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Deep Richardson-Lucy Deconvolution for
Low-Light Image Deblurring

Liang Chen, Jiawei Zhang, Zhenhua Li, Yunxuan Wei, Faming Fang, Jimmy Ren, and Jinshan Pan

Abstract—Images taken under the low-light condition often contain blur and saturated pixels at the same time. Deblurring images with
saturated pixels is quite challenging. Because of the limited dynamic range, the saturated pixels are usually clipped in the imaging
process and thus cannot be modeled by the linear blur model. Previous methods use manually designed smooth functions to
approximate the clipping procedure. Their deblurring processes often require empirically defined parameters, which may not be the
optimal choices for different images. In this paper, we develop a data-driven approach to model the saturated pixels by a learned latent
map. Based on the new model, the non-blind deblurring task can be formulated into a maximum a posterior (MAP) problem, which can
be effectively solved by iteratively computing the latent map and the latent image. Specifically, the latent map is computed by learning
from a map estimation network (MEN), and the latent image estimation process is implemented by a Richardson-Lucy (RL)-based
updating scheme. To estimate high-quality deblurred images without amplified artifacts, we develop a prior estimation network (PEN) to
obtain prior information, which is further integrated into the RL scheme. Experimental results demonstrate that the proposed method
performs favorably against state-of-the-art algorithms both quantitatively and qualitatively on synthetic and real-world images.

Index Terms—Saturated pixels, non-blind deblurring, deep Richardson-Lucy deconvolution

1 INTRODUCTION

Non-blind deblurring aims to recover a sharp image given a blurry
one and the corresponding blur kernel. Basically, the blurring
process can be modeled by:

B=I1®K, (D

where B, I, and K are the blurry image, latent image, and the blur
kernel, respectively, and ® denotes the convolution operation.

This problem is highly ill-posed and has gained considerable
attention in recent years [23], [44], [61], [59], [13], [18], [14].
Despite their effectiveness in many cases, most of the above men-
tioned methods fail to consider the side-effects brought by satu-
rated pixels, which are not rare when images are captured in a high
dynamic range scenario at night, as shown in Fig. 1 (a). Without
proper handling, saturated pixels will cause severe artifacts in the
deblurred results from the above mentioned methods as shown in
Fig. 1 (g) and (h). The main reason is that saturated pixels cannot
be well modeled by the linear blur model in Eq. (1). To this end,
some studies [10], [33], [20], [7], [9] suggest discarding saturated
pixels and using only unsaturated pixels for the deblurring process,
which reformulates the blur model into:

MoB=Mo(I®K), )
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where M is the weighting matrix. When M is sufficiently small
(i.e. often takes value 0), the corresponding pixels will not con-
tribute during the deblurring process, and vice versa for pixels
assigning with large M values. However, separating the saturated
and unsaturated regions from the blurry images is not trivial.
If the separation is less accurate, the deblurred images may
contain significant artifacts around the saturated regions (Fig. 1
(d)). In addition, due to the ignoring of saturated regions during
the deblurring process, blur in these regions cannot be entirely
removed as presented in the green boxes in Fig. 1 (c), (d), and (e).

Based on the property of the saturated pixels, several algo-
rithms [10], [52], [7] usually formulate the blurring process with
saturated pixels by:

B =C((I®K))), 3)

where C(-) is the clipping function. When the pixel i is within the
dynamic sensor range, C((/ ® K);) = (I ® K);; otherwise, C((/ ®
K);) returns the maximum intensity of the sensor range. Compared
to the blur models in Egs. (1) and (2), all pixels are included in
the imaging process and can be modeled by Eq. (3).

However, the clipping function C(-) involved in Eq. (3) is non-
differentiable. To solve the problem, Whyte et al. [52] approxi-
mate it with a specially-designed smooth function [4]. To estimate
the latent image, they propose a maximum likelihood (ML) frame-
work and use a Richardson-Lucy (RL) updating scheme [29], [41]
for optimization. Although the blur in the saturated regions can be
removed to a certain extent, their result in Fig. 1 (b) still contains
some ringings and artifacts around image edges due to the lack of
appropriate image prior information. Moreover, as the parameters
in the smooth function are important for modeling the saturated
pixels, only empirical observation to determine these parameters
may not model the saturated pixels in different images. In addition,
the computational costs for their method are also high because of
the tedious optimization process.
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Fig. 1: Deblurring results of a saturated blurry image. The estimated kernel is shown in the white box of (a). Methods based on
Eq. (1) [59], [14] generate results with many ringings in the saturated regions. Large blurs still remain in the result from the end-to-end
learning-based method [49]. Saturated pixels cannot be properly handled for the robust models [10], [33], [9], [52], and they are
ineffective in removing blur and ringings around the saturated regions, as shown in the green boxes. In comparison, the proposed
method can generate a high-quality result with fewer artifacts. Please zoom-in for a better view.

With the development of the convolution neural network
(CNN), some methods [30], [39], [49], [25], [51], [50] utilize
the large capacity of neural networks to directly restore the sharp
image from the blurry input. Without using the blur kernel and blur
model, they do not effectively remove blur as shown in Fig. 1 (f).
The CNN models are also adopted in the non-blind deblurring
task [59], [61]. Most of them iteratively deconvolve and denoise
the blurry image in a half-quadratic splitting framework, where
CNNs are served as denoisers. However, these methods are less
effective for saturated blurry images (Fig. 1 (g)) as they are based
on the linear blur model Eq. (1).

In this paper, we propose a new method for deblurring satu-
rated images. First, based on the blur model in Eq. (3), our method
uses a learnable latent map M, which is determined by the latent
image and the blur kernel, to replace the clipping function. Be-
cause both saturated and unsaturated pixels can be well modeled
by Eq. (3), our method does not require sophisticated saturated
pixel discarding processes [9], thus avoiding the issues brought by
this strategy. We discuss the detailed differences between our work
and the model used in NBDN [9] in Sec. 7.1.3. Meanwhile, com-
pared to the previous model in [52] that adopts a smooth function
to approximate the clipping function, the proposed method does
not require heuristically designed functions and avoids tedious
parameter tuning for different images. Comparisons of our model
against that in [52] can be found in Sec. 7.1.2

Then, we formulate the deblurring task into a maximum a
posterior (MAP) problem and solve it by iteratively computing the
latent map and the latent image. During the latent map estimation
step, we use a map estimation network (MEN) to compute M
in every iteration. For the latent image updating step, we use
an RL updating strategy to optimize the posterior maximization
problem. Recall that RL method often introduces artifacts in the
deblurrd results [48], some works [10], [20] propose to use a
sparse prior [27] to suppress ringings. Even though this prior is
effective, it may not be the best choice in practice. Thus, we further

propose a prior estimation network (PEN), which is trained from a
large amount of synthetic saturated blurry and clean image pairs,
and integrate it into the RL updating strategy to facilitate image
restoration. As shown in (Fig. 1 (i)), our method is able to handle
the blurry images with large situated regions and generates a better
deblurred result.

