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Discriminative Noise Robust Sparse Orthogonal
Label Regression-based Domain Adaptation

Lingkun Luo, Liming Chen, Senior Member, IEEE, and Shiqiang Hu,

Abstract—Domain adaptation (DA) aims to enable a learning
model trained from a source domain to generalize well on a target
domain, despite the mismatch of data distributions between the
two domains. State-of-the-art DA methods have so far focused
on the search of a latent shared feature space where source
and target domain data can be aligned either statistically and/or
geometrically. In this paper, we propose a novel unsupervised DA
method, namely Discriminative Noise Robust Sparse Orthogonal
Label Regression-based Domain Adaptation (DOLL-DA). The
proposed DOLL-DA derives from a novel integrated model
which searches a shared feature subspace where source and
target domain data are, through optimization of some repulse
force terms, discriminatively aligned statistically, while at same
time regresses orthogonally data labels thereof using a label
embedding trick. Furthermore, in minimizing a novel Noise
Robust Sparse Orthogonal Label Regression(NRS OLR) term, the
proposed model explicitly accounts for data outliers to avoid
negative transfer and introduces the property of sparsity when
regressing data labels. We carry out comprehensive experiments
in comparison with 32 state of the art DA methods using 8 stan-
dard DA benchmarks and 49 cross-domain image classification
tasks. The proposed DA method demonstrates its effectiveness
and consistently outperforms the state-of-the-art DA methods
with a margin which reaches 17 points on the CMU PIE dataset.
To gain insight into the proposed DOLL-DA, we also derive three
additional DA methods based on three partial models from the
full model, namely OLR, CDDA+, and JOLR-DA, highlighting
the added value of 1) discriminative statistical data alignment;
2)Noise Robust Sparse Orthogonal Label Regression; and 3) their
joint optimization through the full DA model. In addition, we
also perform time complexity and an in-depth empiric analysis
of the proposed DA method in terms of its sensitivity w.r.t. hyper-
parameters, convergence speed, impact of the base classifier and
random label initialization as well as performance stability w.r.t.
target domain data being used in traing.

Index Terms—Domain adaptation, Transfer Learning, Visual
classification, Noise Robust Sparse Orthogonal Label Regression

I. INTRODUCTION

Traditional machine learning tasks assume that both training
and testing data are drawn from a same data distribution [43],
[45]. However, in many real-life applications, due to different
factors as diverse as sensor difference, lighting changes, view-
point variations, etc., data from a target domain may have a
different data distribution with respect to the labeled data in a
source domain where a predictor can not be reliably learned.
On the other hand, manually labeling enough target domain

K. Luo, S. Qiang are with School of Aeronautics and Astronautics,
Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China e-
mail: lolinkun@gmail.com, sqhu@sjtu.edu.cn.

L. Chen is with LIRIS, CNRS UMR 5205, Ecole Centrale de Lyon, 36
avenue Guy de Collongue, Ecully, France e-mail: (liming.chen)@ec-lyon.fr.

Manuscript received May 15, 2018.

data for the purpose of training an effective predictor can be
very expensive, tedious and thus prohibitive.

Domain adaptation (DA) [43], [45], [37] aims to leverage
possibly abundant labeled data from a source domain to
learn an effective predictor for data in an unseen domain,
namely target domain, despite the data distribution discrep-
ancy between the source and target. While DA can be semi-
supervised by assuming that a certain amount of labeled data is
available in the target domain, in this paper we are interested in
unsupervised DA where we assume that no labels are available
for target domain data.

While there exists an increasing number of deep learning-
based unsupervised DA methods, we focus in this paper on
shallow DA methods as they are easier to train and can provide
insights into the design decisions of deep DA methods. The
relationships between shallow and deep DA methods will be
discussed in depth in Sect.II on related works. State of the art
shallow DA methods can be categorized into instance-based
[43], [10], feature-based [44], [33], [63], or classifier-based.
Classifier-based DA is widely applied in semi-supervised DA
as it aims to fit a classifier trained on source domain data
to target domain data through adaptation of its parameters,
and thereby require some labels in the target domain[56].
The instance-based approach generally assumes that 1) the
conditional distributions of source and target domain are
identical[64], and 2) certain portion of the data in the source
domain can be reused[43] for learning in the target domain
through re-weighting. Feature-based adaptation[54], [21], [14],
[57], [39] relaxes such a strict assumption and only requires
that there exists a mapping from the input data space to a
latent shared feature representation space. This latent shared
feature space captures the information necessary for training
classifiers for source and target tasks. In this paper, we propose
a novel hybrid DA method using both feature adaptation and
classifier optimization.

A common method to approach feature adaptation is to seek
a shared latent subspace between the source and target domain
[45], [44] via optimization. State-of-the-art features three
main lines of approaches, namely, data geometric structure
alignment-based (DGSA), data distribution centered (DDC) or
their hybridization. DGSA based approaches [54], [51], [63]
seek a subspace where source and target data can be well
aligned and interlaced in preserving inherent hidden geometric
data structure via low rank constraint and/or sparse representa-
tion. DDC methods [38], [35], [30], [36] aim to search a latent
subspace where the discrepancy between the source and target
data distributions is minimized, via various distances, e.g.,
Bregman divergence[53], Geodesic distance[16], Wasserstein
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distance[6], [7] or Maximum Mean Discrepancy[18] (MMD).
The most popular distance is MMD due to its simplicity and
solid theoretical foundation.

Our previously proposed DA method, namely DGA-
DA[39], is a hybridization of DDC and DGSA approaches.
DGA-DA leverages the advantages of both DDC and DGSA
methods and demonstrates a state of the art performance on a
number of DA benchmarks. DGA-DA relies upon the analysis
of a cornerstone theoretical result in DA [2], [1], [26], which
estimates an error bound of a learned hypothesis h on a target
domain as follows:

eT (h) ≤ eS(h) + dH(DS ,DT )+
min {EDS [|fS(x)− fT (x)|] , EDT [|fS(x)− fT (x)|]} (1)

Our previously proposed DGA-DA provides a unified
framework which jointly optimizes term 2 in Eq.(1) as DDC-
DA methods when aligning data distributions, and term 3 in
Eq.(1) as DGSA-DA approaches when performing label infer-
ence through the underlying data geometric structure. It further
introduces a repulsive force(RF) term using both source and
target domain data when seeking the latent feature space and
makes the proposed DA method discriminative. In this paper,
we go one step further and propose a novel DA method,
namely Discriminative Noise Robust Sparse Orthogonal Label
Regression-based Domain Adaptation (DOLL-DA), which
optimizes at the same time the three terms of the right-hand of
Eq.(1), including in particular the first term on classification
error in Eq.(1), when seeking a discriminative latent feature
space.

Specifically, the proposed DOLL-DA derives from an inte-
grated DA model which: 1) searches a shared feature subspace
where the source and target data distributions are discrimina-
tively aligned using an improved repulsive force (RF) term
added to the MMD constraints, thereby optimizing the second
term in Eq.(1) and indirectly improving its first term; 2) makes
use an embedding trick to immerse data labels into the shared
feature space and projects each data sample within the vicinity
of its label vector orthogonal to other ones, thereby further
regularizing the improved MMD constraints and avoiding
potential contradictions among sub-domains when repulsive
force is applied in the search of the shared feature subspace;
3) linearly regresses data labels in the shared feature subspace,
thereby further explicitly optimizes the first term of the right-
hand in Eq.(1). Moreover, data outliers are accounted for
and the property of sparsity in label regression is introduced
to circumvent negative transfer and over-fitting, leading to
a novel Noise Robust Sparse Orthogonal Label Regression
(NRS OLR) term in our DA model; 4) leverages the true
labels available in the source domain and ensures a label
consistency between the source and target domain through an
iterative integrated linear label regression, thereby minimizing
the third term of Eq.(1); Fig.1 depicts the general framework
of the proposed DOLL-DA method.

To sum up, the contributions of this paper are as follows:

• Improved repulsive force (RF)-based MMD constraints
are introduced to enable discriminative alignment of data
distributions between the source and the target domain.

• Orthogonal label subspace is proposed through a label
embedding trick to further regularize the improved RF-
based MMD constraints using a novel Orthogonal La-
bel Regression (ORL) constraint, thereby circumventing
potential conflicts which could arise when optimizing
the improved RF-based MMD constraints and further
enhancing the discriminative power of the proposed DA
method.

• The hypothesis for classifying the target domain data is
learned simultaneously through a single feature projec-
tion matrix A when aligning discriminatively the source
and target domain data in the shared feature subspace.
Furthermore, a property of sparsity is introduced through
a l2,1-norm constraint on A when regressing data labels
and data outliers are also accounted for within the model,
leading to a Noise Robust Sparse Orthogonal Label
Regression(NRS ORL) term to ensure the proposed DA
model to avoid negative transfer as well as overfitting.

• A novel generalized power iteration method is introduced
to solve the optimization problem of the full integrated
DA model, resulting in the proposed DOLL-DA. Fur-
thermore, we perform time complexity analysis and also
derive three additional DA methods based on three partial
models from the full integrated DA in order to highlight
the individual contribution of RF and NRS OLR term,
respectively, as well as their added value when they are
jointly optimized.

• We perform extensive experiments on 49 image classifi-
cation DA tasks using 8 popular DA benchmarks and
demonstrate the effectiveness of the proposed DOLL-
DA which consistently outperforms thirty state-of-the-
art DA algorithms with a margin which can reach 17
points. Moreover, we also carry out in-depth analysis of
the proposed DA method, in particular w.r.t. their hyper-
parameters, convergence speed, the choice of the base
classifier, random label initialization and impact of the
quantity of target domain data for performance stability.

The article is organized as follows. Sect.II discusses the re-
lated work. Sect.III presents the method. Sect.IV benchmarks
the proposed DA method and provides in-depth analysis.
Sect.V draws the conclusion.

