60.6 43.0 35.9 57.7 38.5
BEiT 800 ×

√
42.1 63.3 46.0 37.8 60.1 40.6

MAE 300 ×
√

45.4 66.4 49.6 40.6 63.4 43.7
MAE 1600 ×

√
48.4 69.4 53.1 42.6 66.1 45.9

iBOT 1600‡ ×
√

48.2 69.7 52.8 42.7 66.5 46.0
CAE* 300 ×

√
48.4 69.2 52.9 42.6 66.1 45.8

CAE* 800 ×
√

49.8 70.7 54.6 43.9 67.8 47.4
CAE* 1600 ×

√
50.0 70.9 54.8 44.0 67.9 47.6

CAE 1600 ×
√

50.2 71.0 54.9 44.2 68.3 47.9

Methods using ViT-L:
MAE 1600 ×

√
54.0 74.3 59.5 47.1 71.5 51.0

CAE* 1600 ×
√

54.5 75.2 60.1 47.6 72.2 51.9
CAE 1600 ×

√
54.6 75.2 59.9 47.6 72.0 51.9

The superior results over supervised and contrastive

self-supervised pretraining methods, DeiT, MoCo v3

and DINO, stem from that our approach captures the
knowledge beyond the 1000 classes in ImageNet-1K. The

superior results over BEiT and MAE stems from that our

CAE makes predictions in the encoded representation

space and that representation learning and pretext task

completion are separated.

Object detection and instance segmentation on

COCO [60]. We adopt the Mask R-CNN approach [40]

that produces bounding boxes and instance masks simul-

taneously, with the ViT as the backbone. The results

are given in Table 3. We report the box AP for object

detection and the mask AP for instance segmentation.

The observations are consistent with those for semantic
segmentation in Table 2. Our CAE* (300 epochs, ViT-B)

is superior to all the other models except that a little

lower than MAE (1600 epochs). Our approach (1600

epochs) outperforms MAE (1600 epochs), MoCo v3 and

DeiT by 1.6, 4.5 and 3.1, respectively. Using ViT-L, our

CAE achieves 54.6 box AP and outperforms MAE by

0.6.

We also report the results of object detection and

instance segmentation on COCO with the Cascaded

Mask R-CNN framework [7] in Table 6. Results show

that our CAE performs better than other methods.

In addition, we conduct experiments on the scaling

ability of CAE on the detection task. The detection

model is built upon ViT-Huge [26], DINO [98], and
Group DETR [16] (see [17] for more details). The ViT-

Huge is pretrained on ImageNet-22K [22] using CAE.

We are the first to obtain 64.6 mAP on COCO test-dev,

which outperforms previous methods with larger models

and more training data (e.g., BEIT-3 [81] (63.7 mAP)

and SwinV2-G [62] (63.1 mAP)).

Classification. We conduct fine-tuning experiments on

three datasets: Food-101 [6], Clipart [12], and Sketch [12].

Results in Table 4 show that the proposed method

outperforms the previous supervised method (DeiT)

and self-supervised methods (DINO, MAE).

5.5 Ablation Studies

Decoder and alignment. The CAE architecture con-

tains several components for pretraining the encoder:

regressor and alignment for masked representation pre-

diction, decoder with a linear layer for masked patch

reconstruction. We observe that if the pretraining task,

masked patch reconstruction, is not included, the train-

ing collapses, leading to a trivial solution. We thus study

the effect of the decoder (when the decoder is removed,
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Table 4: Top-1 classification accuracy on the Food-101, Clipart and Sketch datasets. The backbone is ViT-B.

Method Supervised Self-supervised Food-101 Clipart Sketch

Random Init. × × 82.77 52.90 46.42

DeiT
√

× 91.81 81.18 73.45

DINO ×
√

91.67 80.72 73.13

MAE ×
√

93.19 80.63 73.87

CAE* ×
√

93.32 81.84 74.65

Table 5: Ablation studies for the decoder and the alignment constraint in our CAE. All the models are pretrained

on ImageNet-1K with 300 epochs.

Decoder Alignment LIN ATT FT ADE Seg. COCO Det. #Params Training Time

× × 60.3 71.2 82.9 47.0 46.9 120.32 M 1×√
× 63.1 72.7 83.4 47.1 47.2 148.68 M 1.14×

×
√

62.0 71.5 83.4 47.1 47.2 120.32 M 1.12×√ √
64.1 73.8 83.6 48.3 48.4 148.68 M 1.24×

Table 6: The results of object detection and instance

segmentation on COCO with the Cascaded Mask-RCNN

framework (1× schedule). ViT-B is used for all experi-

ments. All the detection results are from our implemen-

tation.