The overview of the proposed network is shown in Fig. 2.
Extensive experimental results demonstrate the effectiveness of
our method against state-of-the-arts for synthetic and real saturated
blurry images.

2 RELATED WORK

This section briefly reviews image deconvolution techniques and
advances made in the non-blind deblurring task and pioneer arts
involving saturation.

Image deconvolution. Deconvolution is a general image process-
ing technique used to remove the blur caused by a known or
estimated blur kernel (which is often obtained by blind deblurring
methods [6], [5]). Besides applied in the deblurring task [14], [46],
[47], [59], image deconvolution techniques are also widely-used
in other image restoration tasks, such as image super-resolution
[16], [26] and enhancement [2], [32]. Before the widespread
use of deep learning techniques, deconvolution has been studied
by various researchers using different approaches. Those efforts
include Weiner filter [53], [21], Richardson-Lucy algorithm [29],
[41], and shock filter [32], [1], to name a few. In recent years,
with the development of CNN, deconvolution has been integrated
with deep leaning skills to further improve the image restoration
performance [14], [61], [60]. Our method also falls into this
category. In Sec. 3, we provide more details elaborated on the
basis of our method.

Deblurring without saturation. Due to the ill-posed nature of
the inverse problem, strong image priors are required to regularize
the solution space. Hyper-laplacian prior, known for its sparsity
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Fig. 2: Overview of our deep Richardson-Lucy (RL) deconvolution method. We obtain the sharp image by iteratively updating the
latent image and the latent map. PEN and MEN denote the prior estimation network and map estimation network, respectively. Please

see the text for details.

and fitness of heavy-tail distribution of natural images, is broadly
applied in recent deblurring works [27], [23], [10], [33]. In [43],
Roth and Black use a field of experts (FOE) framework to model
image priors. The FOE framework is further extended in [45], [44],
[54], [13], [38] to restore blurry images. Although good results
have been achieved, solving models related to FOE bears a large
computational burden.

Instead of developing manually-designed regularizers, numer-
ous image restoration algorithms turn to CNNs [46], [55], [59],
[61], [13], [40]. Schuler et al. [46] first impose a regularized
inversion of the blur in the Fourier domain and then propose to
remove the artifacts using a learned multi-layer perceptron (MLP).
In [59] and [61], they use the variable substitution method to
decouple the non-convex restoring task into a quadratic deconvolu-
tion step and a denoising problem which can be effectively solved
by a learned denoiser. Instead of stacking learned regularizers in
a deblurring chain, Gong et al. [18] suggest learning a universal
projector for different updating steps. Due to the neglecting of
side-effects brought by saturating, although effective in most
cases, these methods are ineffective in dealing with saturated
blurry images.

Deblurring with saturation. Saturation has not received wide
attention in the non-blind deblurring literature. Cho et al. [10]
consider saturated pixels as outliers, and they propose an EM-
based algorithm to iteratively identify and exclude outliers in
the blurry image. This idea is broadly extended in some recent
works [20], [33], [17], [7], [9]. In [33], saturated pixels are
detected by computing the residual between the blurry image
and the convolution output (i.e. B—1® K). Then they develop a
specially-designed fidelity term, where smaller weights are applied
to the detected saturated pixels, for optimization. Moreover, based
on this saturated pixel detection, Chen et al. suggest using more
faithful ways to detect saturated pixels, which are based on the
maximum entropy rule [7] or implemented using CNN [9]. To
better handle the saturated regions, Hu et al. [20] combine the
works from [52] and [10], and they further propose an EM-based
regularized RL deconvolution method.

Different from previous works that explicitly exclude saturated
pixels, some works suggest altering the clipping function in
Eq. (3) so that all pixels are included in the deblurring process.

Whyte et al. [52] extend the RL algorithm with an approx-
imation function [4] to model the property of saturated pixels.
But their approaches require empirical parameter settings during
optimization, and the deblurring process is also time-consuming.
Recently, Chen et al. [8] propose to use a latent map to replace the
clipping function, where the latent map is naively determined by
the reverse of the convolving result. However, their work requires
an empirically defined threshold. This setting works well for the
blind deblurring task since a modest latent image can also lead
to a precisely estimated kernel. When it comes to the non-blind
deblurring task, the empirically defined threshold may jeopardize
the final result. Differently, we use a learning-based approach to
compute the latent map, which avoids the empirical parameter
tuning and naive settings.

There are also works suggest using CNN to directly deal with
the low-light condition. Xu et al. [55] train an end-to-end network
to handle blurry images with outliers, but their work demands fine-
tuning for every blur kernel. Ren et al. extend [40] to handle any
blur kernel by a generalized low-rank approximation. However,
their method does not work well for motion blur.

3 PRELIMINARY

This section describes the basic formulations of a standard non-
blind deblurring method and the original Rishcardson-Lucy (RL)
deconvolution algorithm.

3.1 Non-Blind Deblurring

The blurring process formulated in Eq. (1) often involves noise
that is often modeled as following either a Poisson or Gaussian
distribution. For both cases, the non-blind deblurring process can
be formed as the following minimization problem:

mIinL(B,I®K)+/lP(1), (€))

where the fidelity term £ measures the distance between the
blurry image and the convolving result between the estimated
sharp image and the blur kernel. Assuming the noise involved
in the blurring process follows a known distribution, we can
reformulate the fidelity term into the negative log-likelihood:



L(B,I®K)=-1ogP(B|I®K); P(I) is the prior term for I; The
scalar weight A balances the contribution of these two terms.

If the noise follows a Gaussian distribution, we can model
IB-1eK||

L(B,I®K)=-log(e" 2027 ), where ¢ is the standard deviation
of the Gaussian noise mode. With the defined fidelity term and
prior term, solving Eq. (4) is not difficult, and it is typically solved
using standard linear least-squares algorithms, such as conjugate
gradient descent.

If the noise follows a Poisson distribution, we can model
L(B,I®K) =—log(%

M+®K)B). Note that image noise is as-
sumed to be independent and identically distributed (i.i.d.). Hence,
L(B,I®K) is accessed per pixel. The classic deblurring method
for deblurring images with Poisson noise is the RL algorithm [29],
[41], and we give detailed derivation steps in Sec. 3.2. Following
practices from existing deblurring works that aim for saturated
images [20], [52], [8], we also assume the noise involved in the
blurring process to follow a Poisson distribution.