II. RELATED WORK

Last years have seen DA techniques applied to multiple
computer vision applications. State-of-the-art has so far fea-
tured two main research streams: 1) Shallow DA; 2) Deep DA.
They are overviewed in Sect.II-A and sect.II-B, respectively,
and discussed in comparison with the proposed DOLL-DA in
sect.II-C.

A. Shallow Domain Adaptation

1) Feature-based DA: The rationale of the feature-based
domain adaptation is to assume a shared latent feature space
between the source and target domain which is searched in
narrowing the existing distribution discrepancies across the
domains. A popular strategy for searching such a shared latent
feature space is to embrace the dimensionality reduction and
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Fig. 1: Illustration of the proposed DOLL-DA method. Fig.1 (a): source domain data and target domain data, e.g., mouse,
bike, smartphone images, with different distributions and inherent hidden data geometric structures between the source in red
and the target in blue. Samples of different class labels are represented by different geometrical shapes, e.g., round, triangle
and square; Fig.1 (b) illustrates DOLL-DA which aligns data distributions closely yet discriminatively through the use of the
nonparametric distance, i.e., Maximum Mean Discrepancy (MMD). Fig.1 (c): accounts for well regularization of the designed
MMD distances, which intends to enable the different sub-domains, w.r.t, its orthogonal subspace meanwhile cares about the
noise data; In DOLL-DA, the optimized common subspace A and label matrix Y are updated iteratively within the processes
in Fig.1 (b-c); Fig.1 (d): the achieved latent joint subspace where both marginal and class conditional data distributions are
aligned discriminatively through the well proposed orthogonal regularization; Furthermore, noise data are well accounted as
well as the hidden manifold structure, the formal one intends to avoide the negative transfer while the latter one improve the
transferability of the learned model based on the source domain.

propose to explicitly minimize some predefined distance mea-
sure to reduce the mismatch between source and target in terms
of marginal distribution [52] [42], or conditional distribution
[33]. These methods can be further distinguished based on
whether they incorporate some form of data discriminativeness
or not in the search of such a shared latent feature space.

Nondiscriminative distribution alignment (NDA): NDA
strategies propose to align the marginal and conditional dis-
tributions across the source and target domains in reducing
different data distribution distance measurements, e.g., Breg-
man Divergence [52], Wasserstein distance [6], [7], Maximum
Mean Discrepancy (MMD) to explicitly shrink the cross-
domain divergence of marginal data distributions [42], and
both the marginal and conditional data distributions [33]. The
obvious drawback of NDA is that it ignores the discriminative
knowledge among different labeled source sub-domains ,
thereby increasing the burden of the required classifier.

Discriminative distribution alignment (DDA): DDA
methods improve NDA ones by explicitly leveraging the
discriminative information in source domain data labeled into
different sub-domains. ILS[20] learns a discriminative latent
space using Mahalanobis metric and makes use of Riemannian
optimization strategy to match statistical properties across dif-
ferent domains. [36] adapts linear discriminant analysis (LDA)
and leverages the discriminative information from the target
domain to estimate the common feature space. OBTL[25]
proposes bayesian transfer learning based domain adaptation,
which explicitly discusses the relatedness across different sub-
domains. SCA[15] achieves discriminativeness in optimizing
the interplay of the between and within-class scatters. Our
proposed DGA-DA[39] also introduces a specific repulsive

force term to capture the data discriminativeness. However,
our DGA-DA further cares about the underlying data manifold
structure when performing label inference. However, despite
improvement over NDA methods, DDA methods rely upon
temporary and unreliable pseudo labels of target domain data
to capture the repulsive force in the target domain, and thereby
can mislead the search of an optimized shared discriminative
latent space.

2) Subspace alignment-based DA: In line with [12], an
increasing number of DA methods, e.g., [40], [51], [63], [54],
[9], emphasize the importance of aligning the underlying data
subspace and manifold structures between the source and the
target domain for effective DA. In these methods, low-rank
and sparse constraints are introduced into DA to extract a
low-dimension feature subspace where target samples can be
sparsely reconstructed from source samples [51], or inter-
leaved by source samples [63], thereby aligning the geometric
structures of the underlying data manifolds. A few recent DA
methods, e.g., RSA-CDDA[40], JGSA[64], further propose
unified frameworks to reduce the shift between domains
both statistically and geometrically. HCA[31] improves JGSA
using a homologous constraint on the two transformations
for the source and target domains, respectively, to make
the transformed domains related and hence alleviate negative
domain adaptation.

However, in light of the upper error bound as defined
in Eq.(1), we can see that subspace alignment based DA
methods account for the underlying data geometric structure
and expect but without theoretical guarantee the alignment
of discriminative data distributions. Our proposed DOLL-DA
improves subspace alignment-based DA by jointly aligning the
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data distributions discriminatively and enhancing the hidden
manifold structure through label regression to regress different
sub-domains w.r.t its orthogonal label subspace.

B. Deep Domain Adaptation

Recently, DA has been intensively investigated under the
paradigm of deep learning (DL), and has featured the follow-
ing two main approaches.

1) Statistic matching-based DA: These methods aim to
reduce the divergence across domains using statistic measure-
ments incorporated into DL frameworks. DAN[32] reduces the
marginal distribution divergence in incorporating the multi-
kernel MMD loss on the fully connected layers of AlexNet.
JAN[35] improves DAN by jointly decreasing the diver-
gence of both the marginal and conditional distributions. D-
CORAL[55] further introduces the second-order statistics into
the AlexNet[27] framework for more effective DA strategy.

2) Adversarial loss-based DA: These methods make use
of GAN[17] and propose to align data distributions across
domains in making sample features indistinguishable w.r.t
the domain labels through an adversarial loss on a domain
classifier [14], [57], [46]. DANN[14] and ADDA[57] learn
a domain-invariant feature subspace in reducing the marginal
distribution divergence. MADA [46] additionally make use of
multiple domain discriminators, thereby aligning conditional
data distributions. Different from the previous approaches,
DSN[4] achieves domain-invariant representations in explicitly
separating the similarities and dissimilarities in the source and
target domains. MADAN[65] explores knowledge from differ-
ent multi-source domains to fulfill DA tasks. CyCADA[22]
addresses the distribution divergence using a bi-directional
GAN based training framework.

The main advantage of these DL based DA methods is that
they jointly shrink the divergence of data distributions across
domains and achieve a discriminative feature representation of
data through a single unified end-to-end learning framework.
However, they also present the drawback that the discrimina-
tive force is merely extracted from the labelled source domain
while it could rely upon simultaneously the source and target
domains in leveraging the underlying data geometric struc-
tures. Furthermore, these DL based DA approaches mostly
work as a black-box and suffer from interpretability, thereby
falling short to provide deep insights for further improving DA
methods.

C. Discussion

Fig.2 compares our proposed DOLL-DA with our pre-
viously proposed DA method, DGA-DA[39] as well as
MEDA[62], and highlights their similarities and differences
according to the following 6 properties:
• Dis(Discriminativeness): both DGA-DA and DOLL-DA

introduce a (RF) term to achieve discriminativeness
across domains, while MEDA ignores this merit. DGA-
DA takes into account RF term across domain, while the
proposed DOLL-DA improves it in extending it with a
RF term within the source domain.

Method Dis Reg Cons Joint Error Manifold

DGA-DA √ X √ X X Laplace Graph

MEDA X X X √ X Laplace Graph

DOLL-DA √ √ √ √ √ Regression

Dis=Discriminativeness;  Reg=Regularization of discriminativeness;

Cons=Constraint (                        ); Joint= Joint optimization;𝐴𝑇𝑋𝐻𝑋𝑇𝐴 = 𝐼

Fig. 2: Model comparison

• Reg(Regularization): Different from DGA-DA and
MEDA, DOLL-DA proposes orthogonal label regres-
sion which further regularizes the effectiveness of the
improved RF-based MMD constraints, thereby circum-
venting potential contradictions when reinforcing these
MMD constraints.

• Cons(Constraint): Both DGA-DA and DOLL-DA are
optimized using the constraint ATXHXTA = I, which
removes an arbitrary scaling factor in the embedding and
prevents the optimization from collapsing into a subspace
of dimension less than the required dimensions. MEDA
does not have such a constraint to obtain an analytical
solution.

• Joint(Joint optimization): Both MEDA and DOLL-DA
achieve data distribution alignment and classifier op-
timization through a unified joint optimization model,
whereas the optimization in DGA-DA for data distribu-
tion alignment and classifier optimization is carried out
separately.

• Error: DOLL-DA designs an error tolerated subspace to
care about the noise in data, therefore decreasing the risk
of potential negative transfer.

• Manifold: both MEDA and DGA-DA capture the under-
lying data manifold structures for label inference. While
effective, they also suffer from the computational burden
due to the singular value decomposition. DOLL-DA also
cares about data manifold structures, but through compu-
tation effective iterative integrated linear label regression.

III. THE PROPOSED METHOD

Sect.III-A defines the notations and states the DA problem.
Sect.III-B formulates our DA model while Sect.III-C presents
the generalized power iteration method to solve the proposed
DA model and derives the algorithm of DOLL-DA. Sect.III-D
extends DOLL-DA to non-linear problem through kernel
mapping. Sect.III-E performs time complexity analysis of the
proposed DOLL-DA.

A. Notations and Problem Statement

Matrices are written as boldface uppercase letters. Vec-
tors are written as boldface lowercase letters. For matrix
M = (mij), its i-th row is denoted as mi, and its j-th
column is denoted by mj . We define the Frobenius norm
‖.‖F and l2,1 norm as: ‖M‖F =

√∑
n
i=1

∑
l
j=1m

2
ij and

‖M‖2,1 =
∑

n
i=1

√∑
l
j=1m

2
ij . A domain D is defined as

an l-dimensional feature space χ and a marginal probability
distribution P (x), i.e., D = {χ, P (x)} with x ∈ χ. Given a
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specific domain D, a task T is composed of a C-cardinality
label set Y and a classifier f(x), i.e., T = {Y, f(x)}, where
f(x) = Q(y|x) can be interpreted as the class conditional
probability distribution for each input sample x.