Method #Epochs APb APm

MAE [38] 1600 51.3 44.3

mc-BEiT [104] 800 50.1 43.1

iBOT [104] 1600 51.2 44.2

CAE* 300 51.6 44.6

CAE* 800 52.8 45.5

CAE* 1600 52.9 45.5

Table 7: The effect of mask ratios. The backbone is

ViT-B. Models are trained for 300 epochs.

Mask Ratio LIN ATT ADE Seg

40% 63.1 73.0 47.2

50% 64.1 73.8 48.3

60% 64.8 74.2 48.1

we use a linear layer to predict the targets), which is

helpful for target reconstruction, and the alignment,

which is helpful for representation prediction.

Table 5 shows the ablation results. We report the

scores for linear probing, attentive probing, fine-tuning

and downstream tasks: semantic segmentation on the

ADE20K dataset and object detection on COCO with

the DALL-E tokenizer as the target. One can see that

the downstream task performance is almost the same

when only the decoder is added and that the perfor-

mance increases when the decoder and the alignment

are both added. This also verifies that the alignment is

Table 8: The effect of reconstruction targets on the

performance of CAE. The backbone is ViT-B. Models

are trained for 1600 epochs.

Targets LIN ATT ADE Seg

DALL-E tokenizer 70.4 77.1 50.2

d-VAE tokenizer 71.4 77.4 50.1

RGB pixel value 72.4 77.0 50.4

important for ensuring that the predicted representa-
tions of masked patches lie in the encoded representation

space and thus the predictions are made in the encoded

representation space, and accordingly improving the

representation quality. Without the decoder, the perfor-

mance drops. This is because the reconstruction from

the semantic representation to the low-level targets can-

not be done through a single linear layer, and no decoder

will deteriorate the semantic quality of the encoder. The

additional computational cost, i.e. the number of pa-

rameters and training time, brought by the decoder and

alignment is relatively small, e.g., increasing the number

of parameters to 1.23× and training time to 1.24×.

Mask ratio. We also conduct experiments with differ-

ent mask ratios including 40%, 50%, and 60%. Results

are listed in Table 7. We find that ratio 50% gets better

results than ratio 40%. Adopting a higher mask ratio

(60%) could further improve the performance of linear

probing and attentive probing, while the semantic seg-

mentation performance is reduced by 0.2%. We choose

50% in our work unless specified.

#layers in the regressor and decoder. For the

number of layers in the latent contextual regressor and

decoder, we tried four choices: 1-layer, 2-layers, 4-layer,

and 5-layer. The results for linear probing are 58.7, 62.1,
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64.1, and 64.2. The results for attentive probing are

67.5, 71.1, 73.8, and 73.7. We empirically observed that

4-layer outperforms other choices overall.

Loss tradeoff parameter. There is a tradeoff variable

λ in the loss function given in Equation 1. We did not do

an extensive study and only tried three choices, λ = 1,

λ = 1.5 and λ = 2. The linear probing results are 63.4,

63.7 and 64.1, respectively. The choice λ = 1 works also

well, slightly worse than λ = 2 that is adopted in our

experiment.

Reconstruction targets. To study the impact of dif-

ferent pretraining targets on model performance, we con-

duct additional experiments on the RGB pixel value tar-

get. Comparing the results with DALL-E tokenizer and

d-VAE tokenizer trained on ImageNet-1K, the model

shows better linear probe and segmentation results but

inferior in attentive probe, as shown in Table 8. Pretrain-

ing with these three targets obtains similar performance,

illustrating that CAE does not rely on specific pretrain-

ing targets.

6 Conclusion

The core design of our CAE architecture for masked

image modeling is that predictions are made from visible

patches to masked patches in the encoded representa-

tion space. We adopt two pretraining tasks: masked

representation prediction and masked patch reconstruc-

tion. Experiments demonstrate the effectiveness of the

CAE design. In addition, we also point out that the

advantage of MIM methods over typical contrastive self-

supervised pretraining and supervised pretraining on

ImageNet-1K is that MIM learns the representations for

all the patches, while typical contrastive self-supervised

pretraining (e.g., MoCo and SimCLR) and supervised

pretraining tend to learn semantics mainly from center

patches of the original images and little from non-center

patches.

Possible extensions, as mentioned in the arXiv ver-

sion [19], include: investigating the possibility only con-

sidering the pretraining task, masked representation pre-

diction, without masked patch reconstruction, pretrain-

ing a depth-wise convolution network with masked con-

volution, and pretraining with the CLIP targets [102].

Potential limitations. The proposed method may

face challenges when dealing with large and contiguous

masked regions in an image, e.g., the whole object region

is almost masked. Obtaining plausible and high-quality

reconstruction for large areas can be particularly diffi-

cult, as the model has to infer the missing information

based on limited available context. This is a common

limitation of Masked Image Modeling methods, and our

proposed method is not exempt from it.
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