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Abstract The neural radiance field (NeRF) has shown

promising results in preserving the fine details of ob-

jects and scenes. However, unlike mesh-based represen-

tations, it remains an open problem to build dense cor-

respondences across different NeRFs of the same cate-

gory, which is essential in many downstream tasks. The

main difficulties of this problem lie in the implicit na-

ture of NeRF and the lack of ground-truth correspon-

dence annotations. In this paper, we show it is possible

to bypass these challenges by leveraging the rich seman-

tics and structural priors encapsulated in a pre-trained

NeRF-based GAN. Specifically, we exploit such priors

from three aspects, namely 1) a dual deformation field

that takes latent codes as global structural indicators,

2) a learning objective that regards generator features

as geometric-aware local descriptors, and 3) a source of
infinite object-specific NeRF samples. Our experiments

demonstrate that such priors lead to 3D dense corre-

spondence that is accurate, smooth, and robust. We

also show that established dense correspondence across

NeRFs can effectively enable many NeRF-based down-

stream applications such as texture transfer.

Yushi Lan
S-Lab, Nanyang Technological University, Singapore
E-mail: yushi001@e.ntu.edu.sg

Chen Change Loy
S-Lab, Nanyang Technological University, Singapore
E-mail: ccloy@ntu.edu.sg

Bo Dai
Shanghai AI Laboratory
E-mail: doubledaibo@gmail.com

NtNs N0

Te
xt

ur
e 

Tr
an

sf
er

Nt N!
	#$% → NtN!

	#$%

Se
gm

en
ta

tio
n 

La
be

lin
g

N0 → NtN0Nt

Sh
ap

e 
M

an
ip

ul
at

io
n

Nt N!
	&$' → NtN!

	&$'

Fig. 1 Dense correspondence across two objects rep-
resented as NeRF. We propose Dual Deformation Field
(DDF ) to establish 3D dense correspondences between two
objects represented as NeRF. This is achieved by a compos-
ite deformation (row 1): given a source-target NeRF pair Ns

and Nt, which we aim to establish correspondences on, for a
point xs from the source NeRF Ns, we first establish its cor-
respondence with a point on the template NeRF N0, which is
further deformed to the target NeRF Nt. Our training is fully
self-supervised and could facilitate a series of downstream ap-
plications, such as texture transfer (row 2), shape manipula-
tion (row 3) and 1-shot view-consistent segmentation transfer
(row 4).
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1 Introduction

The success of neural radiance fields (NeRF) (Milden-

hall et al., 2020) has led to remarkable progress in

learning 3D representations. Unlike voxel- and mesh-

based methods, NeRF represents each 3D object as a

distribution of coordinate-based volume densities and

view-dependent colors. And by approximating this dis-

tribution with a continuous parametric function, NeRF

shows great potential in capturing geometric scene de-

tails and rendering realistic novel views.

In this work, we study the potential of establish-

ing dense correspondence across two objects represented

as NeRF, which is an important prerequisite for many

downstream applications such as texture transfer, ma-

nipulation and segmentation transfer, as shown in the

Fig. 1. This task is non-trivial. First, existing methods

for building dense correspondence across two objects

mainly focus on mesh-based representations. It is in-

feasible to directly apply and adapt them to NeRF.

Unlike meshes that have explicit vertices and surfaces,

NeRF lacks an explicit surface, preventing us from re-

sorting derivatives of neural fields (Yang et al., 2021) as

the shape surface descriptors. Moreover, existing meth-

ods (Litany et al., 2017) often require ground-truth cor-

respondence annotations in training, which are hard to

obtain for NeRF-based object representations.

To overcome the aforementioned limitations, we

present a novel approach that exploits NeRF-based

generative adversarial networks (GANs) (Chan et al.,

2021a; Niemeyer and Geiger, 2021; Schwarz et al., 2020)

to facilitate the learning of dense correspondence in

NeRF. Specifically, NeRF-based GANs treat image syn-

thesis as novel views rendering from its intermediate

NeRF representation. Our key idea is to employ its gen-

erator, G, to play a triple role, as shown in Fig. 2:

1) Since the generator of a GAN is a latent variable

model that learns a mapping z → G(z), the associated

latent code z shall capture the underlying structure of

the generated object NeRF G(z) in a pretrained GAN.

Therefore, this latent code naturally serves as a holis-

tic global structure descriptor for building conditional

models that generalize to different object NeRFs of a

category of interest.

2) As a representation learning architecture, G can

serve as a robust semantic embedding function that

maps corresponding coordinates across different NeRFs

into semantically similar features. Based on such cross-

instance feature similarity, we can thus naturally use

features by G as geometric-aware local descriptors.

3) G can also serve as a source of infinite object-specific

NeRFs N inf
i=1 for training, where it is flexible to adjust

NeRF 
G
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Fig. 2 The triple role of a NeRF-based GAN: We
retrofit a pretrained NeRF-based GAN into triple roles: (1)
the latent codes zNi=1 serve as holistic structure descriptors;
(2) the extracted generator features serve as geometry-aware
local descriptors; and (3) the sampling space of pretrained G
could serve as an infinite object-specific dataset.

the complexity of sampled NeRFs through the latent

codes.

We name our approach as Dual Deformation

Field (DDF ). While our DDF does not limit the choice

of NeRF-based GAN, we use π-GAN (Chan et al.,

2021a) due to its simplicity and promising synthesis re-

sults. Our adaptation of the pre-trained π-GAN starts

with considering its first role in model construction,

where we treat latent codes of π-GAN as additional

conditions. Specifically, we regard dense correspondence

between NeRFs as a coordinate-based deformation field

from the source NeRF to the target NeRF. Instead of
learning a single deformation field conditioned on a pair

of source and target latent codes, we use a fixed tem-

plate NeRF as the bridge and learn two separate defor-

mation fields, namely a backward deformation field B

and a forward deformation field F . In our formulation,

B always treats the template NeRF as the target, tak-

ing only the source latent code as input. Similarly, F

always treats the template NeRF as the source, taking

the target latent code as the condition. Such a decom-

position substantially alleviates the learning complex-

ity. In addition, the dense correspondence between any

two NeRFs can be easily established by combining F

and B.

Benefit from the second role of π-GAN, DDF can

learn without ground-truth correspondence annota-

tions. Specifically, for any coordinate in the source

NeRF, we can obtain its corresponding coordinate in

the target NeRF from DDF . Since the features of π-

GAN are geometric-aware descriptors, we, therefore,

compute generator features for these estimated cor-
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responding coordinates and apply feature-wise cosine

similarity as the primary learning objective.

Finally, as π-GAN provides infinite object-specific

NeRF samples for training, in practice we further con-

trol the complexity of sampled NeRFs by mixing the la-

tent codes of sampled NeRFs with that of the template

NeRF, we can use training samples of low deformation

complexity in the beginning, and gradually move to

samples with higher complexity as training proceeds.

We found this strategy improves the training-time effi-

ciency and stability.

This is an early attempt that establishes the dense

correspondence between two NeRF-based object repre-

sentations. Without any ground-truth correspondence

annotations, dense correspondence is established by

mining rich semantic and structural priors from a pre-

trained NeRF-based GAN. In the challenging category

of human faces, the proposed method produces high-

quality dense correspondences with promising robust-

ness and generality. Various tasks such as texture trans-

fer and segmentation transfer are tested to demonstrate

the potential of our method in downstream tasks. Code

and models will be released.

2 Related Work

3D Shape Correspondences. The problem of estab-

lishing dense correspondences between 3D shapes is of

key importance to a series of downstream tasks (Egger

et al., 2020; Loper et al., 2015), and has been stud-

ied extensively in recent survey (Kaick et al., 2011;

Sahillioglu, 2019). Traditional approaches build corre-

spondence between shapes represented by mesh or point

clouds. They can be roughly divided into registration-

based and similarity-based methods, where the former

adopts Laplacian coordinate δi for vertex vi as geomet-

ric preservation descriptor after registration. Similarity-

based solutions do not change the geometry of given

shapes and calculate the similarity between vertices

with learnable feature descriptors. With recent ad-

vances in geometric machine learning (Qi et al., 2017;

Wang et al., 2019b), researchers extend traditional

framework by replacing hand-crafted descriptor with

learnable feature descriptors (Fan et al., 2019; Litany

et al., 2017; Zhou et al., 2016). Eisenberger et al. (2021);

Halimi et al. (2019) further mitigate the requirements

of correspondences annotations which builds soft cor-

respondence matrix
∏
∈ Rm×n between numerable

vertices on the mesh surface. The lack of explicit sur-

face and numerable vertices in NeRF hinders the use

of above methods, where correspondence affinity ma-

trix (Eisenberger et al., 2021) could not be built. Pi-

oneer works (Deng et al., 2021; Liu and Liu, 2020;

Zheng et al., 2021) propose to build correspondences

over implicit representations. However, they still rely

on ground-truth reconstruction annotations to train

the deformation field. Collecting such annotations for

NeRF-based representations is infeasible, where there

are infinite points with non-zero densities.