In unsupervised domain adaptation, we are given a source
domain DS = {xsi , ysi }

ns
i=1 with ns labeled samples XS =

[xs1...x
s
ns

], which are associated with their class labels YS =
{y1, ..., yns

}T ∈ Rns×C , and an unlabeled target domain
DT = {xtj}

nt
j=1 with nt unlabeled samples XT = [xt1...x

t
nt

],
whose labels YT = {yns+1, ..., yns+nt

}T ∈ Rnt×C are
unknown. Here, yi ∈ Rc(1 ≤ i ≤ ns+nt) is a one-vs-all label
hot vector in which yji = 1 if xi belongs to the j-th class, and 0
otherwise. We define the data matrix X = [XS ,XT ] ∈ Rl∗n

(l = feature dim ension; n = ns + nt ) in packing both
the source and target data. The source domain DS and target
domain DT are assumed to be different, i.e., χS = χT ,
YS = YT , P(χS) 6= P(χT ), Q(YS |χS) 6= Q(YT |χT ). We
also define the notion of sub-domain, i.e., class, denoted as
D(c)
S , representing the set of samples in DS with the class

label c. It is worth noting that, the definition of sub-domains
in the target domain, namely D(c)

T , requires a base classifier,
e.g., Nearest Neighbor (NN), to attribute pseudo labels for
samples in DT .

The maximum mean discrepancy (MMD) is an effective
non-parametric distance-measure that compares the distribu-
tions of two sets of data by mapping the data into Reproducing
Kernel Hilbert Space[3] (RKHS). Given two distributions P
and Q, the MMD between P and Q is defined as:

Dist(P,Q) =‖ 1

n1

n1∑
i=1

φ(pi)−
1

n2

n2∑
i=1

φ(qi) ‖H (2)

where P = {p1, . . . , pn1
} and Q = {q1, . . . , qn2

} are two
random variable sets from distributions P and Q, respectively,
and H is a universal RKHS with the reproducing kernel
mapping φ: f(x) = 〈φ(x), f〉, φ : X → H.

The aim of the proposed DOLL-DA is to search jointly a
transformation matrix A ∈ Rl∗k projecting discriminatively
both the source and target domain data of dimension l into a
latent shared orthogonal feature subspace of dimension k as
well as a label regressor while minimizing simultaneously the
three terms of the upper error bound in Eq.(1).

B. Formulation

Our final model DOLL-DA (sect.III-B5) starts from JDA
(sect.III-B1), which is improved in Sect.III-B2 and Sect.III-B3
for discriminative data distribution alignment (DDA) by lever-
aging the discriminative knowledge from the source and target
domains. Fig.3 summarizes these steps which aim to minimize
dH(DS ,DT ) (term.2 of Eq.(1)). Sect.III-B4 further introduces
an orthogonal label regressor using an embedding trick and
accounts for noisy data as well as sparsity in label regression
to derive Noise Robust Sparse Orthogonal Label Regression
(NRS OLR). Sect.III-B5 integrates DDA and NRS OLR to
achieve our final model and thereby optimizes at the same
time the three terms of the right-hand of Eq.(1).

1) Matching Marginal and Conditional Distributions: As
shown in Fig.3.a and Fig.3.b, our model starts from JDA,
which makes use of MMD in RKHS to measure the distances
between the expectations of the source domain/sub-domain
and target domain/sub-domain. Specifically, 1) The empirical
distance of the source and target domains is defined as Distm;
2) The conditional distance Distc is defined as the sum of the
empirical distances between sub-domains in DS and DT with
a same label; 3) DistClo is defined as the sum of Distm and
Distc.

DistClo = Distm(DS , DT ) +Distc
C∑

c=1
(DS

c, DT
c)

=

∥∥∥∥∥ 1
ns

ns∑
i=1

ATxi− 1
nt

ns+nt∑
j=ns+1

ATxj

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n
(c)
s

∑
xi∈DS

(c)

ATxi − 1

n
(c)
t

∑
xj∈DT

(c)

ATxj

∥∥∥∥∥
2

= tr(ATX(M0 +
c=C∑
c=1

Mc)X
TA)

(3)

• Distm(DS ,DT ): where M0 is the MMD matrix be-
tween DS and DT with (M0)ij = 1

nsns
if (xi,xj ∈ DS),

(M0)ij = 1
ntnt

if (xi,xj ∈ DT ) and (M0)ij = 0 other-
wise. Thus, the difference between the marginal distri-
butions P(XS) and P(XT ) is reduced when minimizing
Distm(DS ,DT ).

• Distc(DS ,DT ): where C is the number of classes,
DS (c) = {xi : xi ∈ DS ∧ y(xi) = c} repre-
sents the cth sub-domain in the source domain, in
which n

(c)
s =

∥∥∥DS (c)∥∥∥
0

is the number of sam-

ples in the cth source sub-domain. DT (c) and n
(c)
t

are defined similarly for the target domain but us-
ing pseudo-labels. Finally, Mc denotes as the MMD
matrix between the sub-domains with labels c in DS
and DT with (Mc)ij = 1

n
(c)
s n

(c)
s

if (xi,xj ∈ DS
(c)),

(Mc)ij = 1

n
(c)
t n

(c)
t

if (xi,xj ∈ DT
(c)), (Mc)ij = −1

n
(c)
s n

(c)
t

if (xi ∈ DS
(c),xj ∈ DT

(c) or xi ∈ DT
(c),xj ∈ DS

(c))
and (Mc)ij = 0 otherwise. As a consequence, the mis-
match of conditional distributions between DSc and DT c

is reduced in minimizing Distc.

2) Across domain Repulsive force term: As shown in
Fig.3.(a,b), sect.III-B1 merely cares about shrinking the MMD
distances in order to align data marginal and conditional
distributions between the source and target domain, and ig-
nores discriminative knowledge within data. Here, a repulsive
force(RF) term DistreS→T +DistreT→S is introduced to enable
discriminative DA as shown in Fig.3.c. Specifically, we denote
S → T and T → S to index the distances computed from DS
to DT and DT to DS , respectively, and DistreS→T as the sum
of the distances between each source sub-domain DS (c) and all
the target sub-domains DT (r); r∈{{1...C}−{c}} excluding the c-
th target sub-domain. Symmetrically, DistreT→S is defined in a
similar way as DistreS→T . These two distances are computed
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Eq.(1)

(Marginal distribution discrepancy)

(Conditional distribution discrepancy)

(Term.2 of  Eq.(1))

(Term.1 of  Eq.(1))

Marginal distribution approximationRepulsive term Conditional distribution approximation

Fig. 3: Fig.3 (a): marginal distribution matching; Fig.3 (b): conditional distribution matching; Fig.3 (c): Repulsive force term
proposed on the source domain; Fig.3 (d): Repulsive force term proposed across the source and target domains. (purple, yellow,
blue, and red parts represent Fig.3 (a), Fig.3 (b), Fig.3 (c), and Fig.3 (d) respectively.)

as:

DistreS→T +DistreT→S = Distc
C∑

c=1
(DS

c, DT
r∈{{1...C}−{c}})

+Distc
C∑

c=1
(DT

c, DS
r∈{{1...C}−{c}})

=
C∑

c=1
tr(ATX(MS→T + MT→S)XTA)

(4)

Where:

• MS→T is defined as: (MS→T)ij = 1

n
(c)
s n

(c)
s

if

(xi,xj ∈ DS
(c)), 1

n
(r)
t n

(r)
t

if (xi,xj ∈ DT
(r)), −1

n
(c)
s n

(r)
t

if (xi ∈ DS
(c),xj ∈ DT

(r) or xi ∈ DT
(r),xj ∈ DS

(c))
and 0 otherwise.

• MT→S is defined as: (MT→S)ij = 1

n
(c)
t n

(c)
t

if

(xi,xj ∈ DT
(c)), 1

n
(r)
s n

(r)
s

if (xi,xj ∈ DS
(r)), −1

n
(c)
t n

(r)
s

if (xi ∈ DT
(c),xj ∈ DS

(r) or xi ∈ DS
(r),xj ∈ DT

(c))
and 0 otherwise.

Therefore, maximizing Eq.(4) increases the distances of
each sub-domain with the other remaining sub-domains across
domain, i.e., the between-class distances across domain, and
thereby facilitates a discriminative DA. This across domain
RF term was introduced in our previously proposed DGA-
DA [39] and has already shown its effectiveness.

3) Repulsive force term within the source domain: While
Sect.III-B1 and sect.III-B2 have so far endeavored to minimize
the second term of the right-hand in Eq.(1), we turn our
attention here to optimize the first term of Eq.(1) as shown
in Fig.3.(d). Specifically, we introduce a repulsive force term
DistreS→S (Fig.3.(d)), so as to increase the discriminative
power on the labeled source domain, thereby making it possi-
ble for a better predictive model on the source domain. Using
S → S to index the distances computed from DS to DS , we
can compute, similarly as in eq.(4), DistreS→S as the sum of the
distances from each source sub-domain DS (c) to all the other
source sub-domains DS (r); r∈{{1...C}−{c}}, excluding the c-th
source sub-domain:

DistreS→S = Distc
C∑

c=1
(DS

c, DS
r∈{{1...C}−{c}})

=
C∑

c=1
tr(ATX(MS→S)XTA)

(5)

where MS→S is defined as: (MS→S)ij = 1

n
(c)
s n

(c)
s

if

(xi, xj ∈ DS
(c)), 1

n
(r)
s n

(r)
s

if (xi, xj ∈ DS
(r)), −1

n
(c)
s n

(r)
s

if

(xi ∈ DS
(c), xj ∈ DS

(r) or xi ∈ DS
(r), xj ∈ DS

(c)) and 0
otherwise.

