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Abstract
The existing methods for addressing visual navigation employ deep reinforcement learning as the standard tool for the task.
However, they tend to be vulnerable to statistical shifts between the training and test data, resulting in poor generalization over
novel environments that are out-of-distribution from the training data. In this study, we attempt to improve the generalization
ability by utilizing the inductive biases available for the task. Employing the active neural SLAM that learns policies with the
advantage actor-critic method as the base framework, we first point out that the mappings represented by the actor and the
critic should satisfy specific symmetries. We then propose a network design for the actor and the critic to inherently attain
these symmetries. Specifically, we use G-convolution instead of the standard convolution and insert the semi-global polar
pooling layer, which we newly design in this study, in the last section of the critic network. Our method can be integrated
into existing methods that utilize intermediate goals and 2D occupancy maps. Experimental results show that our method
improves generalization ability by a good margin over visual exploration and object goal navigation, which are two main
embodied visual navigation tasks.

Keywords Embodied visual navigation · Symmetry · Generalization · Equivariance · Invariance

1 Introduction

Embodied visual navigation is one of the key problems of
autonomous navigation and has attracted increasing attention
recently. Researchers have studied various target-oriented
tasks of visual navigation so far. These include point goal
navigation aiming to reach a given coordinate in an envi-
ronment (Ye et al., 2021b), object goal navigation seeking
to find a specific object in an environment (Chaplot et al.,
2020b; Gupta et al., 2017; Zhu et al., 2017), image goal nav-
igation focusing onnavigating to a location in an environment
designated by an image (Savinov et al., 2018; Singh Chap-
lot et al., 2020), reconstruction navigation deciding where
to look next to reconstruct a scene (Jayaraman & Grauman,
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2018; Seifi & Tuytelaars, 2019), and room goal navigation
aiming to navigate to a specified room (Wu et al., 2019). Pre-
vious methods are categorized into intermediate-goal-free
navigation and navigation with intermediate goals. The for-
mermethods (Chen et al., 2019;Gupta et al., 2017;Mishkin et
al., 2019; Mirowski et al., 2016) predict step-by-step actions
that moving agents towards the final goal. The latter (Chaplot
et al., 2020c, a;Wani et al., 2020;Chen et al., 2021) iteratively
computes subgoals to guide agents reaching the final goal,
inspired by hierarchical learning (Nachum et al., 2018).

This study considers such visual navigation tasks with
particular focuses on visual exploration and object goal
navigationwith intermediate goals. Visual exploration is uni-
versal and task-agnostic; an agent is asked to visit all the
navigable areas of an unknown environment as quickly as
possible. It can serve as an upstream task for the above target-
oriented tasks. For instance, the agent may first explore the
unseen environment and establish knowledge about the envi-
ronment, after which the agent utilizes it to perform specific
tasks efficiently (Savinov et al., 2018). On the other hand,
object goal navigation is task-oriented, which aims at search-
ing for given target objects in novel environments as quickly
as possible.
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Numerous methods have been proposed for the prob-
lem of visual exploration so far. The existing methods are
divided into two categories, heuristic methods (Yamauchi,
1997; Dai et al., 2020; Visser et al., 2008) and learning-
based methods(Chaplot et al., 2020a; Ramakrishnan et al.,
2020;Yu et al., 2021). Recent studies havemainly considered
learning-based methods. They employ simulators of virtual
environments, such as Habitat (Szot et al., 2021), to consider
the problem under realistic conditions. In such simulators,
photorealistic visual inputs from virtual environments are
available. To predict the optimal action from the agents’
input, including the visual inputs, learning-based methods
typically use reinforcement learning (RL) to acquire themap-
ping between the two from an enormous amount of agents’
interaction with the virtual environments.

Similarly, previous studies mainly consider learning-
based approach for object goal navigation. Most existing
methods (Mayo et al., 2021; Shen et al., 2019; Ye et al.,
2021a; Chaplot et al., 2020c; Zhang et al., 2021; Pal et al.,
2021) address it by learning policies in reinforcement man-
ner. Models compute actions to guide agents to approach
target goals given partial observations of the environments,
according to the learned object-object relationship.