Neural Implicit Representations for 3D Geome-

try. The success of deep learning over 2D domain has

spurred a growing interest in the 3D domain. How-

ever, traditional explicit representation such as mesh

and voxel are hard to fit in deep learning optimiza-

tion framework due to the varying topology or limited

resolution. As a parallel class of shape representation,

recent advances in implicit functions (Chen and Zhang,

2019; Mescheder et al., 2019; Park et al., 2019) have

demonstrated their excellence when representing com-

plicated geometry. By representing shapes as a continu-

ous field, implicit representation encodes the geometry

properties of a 3D point x using a neural network f(x).

Conventional implicit representations were limited by

the need of 3D ground-truth. NeRF (Mildenhall et al.,

2020) stands out as a successful variant to support di-

rect learning of 3D scene from multi-view images. Guo

et al. (2021); Li et al. (2021); Park et al. (2021a,c);

Pumarola et al. (2020) further improve NeRF to model

non-rigid and time-varying scenes by equipping static

NeRF MLP with an extra deformation field. Gafni

et al. (2021); Hong et al. (2022); Noguchi et al. (2021);

Wang et al. (2021); Zheng et al. (2022) augment NeRF

MLP with a template shape using 3D basic models, in-

cluding 3DMM (Gafni et al., 2021; Hong et al., 2022),

FLAME (Zheng et al., 2022) and SMPL (Noguchi et al.,

2021) to enable more explicit control. However, they are

still limited to overfitting setting and the learned mod-

els fail to generalize to novel scenes. Please note that

implicit shape representation and neural rendering are

still developing rapidly and we refer readers to the sur-

vey (Tewari et al., 2020) for more details.

Though great advances have been achieved, build-

ing dense correspondence across shapes represented

by implicit functions are intrinsically challenging since

ground truth correspondence are impossible to acquire.

Recent attempts to build correspondence over implicit

representations (Deng et al., 2021; Zheng et al., 2021)

tried to bypass this requirement by defining F as signed

distance function (SDF) values of the deformed points

and d as the marginal L1 loss as in (Park et al., 2019).

Liu and Liu (2020) followed similar principles as func-

tional maps and adopted occupancy loss as supervision,

while the basis functions are learned from data. Though

dense correspondence over implicit functions could be

derived, these methods are unable to establish consis-

tent bijective correspondence and still require 3D super-
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vision during training. Moreover, these methods are all

constrained on synthetic dataset (Chang et al., 2015),

which limit the applications on real scenes.

Our method is different from them in three ways.

First, our method builds on NeRF that has been shown

more effective in representing realistic scenes. Second,

our method is fully free of 3D annotations like sparse

correspondence labeling or 3D models. This uniqueness

of our method facilitates more downstream applications

where only 2D images are available. Lastly, our method

builds bijective correspondences between two NeRFs,

offering more flexibility and scalability to deform be-

tween two NeRFs.

Generative Models and 3D-aware Image Synthe-

sis. Deep generative models, especially GANs (Brock

et al., 2019; Goodfellow et al., 2014; Karras et al.,

2019a), have shown promising results in generating pho-

torealistic images. To further extend GANs to synthe-

size images in a 3D-consistent manner, many recent ap-

proaches investigated how to incorporate 3D inductive

bias into generative training. Motivated by the success

of NeRF (Mildenhall et al., 2020), pioneer work (Chan

et al., 2021a; Schwarz et al., 2020) resorted to the con-

tinuous power of radiance fields as the incorporated

3D inductive bias in GANs, which have paved the way

for this field. Impressive results have been achieved on

both 3D-aware image synthesis and multi-view consis-

tency. More 3D-aware GANs (Chan et al., 2021b; Gu

et al., 2022; Niemeyer and Geiger, 2021; Or-El et al.,

2021; Zhou et al., 2021) are proposed to support faster

rendering (Niemeyer and Geiger, 2021), better shape

modeling (Chan et al., 2021b; Or-El et al., 2021), as

well 3D style transfer (Zhou et al., 2021). Without loss

of generality, here we employ the basic π-GAN (Chan

et al., 2021a) architecture as both a robust correspon-

dence similarity metric and an infinite source of 3D

NeRFs. Beyond the study of improving the synthesis

quality, few work probes how to apply the represen-

tations learned by GANs for downstream tasks. Some

studies (Bau et al., 2020; Shen et al., 2020) interpret the

semantics encoded by GANs and apply them for im-

age editing. Other works (Tritrong et al., 2021; Zhang

et al., 2021a,b) leverage the rich semantics in GAN’s

features for fine-grained annotation synthesis, few-shot

segmentation as well as multi-view data generation, re-

spectively. Concurrently Eslami et al. (2018); Jahanian

et al. (2020); Pan et al. (2021); Zhang et al. (2021a)

show that GAN trained on 2D images can learn im-

plicit notion of 3D environment. But it remains much

less explored whether the learned GAN representations

are transferable to more challenging 3D tasks, like dense

correspondence estimation.

3 Methodology

In this paper, we present a new attempt for building

dense correspondence between NeRF representations

across objects belonging to the same category. Obtain-

ing ground-truth correspondence annotations is infeasi-

ble due to the implicit nature of NeRF. Our key insight

is to retrofit a generator of a pre-trained NeRF-based

π-GAN, denoted as G, into triple roles: 1) the latent

codes in G serve as holistic global structure indicators

that improve the generality of models; 2) the features of

G serve as geometric-aware local descriptors that enable

a feature-based learning objective; 3) and the manifold

of G serves as a source of infinite training and evalua-

tion samples over a single category.

In the following sections, we first introduce the de-

tails of NeRF-based π-GAN in Sec. 3.1 as the back-

ground knowledge for subsequent sections. Next, we

explain the problem formulation and our framework

in Sec. 3.2, learning objective in Sec. 3.3, and training

strategy in Sec. 3.4.

3.1 Background on NeRF-based GANs

Inspired by the success of NeRF as an efficient 3D

representation, NeRF-based GANs employ NeRF as

their internal representation for 3D-aware image syn-

thesis. We adopt π-GAN (Chan et al., 2021a) in this

paper. Specifically, the generator of the π-GAN con-

tains a mapping network M and a multi-layer per-

ceptron (MLP) network. Starting from a latent code

z ∼ pZ that follows the Gaussian prior distribution,

the mapping network first maps z to a set of modula-

tion signals M(z) = {β,γ}, where β = {βi},γ = {γi}.
In π-GAN, a NeRF is obtained by the MLP network,

which estimates the view-dependent density σ ∈ R+

and the color vector c ∈ R3 for each 3D point, taking

its coordinate x ∈ R3 and a viewing direction d ∈ S2
as input. To associate a latent code to its correspond-

ing NeRF, the modulation signals will be injected into

the MLP network, serving as FiLM conditions (Du-

moulin et al., 2018; Perez et al., 2018; Sitzmann et al.,

2020) to modulate its features at different layers as

fi+1 = sin(γi · (Wifi + bi) + βi).