Maximizing Eq.(5) increases the between-class distances in
the source domain and thereby optimizing the first term of
the right-hand in Eq.(1) on classification errors on the source
domain. In our model, the RF term within the source domain
as defined by Eq.(5) added to the across domain RF term as
defined by Eq.(4) is named improved repulsive force (RF) and
optimized simultaneously.

(b) Complex relationships

……

(d) 2-classes DA with MMD&ORL (e) 3-classes DA with MMD&ORL (f) N-classes classes DA with MMD&ORL

…….

(a) MMD constraints (c) 2-classes DA with MMD

Fig. 4: Illustration of MMD constraints and orthogonal pro-
jection based label consistent regression.

4) Noise Robust Sparse Orthogonal Label Regression: The
improved repulse force term formulated in sect.III-B2 and
sect.III-B3 aims to increase the between-class distances, across
domain through Eq.(4) and within the source domain through
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Eq.(5), and enable discriminative alignment of marginal and
conditional data distributions (eq.(3)) in sect.III-B1), but does
not seek to decrease the intra-class distances. As a result,
situations as shown in Fig.4.(a,b,c), where the instances of
a class are pushed away from other class instances but don’t
get closer each other within the class, could happen. More
importantly, while eq.(4) and eq.(5) make it possible to de-
crease the classification errors of a hypothesis on the source
domain, the first term of the error bound in eq.(1) is not
explicitly optimized. Here, we propose to solve the previous
two issues through orthogonal label regression as shown in
Fig.4.(d, e, f) where the instances of each class (sub-domain)
across domain get close to their one-vs-all hot label vector
which is orthogonal to those of other classes.

To this end, we introduce a novel orthogonal label re-
gression (OLR) constraint Φ(A,YS ,XS), where A is the
transformation matrix projecting both the source and target
data onto a latent shared feature subspace of dimension k.
Specifically, we first introduce an embedding trick which con-
sists of immersing a C-dimensional one-vs-all hot label vector
into the k-dimensional latent shared feature subspace simply
by adding (k − C + 1) times 0, e.g., a 3-dimensional one-
vs-all label vector (0, 1, 0)t is represented by its correspond-
ing one-vs-all hot vector (0, 1, 0, 0, 0)t in the 5-dimensional
feature subspace using the embedding trick. We can then
perform least square regression (LSR): min

∥∥XTA−Y
∥∥2
F

st.Y ≥ 0, Y1 = 1, with Y the class label matrix as defined in
sect.III-A and extended into a n×k matrix by embedding each
one-vs-all hot label vector into a k-dimensional one using the
embedding trick. Minimization of LSR thus simply requires
that each labeled sample be projected within the vicinity of
its corresponding label hot vector in the k-dimensional feature
space.

It is worth noting that the proposed OLR enjoys the
following three properties:

• Orthogonality, i.e., (Yi=c •Yi6=c) = 0 with • denoting
the dot product. This constraint simply expresses that
one-vs-all hot label vectors in the shared latent feature
subspace are orthogonal each other. As a result, projecting
each data sample into the vicinity of its corresponding la-
bel vector keeps the samples of each sub-domain far away
from those of other sub-domains and thereby improving
data discriminativeness and optimizing term.1 of Eq.(1);

• Label Embedding Constraint, i.e., Q(Yi/∈{1...C} |χS ∪
χT ) = 0. This property simply denotes the fact that we
have made use of the embedding trick for immersing
each C dimensional one-vs-all hot label vector into the k
dimensional shared feature space and there are no label
vectors for classes ranging from C + 1 to k;

• Sharing of the feature projection and label regres-
sion matrix through A. Thanks to the label embedding
constraint, the projection matrix A through eq.(3), eq.(4)
and eq.(5) for the search of a shared latent feature space
aligning discriminatively marginal and conditional data
distributions between the source and target domain can
be shared with the one used for the orthogonal label
regression (OLR) constraint, thereby jointly optimizing

term.1 and term.2 of Eq.(1) within a single unified feature
and label subspace. Furthermore, as shown in Fig.4.((d),
(e)), data of each sub-domain, i.e. data with a same label,
from the source and target domain, are projected within
the vicinity of their corresponding one-vs-all hot label
vector, thereby also decreasing Term.3 of Eq.(1), i.e., the
errors of their respective labelling functions on the source
and target domain.

However, data from the source and target domain can be
noisy. We account for data noise through an error matrix E
and the OLR constraint can therefore be reformulated as:
min

∥∥XTA−Y + E
∥∥2
F

st. Y ≥ 0, Y1 = 1. The error
matrix E makes possible a certain tolerance of errors when
projecting data into the vicinity of its corresponding label
vector in the latent shared feature space, thereby enabling to
account for outliers and alleviating the influence of negative
transfer. Additionally, given the fact that, in real-life appli-
cations, e.g. visual object recognition, data of a given class
generally lie within a manifold of much lower dimension in
comparison with the original data space, e.g., pixel number
of images, we further introduce a l2,1-norm constraint so as
to fulfill the property that the class label of a data sample
should be regressed from a sparse combination of features
in the latent shared feature subspace. This constraint intro-
duces a regularization term on A for discriminative subspace
projection, which also optimizes Term.3 of Eq.(1). Putting all
these together, the initial Orthogonal Label Regression (OLR)
constraint becomes Noise Robust Sparse Orthogonal Label
Regression (NRS OLR) and is finally formulated as:

min
∥∥XTA−Y + 1eT

∥∥2
F

+ β ‖A‖22,1
st. Y ≥ 0, Y1 = 1, (Yi=c •Yi 6=c) = 0

(6)

5) The final model: By integrating all the properties intro-
duced in sect.III-B1 through sect.III-B4, we obtain our final
DA model, formulated as Eq.(19)

min
A,e,YU≥0,YU1=1

(tr(ATXM∗XTA) + α ‖A‖2F + β ‖A‖22,1)

+
∥∥XTA + 1eT −Y

∥∥2
F

st.M∗ = M0 +
C∑

c=1
(Mc)−MREP , Y ≥ 0, Y1 = 1,

ATXHXTA = I, (Yi=c •Yi 6=c) = 0

(7)

where MREP = MS→T +MT→S+MS→S is the improved
overall repulsive force constraint matrix, H=I − 1

n1 is the
centering matrix, the constraint Y ≥ 0 and Y1 = 1 simply
expresses the fact that each data sample has a label vector
whose class probability sums to 1, whereas the constraint
ATXHXTA = I derives from Principal Component Anal-
ysis (PCA) to preserve the intrinsic data covariance of both
domains and avoid the trivial solution for A.

Through iterative optimization of Eq.(19), our DA method
searches jointly a well regularized discriminative latent feature
subspace shared between the source and target domain and a
noise robust sparse label regression model, thereby optimizing
at the same time the three terms of the right-hand of Eq.(1).

C. Solving the model
Eq.(19) is not convex, therefore we propose an effective

method which optimizes the key variables, e.g., A,M,Y, in
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a coordinate descent manner. Main steps for solving Eq.(19)
are as follows. All the key steps have closed form solution:

Step.1 (Initialization of M∗) M∗ can be initialized by
calculating M0 since there is no labels or pseudo labels on
the target domain initially. We obtain M∗ = M0 where M0

is the MMD matrix as defined in Eq.(3).
Step.2 (Initialization of A) Similar to JDA, A can be

initialized to reduce the marginal and conditional distributions
between P(XS) and P(XT ) through an adaptive feature sub-
space via the Rayleigh quotient algorithm, in solving Eq.(8):

(X(M0 +
∑c=C

c=1 Mc)X
T + αI)A = XHXTAΦ (8)

where X = XS ∪XT and Φ = diag(φ1, ..., φk) ∈ Rk×k are
Lagrange multipliers,

∑c=C
c=1 Mc is obtained through labeled

source domain data ATXS and pseudo labels inferred on the
target domain data ATXT . A is then initialized as the k
smallest eigenvectors of Eq.(8), with k defining the dimension
of the latent shared feature subspace between the source and
target domain.

Step.3 (Update of e) e is updated in solving Eq.(19) with
other variables held fixed. To update e, one should solve Eq.(9)

e′ = arg min
e

∥∥XTA + 1eT −Y
∥∥2
F

(9)

In setting to 0 the partial derivative of Eq.(9) with respect
to e, we achieve the optimal solution of e as

e = 1
n (YT1−ATX1) (10)

Step.4 (Update of A) A is updated by solving the optimiza-
tion problem in Eq.(19) with other variables held fixed. To
ensure that Eq.(19) is differentiable, we regularize ‖A‖22,1 as

(
∑

k
j=1

√
‖aj‖22 + ε) to avoid ‖A‖22,1 =0. As a result, Eq.(19)

becomes Eq.(11)

A′ = arg min
A,ATXHXTA=I

((tr(ATX(M∗)XTA) + α ‖A‖2F

+
∥∥XTA + 1eT −Y

∥∥2
F

+β(
∑k

j=1

√
‖aj‖22 + ε))

(11)

ε is infinitely close to zero, thereby making Eq.(11) closely
equivalent to Eq.(19). Solving directly Eq.(11) is non-trivial,
we introduce a new variable G ∈ Rk∗k which is a diagonal

matrix with gjj = (
∑

k
i=1

√
‖ai‖22 + ε) ÷ (

√
‖ai‖22 + ε). G

and A can be optimized iteratively. With G held fixed and e
computed as in Eq.(10), we can reformulate Eq.(11) as Eq.(12)

A′ = arg min
A,ATXHXTA=I

(tr(ATX(M∗)XTA) + α ‖A‖2F )

+
∥∥HXTA−HY

∥∥2
F

+ βtr(ATGA)
(12)

Eq.(12) is a least square problem on the Stiefel manifold,
which is a non-convex optimization problem. Therefore, it
cannot be directly solved via the Lagrangian method or an
analytical solution. Inspired by previous research on solving
quadratic problem on the Stiefel manifold[13], [41], [19], we
propose a novel generalized power iteration (GPI) method to
optimize the projection matrix A that rotates the factor matrix
to best fit the hypothesis subspace.