3.2 Richardson-Lucy Deconvolution Algorithm

The RL algorithm [29], [41] is well known for deconvolving
blurry images involved in Poisson processes. In this section, we
present the deviation of the basic RL for solving Eq. (4) when
the noise in the blurring process is assumed to follow a Poisson
distribution. Same as the original idea in [29], [4]], we only
consider the ﬁdeh Ky term in the function. Given the likelihood
P(B|II®K) = (1®K) , we can reformulate the fidelity term
from Eq. (4) into:

mIinI®K—10g(I®K)OB, 5)

where o is the Hadamard product. Taking the derivative of the
equation w.r.t. [ and setting it to be zero, we obtain

- B -
18K—-——®K =0, 6
® I®K® ©

where 1 is an all-one image; K can be obtained by flipping K
upside-down and then left-to-right. Recall that 1 ® K =1, from
Eq. (6) we obtain the fixed point iteration by:

Il+l B

7 1 Tex I'ekK
where ¢ is the iteration index. The updating scheme in Eq. (7) is
known as RL deconvolution algorithm. The convergence property
is also analyzed in [29]. Please refer to the original papers [29],
[41] for detailed descriptions.

— K= I"'=T"0of ®K), (7

4 PROPOSED METHOD

The overview of the proposed network is shown in Fig. 2. Our
method simultaneously estimates the latent map for modeling
saturated pixels, the prior information as the image prior, and
the latent clean image in an iterative optimization framework.
Inputs of our model include a saturated blurry image B and the
corresponding blur kernel K. For every iteration step ¢, given the
latent image I’ updated from the previous iteration, we first use
the proposed prior estimation network (PEN) and map estimation
network (MEN) to estimate the prior information AP’(I") and the
latent map M. Then, the latent image I'*! can be updated through
a Richardson-Lucy-based optimization scheme, which is further
used as the input for the next iteration. We use the blurry image
B as the initialization of the latent image I°. We present details of
our model in the following.

4.1 Proposed Blur Model

The degrading process in Eq. (3) involves a non-linear clipping
function, which is also non-differentiable. To make the problem
more tractable, instead of finding complicated approximations to
model the degrading process, we propose a learnable latent map
M to replace the clipping function. Assume the imaging process
follows the Poisson distribution, then the observed noisy blurry
image B of Poisson distribution with mean M o (I ® K) obeys the
conditional probability:

e~ (MUK (Mo (I®K));)Bi
B;! G

P(BIMo(I®K)) :]_[

st. M=F(I,K)

where i denotes a pixel location, and ¥ (-) represents a function
that determines M based on / and K.

It is noteworthy that M has a similar effect to the clipping
function that can keep the blurry result within the sensor range.
With the help of M, saturated pixels can be well modeled by the
proposed blur model. Meanwhile, compared to the blur model in
Eq. (3), the proposed model in Eq. (8) is differentiable w.r.t. I and
K, which facilitates the following optimization steps. Note our
model is different from that in [8]. Because their blind deblurring
task does not require a high quality latent image during the kernel
estimation step, thus they can use a naive form of ¥ (i.e. assuming
a uniform threshold v in the image, for every pixel location i,
M;=1if (I®K); <v,or M; =v/(I®K); if (I®K); > v) to obtain
a roughly estimated /. However, our non-blind deblurring task
requires a much more accurate /. Considering that determining
proper thresholds for all situations is rather challenging, thus
their empirically selected value (i.e. v is fixed as 0.9 in their
implementation for all images) is far from convincing in our
setting. Differently, we suggest using CNN to approximate F
which can adapt to different situations given its large learning
capacity. We further present detailed comparisons between our
model and that from [8] in Section 7.1.4.

4.2 Optimization

By formulating the optimization task in a Maximum a Posteriori
(MAP) scheme, our objective is to find the optimal {I*, M*} so
that

{I*,M*}:argr}lja‘/;(logp(l,MlB,K), st. M=F(I,K) (9)

Based on the Bayesian theorem, we obtain

{I",M"} = argmax{logP (B|K,I,M) +logP(I,M)},
.M (10)
st. M=F(I,K)

We can solve the above problem by the alternate minimization
approach that iteratively updates I and M. Thus, for each iteration
step ¢, we can obtain the solutions by solving the following two
sub-problems,

M=F(I'K),
= argmlaxlogP(BlK,I,M)+10g§0(1).

an
12)

Eq. (11) is deduced from the hard constraint in Eq. (10) that any
feasible solutions of M are completely determined by / and K,
which is also the projection of the solution of M in Eq. (10).
The above updating scheme is similar to the projected alternating
minimization (PAM) method in [37].



Algorithm 1: Deep Richardson-Lucy (RL) deconvolu-
tion for saturated image deblurring

Input: Blurry image B, blur kernel K.
Input: The number of iterations Q.
Output: Sharp latent image /2.
Initialize 1° = B.
t=0.
while r < O do

M =MEN(I',K)

AP’(I') = PEN (I')

Update I’ using Eq. (14)

te—t+1
end

Solving the sub-problem w.r.t. M. Defining a specific form of
the function F(-) is not trivial. Current methods [7], [8] resort to
empirical findings for the definition, which may not suit different
images. Given the strong approximation ability of deep neural
networks, we develop a map estimation network (MEN) to directly
approximate the function. MEN uses the current estimated image
I', and convolving result /' ® K as inputs and outputs M. Directly
solving Eq. (11) using MEN, we can avoid the definition of F(-)
and the possible heuristical settings brought by it.

Solving the sub-problem w.r.t. /. Putting Eq.(8) into Eq.(12) and
defining the image prior P (1) as P(I) = exp(—AP(I)), where A is
the weight parameter, the objective in Eq.(12) can be reformulated
as,

I = argmlaxlogiD(BlK,I, M) +log®P (1)

=argmaxlo n e” MoK (Mo (1® K))i)
uempee] B!

= argmlinMo(I®K)—10g(Mo(I®K))oB+/1P(I).

—-AP(I) (13)

We use the RL updating scheme to solve Eq. (13) as:

i _ I'o (72 ~M+1)®K)
1+AP' (1)

, (14)

where P’(-) denotes the derivative of P(-). Here the divisions are
both element-wise operations. Please refer to the appendix for
detailed derivations.

Generally, P(I) can be the form of the classical sparse
prior [27]. But it may not be the best choice for all scenarios. In
this paper, we propose a prior estimation network (PEN) to directly
estimate the derivative of the regularization term (i.e. AP’ (-)). PEN
takes I’ as inputs and outputs AP’(I'), it implicitly learns the
prior information w.r.t. I’ and can be efficiently plugged into the
optimization process in Eq. (14).