Image synthesis in π-GAN is achieved by sampling a

latent code and subsequently rendering an image from

the corresponding NeRF. Following the volume render-

ing of NeRF (Mildenhall et al., 2020), each pixel color

C of the image is obtained via sampling a set of points

along the ray r(t) = o+td and accumulating their color
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(a) (b) 
Fig. 3 Overview of the proposed Dual Deformation Field (DDF). (a) DDF consists of two coordinate-based defor-
mation fields, namely the backward B and the forward F . To get the correspondence point given a point xs sampled from
the source NeRF Ns, the B model conditions on the zs and learns to deform the input point xs to the correspondence point
in the template NeRF N0. Similarly, the F model conditions on the target latent code zt and learns to deform points from
the template NeRF x0 to the target NeRF Nt. (b): Feature similarity losses LB

sim and LF
sim between features extracted from

the generator of the pre-trained π-GAN, G, is adopted as the main loss. Please refer to Fig. 5 for the details of the other two
supervisions imposed in the training.

vectors weighted by their transmittance:

Ĉ(r) =

N∑
i=1

T (ti)(1− exp(−σiδi))ci, (1)

where T (t) = exp
(
−
∑i=1

j−1 σjδj

)
and δi = ti+1 − ti

is the distance between adjacent samples. Using a set

of unposed 2D images, π-GAN is trained progressively

with the non-saturating GAN loss and the R1 regular-

ization (Mescheder et al., 2018).

3.2 The Proposed Framework

Problem Formulation. Given any pair of NeRFs Ns :

R3 7→ R4 and Nt : R3 7→ R4, our goal is to estimate a

3D deformation residual HD : R3 7→ R3 that deforms

NeRF Ns towards NeRF Nt via:

Ns −→ Nt : xt = (xs +HD(xs)),∀xs ∈ Ns. (2)

The deformation field HD represents the residual 3D

deformation D(xs) = ∆xs in the 3D space of the source

NeRF Ns. It is an injective mapping that maps each 3D

point xs in the source NeRF, Ns, to its corresponding

position in the target NeRF, Nt.

Challenges. The problem formulation shown above

follows existing attempts (Deng et al., 2021; Zheng

et al., 2021) that model the dense 3D correspondences

between an SDF shape and a shared template via a sin-

gle deformation field. However, this design does not suit

NeRF for the following reasons. First, their parameter-

ization is designed to facilitate shape reconstruction,

rather than establishing correspondences between two

existing shapes. Second, deforming all the points on a

shape to a shared template could only guarantee an in-

jective mapping instead of a bijective mapping, where

a random point over the template could not find its

correspondence on a target shape. Third, this design

limits information (e.g., textures) propagation between

NeRFs. Given a ray that intersects with a shape, unlike

SDF representation where the shape surface is mod-

eled by a single point on the zero-level iso-surface, the

volume-based representation (e.g., NeRF) represents

the shape boundary by innumerable points (Zhang

et al., 2020). Therefore, after the source NeRF, Ns, de-

forms densely sampled near-surface points with texture

information to the template, it is computationally in-

tractable for the target NeRF, Nt, to find the precise

corresponding texture for points along a ray.

Dual Deformation Field. We propose to fix the

above-mentioned issues by lifting the injective mapping

to a bijective mapping function. A straightforward so-

lution here is to leverage a single conditional mapping

function D : R3 × Rzt × Rzs 7→ R3, which estimates

the offset for each point x of the source NeRF Ns,

taking its coordinate and the latent codes zt and zs
of target and source NeRFs as input. However, since

the source and target NeRFs vary in each iteration,

such a solution requires a large model capacity and fails

to converge in practice. A similar observation has also
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Fig. 4 A diagram of the deformation field model ar-
chitecture. Both the forward deformation field F and the
backward deformation field B are implemented as MLPs con-
sisting of four fully-connected layers with residual connections
(Mildenhall et al., 2020; Yu et al., 2021). Both F and B take
a latent code z of 256 dimensions and a coordinate as input,
where the latter is embedded into a 48-dimensional vector
via positional encoding (Mildenhall et al., 2020; Tancik et al.,
2020)

been proposed in previous work that models dynamic

NeRF (Pumarola et al., 2020).

To alleviate the computational complexity without

sacrificing the bijective property, as illustrated in Fig. 3,

we sample a fixed NeRF with a latent code z0 from G

as the intermediate template N0, and reformulate the

deformation field D as the composition of two separate

conditional neural deformation fields, namely, a back-

ward deformation field B that estimates the deforma-

tion from a source NeRF, Ns, to the template N0, and

a forward deformation field F that estimates the defor-

mation from the template N0 to a target NeRF, Nt.

By decomposing the deformation field between two

arbitrary NeRFs into two fields B and F bridged by a

fixed template NeRF, the overall learning complexity is

significantly reduced. In this way we have

x0 = B(xs, zs), B(xs, zs) := xs +HB(φ(xs), zs),

(3)

xt = F (x0, zt), F (x0, zt) := x0 +HF (φ(x0), zt),

(4)

where xs ∈ Ns, xt ∈ Nt, and x0 ∈ N0. And φ(x) is the

positional encoding (Mildenhall et al., 2020) of a given

point. HB and HF are residual functions each imple-

mented as an MLP consisting of four fully-connected

layers, as depicted in Fig. 4. The correspondence point

of xs ∈ Ns in a target NeRF Nt can be retrieved by

the composite mapping F (B(xs, zs), zt), as depicted in

Fig. 3. The latent codes zs and zt serve as the holis-

tic global structure indicators to guide the deformation.

Implementation wise, the template NeRF N0 is chosen

as
(
γ,β

)
which can be intuitively seen as the average

shape of the trained dataset.

3.3 Training Objective

Our overall training objective contains a feature simi-

larity loss for estimated correspondences and three ad-

ditional regularizations for the deformation fields F and

B, namely a cycle-consistency regularization, a second-

order feature similarity loss, and a deformation smooth-

ness regularization.

Generator Feature Similarity Loss. Given a col-

lection of n source NeRFs {N (i)
s }ni=1 that are sampled

from G with corresponding latent codes {z(i)s }ni=1, each

of these NeRFs will serve as a source NeRF for B to

compute its deformation to the template. For each pair

of estimated corresponding points (xs,x0) where xs be-

longs to one of these source NeRFs and x0 belongs to

the template, we take a point feature extracted from

NeRF generator G as the local geometric descriptor.

When the xs and x0 are homologous and share similar

semantic meanings, the feature similarity loss should be

small, and a smaller feature similarity loss in training

indicates that the deformation field produces reason-

able correspondences. Therefore, for each pair of sam-

pled points, we compare the cosine similarity between

two descriptors as their correspondence relevance score

and update the network accordingly. Consequently, the

feature similarity loss for B can be written as:

LB
sim =

1

n

n∑
i=1

[
1

|P(i)
s |

∑
xs∈P(i)

s

wxs ∗
1

2
‖(G(xs, z

(i)
s )−G(B(xs, z

(i)
s ), z0))‖22

]
,

(5)

where the loss of each point x
(i)
s is weighted by wxs =

T (txs
) defined in Eq. 1, so that B is encouraged to

focus more on points with large densities, as they are

close to the object surface with rich semantics. It is

worth noting that to reduce computational redundancy

and complexity, we will sample only a subset P(i)
s of

points from each NeRF N (i)
s by the sampling strategy

introduced in the next section. Each of these NeRFs

will also serve as a target NeRF for F to compute the

deformation of the template to it. The feature similarity

loss for F is thus:

LF
sim =

1

m

m∑
j=1

[
1

|P(j)
0 |

∑
x0∈P(j)

0

wx0 ∗
1

2
‖G(x0, z0)−G(F (x0, z

(j)
t ), z

(j)
t )‖22

]
,

(6)
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Fig. 5 Illustration of loss functions used in DDF . (a) Backward cycle-consistency loss: F (B(xs,zs),zs) ≈ xs,
(b) forward cycle-consistency loss: B(F (xt,zt),zt) ≈ xt and (c) second-order feature similarity loss: G(xs,zs) ≈
G(F (B(xs,zs),zt),zt).

where x0 stands for a point on the template N0 and we

sample a subset P(j)
0 from N0 for each different target

NeRF N (j)
t . For all the feature similarity supervision,

we adopt features of G at multiple layers and concate-

nate them to better reflect the semantics of a point. We

justify our choice in Sec. 4.5.