Step.i We propose Cholesky factorization of H, which aims
to obtain a lower triangular matrix h, so that hhT = H.

Step.ii Eq.(12) is reformulated as:

arg min
A,ATXHXTA=I

tr(AT (XHTHXT + βG + αI

+(X(M∗)XT ))A)− 2tr(ATXHTHY)
(13)

We set:
WT = ATXh
C = h−1HTHY

B = (Xh)
−1

((XHTHXT + βG + αI + (X(M*)XT )))(hTXT )
−1

(14)

Using Eq.(14), Eq.(13) can be written for short as:

arg min
W,WTW=I

tr(WTBW − 2WTC) (15)

where B is a symmetric matrix.
Step.iii Initialize WT = ATXh to satisfy WTW = I, and

set B′ = µI−B, which ensures B′ is a positive definite matrix.
Step.iv Set Z = 2B′W + 2C. Then, optimize USVT = Z

via singular value decomposition method on Z.
Step.v Update WT = UVT and AT = WT (Xh)−1.
Eventually, the final optimization of Eq.(11) is A′ =

(WT (Xh)−1)T . Algorithm 1 details the whole process to
update A′.

Algorithm 1: Power iteration method for solving
Eq.(11)
Input: Data X, Source domain label YS , MMD

matrix M∗, fixed matrix G, H, regularization
parameters β and α

1 1: Initialize W and B′ as introduced in Step.iii;
2 2: Update Z,AT ,WT ;
3 if Non convergence then
4 (i) Do Step.iv;
5 (ii) Do Step.v;
6 else
7 break;

8 3: Update A′ via solving A′ = (W(Xh)−1)T

Output: A← A′

Step.5 (Update of Y) The label matrix Y contains two
parts: true labels YS = {y1, ..., yns

}T ∈ Rns×C , and pseudo
labels YT = {yns+1, ..., yns+nt

}T ∈ Rnt×C . Our aim is to
iteratively refine the latter ones. Given fixed A, e and M∗, each
yi ∈ YT can be updated by solving the following problem:

yi
′ = arg min

yi≥0,yT
i 1=1

∥∥XTA− yi+e
∥∥2
F

(16)

Using Lagrangian multipliers method, the final optimal
solution of yi is

yi
′ = (ATxi + e+ ∂) (17)

where ∂ is coefficient of Lagrangian constraint yTi 1− 1 = 0,
which can be obtained by solving yTi 1 = 1.

Step.6 (Update of M∗) With the labeled source domain
data ATXS and the labels inferred on the target domain data
ATXT as in Step.5, we can update M∗ as

M∗ = M0 +
∑C

c=1(Mc)−MREP (18)

where Mc and MREP are defined in Eq.(19).
The complete learning algorithm is summarized in Algo-

rithm 2 - DOLL-DA.
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Algorithm 2: Discriminative Label Consistent Domain
Adaptation (DOLL-DA)

Input: Data X, Source domain label YS , subspace
dimension k, iterations T , regularization
parameters β and α

1 1: Initialize M∗ = M0 as defined in Eq.(3) ;
2 2: Initialize A by solving Eq.(8); (t := 0)
3 while ∼ isempty(X,YS) and t < T do
4 3: Update M∗ by solving Eq.(18)
5 4: Update e by solving Eq.(10)
6 5: Update A; (t1 := 0.)
7 if t1 < T then
8 (i) Initialize G as an identity matrix;
9 (ii) Update A by solving Algorithm1;

10 (iii) Update G by calculating

gjj = (
∑

k
i=1

√
‖ai‖22 + ε)÷ (

√
‖ai‖22 + ε);

11 (iv) t1 = t1 + 1;
12 else
13 break;

14 6: Update Y by solving Eq.(17)
15 7: Update pseudo target labels

Y
(T )
T = Y [:, (ns + 1) : (ns + nt)];

16 8:t = (t+ 1);

Output: A, Z = ATX, Y

D. Kernelization

The proposed DOLL-DA method is extended to nonlinear
problems in a Reproducing Kernel Hilbert Space via the kernel
mapping φ : x → φ(x), or φ(X) : [φ(x1), ..., φ(xn)], and
the kernel matrix K = φ(X)Tφ(X) ∈ Rn∗n. We utilize the
representer theorem to formulate the Kernel DOLL-DA as:

min
A,e,YU≥0,YU1=1

(tr(ATKM∗KTA) + α ‖A‖2F + β ‖A‖22,1)

+
∥∥KTA + 1eT −Y

∥∥2
F

st.M∗ = M0 +
C∑

c=1
(Mc)−MREP , Y ≥ 0, Y1 = 1,

ATKHKTA = I, (Yi=c •Yi6=c) = 0

(19)

E. Time Complexity Analysis

Given n the number of data samples including both the
source and target domain and l the feature dimension, we
denote by t, t1 the number of iterations with t, t1 ≺ min(l, n).
The major computational burden of the proposed Algorithm.2
lies in Step 2, 3 and 5 as sketched in Sect.III-C. In Step
2, the singular value decomposition(SVD) is computed on a
n ∗ n matrix, its computational complexity is O(n3). Step 3.
constructs the Mcyd matrix, whose computational complexity
is O(4Cn2) with C the number of classes, i.e., the class
cardinality. Step 4.(ii) makes use of SVD to solve optimization
on a n∗k size matrix as introduced in step.(iv) of Algorithm.1,
its computational complexity is thus O(n2k + nk2 + k3). In
Step.5 and Step.6, O(nk) operations are required for all other
lines. Therefore, the overall computational complexity of the
proposed Algorithm - DOLL-DA is O(n3 + 4tCn2 + tnk +
tt1(n2k + nk2 + k3)).

IV. EXPERIMENTS

A. Benchmarks and Features

As illustrated in Fig.5, USPS[23]+MINIST[28],
COIL20[33], PIE[33], office+Caltech[33], Office-Home[60]
and SVHN-MNIST[4] are standard benchmarks for the
purpose of evaluation and comparison with state-of-the-art in
DA. In this paper, we follow the data preparation as most
previous works[15], [8], [40], [4], [30] do. We construct 49
datasets for different image classification tasks.

Office+Caltech consists of 2533 images of 10 categories
(8 to 151 images per category per domain)[15]. These images
come from four domains: (A) AMAZON, (D) DSLR, (W)
WEBCAM, and (C) CALTECH. AMAZON images were
acquired in a controlled environment with studio lighting.
DSLR consists of high resolution images captured by a digital
SLR camera in a home environment under natural lighting.
WEBCAM images were acquired in a similar environment to
DSLR, but with a low-resolution webcam. CALTECH images
were collected from Google Images.

We use two types of image features extracted from these
datasets, i.e., SURF and DeCAF6, that are publicly avail-
able. The SURF[16] features are shallow features extracted
and quantized into an 800-bin histogram using a codebook
computed with K-means on a subset of images from Amazon.
The resultant histograms are further standardized by z-score.
The Deep Convolutional Activation Features (DeCAF6)[11]
are deep features computed as in AELM[59] which makes
use of VLFeat MatConvNet library with different pretrained
CNN models, including in particular the Caffe implementation
of AlexNet[27] trained on the ImageNet dataset. The outputs
from the 6th layer are used as deep features, leading to 4096
dimensional DeCAF6 features. In this experiment, we denote
the dataset Amazon, Webcam, DSLR, and Caltech-256 as
A, W, D, and C, respectively. The arrow “→”is proposed
to denote the direction from “source”to “target”. For
example, “W → D”means the Webcam image dataset is
considered as the labeled source domain whereas the DSLR
image dataset the unlabeled target domain.

USPS+MNIST shares 10 common digit categories from
two subsets, namely USPS and MNIST, but with very different
data distributions (see Fig.5). We construct a first DA task
USPS vs MNIST by randomly sampling first 1,800 images
in USPS to form the source data, and then 2,000 images
in MNIST to form the target data. Then, we switch the
source/target pair to get another DA task, i.e., MNIST vs USPS.
We uniformly rescale all images to size 16×16, and represent
each one by a feature vector encoding the gray-scale pixel
values. We also extract deep feature from softmax layer[47]
of LeNet[28] architecture, leading to a 10 dimensional feature.
Thus the source and target domain data share the same feature
space. As a result, we have defined two cross-domain DA
tasks, namely USPS → MNIST and MNIST → USPS.

COIL20 contains 20 objects with 1440 images (Fig.5). The
images of each object were taken in varying its pose about 5
degrees, resulting in 72 poses per object. Each image has a
resolution of 32×32 pixels and 256 gray levels per pixel.
In this experiment, we partition the dataset into two subsets,
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namely COIL 1 and COIL 2[63]. COIL 1 contains all images
taken within the directions in [00, 850] ∪ [1800, 2650] (quad-
rants 1 and 3), resulting in 720 images. COIL 2 contains all
images taken in the directions within [900, 1750]∪[2700, 3550]
(quadrants 2 and 4) and thus the number of images is also 720.
In this way, we construct two subsets with relatively different
distributions. In this experiment, the COIL20 dataset with 20
classes is split into two DA tasks, i.e., COIL1 → COIL2 and
COIL2 → COIL1.