5 NETWORK DETAILS

By integrating MEN and PEN, which are trained from a large
amount of training data, into the proposed framework, our method
can avoid the heuristically defined functions and manually param-
eter tuning in the prior arts. In this section, we present the network
configurations and the implementation details.

5.1 Network Designs

The inputs of our method include the blurry image and the
corresponding blur kernel. During each iteration stage, we perform

5

the latent map (i.e. M) estimation via MEN and prior estimation
(i.e. AP’(I)) via PEN. The updated latent image can be obtained
with the updated M and AP’ (I) by performing the deblurring step
given in Eq. (14). The detailed algorithm is shown in Algorithm
L.

Network architecture of MEN. In existing methods, e.g. [52],
[8], different hyper-parameter settings may need to be tuned
for different images, and a heuristically defined approximation
function may not be the best choice in practice. Instead of seeking
manually designed representations, we suggest directly learning to
estimate the latent map M by the MEN from numerous training
data.

MEN takes I' and I' ® K as inputs and outputs M. It is

constructed with six res-blocks, and each block contains two
convolution layers to generate 32 features. We add a rectified
linear unit (ReLU) after the first convolution layer in every block,
and a sigmoid layer is attached at the end.
Network architecture of PEN. Instead of using a manually de-
signed image prior and empirically selecting the weight parameter
(i.e. 1), we suggest directly estimating the prior information from
the intermediate estimated latent image.

PEN uses I as the input and outputs the prior information
AP’ (1"). It is implemented by a 3-scale lightweight U-net. Specif-
ically, each scale in the U-net contains two convolutions, and each
convolution layer is attached with a ReLU layer for activation.
The features from the first to the last scale are 8, 16, and 32,
respectively.

The proposed network is fully differentiable and can be trained
in an end-to-end manner. Both MEN and PEN share weights
through different iterations.

5.2 Network Training and Implementation Details

To make the training process more stable, we train both PEN
and MEN by minimizing the difference between the estimated
deblurred image I, from every stéige with the ground truth 78’ as:

1
E=— -1y, 15
7g 22 Ma 1l 15)
where || - ||; denotes the L1 norm loss, N is the number of training

samples in every batch, and Q is the maximum updating stages
during training. We first train PEN without considering MEN for
all updating stages where M is fixed as 1. Then both PEN and
MEN are optimized until they are converged.

Our implementation is based on PyTorch [36], we initialize
our network according to [19]. The training is carried by ADAM
optimizer [22] with 8 =0.9, B, =0.999, € = 1078 and learning
rate as 0.0001. We set the batch size as 4, image size as 256 X
256, and the number of iterations Q as 30, respectively.

6 EXPERIMENTS

In this section, we use both synthetic data and real-world saturated
blurry images to evaluate the effectiveness of our method against
state-of-the-art ones for non-blind deblurring.

6.1 Datasets

Training datasets. We use the training dataset from [9] which
contains 500 night images from Flickr. Then we randomly crop
10 patches of size 256 x 256 pixels from each of these images. To
generate saturated blurry images, we follow the strategy in [20].
The pixels in patches, which are larger than a threshold, are



TABLE 1: Quantitative evaluations on the given saturated blurry testing set.

Cho Hu [20] Whyte Pan Chen SRN Uformer Stripformer FCNN IRCNN RGDN DWDN NBDN Ours
[10] [52] [33] [71 [49] [51] [501 [59] [61] [18] [14] [9]
Results with GT blur kernels
PSNR  20.27 23.26 23.75 24.68 24.85 22.95 24.20 24.48 24.80 19.34 20.94 25.02 25.25 25.66
SSIM  0.7410 0.7755 0.8206 0.8550 0.7713 0.7701 0.8206 0.8293 0.8470 0.6755 0.7530 0.8515 0.8544 0.8595
Results with estimated kernels from [20]

PSNR  20.06 23.01 23.20 23.66 24.39 22.95 24.20 24.48 23.77 19.22 20.79 24.51 24.40 25.11
SSIM  0.7318 0.7657 0.7965 0.8239 0.8202 0.7701 0.8206 0.8293 0.8090 0.6728 0.7512 0.8295 0.8291 0.8367

=5

(2) SRN [ 1]

(h) FCNN [39]

(j) DWDN [14] (k) Ours

Fig. 3: Deblurring results of a saturated example from the proposed testing set. Our method performs favorably compared with existing
non-blind deblurring methods, which generates a result with finer details and fewer artifacts in the saturated regions. Please zoom-in

for a better view.

enlarged by N times to obtain the saturated sharp patches'. In
order to simulate motion blur, we use [3] to generate 5 motion
kernels with sizes ranging from 11 to 33 pixels for every patch.
Thus, a total of 25000 blurry and sharp image pairs are used
in our training process. We clip the obtained sharp and blurred
patches after convolving the sharp patches by the corresponding
blur kernel. Merits of our training data synthesizing strategy can
be found in Section 7.6.

Testing dataset. For the testing data, we use the 100 test images
from [9] without cropping to generate the blurry images in the
same way as the training data. For every image, one motion kernel
is randomly generated. The training data and test data do not
overlap. For the 100 blurry images in the testing set, we compare
different methods with the ground truth kernels and the estimated
kernels from [20]. Moreover, we also test our methods in the
saturate dataset provided in [20] and the unsaturate benchmark
dataset from [28]. We further use real-world examples to evaluate
different arts.

6.2 Comparisons with State-of-the-Arts

In this section, we compare our method with the optimization-
based methods [10], [52], [20], [33], [7] that are specially de-
signed for saturated images and some recent learning-based arts,
including FCNN [59], IRCNN [61], RGDN [18], DWDN [14],
NBDN [9], SRN [49], Uformer [51], and Stripformer [50]. To

1. The dynamic range of all the images is [0, 1] in this paper. The threshold
and N are randomly sampled from 0.75-0.95 and 1.5-5.

ensure a fair comparison, we use the original implementation
of these arts and finetune [59], [49], [14], [9], [51], [50] in our
dataset. We also tune the hyper-parameters involved in the com-
pared optimization-based arts for relatively better performances.
Saturated image from the proposed testing set. We first evaluate
different methods using the proposed testing set in terms of
average PSNR and SSIM, and the results are demonstrated in
Table 1. For both ground truth and estimated kernels, our method
performs the best among the models evaluated.