Although these learning-based methods have achieved
reasonably good exploration and object goal navigation
performance, the learning-based methods are inherently vul-
nerable to the statistical deviations between training and test
data, as Gibson (Xia et al., 2018) andMatterport3D (MP3D)
(Chang et al., 2017) datasets shown in Fig. 1. Specifically, a
model trained on a set of training data works well on novel
environments that are statistically similar to the training data
but yields suboptimal performance on novel environments
that are dissimilar, i.e., out-of-distribution (OOD) inputs.

To apply the learned models to real-world environments,
it is necessary to increase their generalization ability in the
above sense. How is it possible? A promising approach is

Fig. 1 Environment layout from theGibson andMatterport3D environ-
ments. Learning-based navigation methods will encounter challenges
when there is a gap between training and test data, e.g., using Gibson
for training and Matterport3D for test. The notation #Area denotes the
obstacle space area in square meters; #CC represents the number of
connected components in the map

data augmentation, and it has been widely adopted in both
deep learning (Calimeri et al., 2017; Madani et al., 2018;
Liu et al., 2019) and reinforcement learning (Raileanu et al.,
2021; Laskin et al., 2020; Yarats et al., 2021). However, this
leads to an increase in training cost, and more importantly,
data augmentation does not provide a guarantee of achieving
the desired properties.

In this study, we pay attention to the inductive biases spe-
cific to the task, namely equivariance and invariance. While
acknowledging the presence of diverse types of environment
variation that contribute to OOD challenges, our research
delves into the specific investigation of the roles played by
equivariance and invariance. Using them, we want to nar-
row the solution space for RL and thus avoid overfitting to
training data, aiming to improve the above generalization
ability. Specifically, we employ the framework of active neu-
ral SLAM (ANS) (Chaplot et al., 2020a), which is the most
successful for the task, and consider how to do the above
within the framework.

ANS is a universal visual navigation framework using
2D occupancy maps. We will refer to it and its variants by
ANS, which have achieved great success in visual explo-
ration (Chaplot et al., 2020a; Ramakrishnan et al., 2020),
object goal navigation (Chaplot et al., 2020c), visual-audio
navigation (Chen et al., 2021), and so on. ANS is a method
with a modular and hierarchical structure.

The module that plays a key role in ANS is the neural net-
work that represents the global policy. (The problems solved
by the other modules are not so hard. For a comprehensive
understanding of these modules, we have presented detailed
information in Sect. 3.2.) ANS employs the advantage actor-
critic (A2C) method to learn the global policy. The actor
yields a 2D likelihood map for the long-term goal, whereas
the critic predicts the future accumulated reward as a scalar
value. We provide a thorough explanation in Sect. 3.2.

In this paper, we first point out that specific symmetries
should exist for each mapping represented by the actor and
the critic. Concretely, the output predicted by the actor should
be equivariant to translation and rotation of its input having
the form of a 2D map. The reward predicted by the critic
should be invariant to input rotation and should not be invari-
ant to input translation. Fig. 2 illustrates the impact of rotation
equivariance and invariance on the inputs and outputs of the
actor and critic networks. The input map m90 is obtained by
rotating m0 by 90 degrees clockwise. The actor with rota-
tion equivariance generates a long-term goal A90 (indicated
by the red solid line), corresponding to a 90-degree rota-
tion of A0, whereas the actor without equivariance fails to
achieve this (red dashed line). Similarly, the critic with rota-
tion invariance produces a scalar C90 (indicated by the blue
solid circle) equal to C0, while the critic without invariance
cannot achieve this (red dashed circle). However, standard
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Fig. 2 Illustration of the effects of rotation equivariance over the actor
and rotation invariance over the critic, respectively. See the text for
explanations. Additional desired symmetries are presented in Table 1

convolutional neural networks (CNNs), employed in ANS,
do not by nature have these symmetries.