PIE face database consists of 68 subjects with each under
21 various illumination conditions[8], [33]. We adopt five pose
subsets: C05, C07, C09, C27, C29, which provide a rich basis
for domain adaptation, that is, we can choose one pose as
the source and any remaining one as the target. Therefore, we
obtain 5×4 = 20 different source/target combinations. Finally,
we combine all five poses together to form a single dataset for
large-scale transfer learning experiment. We crop all images to
32× 32 and only adopt the pixel values as the input. Finally,
with different face poses, of which five subsets are selected,
denoted as PIE1, PIE2, etc., resulting in 5×4 = 20 DA tasks,
i.e., PIE1 vs PIE 2 . . . PIE5 vs PIE 4, respectively.

Office-Home dataset as shown in Fig.5 is a novel DA
dataset recently introduced in [60]. This dataset contains 4
domains. Each domain contains 65 categories. This dataset
is used in a similar manner as the Office+Caltech dataset.
From the 4 domains, i.e., the Art (Ar), Clipart (Cl), Product
(Pr) and Real-World (Rw), we generate 12 DA tasks, namely
namely Ar→ Cl . . . Pr→ Rw, respectively. DeCAF6 features
are extracted to evaluate the performance of the proposed DA
algorithms on this dataset.

SVHN-MNIST contains the MNIST dataset as introduced
in USPS-MNIST but also the Street View House Numbers
(SVHN) which is a collection of house numbers collected from
Google street view images (see Fig.5). SVHN is quite distinct
from the dataset of handwriting digits, i.e., digits in MNIST.
Moreover, all the 2 domains are quite large, each having at
least 60k samples over 10 classes. We propose to make use of
the LeNet architecture [28] and domain classifier as introduced
in [47] to extract features for our DA tasks.

B. Baseline Methods
The proposed DOLL-DA method is compared with thirty-

two methods of the literature, including deep learning-based
approaches for unsupervised domain adaption. They are:
• Shallow methods: (1) 1-Nearest Neighbor Classi-

fier(NN); (2) Principal Component Analysis (PCA); (3)
GFK [16]; (4) TCA [42]; (5) TSL [52]; (6) JDA [33];
(7) ELM [59]; (8) AELM [59]; (9) SA [12]; (10) mSDA
[5]; (11) TJM [34]; (12) RTML [8]; (13) SCA [15];
(14) CDML [61]; (15) LTSL [51]; (16) LRSR [63]; (17)
KPCA [49]; (18) JGSA [64]; (19) CORAL [54]; (20)
RVDLR [24]; (21) LPJT [29]; (22) DGA-DA[39].

• Deep methods: (23) AlexNet [27]; (24) DAH [60]; (25)
DANN [14]; (26) ADDA [57]; (27) LTRU) [50]; (28)
ATU [48]; (29) BSWD [47]; (30) DSN [4]; (31) DDC
[58]; (32) DAN [32].

Direct comparison of the proposed DOLL-DA using shal-
low features against these DL-based DA approaches could be

Amazon 

Webcam 

DSLR 

Caltech 

MNIST USPS COIL 

PIE 

Dataset DSLR Amazon Webcam Caltech 

No. Images 157 958 295 1123 

Classes 10 10 10 10 

Feature Dimensions Decaf(4096)/SURF(800) Same Same Same 

COIL1 COIL2 PIE1 PIE2 PIE3 PIE4 PIE5 

720 720 3332 1629 1632 3329 1632 

20 20 68 68 68 68 68 

Pixel (1024) same same same same same Same 

MNIST USPS 

2000 1800 

10 10 

256 256 

MNIST SVHN 

20000 50000 

10 10 

500 500 

Ar Cl Pr Rw 

2427 4365 4439 4357 

65 65 65 65 

4096 4096 4096 4096 

SVHN 

Art (Ar) 

Clipart (Cl) 

Product (Pr) 

Real World (Rw) 

Office+Caltech 

Office-Home 

Fig. 5: Sample images from eight datasets used in our experi-
ments. Each dataset represents a different domain. The Office
dataset in Office+Caltech contains three sub-datasets, namely
DSLR, Amazon and Webcam.

unfair. However, in order to give an idea on the performance
gap between shallow and deep DA methods, we still compare
their results with those of our shallow DOLL-DA. For the
purpose of fair comparison, we follow the experiment settings
of DGA-DA, JGSA and BSWD, and apply DeCAF6 as the
input features for some methods to be evaluated. Whenever
possible, the reported performance scores of the thirty-two
methods of the literature are directly collected from their
original papers or previous research [57], [59], [29], [15], [47],
[64], [39]. They are assumed to be their best performance.

C. Experimental Setup

For the problem of domain adaptation, it is not possible
to tune a set of optimal hyper-parameters, given the fact
that the target domain has no labeled data. Following the
setting of previous research[39], [33], [63], we also evaluate
the proposed DOLL-DA by empirically searching in the
parameter space for the optimal settings. Specifically, the
proposed DOLL-DA method has three hyper-parameters, i.e.,
the subspace dimension k, regularization parameters β and α.
In our experiments, we set k = 300 and 1) β = 0.1, and α = 1
for USPS, MNIST，COIL20 and PIE, 2) β = 1, α = 1 for
Office+Caltech, SVHN-MNIST and Office-Home.

In our experiment, accuracy on the test dataset as defined
by Eq.(20) is the performance measurement. It is widely used
in literature, e.g.,[32], [40], [33], [63], etc.

Accuracy = |x:x∈DT∧ŷ(x)=y(x)|
|x:x∈DT | (20)

where DT is the target domain treated as test data, ŷ(x) is the
predicted label and y(x) is the ground truth label for the test
data x.

The core model of the proposed DOLL-DA method is
built on JDA, but adds up two optimization terms, namely
discriminative data distribution alignment (DDA) term as
defined in Eq.(4, 5), and Noise Robust Sparse Orthogonal
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Label Regression (NRS OLR) term as defined in Eq.(6). For
further insight into the proposed DOLL-DA and the rational
w.r.t the DDA and NRS OLR term, respectively, we derive
from Eq.(19) three additional partial models, namely OLR,
CDDA+ and JOLR-DA:
• OLR: In this setting, the partial model only makes use of

the NRS OLR term, i.e., noise robust sparse orthogonal
label regression term as in Eq.(6) and ignores the rest
of our final model, i.e., data distribution alignment term
as defined in Eq.(3) as well as Discriminative MMD
constraint terms as defined in Eq.(4, 5). This partial
model amounts to make use of a particular classifier,
i.e., noise robust sparse orthogonal label regression, and
enables to quantify the importance of data distribution
alignment in DA when contrasted with the baseline JDA;

• CDDA+: In this setting, the regularization term of
NRS OLR (Eq.(6)) is simply replaced by the Nearest
Neighbor (NN) predictor. This correspond to our final
DA model as defined in Eq.(8) and Eq.(18) which only
make use of the Discriminative MMD constraint terms
but without the NRS OLR term as defined by Eq.(6). In
comparison with CDDA, i.e., Close yet Discriminative
DA, the partial model already studied in our former
DGA-DA method [39] which demonstrated the effective-
ness of discriminative force(RF) term in DA, CDDA+
includes the improved RF term which adds the RF within
the source domain as defined by Eq.(5) to the across
domain RF defined in Eq.(4) as in CDDA. This partial
model makes it possible to emphasize the interest of the
joint optimization of the improved RF and NRS OLR
terms in contrasting DOLL-DA with CDDA+;

• JOLR-DA: In this setting, the partial model of the
proposed method only cares about data distribution
alignment as in JDA as well as the newly introduced
NRS OLR term but ignores the discriminative force
as defined in Sect.III-B2 and Sect.III-B3. In studying
JOLR-DA, we aim to highlight: 1) the contribution
of NRS OLR in regularizing the MMD constraints in
contrasting DOLL-DA with JOLR-DA; 2) the effective-
ness of NRS OLR and the proposed joint optimization
strategy, in confronting JOLR-DA with JDA.

• DOLL-DA: This setting correspond to our full final
model as defined in Eq.(19). It thus contains both
CDDA+ as defined in Eq.(3, 4, 5) and the NRS OLR
term as defined by Eq.(6) in sect. III-B4.

D. Experimental Results and Discussion

1) Experiments on the CMU PIE Data Set: The CMU PIE
dataset is a large face dataset featuring both illumination and
pose variations. Fig.6 synthesizes the experimental results for
DA using this dataset, where top results are highlighted in red
color. As expected, without data distribution alignment,OLR,
with 55.88% average accuracy, performs worse than the
base line JDA with 60.24% average accuracy. In accounting
for the discriminative force in data distribution alignment,
CDDA+ improves over JDA by 3 points and achieves 63.22%
average accuracy. In adding noise robust sparse orthogonal

label regression to JDA, JOLR-DA achieves 69.96% aver-
age accuracy and improves over JDA by 9 points, thereby
demonstrating the effectiveness of the NRS OLR term. Now
our final model, DOLL-DA, with 82.50% average accuracy,
achieves the state of the art performance on this dataset and
improves over the baseline JDA by 22 points and the former
state of the art DA method, i.e., DGA-DA, by a large margin
of 17 points, thereby demonstrates with force the interest of
joint optimization of discriminative data distribution terms and
the NRS OLR term.