Fig. 3 shows visual results from different methods. The deep
learning-based approach [49] performs less effectively than other
methods due to the lack of blur kernel information and ignoring
of the imaging process as shown in Fig. 3 (g). The optimization-
based methods [10], [20], [33], [7] contain artifacts in the saturated
regions because some saturated pixels are not properly handled
in their models (Fig. 3 (b), (d), (¢e) and (f)). Moreover, the
details are also not recovered well in their results. This is mainly
because of the ineffectiveness of the sparse image prior [27] that
they adopted. Artifacts can also be found in the result from [9]
(Fig. 3 (i)) because they suggest excluding saturated pixels in
their deblurring process. This setting is ineffective because it is
difficult to precisely separate saturated and unsaturated pixels in
this example. The algorithm based on Eq. (3) (i.e. Whyte et al.
[52]) can remove the blur in the saturated regions to a certain
extent as shown in Fig. 3 (c). However, due to the lack of prior
information, their result still contains many ringings around the
saturated regions. The learning-based model [59] shows their
advantages in the regions without saturation due to the learned



TABLE 2: Quantitative evaluations on non-saturated data from Levin et al. [28] and extra saturated data from Hu et al. [20]

Cho[10] Hu [20] Whyte [52] Pan[33] Chen[7] SRN[49] FCNN[59] IRCNN[6]] RGDN[I8] NBDN[9]  Ours
Results on the non-saturated data from Levin et al. [28]

PSNR 32.59 31.27 26.54 32.03 33.03 31.18 33.22 33.14 33.86 3291 34.12
SSIM 0.9135 0.8930 0.8301 0.9263 0.9054 0.8972 0.9267 0.9261 0.9335 0.9000 0.9329
Results on the extra saturated data from Hu et al. [20]

PSNR 20.94 22.79 21.43 22.47 21.80 22.21 23.57 19.68 21.62 24.60 25.11
SSIM 0.7022 0.7764 0.7414 0.7583 0.7014 0.7526 0.8004 0.6147 0.6592 0.8274 0.8439

(g) Stripformer [50] (h) IRCNN [61] (1) FCNN [59]

i "

(i) RGDN [18] (k) NBDN [9] (1) Ours

Fig. 4: Deblurring results of an unsaturated example. The kernel in (a) is from [34]. Although specially designed for saturated images,
our method can still perform favorably against existing methods on the unsaturated image, which generates a result with finer details
and fewer artifacts as shown in the boxes. Please zoom-in for a better view.

prior as shown in Fig. 3 (h). But they are based on the blur
model that does not explicitly consider saturation (e.g. Eq. (1)).
It is not surprising that their result contains many artifacts around
the saturated pixels. The same result can be observed from [14]
(Fig. (j)). In comparison, the saturated pixels have less influence
on our method because of the robust blur model Eq. (8). By taking
advantage of the learned image prior, our method can restore a
clear image with sharper edges and fewer artifacts around the
saturated regions (Fig. 3 (k)).

Unsaturated images. Although our method is specially designed
for saturated image deblurring, we show it can also be used to
deal with unsaturated data. Blurry images from the benchmark
dataset [28] are used for evaluation. PSNR and SSIM values are
shown in Table 2. We can observe that although our method is
designed for saturated images, it performs competitively against
state-of-the-art methods on images without saturation. Deblurring
results of an unsaturated example from different methods are
shown in Fig. 4. Our method performs favorably against existing
methods, which generates a result with finer details and fewer
artifacts compared with others.

Saturated images from Hu et al. [20]. Besides the saturated data
in the proposed testing set, we also use the benchmark dataset
from Hu et al. [20] to show the effectiveness of the proposed
algorithm. This dataset consists of a total of 154 saturated blurry
images and 12 blur kernels. Results shown in Table 2 demonstrate
that with either ground truth kernels or estimated blur kernels, our
method can generate favorable results against existing methods.
The results show that our method can generalize well to saturated
images from another dataset.

Real-world saturated images. We also use some challenging
real-world examples to evaluate our method. The comparisons
are presented in Fig. 5 and 6. We observe that the optimization-
based methods [10], [33], [20], [52], [7] have difficulties in
simultaneously restoring details and removing artifacts due to
the ineffectiveness or the absence of the adopted image prior. In
comparison, the learning-based methods [59], [61], [18], [14] can
generate results with more details. However, saturated pixels are
not specially considered in their models. As a result, the recovered
results contain severe artifacts in the saturated regions. The deep
learning-based deblurring methods [49], [51], [50] can hardly ob-
tain satisfying results as the imaging process is ignored. Moreover,
although the method from the robust learning-based method [9]
can generate a result with fewer artifacts, we observe there are
still ringings around the saturated region. This is mainly because
their adopted model is ineffective in handling all saturated pixels.
Different from those methods, the comparison results demonstrate
that our method can prevent side-effects from the saturated pixels
while obtaining clearer details at the same time.

6.3 Model Size and Running Time

Table 3 summarizes total numbers of parameters from different
algorithms [10], [33], [20], [52], [59], [61], [18], [14], [9] and
their corresponding running time on a 300 x 300 blurry image. All
methods are evaluated on the same PC with an Intel (R) Xeon (R)
CPU and an Nvidia Tesla 1080 GPU. The proposed method does
not require many parameters, and it performs favorably against
state-of-the-art models in the term of running time.



(e) Strpformer [50] (f) IRCNN [61] (g) RGDN [18]

Fig. 5: Deblurring results of a real-world example with numerous saturated pixels. The kernel in the white box is from [

() Uformer [

(h) DWDN [14]

(i) NBDN [9] (j) Ours

]. Our method

performs favorably compared with existing non-blind deblurring methods, which generates a result with fewer color artifacts in the

boxes. Please zoom-in for a better view.

Fig. 6: Deblurring results of a real-world example with numerous saturated pixels. The kernel in the white box is from [

@) Ours

]. Our method

performs favorably compared with existing non-blind deblurring methods, which generates a result with fewer color artifacts in the

boxes. Please zoom-in for a better view.

TABLE 3: Model size and running time comparisons.

Methods \ Total parameters (M) \ Running time (s)
Choetal. [10] - 5.25 (CPU)
Whyte et al. [52] - 2.86 (CPU)
Hu et al. [20] - 5.61 (CPU)
Pan et al. [33] - 15.41 (CPU)
Chen et al. [8] - 5.45 (CPU)
FCNN [59] 0.45 0.13
IRCNN [61] 0.15 1.11
RGDN [18] 1.26 5.34
DWDN [14] 7.05 2.60
NBDN [9] 0.39 0.25
Ours 0.16 0.70

7 ANALYSIS AND DISCUSSION

In this section, we first analyze the effectiveness of the proposed
method. Then, we analyze the accuracies of the outputs of the
proposed MEN and PEN. We further show the robustness of our
method against noise and analyze the convergence property of
our method. Finally, we discuss the merit of our training sample
synthesizing step against that from [9].