To cope with this, we design the network to inherently
possess the desired symmetries for the actor and the critic.
Specifically, we redesign the global policy network of ANS
as follows. First, we employ p4 G-convolution (Cohen
& Welling, 2016), which approximately achieves rotation
equivariance, for all the convolutional layers and replace
the max pooling with blur pooling (Zhang, 2019), which
achieves translation equivariance more accurately. Then, the
resulting network representing the actor becomes equivariant
to input translation and approximately to input rotation. For
the critic, employing the same stack of convolutional layers
(rigorously, it is shared by the actor), we design and place
a new building block named a semi-global polar pooling
(SGPP) layer on top of the convolutional block. The SGPP
layer applies polar mapping to its input and then pooling
in the circumferential direction in the input map. Then, the
resulting critic becomes not invariant to input translation and
approximately invariant to input rotation.

Our method can be combined easily with the navigation
methods with intermediate goals using 2D occupancy maps,
to improve their generalization ability over many tasks. This
study demonstrates it by conducting experiments over visual
exploration and object goal navigation tasks, using the Gib-
son (Xia et al., 2018) and the MP3D (Chang et al., 2017)
datasets. The results show that the generalization is enhanced
by a good margin on both tasks, by integrating our method
with ANS, proving the approach’s effectiveness.

This paper extends our previous study that was published
as a conference paper (Liu & Okatani, 2022).The previ-
ous study focuses on the visual exploration task, aiming to
enhance the generalization ability of models for the task. The
present study extends it to be able to consider another task,
object goal navigation, improving its generalization ability.
Specifically, we first review related work on object goal nav-
igation. Choosing one of the state-of-the-art methods for it,
we then show how to integrate our proposed modules with

it. Finally, we experimentally compare the resulting method
with baseline methods to validate the effectiveness of the
proposed approach. In addition, we provide more quantita-
tive and qualitative analyses of how well our method learns
symmetry.

2 RelatedWork

2.1 Visual Navigation

Classical navigation methods leverage simultaneous local-
ization and mapping (SLAM) to construct environmental
maps, including occupancy map (Cadena et al., 2016) and
topological map (Savinov et al., 2018). Agents navigate to
points in the environments. This is known as map-based
navigation (Bonin-Font et al., 2008). In contrast with the
map-based navigation that assumes a known map, target-
driven navigation tasks have recently emerged, which are
termed mapless navigation. In these tasks, the movement
of the agent is determined by visual cues provided by the
environment. Example tasks are object-goal, room-goal, and
image-goal navigation.

Object-goal navigation requires agents to navigate to des-
ignated objects in an unknown environment. Either implicitly
learned (Zhu et al., 2017) or explicitly encoded (Du et al.,
2020; Lv et al., 2020) relationship of objects is utilized to
facilitate finding the objects. Room-goal navigation requires
agents to arrive at a specific room as quickly as possible. A
method is proposed in (Wu et al., 2019) to learn a probabilis-
tic relation graph to acquire prior knowledge about the layout
of environments.

Image-goal navigation asks agents to navigate to a loca-
tion in an unknown environment that is specified by its
image. A popular solution is to take both current and goal
observation as inputs and employ a Siamese network to per-
form the navigation effectively. The method proposed in
(Mezghani et al., 2021) combines an attention mechanism
with the Siamese network for building the memory of envi-
ronments, which is then used by the policy for image-driven
navigation. The work (Choi & Oh, 2021) follows the same
formulation based on a Siamese network but exploits infor-
mation obtained through keypoint matching, generating a
self-supervised reward.

2.2 Visual Exploration

Visual exploration has received considerable attention due
to its task-agnostic nature (Jayaraman & Grauman, 2018;
Mezghani et al., 2020; Chaplot et al., 2020a; Ramakrishnan
et al., 2020; Chen et al., 2019). Classical approaches continu-
ally select vantage points, such as frontier points (Yamauchi,
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1997), to visit. The downside of these approaches is that they
are vulnerable to external noises such as sensor noises.