Cycle-Consistency Regularization. Since the con-

ditional deformation fields, F and B, are supposed to

restore the original deformation field D, when the same

NeRF Ni is used as both the source and target NeRF,

they should satisfy D(x, zt, zt) = x for all valid points

x. As depicted in Fig. 5(a,b), we further apply a cycle-

consistency regularization for B and F :

Lcycle =

1

n

n∑
i=1

[
1

|P(i)
s |

∑
xs∈P(i)

s

‖F (B(xs, z
(i)
s ), z(i)s )− xs‖22

]
+

1

m

m∑
j=1

[
1

|P(j)
0 |

∑
x0∈P(j)

0

‖B(F (x0, z
(j)
t ), z

(j)
t )− x0‖22

]
.

(7)

Second-Order Feature Similarity Loss. Apart

from the aforementioned point-wise cycle-consistency

loss that regularizes the deformation coherency of

learned mapping, we also combine it with Eq. 5, 6 and

impose a feature-based cross-instance cycle-consistency

loss. Specifically, for a given point xs in a source NeRF

N (i)
s paired with latent code z

(i)
s , beyond imposing

the similarity regularization only over the template

NeRF N0, we further deform its intermediate point

x0 = B(xs, zs) to a randomly sampled paired target

NeRF N (i)
t and calculate their feature similarity:

L2nd
cycle =

1

n

n∑
i=1

[
1

|P(i)
s |

∑
xs∈P(i)

s

wxs ∗
1

2
‖G(F (B(xs, z

(i)
s ), z

(i)
t ), z

(i)
t ), G(xs, z

(i)
s )‖22

]
.

(8)

We find this auxiliary regularization improves cross-

instance deformation consistency.

Deformation Smoothness Regularization. To en-

courage the smoothness of deformation and reduce spa-

tial distortion, a deformation smoothness regularization

is also included. Here we penalize the norm of the Jaco-

bian matrix JD = ∇D of the deformation fields (Park

et al., 2021b) to ensure the learned deformations are

physically smooth:

Lsmooth =

1

n

n∑
i=1

[
1

|P(i)
s |

∑
xs∈P(i)

s

max(‖∇B(xs, z
(i)
s )‖22 − ε, 0)

]
+

1

m

m∑
j=1

[
1

|P(j)
0 |

∑
x0∈P(j)

0

max(‖∇F (x0, z
(j)
t )‖22 − ε, 0

]
,

(9)

where ε is the slack parameter for the smoothness reg-

ularization. The final objective is thus Ltotal = LF
sim +

LB
sim+λcycleLcycle+λ2ndcycleL2nd

cycle+λsmoothLsmooth where

λcycle, λ
2nd
cycle, and λsmooth are balancing coefficients,

which are respectively set to 1, 0.1 and 10−4 in practice.
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3.4 Training Strategy

While the pre-trained π-GAN G serves as a source of

infinite object NeRFs, in each iteration of the train-

ing process we will sample a batch of source NeRFs

{N (i)
s }ni=1 with corresponding latent codes {z(i)s }ni=1,

and a batch of target NeRFs {N (j)
t }mj=1 with the cor-

responding latent codes {z(j)t }mj=1. To further sample a

point set for each sampled NeRF N (i)
∗ , for each pixel

within the resolution H ×W we shoot a ray r(v) =

o + vd where d identifies the direction from the cam-

era to the pixel. Subsequently, for each ray we follow

Mildenhall et al. (2020) and conduct a hierarchical sam-

pling to obtain a fine set of points, i.e., points near the

object surface. We denote the union of these point sets

sampled from source as {P(i)
s }ni=1, which are used to

train the B model. Since the points sampled to train

F models are all from the template NeRF N0, here we

denote the the point sets paired with target NeRF N (j)
t

as {P(j)
0 }mj=1 for clarity.

Curriculum Sampling of NeRFs. In practice, we

find the variation between the sampled NeRF and the

template NeRF can significantly affect the training pro-

cess, which may even collapse at the beginning stage if

it gets a sampled NeRF that differs substantially from

the template.

To improve training stability and efficiency, we

adopt a curriculum sampling strategy to obtain NeRFs

from G, by gradually morphing the template NeRF in

the latent space to sample NeRFs with growing com-

plexity. Specifically, since in π-GAN, the semantics of a

sampled NeRF is determined by the modulation signals

(β,γ), we can linearly interpolate between two sets of

modulation signals to gradually morph one NeRF into

another. Inspired by this property of π-GAN, when we

sample a set of n NeRFs {N (i)}ni=1, we compute their

corresponding modulation signals {(β(i),γ(i))}ni=1 from

their latent codes. Subsequently, we adjust the learning

complexity by blending them with the template NeRF

as

β(i)(α) = β0 + α · (β(i) − β0) (10)

γ(i)(α) = γ0 + α · (γ(i) − γ0), (11)

where (β0,γ0) are the modulation signals of the tem-

plate NeRF and α controls the learning difficulty. In

practice, we start from α = 0 and linearly increase

the value to 0.6 during training, which is a reasonable

value to balance sampling quality and diversity (Karras

et al., 2019b). In this way, the model learns to produce

identity deformation first and then gradually evolves to

model more complicated deformation when trained on

more challenging samples.

4 Experiments

4.1 Experimental Setup

As discussed in (Deng et al., 2021; Zheng et al., 2021),

there is no ground-truth dense correspondence dataset

available for structure with variations. Therefore, we

adopt three proxy tasks as surrogate metrics to evalu-

ate the learned correspondences of DDF . In Sec. 4.2,

we first qualitatively demonstrate the dense correspon-

dences learned by DDF through texture transfer. Quan-

titative results are shown in two alternative tasks,

namely fine-grained segmentation transfer and key-

points transfer, in Sec. 4.3 and Sec. 4.4, respectively.

All imagery results shown are rendered at 2562 resolu-

tion.

Training. In all the experiments, we set the learning

rate to 5 × 10−5 and decay in every 5, 000 iteration

with gamma=0.5. We adopt Adam (Kingma and Ba,

2015) optimizer to train the deformation models. In

each training iteration, we randomly sample a batch of

10 source NeRFs {N (i)
s }10i=1 with corresponding latent

codes {z(i)s }10i=1, and a batch of target NeRFs {N (j)
t }10j=1

with corresponding latent codes {z(j)t }10j=1. For all ex-

periments, we train the DDF for 80, 000 iterations,

which takes about 8 hours on a single Tesla V100 GPU.

The hyperparameter details are listed in Tab. 1.

Evaluation Dataset. We extensively demonstrate our

approach on human faces (Liu et al., 2015) as the main

object category, as human faces are rich in geometric

details, making them the best choice for demonstrat-

ing the accuracy, smoothness, and robustness of learned

correspondences. Moreover, human faces are also rich

in downstream tasks, from which we can effectively in-

vestigate the potential of learned correspondences. The

qualitative results on cats (Zhang et al., 2008) and cars

(Dosovitskiy et al., 2017; Schwarz et al., 2020) are also

included.

Sampling Details. To train the DDF network effi-

ciently, we conduct hierarchical sampling to obtain 3D

point sets with more specific semantic meanings. As

in (Mildenhall et al., 2020), we first uniformly sam-

ple points in 3D space and then sample via importance

sampling a more informed fine point set given the den-

sity output of the “coarse” point set. These samples

are biased toward the more relevant parts of the ren-

dered object. We list the sampling details in Tab. 1.

Apart from applying a foreground depth mask to filter

out background information to increase sampling effi-

ciency, we also control the sampling ratio of remaining

rays. By defining a smaller sampling ratio, we could

increase the number of NeRF sampled per batch to in-

crease the diversity of training samples. We curtail the
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Table 1 Hyper parameters of the sampling and regularization loss weights.

Dataset Ray Steps Depth Mask Sampling Ratio Batch Size λcycle λsmooth

CelebA (Liu et al., 2015) 24 1.08 0.2 131,072 0.1 0.1
Carla (Schwarz et al., 2020) 48 1.2 0.05 65,536 0.05 0.01
Cats (Zhang et al., 2008) 36 1.08 0.1 49,152 0.1 0.1

sampling points to a certain number so to maintain the

stability of training.

NeRF-based GANs. We use the officially released

π-GAN pretrained models for dense correspondence

learning. To extract network features, we use the fea-

tures starting from layer 4. We find the middle layer

features have more correlation with the underlying se-

mantics of a given region, while the last few layers are

more sensitive to low-level details such as color vari-

ations, which could not provide meaningful clues for

dense correspondence learning. We further justify our

choice in Fig. 4.5.