7.1 Effectiveness of the Proposed Blur Model

7.1.1  Compared to the Commonly-Used Blur Model.

Different from other methods, we use a latent map M to explicitly
handle saturated pixels in the blurry image. M can be similarly
considered as a replacement of the ideal clipping function in
Eq. (3). When the latent map is disabled (e.g. setting M = 1)),
our model reduces to the blur model in Eq. (1), which is widely-
adopted in many existing methods [59], [61], [18]. However,
the restored image without the latent map often contains many
artifacts in the saturated regions, as depicted in the green boxes
of Fig. 7 (b). For the learned latent map M in Fig. 7 (d), we
can observe that it has smaller values in the saturated regions
and vice versa for unsaturated pixels. With the help of the latent
map, our method can generate a result with fewer ringings around
the saturated regions, as shown in Fig. 7 (h). To quantitatively
compare our method with the strategy without the latent map, we
conduct an ablation study on the proposed testing set. The results
in Table 4 show that the blur model with the proposed latent map
can improve deblurring when saturated pixels are present.
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TABLE 4: Comparisons on the proposed testing set w.r.t. different blur models. Ours w/o M is implemented by fixing M =1; Ours

w/ [
using the strategy from [8].

] is implemented by replacing our latent map M with the approximation in [

]; Ours w/ [8] is implemented by computing M

GT blur kernels

Ours w/o M | Ours w/ blur model in Whyte [52] | Ours w/ blur model in NBDN [9] | Ours w/ blur model in Chen [§] Ours
PSNR 23.34 24.07 24.69 24.13 25.66
SSIM 0.8285 0.8304 0.8400 0.8312 0.8595
Estimated kernels from [20]
Ours w/o M | Ours w/ blur model in Whyte [52] | Ours w/ blur model in NBDN [9] | Ours w/ blur model in Chen [8] | Ours
PSNR 23.18 23.56 24.23 24.07 25.11
SSIM 0.8053 0.8167 0.8199 0.8115 0.8367

) GT (g) Ours w/ model in [52]

.~

(h) Ours w/ model in [9]

,

(i) Ours w/ model in [8]

Fig. 7: Comparisons between different blur models. Artifacts are presented in the blue and green boxes in (b), (g) - (i), while the
result from our model contains fewer artifacts and is close to the GT image. (c) is the detected saturated pixels from the blur model in
NBDN [9] which includes almost all informative pixels in the blurry image. Darker pixels indicate smaller values in (c) - (e), where (d)

and (e) are processed with the same gamma correction for better viewings.

7.1.2 Compared with the Blur Model by [52].

We also compare the proposed blur model with that from [52].
To solve the saturated deblurring problem, Whyte et al. designed
the blur model based on Eq. (3). They use a specially-designed
function [4] to approximate the clipping function. However, their
approximation function often requires heuristic parameters, and it
is also cumbersome work to find the best parameters for different
blurry images. Differently, the clipping function is replaced by
a learnable latent map in our model, which can be effectively
estimated by a map estimation network (MEN). We conduct
an ablation study on the proposed testing set w.r.t. these two
blur models. To ensure a fair comparison between the proposed
latent map-based model and the blur model from [52], we train
our method by replacing the latent map with the approximation
function in [52] with their default parameter setting. Evaluation
results in Table 4 illustrate the effectiveness of the proposed model
over that from [52]. An example in Fig. 7 (g) shows the limitation
of the model in [52], where the corresponding result contains
artifacts and residual blur around the saturated pixels in the blue
box. In comparison, without heuristic settings, the saturated pixels
can be well considered in the latent map (Fig. 7 (d)) of our blur
model. As a result, a higher quality result with fewer artifacts can

be obtained as shown in Fig. 7 (j).

7.1.3 Compared with the Blur Model by NBDN [9].

Another blur model is from NBDN [9] where Chen et al. propose
to explicitly discard saturated regions by assigning small weights
to the saturated pixels so that they are not involved in the
deblurring process, and they further propose to use CNN to better
identify the saturated regions . This idea is first proposed in [10].
In their settings, the saturated pixels are located based on the
residual of the blurry image and the convolution output of the
latent image and the blur kernel (i.e. B—1®K).

However, this strategy has some intrinsic limitations. First, it
is difficult to precisely separate saturated and unsaturated pixels
using this model. The example shown in Fig. 7 (c) suggests that
some informative pixels (i.e. the sharp edges around saturated
regions), will be considered saturated and discarded during the
deblurring process. Second, because saturated regions are not

2. Taking no account of noise, the blur model in NBDN [9] can be
formulated as M oB =M o (I®K) s.t. M € {0,1}, where pixels violate
the linear blur model are assigned with small weights to make sure that
they do not involve in the deblurring process. In our model, the blur model
is B=Mo(I®K) st. M € [0,1], and all pixels are considered during
deblurring.



(g) Ours w/o PEN

Fig. 8: Visualization of the output of PEN (i.e. , Ap’(I)) and MEN (i.e. M), where I°, I', 1'%, and I?° denote the intermediate results
at the 9th, 10th, 19th, and 20th iterations, respectively. Parts enclosed in the red and yellow boxes show that our model restores better
results over iterations. (i) is obtained by %, and I'*! is defined in Eq. (16). Our result with PEN is more visually pleasing than
that without it (i.e. (j) vs. (g)), and intermediate results applied by PEN contain fewer ringings and noise than that before it (i.e. green

boxes in (i) vs. (h)). Please zoom-in for a better view.

involved in the deblurring process, artifacts around these regions
often remain in the recovered result as shown in Fig. 7 (h).
In comparison, our method does not require a saturated pixel
discarding process because all pixels can be modeled by our blur
model in Eq. (8), thus avoiding the limitations of this strategy. To
ensure a fair comparison, we reimplement our method with the
blur model in NBDN [9] and train it with the proposed training
data. Results presented in Table 4 further validate the effectiveness
of our model against that from NBDN [9].