2) Experiments on the COIL 20 Dataset: The COIL
dataset (see fig.5) features the challenge of pose variations
between the source and target domain. Fig.7 reports the
experimental results on the COIL dataset and displays similar
patterns as those on the PIE dataset. OLR performs worse
than JDA which is improved by CDDA+ and JOLR-DA.
Finally, DOLL-DA achieves 96.84% and further improves
CDDA+ and JOLR-DA by 4 and 3 points, respectively. It
is interesting to note that DGA-DA achieves 100% average
accuracy on this dataset and thereby outperforms DOLL-DA
by 3.16 points. However, DGA-DA’s outstanding performance
is mainly related to the two particularities of the COIL
20 dataset. Indeed, the COIL dataset synthesizes 20 objects
as foreground in varying their pose while the background
is pure black, therefore each sub-domain contains a single
object and is naturally distributed within a specific manifold.
Furthermore, the COIL 20 dataset merely contains 20 classes
in contrast with 68 classes in the PIE dataset, thereby its
classes are much more separated than those in PIE. As a matter
of fact, the most simple baseline NN, i.e., Nearest Neighbor,
already achieves a high average accuracy of 83.20% on COIL
20 while it only displays 34.76% average accuracy on PIE.
As a result, in explicitly modeling the hidden data manifold
structure through a Laplace graph, DGA-DA performs better
label inference than DOLL-DA.

3) Experiments on the Office-Home Dataset: As in-
troduced in DAH[60], Office-Home is a novel challenging
benchmark for the DA task. It contains 4 very different
domains with 65 object categories, thereby generating 12
different DA tasks. Fig.8 synthesizes the performance of the
proposed DA methods with DeCAF6 features in comparison
with the state of the art methods. Both DAH and DAN are deep
DA methods and make use of multi-kernel MMD in aligning
the source and target domain distributions. With 43.46% and
45.54% average accuracy, respectively, they surpass JDA with
a margin up to 8 points. In extending JDA with repulsive
force terms, CDDA+ slightly improves JDA by 0.19 point.
However, thanks to the NRS OLR term, JOLR-DA displays
44.48% average accuracy and improves JDA by 7 points
whereas the proposed full model, DOLL-DA, achieves the
novel state of the art performance with 48.23% average ac-
curacy and improves CDDA+ by 11.07 points, JOLR-DA by
roughly 4 points, and the former state of the art performance
achieved by DAH with a margin of 2.69 points.

4) Experiments on the USPS+MNIST Data Set: The
USPS+MNIST dataset displays different writing styles be-
tween source and target. In Fig.9, the left columns of the
red vertical bar report the experimental results using shallow
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Fig. 6: Accuracy% on the PIE Images Dataset.
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Fig. 7: Accuracy% on the COIL Images Dataset.
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Fig. 8: Accuracy% on the Office-Home Images Dataset.

features, whereas the right columns of the red bar display the
results of the methods using deep features. Once more, the
proposed DOLL-DA along with its partial models display
the same behavior as in the previous experiences. Using
shallow features, CDDA+ and JOLR-DA demonstrate the
effectiveness of the discriminative force terms and NRS OLR
term. With 69.14% and 71.59% average accuracy, CDDA+
and JOLR-DA improve the baseline JDA by 5 and 8 points,
respectively. When jointly optimizing the discriminative force
terms and NRS OLR term, the proposed final model, DOLL-
DA, further boosts the performance of the baseline JDA with
a margin as high as 14 points and set a novel state of the
art performance with 77.82% average accuracy when shallow
features are used.

In right part of the red vertical bar in Fig.9, we compare
our approach with deep network-based methods, i.e., ADDA
and DANN, which search a common latent subspace for
minimizing the source and target representation divergence
through the popular adversarial learning, and improve the
performance of traditional DA methods. As can be seen in
Fig.9, the proposed DOLL-DA using shallow features already
surpasses DANN by 2 points. When using deep features, i.e.,
those from LeNet [28] as in [47], DOLL-DA demonstrates its

effectiveness once more and display a novel state of the art
performance of 92.05% average accuracy.

5) Large-Scale Experiments on the SVHN-MNIST Data
Set: Differnt with the other datasets, SVHN-MNIST is
compsed of 50k and 20k digit images from two very dif-
ferent domains, respectively, thereby generating a large scale
DA benchmark. Following the experiment setting of previ-
ous research[39], Fig.10 shows the experimental results. Our
proposed DOLL-DA along with its partial models display
the same patterns on this large scale benchmark as in the
previous experiments. In ignoring the domain shifts,OLR
achieves a poor performance. Both CDDA+ and JOLR-DA
improve JDA with a large margin. In accounting jointly for
the discriminative force and NRS ORL, DOLL-DA boosts
the baseline JDA by 22 points and surpasses DGA-DA, the
former state of the art DA method on this dataset, by 4.5
points.

6) Experiments on the Office+Caltech-256 Data Sets:
Fig.11 and Fig.12 synthesize the experimental results in com-
parison with the state of the art when deep features (i.e.,
DeCAF6 features) and classic shallow features (i.e., SURF
features) are used, respectively.

• As can be seen in Fig.12, using shallow features, CDDA+
and JOLR-DA improve the baseline JDA by 2 and 1
points, respectively, thanks to the discriminative force
term and NRS OLR term introduced into the baseline
model. Taking them together, our final model DOLL-
DA further improves JDA by 4 points and achieves
51.180 average accuracy which is in par with the previous
state the art method, namely JGSA, with its 50.58%
average accuracy. It is worth noting that, JGSA also
suggests aligning data both statistically, discriminatively
and geometrically, and corroborates data geometry aware
DA approach, and achieves very good performance on
this dataset.

• Fig.11 compares the proposed DA method using deep
features w.r.t. the state of the art, in particular end-to-
end deep learning-based DA methods. As can be seen
in Fig.11, the use of deep features has enabled impres-
sive accuracy improvement over shallow features. Simple
baseline methods, e.g., NN, PCA, see their accuracy
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Fig. 9: Accuracy% on the USPS+MNIST Images Dataset.
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Fig. 10: Accuracy% on the SVHN-MNIST Images Dataset.

C→

A

C→

W

C→

D

A→

C

A→

W

A→

D

W→

C

W→

A

W→

D

D→

C

D→

A

D→

W

Ave

rage

PCA 85.60 66.10 74.50 70.30 57.20 64.90 60.30 62.50 98.70 52.00 62.70 89.10 70.40

NN 87.05 72.20 80.89 78.54 77.31 80.25 68.21 73.07 100.0 70.08 75.89 97.97 80.12

ELM 89.07 70.51 78.98 79.61 74.58 80.25 70.61 75.37 100.0 68.21 80.79 98.31 80.52

GFK 87.27 75.93 83.44 80.32 76.95 80.89 67.76 74.32 100.0 69.10 75.78 98.64 80.87

SA 87.06 75.59 80.25 79.61 78.31 81.53 68.83 75.16 100.0 69.99 73.49 98.98 80.73

mSDA 89.67 68.47 82.17 78.81 78.98 79.62 69.46 76.62 100.0 73.29 81.32 98.64 81.42

TJM 88.10 72.20 74.52 77.65 75.25 82.80 71.42 80.27 100.0 72.57 78.60 98.31 80.97

AELM 89.46 79.32 81.53 79.96 77.63 85.35 71.24 76.83 100.0 75.60 83.19 98.98 83.25

RTML 90.20 83.80 88.70 83.10 79.50 83.80 82.90 90.80 100.0 81.60 90.60 98.60 87.80

SCA 89.46 85.42 87.90 78.81 75.93 85.35 74.80 86.12 100.0 78.09 89.98 98.64 85.88

JGSA 91.44 86.78 93.63 84.86 81.02 88.54 84.95 90.71 100.0 86.20 91.96 99.66 89.98

AlexNet 91.90 83.70 87.10 83.00 79.50 87.40 73.00 83.80 100.0 79.00 87.10 97.70 86.10

DAN 92.00 90.60 89.30 84.10 91.80 91.70 81.20 92.10 100.0 80.30 90.00 98.50 90.10

DDC 91.90 85.40 88.80 85.00 86.10 89.00 78.00 84.90 100.0 81.10 89.50 98.20 88.20

MEDA 93.40 95.60 91.10 87.40 88.10 88.10 93.20 99.40 99.40 87.50 93.20 97.60 92.80

DGA-DA 91.25 93.56 91.72 85.20 80.98 89.81 86.46 90.81 100.0 86.20 93.11 100.0 90.76

OLR 92.07 77.97 84.08 82.55 71.19 75.80 61.80 70.15 100.0 61.18 67.01 98.98 78.57

JDA 89.70 83.70 86.60 82.20 78.60 80.20 80.50 88.10 100.0 80.10 89.40 98.90 86.50

JOLR-DA 88.96 78.31 88.54 81.23 88.14 91.08 81.30 90.71 98.09 82.10 91.02 98.86 88.20

CDDA+ 89.46 88.47 89.56 82.66 89.15 89.17 82.55 90.92 100.0 81.92 91.19 100.0 89.59

DOLL-DA 93.86 93.98 91.71 89.87 91.86 91.72 86.46 93.11 100.0 86.78 95.90 100.0 92.94

50.00
55.00
60.00
65.00
70.00
75.00
80.00
85.00
90.00
95.00

100.00

A
cc

u
ra

cy
(%

)

COMPARISONS OF RECOGNITION RATES(%) ON

Caltech256+Office DATABASE (DeCAF6)

Fig. 11: Accuracy% on the Office+Caltech Images with De-
CAF6 Features.
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OLR 38.52 26.1 26.52 31.7 30.95 24.2 16.66 20.86 50.89 32.56 30.05 72.54 33.46

JDA 44.78 41.69 45.22 39.36 37.97 39.49 31.17 32.78 89.17 31.52 33.09 89.49 46.31

JOLR-DA 50.52 48.14 46.50 40.52 45.08 46.50 34.55 39.46 76.43 32.15 32.67 78.31 47.57

CDDA+ 48.33 44.75 48.41 42.12 41.89 37.58 31.97 37.27 88.08 34.64 33.51 90.51 48.26

DOLL-DA 54.18 51.19 47.13 44.88 45.08 46.50 38.29 39.46 86.62 32.41 38.20 90.22 51.18
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Fig. 12: Accuracy% on the Office+Caltech Images with SURF-
BoW Features.

soared by roughly 40 points, demonstrating the power of
deep learning paradigm. Our proposed DA method also
takes advantage of this jump and sees its accuracy soared
from 48.26 to 89.59 for CDDA+, from 47.57 to 88.20 for

JOLR-DA, and from 50.78 to 91.65 for DOLL-DA. As
for shallow features, CDDA+ and JOLR-DA improve
JDA by roughly 3 and 2 points, respectively, while
the final model, DOLL-DA, displays the best average
accuracy of 92.94% in par with 92.80% displayed by
MEDA.