4.2 Qualitative Results on Texture Transfer

In this subsection, we qualitatively demonstrate the

dense correspondences learned by DDF through tex-

ture transfer. The results here validate that DDF learns

accurate underlying structures of NeRFs and their asso-

ciated correspondences without explicit correspondence

supervision provided during training.

Texture Transfer via DDF . We denote Ns → Nt

as the process of transferring texture from NeRF Ns to

NeRFNt while maintaining the geometry ofNt. To per-

form the transfer, for each sampling point xs to render

NeRFNs, we first deform xs to the template correspon-

dence x0 via B and then deform it to the target NeRF

Nt space correspondence point x′t via F . We query the

geometry of Nt and texture of Ns to conduct volume

rendering in the given view direction. To remove ambi-

guity, we mask out the hair and background class of the

source class using segmentation masks and conduct tex-

ture transfer on other semantic regions on the human

face.

Results on Human Faces. With the above rendering

process, we show the cross-instance texture transfer re-

sults in Fig. 6. We compare our method with two types

of baselines, the model-based 3DMM (Blanz and Vetter,

1999) method (row 1) and the state-of-the-art learning-

based 2D correspondence matching methods (Truong

et al., 2020a,b, 2021) (rows 2-4). Visually inspected, our

method produces semantic plausible dense correspon-

dences with high-fidelity texture transfer results. We

also show our results in multiple views to demonstrate

that our method has learned both 3D consistent dense

correspondences. Note that good texture transfer re-

sults could not be achieved without accurate correspon-

dence matching in 3D space. Our approach shows supe-

rior texture transfer in comparison to existing model-

based and learning-based methods.

Results on Other Categories. To further illus-

trate the deformation ability of dual fields in DDF ,

we apply our method on two more pretrained NeRF-

based generators, trained respectively on the real-world

Cats (Zhang et al., 2008) datasets as well as the syn-

thetic CARLA (Dosovitskiy et al., 2017; Schwarz et al.,

2020) dataset. We train the corresponding DDF models

on the new categories with parameters listed in Tab. 1

and conduct texture transfer using the same pipeline.

Given the source NeRF Ns and target NeRF Nt, we

show transfer results from both Ns → Nt and Nt → Ns

to validate the performance of DDF on shape categories

with larger structure variations.

In Fig. 7 we show the texture transfer results on

the Cats dataset. Though cat’s faces have fewer dis-

criminative features compared to human faces, through

the overall shape and local details such as the size of

the cat’s eye and mouth, we could see that the trans-

ferred multi-view results share the same texture with

the source NeRF, while still matching the geometry of

the target NeRF.

In Fig. 8 we show the transfer results on syn-

thetic CARLA dataset. Compared to CelebA and Cat

datasets, Cars have larger structure variations and

larger deformations between different NeRFs, leaving

learning accurate deformation on CARLA dataset more

challenging. Through the qualitative results, the tex-

ture transfer of Ns → Nt through DDF produces

convincing correspondence across two NeRFs that are

largely different. The shared semantic components are

matched to the maximum extent and also preserve the

original geometry pattern of NeRF Nt. The texture

transfer of the other direction Nt → Ns is overall rea-

sonable but produces mismatches in some regions with

large deformations such as the car roof, whose size

varies evidently across different objects represented in

NeRFs.

Uncertainty of Texture Transfer. In Fig. 9 we

showed the uncertainty heat map and the texture trans-
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Fig. 6 Texture transfer through the learned deformation field. We randomly sample three NeRF pairs here for
qualitative evaluation (shown at the top row as inputs). For each NeRF sample N∗ we transfer the texture from the paired
NeRF according to their 3D dense correspondences. Specifically, for the column labeled with NeRF Nt(s), we show the texture
transfer results from source NeRF Ns(t) → Nt(s). We conduct dual texture transfer on three pairs (depicted in different
separated columns) and show the transferred results over three different angles. The separate line splits the input, the model-
based method’s output, the learning-based methods’ output, and ours. Though not designed for 2D images, our method
consistently outperforms the baseline method in terms of fidelity and naturalness.
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NeRF NsNeRF Nt Texture Transfer Nt→NsTexture Transfer Ns→Nt

Fig. 7 Visualization of texture transfer on Cats Dataset. The size of the eyes and positions of the nose and the overall
shape could serve as hints to observe the difference between different cats.

NeRF NsNeRF Nt Texture Transfer Ns→Nt Texture Transfer Nt→Ns

Fig. 8 Visualization of texture transfer on CARLA Dataset. In the category with large structure deviations, DDF
could still generate sound deformation with high fidelity and accuracy.
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NeRF Nt NeRF N0 Nt→ N0 L!"#	%NeRF N0 NeRF Ns N0→ Ns L!"#	&

Fig. 9 Visualization of uncertainty map of learned dense correspondence. The left and the right column shows the
pixel-wise uncertainty map corresponding to backward deformation B and forward deformation F , respectively. The pixel-wise
uncertainty is calculated as the integration of the point-wise L∗

sim with Eq. 1.

fer results of the learned DDF . After the training

of DDF , we conduct correspondence inference and cal-

culate the feature similarity loss of the correspondence

points and the original points. The feature similarity

loss LB
sim and LF

sim between inferred correspondence

points could be naturally interpreted as the uncertainty

of the learned correspondence. A low feature similarity

loss denotes the correctness of deformation and guar-

antees the visual effects of texture transfer. In Fig. 9,

we separately show the uncertainty maps correspond-

ing to the backward deformation B and the forward

deformation F . As can be seen, the semantic regions

of the human face have a low uncertainty score, ex-

cept for ambiguous regions like hair. For Cat face, the

overall uncertainty is low except for the regions where

deformations are large such as cat eyes and mouth. Af-

ter DDF converges, the heat map could also serve as the

confidence score of the dense correspondences between

two NeRFs.

4.3 Quantitative Results on Segmentation Label

Propagation

To demonstrate the quantitative performance of the

learned dense correspondence, following the previous

method (Deng et al., 2021) we resort to segmenta-

tion label propagation as the surrogate metric. Intu-

itively, a 3D point shall share the same segmentation

label with its correspondence point from another object

with structure variations if being deformed via an ac-

curate correspondence algorithm. Thus, segmentation

label propagation could serve as a metric to inspect the

performance of learned correspondences. Similar to the

texture transfer experiments discussed in Sec. 4.2, here

we conduct segmentation label propagation on the fine-

grained human faces.

Different from explicit-based representations and

SDF-based implicit representation (Deng et al., 2021;

Park et al., 2019; Zheng et al., 2021), NeRF-based rep-

resentation is designed for view synthesis and has no

clear surface boundary, leaving it hard to directly eval-

uate the segmentation accuracy in the 3D space. There-

fore, we propose to conduct segmentation label propa-

gation in the 3D space and project the propagated la-

bels in the 2D space through volume rendering depicted

in Eq. 1 for evaluation. We describe how we conduct

segmentation label propagation below.

Segmentation Label Propagation. For this task,

we first render the front view of our template NeRF

N0 and provide it with the oracle segmentation map

acquired from a pretrained DeepLabV3 (Chen et al.,

2017; Zhang et al., 2021b) segmentation model. We re-

fer to this front view as the oracle image, as shown in
Fig. 10(b). For an unlabeled test image rendered from

a NeRF, for each pixel, we cast a ray through this pixel

and sample 96 points along the corresponding ray. For

a point x along the ray, we use the network B to query

its correspondence point x′ in the template NeRF. The

projected segmentation label is thus regarded as the

segmentation label prediction of x. To acquire 2D seg-

mentation predictions for evaluation, we aggregate the

predictions of 3D points by rescaling their voting con-

tributions with the transmittance value T (i) defined in

Eq. 1. The whole segmentation process costs around 3

seconds for a single image on a Tesla V100 GPU.

Since we only use the oracle segmentation map for

the oracle image, we consider our approach as a 1-shot

segmentation method.