7.1.4 Compared with the Blur Model by [8].

To comprehensively evaluate the effectiveness of the proposed
model, we compare it with that from Chen et al. [8]. The
method in [8] is mainly designed for the blind deblurring task.
Although the same latent map is proposed to replace the clipping
function, the latent map M in their method is computed via a
naive strategy: assuming a uniform thresh value v in the image,
for every pixel location i, M; =1 if (IQK); <v,or M; =v/(IQK);
if (I®K); >v. To compare with this model, we finetune our
model using the map estimation strategy from [&8] and evaluate
it using the proposed testing set. Results are shown in Table 4
where our model outperforms that from [8]. The main reason
is that the strategy in [8] assumes the same thresh value among
all blurry images (i.e. they empirically use v = 0.9 for all blurry
samples). This strategy can work in their blind deblurring task
where salient edges of the latent image are the most crucial part
for estimating the blur kernel, and it does not require an accurate
estimated latent image necessarily. However, their strategy may
be inapplicable in the non-blind deblurring task, because the same
thresh value may not be the best choice for different images.
Consequently, their computed latent map may be inaccurate in
some examples. As shown in Fig. 7 (d), the latent map from [&]
are not concordant with the saturated regions in the given example,
and their deblurred result contain moderate artifacts (Fig. 7 (i)).
Compared to their model, our latent map M is computed via a
CNN, thus can avoid the naive settings and is suitable for most

TABLE 5: Comparisons on the given testing set with different
image priors.

PSNR  SSIM

GT Without prior 2388  0.8322
blur hyper-Laplacian prior ~ 24.30  0.8411
kernels prior from PEN 25.66  0.8595
kernels Without prior 2334 0.8156
from hyper-Laplacian prior ~ 23.79  0.8202
[20] prior from PEN 25.11  0.8367

TABLE 6: Evaluations of the accuracies of the outputs of MEN
and PEN on the proposed testing set.

Accuracy of M

iterations 10 20 30
MSE of M 0.0123  0.0091  0.0077
Accuracy of AP’ (1)
iterations 10 20 30
SSIM of I (i.e. wio AP’ (1)) 0.8460  0.8582  0.8591
SSIM of I (i.e. w/ AP’(I))  0.8467 0.8588  0.8595

scenarios, and the recovered result is also shaper with fewer
ringings (Fig. 7 (§)).

7.2 Effectiveness of PEN

With only the fidelity term, the deblurring process often tends to
amplify noise [11]. Meanwhile, an accurate blur kernel is often
inaccessible in real life, and it will cause significant artifacts and
result in undesired image structures [57]. Thus, a decent prior term
is required for the deblurring task [57].

The proposed PEN is used to obtain prior information for
the MAP model. Fig. 8 (b) and (c) show visualizations of the
outputs of PEN at the ¢-th iteration (i.e. AP’ (I")), which serve as
discriminative weights that facilitate the image restoration. We can
observe that in regions without edges, AP’ (I") have small absolute
values (close to 0), and it does not influence the optimization.
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TABLE 7: Evaluations on the proposed testing set with different levels of noises.

Cho[10] Hu [20] Pan[33] Dong[!3] Whyte[52] FCNN [59] DMPHN [58] MTRNN [35] CPCR[!5] DWDN [l4] Ours
Results with GT blur kernels
1% PSNR 20.78 23.76 25.02 22.05 23.55 24.55 22.34 19.77 20.79 24.82 25.44
noise  SSIM 0.7554 0.7833 0.8351 0.7760 0.7889 0.8310 0.7156 0.6432 0.7519 0.8362 0.8435
2% PSNR 20.55 23.58 2431 21.91 23.04 24.37 22.26 19.70 20.55 24.55 25.01
noise  SSIM 0.7137 0.7516 0.8087 0.7564 0.6948 0.8003 0.7056 0.6225 0.7022 0.8103 0.8146
Results with blur kernels from [20]

1% PSNR 20.59 23.52 24.09 21.91 23.43 23.17 22.34 19.77 20.65 24.47 24.98
noise  SSIM 0.7477 0.7766 0.8188 0.7646 0.7914 0.8082 0.7156 0.66432 0.7493 0.8198 0.8250
2% PSNR 20.42 2341 23.62 21.80 23.04 22.84 22.26 19.70 20.48 24.19 24.66
noise  SSIM 0.7181 0.7530 0.7949 0.7490 0.7131 0.7889 0.7056 0.6225 0.7171 0.7967 0.8006

TABLE 8: Evaluations of our model trained with different data

synthesizing strategies on the samples from [42].

Ours

28.13

Data synthesized methods NBDN [9]

27.89

Average PSNR

Average PSNR
Average SSIM
Average PSNR
Average SSIM

o 5 10 15 2 25 3 3 4 o 5 10 15 2 25 3 3 4

Iterations Iterations
(a) Results with GT kernels (b) Results with Kernels from [20]

Fig. 9: Performances of the proposed method using different
iteration steps.

In the edge regions, AP’ (I') have larger absolute values so they
can preserve the sharp details and remove artifacts. Meanwhile,
according to the iteration strategy in Eq. (14), the intermediate
result /'*! defined by:

jt+l & gt B 7%

Im=z7 o((m—M+1)®K),
contains more artifacts (Fig. 8 (h)) than that after applying with
PEN (Fig. 8 (i)). The example validates that our PEN can remove
ringings and noises in the deblurred result. The comparison in
Fig. 8 (g) and (k) further demonstrates that using PEN generates
a better deblurred result. Quantitative evaluations in Table 5
also show that the proposed model trained without any prior
information performs less effectively than that with it.

Moreover, compared to the commonly-used hyper Laplacian
prior [27], our PEN shows its advantages in the following aspects.
First, the hyper-Laplacian prior is effective at removing ringings.
But it can also result in fewer details. In comparison, by learning
from numerous data, the learned prior has shown its effectiveness
in removing artifacts and obtaining details at the same time.
Second, the sparse prior often requires a heuristic setting for the
weight parameter (i.e. 4 in Eq. (13)), which is tedious work to
manually tune the parameter for different images. Differently,
our PEN can directly learn the prior information (i.e. AP’(I) in
Eq. (14)). To quantitatively evaluate the effectiveness of PEN, we
conduct an ablation study on the proposed testing set by replacing
PEN with the hyper-Laplacian prior and finetune this model. Note
the hyper-parameter A is set to be 0.003, which is the same as
existing arts [33], [10], throughout the training. The results are
shown in Table 5. We note that our method with PEN performs

(16)

-
v

() (b) (©

Fig. 10: Real examples recovered by our model trained with
samples using different synthesizing strategies. (a) is the blurry
input. (b) and (c) are outputs of our model trained with samples
synthesized by [9] and ours, respectively.

better than that with the hyper-Laplacian prior. All these results
demonstrate the effectiveness of the proposed PEN.

7.3 Accuracies of Outputs of MEN and PEN

We first measure the estimation accuracy of MEN by computing
the MSE values of M in the intermediate updating steps, where
the GT M is computed by I@% with the GT I. Results are shown
in Table 6, which shows that the network can output a high quality
M, and it can gradually estimate better maps with more iterations.
Examples of interim results of M are shown in Fig. 8. We can
observe that the estimated M in Fig. 8 (d) and (e) are concordant
with our model that saturated regions have smaller M values, and
M is closer to the GT over iterations.