E. Empirical Analysis
Despite the proposed DOLL-DA displays state of the art

performance over 49 DA tasks through 8 datasets except
for the COIL dataset where it achieves the second best
performance, an important question is how fast the proposed
method converges (sect.IV-E2) as well as its sensitivity w.r.t.
its hyper-parameters (Sect.IV-E1). Additionally, we are curious
about how well DOLL-DA performs in changing the base
classifier (sect.IV-E3) which is required for the formulation of
the repulsive force terms to enhance data discriminativeness,
as well as the DOLL-DA leveraging random initialization
(sect.IV-E4) instead of using the base classifier for optimiza-
tion. Furthermore, in analyzing the generalization capacity
(sect.IV-E5) of DOLL-DA, we evaluate the performance of
DOLL-DA with unseen target data for detail exploration.

1) Sensitivity of the proposed DOLL-DA w.r.t. to hyper-
parameters: Three hyper-parameters, namely k, β and α, are
introduced in the proposed methods.

Dimensionality analysis: k is the dimension of the searched
shared latent feature subspace between the source and
target domain. In Fig.13, we plot the classification ac-
curacies of the proposed DA method w.r.t different val-
ues of k on the COIL and PIE datasets. As shown in
Fig.13, the subspace dimensionality k varies with k ∈
{20, 40, 60, 80, 100, 150, 200, 300, 400, 450}, yet the proposed
3 DA variants, namely, CDDA+, JOLR-DA and DOLL-DA,
remain stable w.r.t. a wide range of with k ∈ {40 ≤ k ≤ 400}.
It can be seen that both JOLR-DA and DOLL-DA display
better robustness than CDDA+ w.r.t. the variation of k, thereby
suggesting the effectiveness of the NRS OLR term in the
search of the global minimization. Obviously, the larger is k
the better the shared subspace can afford complex data distri-
butions, but at the cost of increased computation complexity
as highlighted in sect.III-E on time complexity analysis. In
our experiments, we set k = 300 to balance the efficiency and
accuracy.

Sensitivity of α and β: α and β as defined in Eq.(19)
are the major hyper-parameters of the proposed DOLL-DA.
While α aims to regularize the projection matrix A to avoid
over-fitting the chosen shared feature subspace w.r.t. both
source and target domain data, β as expressed in Eq.(6)
controls the dimensionality of class dependent data manifold
in the searched shared feature subspace, or in other words
the sparsity level of the linear combination of the projected
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features to regress the class label. We study the sensitivity
of the proposed DOLL-DA method with a wide range of
parameter values, i.e., α = (0.001, 0.01, 0.1, 1, 10, 20, 50) and
β = (0.05, 0.1, 1, 5, 10, 100, 200). We plot in Fig.14 the results
on D → W, C → D and PIE-27 → PIE-5 datasets on the
proposed DOLL-DA with k held fixed at 300. As can be seen
from Fig.14, the proposed DOLL-DA displays its stability as
the resultant classification accuracies remain roughly the same
despite a wide range of α and β values.
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(a) Regularization parameter k of  CDDA+ (b) Regularization parameter k of  OLR (c) Regularization parameter k of DOLL-DA
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Fig. 13: Sensitivity analysis of the proposed methods: (a)
accuracy w.r.t. subspace dimension k of CDDA+; (b)accuracy
w.r.t. subspace dimension k of JOLR-DA; (c) accuracy w.r.t.
subspace dimension k of DOLL-DA. Three datasets are used,
i.e., COIL1, COIL2 and PIE.
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Fig. 14: The classification accuracies of the proposed DOLL-
DA method vs. the parameters α and β on the selected three
cross domains data sets, with k held fixed at 300.

2) Convergence analysis: In Fig.15, we further perform
convergence analysis of the proposed DOLL-DA along with
its partial models, i.e., CDDA+ and JOLR, using the DeCAF6
features on the Office+Caltech datasets and pixel value fea-
tures on the PIE dataset. We aim to disclose how fast the
proposed methods achieve their best performance w.r.t. the
number of iterations T . Fig.15 reports 6 cross DA experiments
( C → A, D → W ... PIE-27 → PIE-5 ) with the number of
iterations T = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10). As shown in Fig.15,
CDDA+, JOLR-DA and DOLL-DA converge within 3∼5
iterations during optimization, but JOLR-DA and DOLL-DA
seem to converge even faster with a better accuracy, thanks to
the NRS OLR term introduced in our DA model.
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Fig. 15: Convergence analysis using 6 cross-domain image
classification tasks on Office+Caltech256 and PIE datasets.
(accuracy w.r.t #iterations)

3) Impact of the base classifier: The repulsive force term
across domain as formulated in sect.III-B2 requires using
pseudo labels for the target domain data. Therefore, the
quality of these pseudo labels could have much impact on
the effectiveness of data discriminativeness. In sect.III-C, our
model is initialized using pseudo labels in solving Eq.(8),
which boils down to JDA. The inference of the pseudo labels
on the target domain data requires a base classifier trained
using the labeled source domain data. We test the sensitivity
of the proposed DOLL-DA w.r.t. the base classifier using
two popular classifiers, i.e., NN and SVM. Fig.16 shows
that DOLL-DA-NN(92.94%) and DOLL-DA-SVM(91.51%)
achieve almost the same performance. This result suggests that
our repulsive force term in the proposed DOLL-DA displays
a certain level of robustness w.r.t. the choice of the base
classifier.

4) Random Label Initialization: Going one step further
w.r.t. to the experiment in sect.IV-E3, an interesting question
is how DOLL-DA behaves with randomly initialized pseudo
labels at its first iteration as well as its convergence efficiency
in this specific experiment setting.

In this setting, DOLL-DA makes use of randomly ini-
tialized labels for the target domain data instead of solving
Eq.(8) at its first iteration. As shown in Fig.16, DOLL-DA still
achieves 90.01% accuracy on the Office-Caltech256 dataset,
thus only slightly below DOLL-DA-NN, and converges on
average at 3.08 average iterations. This result further supports
the robustness of the designed repulsive force term regularized
by the NRS OLR term in the search of the optimized shared
features subspace.
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Fig. 16: Convergence analysis using 12 cross-domain image
classification tasks on Office+Caltech256 datasets with De-
CAF6 Features. (accuracy w.r.t #iterations)

5) Stability w.r.t. target domain data: We benchamrk the
stability of the proposed DOLL-DA w.r.t. the quantity of
target domain data used for training. Specifically, we carry
out two additional experiments for 2 DA tasks using the
Office-Caltech256 dataset, i.e., W → A, D → W , keeping
5% (10%,30%,50%,70%, resp.) of target domain data from
being used as auxiliary data in training. Results are reported
in Fig.17. As can be seen there, when all target domain data are
used in training the proposed DOLL-DA, i.e., column 0.00%,
DOLL-DA displays 93.11% and 100% accuracy for W →
A and D → W DA tasks, respectively. Now when more and
more target domain data are kept from being used in training,
passing from 5% through 70%, DOLL-DA proves quite stable
on the D → W task but decreases constantly to reach 79.96%
on the W → A task. However, this result still proves the
usefulness of the proposed DA method when only 30% target
domain data are used as auxiliary data in training, given the
fact that the baseline NN only displays 73.07% accuracy as
shown in Fig.11. The performance difference between these
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two DA tasks can be explained by their inherent difficulties.
The DA task D → W is to generalize a classifier trained from
the source domain, i.e., labeled images in the DSLR domain,
thus with much background, to the target domain, i.e., images
in the Webcam domain, much simpler because devoid of the
background, and the simple baseline NN already achieves
97.97% accuracy as shown in Fig.11. On the other side, the DA
task W → A does exactly the contrary and needs to generalize
a classifier trained from the source domain, i.e., labeled images
in the Webcam domain, thus without background, to a much
more complicated target domain, i.e., images in the Amazone
domain with arbitrary background, and the simple baseline NN
only achieves 73.07% accuracy as shown in Fig.11.

Unseen 0.00% 5.00% 10.00% 30.00% 50.00% 70.00%

Accuracy 93.11 92.59 86.07 85.85 84.32 79.96

Unseen 0.00% 5.00% 10.00% 30.00% 50.00% 70.00%

Accuracy 100 100 98.75 98.75 98.75 98.75

W→A

D→W

Fig. 17: Unseen data sensitivity using 2 cross-domain image
classification tasks on Office+Caltech256 datasets with De-
CAF6 Features.

V. CONCLUSION

We have proposed in this paper a novel unsupervised
DA method, namely Discriminative Noise Robust Sparse
Orthogonal Label Regression-based Domain Adaptation
(DOLL-DA), which simultaneously optimizes the three terms
of the upper error bound of a learned classifier on the
target domain in aligning discriminatively data distributions
through a repulse force term while orthogonally regressing
data labels within the shared feature subspace. Furthermore,
the proposed model explicitly accounts for data outliers to
avoid negative transfer and introduces the property of sparsity
when regressing data labels. Comprehensive experiments using
the standard benchmark in DA show the effectiveness of the
proposed method which consistently outperform state of the art
DA methods. Future work includes embedding of the proposed
DOLL-DA into the paradigm of deep learning and considers
the setting of online learning where target domain data only
arrives sequentially one after another.
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