Evaluation Settings. We compare DDF with

DatasetGAN (Zhang et al., 2021b) and Co-

ordGAN (Mu et al., 2022), which are respectively

the state-of-the-art 2D GAN-based few-shot segmenta-

tion method and the concurrent work on establishing
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(a) DatasetGAN (b) DDF

Fig. 10 Canonical segmentation annotation for two
1-shot segmenters. (a) DatasetGAN (Zhang et al., 2021b)
and (b) ours. For DatasetGAN we choose the first annotated
image in their training set, and for DDF we simply use the
frontal face of the Template for segmentation transfer. For
ease of comparison, the segmentation annotations of the Tem-
plate are simply acquired through an off-the-shelf pretrained
DatasetGAN segmenter, which already provides reasonable
results.

2D correspondences via 2D GANs. We also include the

2D representation learning baselines from CoordGAN

for reference.

Since DDF does not directly accept real images

as input, following Zhang et al. (2021b), we sample

10, 000 image-annotation pairs from pretrained GANs

as a dataset and train a segmentation model, as shown

in Fig. 11. We evaluate the trained segmentation model

on the official DatasetGAN test set to quantify the seg-

mentation accuracy, which consists of 16 fine-grained

annotated 10242 real-world images. For a fair compar-

ison, we also train an 1-shot DeepLabV3 model as the

baseline, which uses one annotated pair as the sam-

pling source (Fig. 10(a)) and follows the data genera-

tion pipeline of Zhang et al. (2021b). Since Zhang et al.

(2021b) adopts pretrained StyleGAN under 5122 reso-

lution on the FFHQ dataset while our pretrained GANs

are trained over 1282 resolution CelebA dataset, all the

test images are bilinear interpolated with a resolution

of 2562 for evaluation. We adopt the official implemen-

tation of DatasetGAN for data generation and use the

default settings for all the segmentation models train-

ing. The standard mIOU is adopted as the segmentation

evaluation metric.

Results. We show the quantitative results the test set

of Zhang et al. (2021b) in Tab. 2. As can be seen,

our method achieves comparable performance with the

baseline, and even performs better over some classes like

hair and nose, indicating that our learned correspon-

dences are accurate and smooth. We show the qualita-

tive results in Fig. 12. As can be observed, without re-

lying on explicit segmentation supervision, our method

can perform 3D consistent segmentation transfer, which

is not possible with existing 2D correspondence base-

lines such as DatasetGAN 1-shot segmenter. This is

made possible by establishing plausible correspondence

between different semantic regions across NeRFs, de-

spite their structure variations in 3D space.

For further comparison with concurrent work that

distills correspondences from 2D GANs, Tab. 3 presents

the mIOU scores over two real-world datasets. Follow-

ing Mu et al. (2022), we train an encoder that pre-

dicts the source NeRF code zs using the techniques

described in Sec. 4.6 and conducts feed-forward infer-

ence over the input images. Our method outperforms

2D learning-based models on this task and achieves

competitive performance compared with CoordGAN,

with the merit of establishing dense correspondences

in 3D space. Compared with building correspondences

over 2D pixels, establishing correspondences in implicit

3D space is exponentially harder, as explained in Sec. 1.

Moreover, compared with mature 2D GAN families and

toolboxes, the development of 3D GANs is still in its

early stage. Equipping DDF with more developed 3D

GANs, i.e. Chan et al. (2022), can potentially close the

gap.

4.4 Quantitative Results on Keypoints Transfer

Though segmentation label propagation is an intu-

itive and well-adopted surrogate metric for evaluat-

ing learned correspondence, we argue that quantitative

evaluation using this metric alone is contrived. Specif-

ically, segmentation label propagation is essentially a

pixel-wise classification task, which means any errors

in dense correspondences within a segment will not be

detected. Moreover, only network B is used in the seg-

mentation label propagation experiment, which could

not quantitatively evaluate the forward deformation
field F in our method. Therefore, we further evaluate

our method via keypoints transfer (Zheng et al., 2021),

which is a regression task with independent ground

truth for each transferred landmark. In our context,

this task can be viewed as few-shot 3D facial landmark

transfer learning with 1 sample as training data.

For this task, as in the segmentation label propa-

gation pipeline, we first use an off-the-shelf facial land-

marks prediction model (Wang et al., 2019a) to label

the template frontal view image with 98 landmarks,

which can be seen in the middle of Fig. 13. Since these

points are in the image space, we first unproject them

back to the template NeRF 3D space by appending the

corresponding depth values viewing these landmarks

positions, which we denote as P lms
0 = {xlms(k)

0 }98k=1.

After that, we resort to F model and deform these un-

projected 3D points to Nt by F (x
lms(∗)
0 , zt) = x

lms(∗)
t .

The deformed points x
lms(∗)
t are projected back to the

image space as the transferred 2D facial landmarks of

Nt.
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Input Image Yaw Angle

Fig. 11 3D consistent segmentation label transfer with novel poses. Given an annotated projection of Template
NeRF shown in Fig. 10(b), we could derive view-consistent segmentation maps of other NeRF objects through our method.
Note that for instances missing teeth class (1st row and 2nd row, segment in white color), our method could still derive accurate
correspondences though the teeth class does not exist in the segmentation template. This demonstrates that our method learns
consistent 3D dense correspondence.

Table 2 mIOU scores of two 1-shot segmenters on DatasetGAN (Zhang et al., 2021b) test set. The corresponding
segmenters are trained over the synthetic dataset generated by two methods. We show the performance of two versions of DDF
based on two generators pretrained on different datasets. The 1-shot segmenter trained on our dataset is competitive against
the counterpart which is trained in high-resolution images, demonstrating the merit of the learned correspondence.

Method Mean IOU Eyes Mouth Nose Cheek Chin Hair Eyebrows Ears Jaw BG

DatasetGAN 1-shot segmenter 56.9 40.5 62.6 52.5 61.6 65.5 72.4 59.6 49.0 16.4 81.4
DDF 1-shot segmenter 54.6 51.0 53.2 55.4 69.2 82.6 67.4 54.2 40.9 66.9 75.06

Evaluation Settings We also compare our method

with both 3D model-based method (3DMM (Blanz

and Vetter, 1999)) as well as current state-of-the-art

2D learning-based matching method (Truong et al.,

2020a,b, 2021) as our baselines. We regard the output

of a representative landmark detector MTCNN (Zhang

et al., 2016) as ground-truth. For baselines, we also con-

sider the hand-crated descriptor SIFT Flow (Liu et al.,

2011) as well as several learned descriptors (Truong

et al., 2020a,b, 2021) that attain state-of-the-art perfor-

mance on commonly used dense correspondence bench-

marks (e.g., MegaDepth (Li and Snavely, 2018)). For

the baselines, we use the officially released models to

conduct inference in our experiments. We employ the

Percentage of Correctly Keypoints (PCK) and Average

End Point Error (AEPE) as the evaluation metrics.

Results. We evaluate the performance over 5, 000 ran-

domly sampled human faces with different view angles

and show the quantitative results in Tab. 4. At thresh-

old PCK@0.01, DDF achieves 41.6 against competitive

baselines. This result strongly supports the effectiveness

of DDF .

4.5 Ablation Study

Selection of Generator Feature. In our work, we

select multiple layers from the generator as the train-

ing supervisions of the feature similiary losses depicted
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(a)

(b)

(c)

(d)

Fig. 12 Visualization of the 1-shot segmenter prediction. Starting from the top row, we show the (a) The test set
input image, (b) segmentation prediction from DatasetGAN 1-shot segmenter, (c) segmentation prediction from DDF1-shot
segmenters and (d) the ground truth segmentation annotation.

Table 3 IOU comparison for segmentation label propagation. Our method achieves comparative performance with
the 2D representation learning method, and is the only method that supports 3D dense correspondence searching over implicit
functions. ∗ means 3D aware.

Method CelebA-HQ DGAN-face

Swap AE (Park et al., 2020) 24.73 5.48

MoCo (He et al., 2019) 36.19 10.00

VFS (Xu and Wang, 2021) 38.10 8.55

ResNet50 (He et al., 2016) 39.48 11.05

DDF∗ 45.32 19.18

Pix2Style2Pix (Richardson et al., 2021) 48.50 20.36

CoordGAN (Mu et al., 2022) 52.25 23.78

Table 4 PCK-Transfer on facial landmarks. Our method achieves better performance compared to both model-based
(row 2) and learning-based (rows 3,4,5) methods.