There is no ground truth label to examine the accuracy of the
output of PEN (i.e. AP’ (I)). Thus, we use the SSIM value of I'*!
in Eq. (16) and I'*! in Eq. (14), which are the intermediate result
before and after considering PEN, to measure the accuracy of the
output of PEN. Results in Table 6 show the learned prior term can
help restore better results during iterations.

7.4 Convergence Analysis

Visual examples in the red and yellow boxes of Fig. 8 (i), (j), and
(k) show that our method can restore better results over iterations.
To quantitatively evaluate the convergence property of our method,
we conduct experiments on the proposed testing set and compute
the average PSNR and SSIM values with different numbers of
iteration stages. Fig. 9 shows that our method converges well after
30 iterations and more iteration stages will not improve the results.
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TABLE 9: Evaluations of our model with different kernel estimation methods on the samples from [42].

Hu [20] Xu[56] Pan[34] DMPHN [58] Nah[31] DeblurGAN [24]  SRN [49]  DeblurGAN-V2 [25] = Ours + [20]  Ours + [&]
PSNR 26.41 27.14 27.22 27.80 27.87 27917 28.56 28.70 28.13 28.44
SSIM 0.8028 0.8303 0.7901 0.8472 0.8274 0.8343 0.8674 0.8662 0.8497 0.8538

7.5 Robustness to Noise

Night blurry images may also contain noises. To evaluate our
method on images with noises, we first train our method on images
with random Gaussian noises in a range of 0 to 3%. Then, we
verify the robustness of our method w.r.t. different levels of noise
by adding 1% and 2% noises to the blurry images in the testing
dataset. Besides the optimization-based robust methods [10], [20],
[33], [13], [52], we also compare our model with several leading
arts that report to be robust to noise including FCNN [59],
DMPHN [58], MTRNN [35], CPCR [15], and DWDN [14],
where[59], [58], [14] are finetuned using our training samples.
Results from different methods are shown in Table 7. We note
that the proposed method can generate competitive results among
the compared methods, which also validates the robustness of our
method to different levels of noise.

7.6 Training Sample Synthesizing Strategy Compari-
son

Our training sample synthesizing process is inspired by the strat-
egy in [20], and it is different from that in [9]. Chen et al. suggest
synthesizing blurry saturated images by enlarging the whole image
with an enlarging factor before the convolving step. Although
their strategy can synthesize enough saturated pixels, enlarging
the whole image will make the dynamic range of training samples
smaller. Considering that saturated images are often with a high
dynamic range, we suggest only enlarging pixels above given
thresh values, thus retaining or even increasing the dynamic range
of the training samples. To compare these two data synthesizing
strategies, we train our model on samples synthesized with each
of them respectively. The test data are uniform-blurred saturated
images selected from the test set of the real-world dataset [42],
and the blur kernels are obtained from [20]. Evaluation results in
Table 8 demonstrate the effectiveness of our sample synthesizing
strategy. A real-world deblurring example in Fig. 10 also shows
that our synthesizing strategy can better handle the real-world
saturated blurry images.

7.7 Evaluations with Different Kernel Estimation Meth-
ods

As an important part of the overall image deblurring pipeline,
kernel estimation methods can also affect the quality of the
restored images. To evaluate whether our method works well when
using different estimated kernels, we use two different kernel
estimation methods [20], [8] on the low-light blurry images (JPEG
form) from the RealBlur dataset [42]. Evaluated results are listed
in Table 9. Results from the compared methods are directly cited
from the official website of the RealBlur dataset *. We observe that
our method can obtain favorable performances among the state-
of-the-arts with different blur kernel estimation methods. These
results indicate that our method is robust to blur kernels to some
extent.

3. http://cg.postech.ac.kr/research/realblur/

8 CONCLUSION

In this paper, we propose a simple yet effective method for
non-blind deblurring when saturated pixels are present in the
blurry image. To explicitly handle saturated pixels, we modify the
widely-adopted linear blur model by introducing a learnable latent
map to estimate it. Based on the blur model, we formulate the
deblurring task into a MAP problem and solve it by iteratively
updating the latent image and map. In specific, we develop a
map estimation network (MEN) to directly estimate the latent
map based on the current estimation of the latent image, and
we obtain the revised latent image by conducting a Richardson-
Lucy (RL)-based optimization scheme. In addition, we develop an
effective prior estimation network (PEN) to learn an image prior
as the constraint of the latent image so that high-quality deblurring
results can be better obtained under this learned prior. Both
quantitative and qualitative evaluations on synthetic datasets and
real-world images demonstrate the effectiveness of the proposed
method.
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APPENDIX

We present the detailed deviations for solving Eq. (13) in this
appendix. By reformulating Eq. (13) into a vectorized form, we
can obtain:

G —
mIinMTKI—BTlog(diag(M)KI)+/ll P(D1, a7
where M, B, and I denote the vectorizgd forms of M, B and I;
K is the Toeplitz matrix of K w.r.t. I; 1 denotes a vector whose
elements are all ones. For the second term of Eq. (17), we denote
it as A and its derivative w.r.t. I is:

6_A _ 0diag(M)KI dlog(diag(M)KI) B log(diag(M)KI)
o1 o1 ddiag(M)KI dlog(diag(M)KI) ’

= (KTdiag(M))diag(m)B’

1
s S YT
=K dlag(diag(M)KI)(dlag(M)B), "

where the divide operation is element-wise. Then we can solve
Eq. (17) by setting its derivative to zero as:

K'™M-K"diag(—
di

1 . .

19)

Reformulate the above formation into its matrix form, we have:

MoB

M®K-————
O Meoter)

®K+AP)(I)=0. (20)



where K is the transpose of K that flips the shape of K upside
down and left-to-right, P} (I) is the first order derivative of P;(I)

w.r.t. [ .~Recall that the sum of the ksrnel equals to 1, i.e. iTIZ =1,
where K is the vectorized form of K. Thus, we further have,

M®K-———®K+AP;(I)+1-10K = 21
® Mo(I®K)® +AP (1) + ® 0, (21)
B ~
— - M+1)®K =1+1P,(]), 22
(o~ M+D® +AP; (1) (22)
B —~
IO(IQTK—M+1)®K:10(1+AP;(1)), (23)

where 1 is an all-one image.
In order to solve Eq. (23), we use the fixed point iteration
scheme and rewrite it as:

i+l o (72 -M+1)®K
e=1= — 24)
I 1+4P;(1")
Thus, we can finally get Eq. (14) in our manuscript:
I'o (72 -M+1)®K
It+1 — ((I ®K ) ) (25)

1+4P) (1)
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