Methods Correspondence Supervision PCK@0.05 ↑ PCK@0.01 ↑ AEPE ↓
SIFT Flow (Liu et al., 2011) - 92.7 32.9 5.22

PDC-Net (Truong et al., 2021) matching image pairs 89.1 26.8 6.28

GoCor (Truong et al., 2020a) matching image pairs 87.9 24.8 6.24

GLU-Net (Truong et al., 2020b) matching image pairs 90.0 30.4 5.78

Ours GAN-supervised 95.0 41.6 4.47

in Eq. 5 and 6. Here we justify the intuition behind

this. Different from the feed-forward models (He et al.,

2016; Simonyan and Zisserman, 2015), generative mod-

els like GANs is trained to decode information from a

compact latent code. Therefore, features from earlier

layers should contain more high-level semantics infor-

mation while later layers contain more instance-specific

texture information. To justify this intuition, we show

the layer-wise feature similarity heatmap between the

projected 2D feature maps of Ns and Nt over a pre-

trained π-GAN generator in Fig. 14. Specifically, given

Ns and Nt, we calculate the 2D feature maps by in-

tegrating the features of points along each rays using

the volume rendering equation depicted in Eq. 1 and

get two sets of features maps Fs = RN∗H∗W∗C and

Ft = RN∗H∗W∗C , where N = 9 is the layer number
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Fig. 13 Visualization of learned correspondences via landmark transfer. For each triplet, we first predict 98 facial
landmarks of the first column acquired through an off-the-shelf model (Wang et al., 2019a). We deform the predicted landmarks
to the template through network B, and then further deform the landmarks on the template to another sampled face through
network F . We sample 3D points near the surface of one NeRF and calculate the dense correspondence point on the target
NeRF with our deformation network. Please zoom in for details.

Layer-wise Feature Similarity Heatmap 
Ns Nt Layer 1 Layer 9

Fig. 14 Layer-wise feature correlation between projected features of two NeRF. The NeRFs are sampled from
a pretrained π-GAN generator from shallow (leftmost) to deep (rightmost). Since π−GAN generator adopts an 8-layer MLP
design appended with a view-dependent MLP layer, here from left to right, we show the feature similarity heatmap from the
1st layer (3rd column) to the 9th layer (last column) of the pretrained generator. We project the features of 3D NeRF to 2D
using Eq. 1 for better visualization. In each row, a random 2D point from the source NeRF is selected to calculate layer-wise
feature similarity heatmaps with the projected feature map of the target NeRF.

of π-GAN generators. Given a 2D coordinate (u, v), we

retrieve its corresponding features Fu,v
s ∈ RN∗C from

the source feature maps Fs and calculate the cosine

similarity with the target feature maps Ft within each

layer.

As can be seen, the generator features from different

layers encode semantics from different levels, where the

semantics compactness linearly decreases as the net-

work goes deeper. Surprisingly, the early generator fea-

tures are even robust under the symmetric semantics

such as the right and left corners of the eyes (3rd row).

This is an indispensable property in establishing dense

correspondences where a 3D point from the source left

eye should not establish correspondence to points in

the right eye region of the target. Thus, we choose the

normalized features from the first 5 layers as the su-

pervision signals of the DDF , which encode unambigu-

ous correspondence information. This property has also

been validated in 2D generative models (Peebles et al.,

2022; Yang et al., 2022; Zhang et al., 2021a), where dif-

ferent layers of pretrained StyleGAN encode different

types of information.

Deformation Regularization Terms. We validate

the efficacy of our regularization terms in terms of qual-

itative results, including the cycle consistency term and

deformation smoothness term To construct a baseline

for evaluation, we remove the correspondence deforma-

tion smoothness loss term and only apply supervision

from the feature similarity loss on network training.

To evaluate the effect of cycle consistency regulariza-

tion, we train a baseline without cycle consistency loss

term and visualize the self-reconstruction as well as tex-

ture transfer results using the trained dual deformation

field. As shown in Fig. 15(a), cycle-consistency term

encourages the consistency property, that after the for-

ward and backward deformation a point from the source

shape will map to itself. Meanwhile, the model trained

with cycle consistency term learns less noisy deforma-

tion, which is essential when conducting downstream

tasks such as texture transfer. As shown in Fig. 15(b),

without the deformation smoothness regularization, the
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NeRF Ns NeRF Nt +L!"##$%&'!!	BaselineBaseline +L)*)+'	Source Image

(a) The effectiveness of cycle-consistency loss (b) The effectiveness of smoothness loss

Fig. 15 (a) Rendering from the self-reconstructed point through cycle deformation. From the left is the input
image, reconstructed with and without cycle-consistency loss. The deformation model trained with cycle-consistency loss can
perfectly reconstruct itself, while the one without cycle-consistency loss leads to distortions. (b) Output from deformation
network trained without and with deformation smoothness loss. We demonstrate the effectiveness of Lsmooth via
texture transfer from A to B. The lack of smoothness regularization leads to distorted visual results. Better zoom in for a
better experience.

Input 
Image

Inversion
Initialized

Inversion 
Result

Novel 
Views

Segmentation 
Transfer

NeRF
Ns

Texture Transfer 
Ns	→ Nt

Fig. 16 Extending DDF to real images. To apply DDF to real-world image, we first inverse the real-world images (1st
column) into the latent space of the 3D GAN (2nd and 3rd columns). Beyond novel view synthesis (4th and 5th columns),
DDF also supports 3D consistent segmentation transfer (6th and 7th columns). Given the reference NeRFs (8th column), our
method could edit the texture of given identities without changing the overall shape.

network tends to learn noisy deformation which leads to

distortions in the final rendering. For the second order

cycle consistency regularization, we find it has similar

effect with Lcycle in qualitative performance. Moreover,

we set λ2ndcycle = 0 and conduct the segmentation trans-

fer evaluation as in Tab. 2 and observe a mIOU degrade

from 56.9 to 55.3, which validates L2nd
cycle could improve

the deformation field performance.

Curriculum Training. To show that our proposed

curriculum training strategy could help regularize the

training and facilitate convergence, we report the val-

ues of feature similarity loss over the evaluation set,

with different curriculum steps adopted during training.

Using 16/128/1024/4096 steps the loss are respectively

0.455/0.410/0.310/0.287, which demonstrates the effec-

tiveness of our method.

4.6 Extending DDF to Real Images

Training An Encoder for Inversion. To apply

DDF real-world images, we use two encoders, namely

an encoder denoted by E(·, θG) to invert the input im-

age to the latent space of the NeRF-based GAN and

another encoder represented by E(·, θDDF) to invert

the input image to the deformation conditions. Specif-

ically, rather than directly output the low-dimensional

deformation code z, here we follow the observations

of Tov et al. (2021) which project the Z-space code

z to the W+ space for better performance. Since the

NeRF-based GAN (i.e., π-GAN) already follows this

design, here we further augment each of the defor-

mation fields with a mapping function MDDF (Chan

et al., 2021c; Sitzmann et al., 2020). During inver-

sion, the corresponding encoders directly output the

W+ space modulations, i.e., E(I, θG) = βI
G,γ

I
G and

E(I, θDDF) = βI
DDF,γ

I
DDF.

The encoders are trained in two stages. In the first

stage, we train the encoder E(·, θG) where the output

latent codes βI
G,γ

I
G are fed into the NeRF-based GAN

to render a replicate of the images Î = G(βI
G,γ

I
G, ξI),

where ξI is the estimated camera pose of the input im-

age using an off-the-shelf pose estimator. After E(·, θG)
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                                                          Source Inversion Mask “Make Up” via texture transfer from target NeRF and given mask

Fig. 17 Mask-guided texture transfer over real cases. In the second column, we show the projected image of the
GAN inversion of the source image. For mask-guided texture manipulation, we sample two synthetic NeRF from the pretrained
GAN (4th and 7th columns) and conduct texture transfer guided by the foreground mask.

converges, in the second stage we train the encoder

E(·, θD) to output the corresponding deformations con-

ditions βI
B ,γ

I
B and βI

F ,γ
I
F . Given the inverted latent

code βI
G,γ

I
G of the input image, we conduct self texture

transfer described in Sec. 4.2 to replicate the input im-

age. To stabilize training, we also include synthetic sam-

ples from the pre-trained NeRF GAN as training data.

Given a latent code z∼pz, we get the paired modula-

tions βz,γz and synthesized image Iz = G(z, ξ) under

a random camera pose ξ∼pξ as training samples. Apart

from image reconstruction loss, the predicted modula-

tions from E(·, θD) are encouraged to mimic the syn-

thetic ground truth. We find the synthetic latent code

regularization could stabilize the deformation encoder

training. Following Tov et al. (2021), the encoders pre-

dict the offsets of the mean modulations of the corre-

sponding mapping function βDDF
0 ,γDDF

0 for better ini-

tialization. The overall training objectives are: 1) Im-

age Reconstruction Loss: We utilize the pixel-wise L2

as well as the LPIPS loss LLPIPS (Zhang et al., 2018)

as the image reconstruction supervisions:

Limage = L2(I,G(E(I, θG), ξI))

+ LLPIPS(I,G(E(I, θG), ξI)),
(12)

2) Latent Codes Regularization: We regularize the en-

coded latent codes to match the pseudo ground truth

latent codes distribution:

Llatent = L2((βz,γz), E(Iz, θD)). (13)

Results. Here we show the texture transfer results over

real images in Fig. 16. As can be seen, our hybrid inver-

sion method could faithfully reconstruct the given real

images without affecting the view synthesis ability of

NeRF. Furthermore, with DDF , accurate 3D-consistent

segmentation transfer and faithful texture transfer be-

come possible, which is beyond the reach of existing

2D methods. We further show a mask-guided texture

transfer applied over real cases in Fig. 17, which shows

the potential of our method over real-world applica-

tions beyond basic texture transfer and segmentation

labeling.

5 Conclusion

In this work we propose to leverage a pre-trained

NeRF-based GAN, π-GAN in our case, to build dense

correspondence between NeRF representations of

different objects within the same category. The key

insight is that the pre-trained GAN possesses three

important properties that can help alleviate the chal-

lenges of this task, namely 1) instance-specific latent

codes that holistically capture the global structure of

different NeRFs, 2) geometric-aware generator features

that reflect local geometric details of different NeRFs,

and 3) the manifold of NeRFs that serves as a source of

infinite NeRF samples. Based on the three properties,

we respectively propose a generalizable model, referred

to as Dual Deformation Field, a learning objective

based on generator features that approximate geomet-

ric distances in feature space, and finally an effective

curriculum training strategy that feeds samples with

growing complexity. To the best of our knowledge,

this is the first method that tries to establish dense

correspondence across NeRF representations. Our

experiments demonstrate that dense correspondences
between NeRFs learned from our framework are

accurate, smooth, and robust, making them applicable

in various downstream applications.

Data Availability. The datasets that support

the findings of this study are all publicly available for

the research purpose.
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Litany O, Remez T, Rodolà E, Bronstein A, Bronstein

M (2017) Deep functional maps: Structured predic-

tion for dense shape correspondence. In: ICCV, pp

5660–5668

Liu C, Yuen J, Torralba A (2011) Sift flow: Dense corre-

spondence across scenes and its applications. PAMI

33:978–994

Liu F, Liu X (2020) Learning implicit functions for

topology-varying dense 3d shape correspondence. In:

NIPS, Virtual

Liu Z, Luo P, Wang X, Tang X (2015) Deep learning

face attributes in the wild. In: ICCV

Loper M, Mahmood N, Romero J, Pons-Moll G, Black

MJ (2015) Smpl: A skinned multi-person linear

model. TOG 34(6):1–16

Mescheder L, Oechsle M, Niemeyer M, Nowozin S,

Geiger A (2019) Occupancy networks: Learning 3d

reconstruction in function space. In: CVPR, pp 4460–

4470

Mescheder LM, Geiger A, Nowozin S (2018) Which

training methods for gans do actually converge? In:

ICML

Mildenhall B, Srinivasan PP, Tancik M, Barron JT,

Ramamoorthi R, Ng R (2020) Nerf: Representing

scenes as neural radiance fields for view synthesis.

In: ECCV, Springer, pp 405–421

Mu J, De Mello S, Yu Z, Vasconcelos N, Wang X, Kautz

J, Liu S (2022) Coordgan: Self-supervised dense cor-

respondences emerge from gans. In: CVPR

Niemeyer M, Geiger A (2021) Giraffe: Representing

scenes as compositional generative neural feature

fields. In: CVPR

Noguchi A, Sun X, Lin S, Harada T (2021) Neural ar-

ticulated radiance field. In: ICCV

Or-El R, Luo X, Shan M, Shechtman E, Park JJ,

Kemelmacher-Shlizerman I (2021) StyleSDF: High-

Resolution 3D-Consistent Image and Geometry Gen-

eration. In: CVPR

Pan X, Dai B, Liu Z, Loy CC, Luo P (2021) Do 2d

gans know 3d shape? unsupervised 3d shape recon-

struction from 2d image gans. In: ICLR

Park JJ, Florence P, Straub J, Newcombe R, Love-

grove S (2019) DeepSDF: Learning continuous signed

distance functions for shape representation. In:

CVPR, IEEE, pp 165–174, DOI 10.1109/CVPR.

2019.00025, URL https://ieeexplore.ieee.org/

document/8954065/

Park K, Sinha U, Barron JT, Bouaziz S, Goldman

DB, Seitz SM, Martin-Brualla R (2021a) Nerfies: De-

formable neural radiance fields. In: ICCV

Park K, Sinha U, Barron JT, Bouaziz S, Goldman

DB, Seitz SM, Martin-Brualla R (2021b) Nerfies: De-

formable neural radiance fields. In: ICCV

Park K, Sinha U, Hedman P, Barron JT, Bouaziz S,

Goldman DB, Martin-Brualla R, Seitz SM (2021c)

Hypernerf: A higher-dimensional representation for

topologically varying neural radiance fields. TOG

40(6)

Park T, Zhu JY, Wang O, Lu J, Shechtman E, Efros

AA, Zhang R (2020) Swapping autoencoder for deep

image manipulation. In: NIPS

Peebles W, Zhu JY, Zhang R, Torralba A, Efros A,

Shechtman E (2022) Gan-supervised dense visual

alignment. In: CVPR

Perez E, Strub F, De Vries H, Dumoulin V, Courville

A (2018) Film: Visual reasoning with a general con-

ditioning layer. In: AAAI, vol 32

Pumarola A, Corona E, Pons-Moll G, Moreno-Noguer F

(2020) D-NeRF: Neural Radiance Fields for Dynamic

Scenes. In: CVPR

Qi C, Su H, Mo K, Guibas L (2017) Pointnet: Deep

learning on point sets for 3d classification and seg-

mentation. In: CVPR, pp 77–85

Richardson E, Alaluf Y, Patashnik O, Nitzan Y, Azar

Y, Shapiro S, Cohen-Or D (2021) Encoding in style: a

stylegan encoder for image-to-image translation. In:

CVPR

Sahillioglu Y (2019) Recent advances in shape corre-

spondence. The Visual Computer 36:1705 – 1721

Schwarz K, Liao Y, Niemeyer M, Geiger A (2020) Graf:

Generative radiance fields for 3d-aware image synthe-

sis. In: NIPS

Shen Y, Yang C, Tang X, Zhou B (2020) Interface-

gan: Interpreting the disentangled face representation

learned by gans. PAMI PP

Simonyan K, Zisserman A (2015) Very deep convolu-

tional networks for large-scale image recognition. In:

CoRR, vol abs/1409.1556

Sitzmann V, Martel JN, Bergman AW, Lindell DB,

Wetzstein G (2020) Implicit neural representations

with periodic activation functions. In: NIPS

Tancik M, Srinivasan PP, Mildenhall B, Fridovich-Keil

S, Raghavan N, Singhal U, Ramamoorthi R, Barron

JT, Ng R (2020) Fourier features let networks learn

high frequency functions in low dimensional domains.

In: NIPS

Tewari A, Fried O, Thies J, Sitzmann V, Lombardi S,

Sunkavalli K, Martin-Brualla R, Simon T, Saragih J,

https://ieeexplore.ieee.org/document/8954065/
https://ieeexplore.ieee.org/document/8954065/


Correspondence Distillation from NeRF-based GAN 21

Nießner M, Pandey R, Fanello S, Wetzstein G, Zhu

JY, Theobalt C, Agrawala M, Shechtman E, Gold-
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