The recent boom of deep reinforcement learning (RL) has
created a new wave of development of visual exploration.
Numerous works have casted the visual exploration as a
partially observable Markov decision process and solve it
under the framework of RL (Jayaraman & Grauman, 2018;
Mezghani et al., 2020; Beeching et al., 2020; Nagarajan &
Grauman, 2020; Pathak et al., 2017; Chen et al., 2019; Chap-
lot et al., 2020a; Ramakrishnan et al., 2020, 2021; Qi et al.,
2020). Most of them use an actor-critic architecture (Beech-
ing et al., 2020; Nagarajan & Grauman, 2020; Pathak et
al., 2017; Chaplot et al., 2020a; Ramakrishnan et al., 2020,
2021).

The actor learns a navigation policy, and the critic esti-
mates a value function given the agent’s current state.
Existing approaches to improve performance have been
geared towards novel designs of reward, such as coverage,
curiosity, and novelty (Ramakrishnan et al., 2021), or novel
architecture design, e.g., the hierarchical architecture (Chap-
lot et al., 2020a). There is a study (Chen et al., 2019) that
proposes to utilize area coverage reward along with supervi-
sion from human experience to learn policies.

An excellent standard framework, which is actor-critic
based aswell,was constructedby (Ramakrishnan et al., 2021)
to evaluate multiple rewards for exploration. The approaches
above all solve the exploration problem in an end-to-end
manner, directly mapping visual data to actions.

In contrast to this, the works (Chaplot et al., 2020a; Yu et
al., 2021) tackled it hierarchically by computing intermediate
goals. It divided the mapping into two steps. First, an inter-
mediate target point, which was similar to vantage points in
classical explorationmethods, was computed by a global pol-
icy network. Then a local policy network produces actions to
reach the waypoints generated by the path planner according
to the global target point. Occupancy anticipation (Ramakr-
ishnan et al., 2020) also predicts and rewards invisible spatial
maps to improve map accuracy.

2.3 Object Goal Navigation

Unlike visual exploration, object goal navigation is task-
oriented and target-driven. It asks agents to find target objects
in an unknown environment. Most existing methods learn
object-object relationships using reinforcement learning and
utilize the learned relationships to search the target object
given partial observations of the environment. The object-
object relationships are usually represented by spatial or
graph memory. Chaplot et al. (2020c) and Wani et al. (2020)
utilize 2D semantic occupancy maps as spatial memory to
represent object-object relationships. The maps are com-
puted by projecting semantic point clouds onto the ground in
the direction of gravity. Each object occupies a single channel

of a semantic map. Graph memory is leveraged to represent
explicitly object-object (Du et al., 2020), parent-target (Pal et
al., 2021), object-zone (Zhang et al., 2021) relationship. Cues
can be provided to facilitate finding the target object once
the object in the graph memory appears. Besides designing
a new memory mechanism representing object-object rela-
tionships, other methods improve object goal navigation by
proposing attention probability model(Mayo et al., 2021),
using auxiliary tasks(Ye et al., 2021a), fusing diverse visual
representations (Shen et al., 2019) and so on.

So far, existing methods have produced impressive results
where the testing environments are similar to training envi-
ronments over visual exploration and object goal navigation,
in terms of layout, area, etc. Nevertheless, they still strug-
gle with the cases where training and testing environments
are different, hindering their deployment in practice. It
is primarily because RL notoriously struggles with (poor
data efficiency and) generalization capabilities. We aim to
enhance generalization ability for visual navigation by inject-
ing inductive bias about symmetry into networks.

2.4 Equivariance and Invariance

Recent years have witnessed the great success of convolu-
tional neural networks (CNNs) in computer vision tasks.
CNNs have built-in translation-equivariance, and those with
downsampling/pooling operations have built-in local transla-
tion invariance. These contribute to the successes in applica-
tions to various problems. It could be possible to learn these
symmetries from data if the model has sufficient parameters.
However, it will increase the risk of overfitting.

A function is equivariant if the output changes in the
same way that the input changes (Goodfellow et al., 2016).
Novel convolution layers with different equivariance have
beenproposed so far, group equivariant convolutionnetworks
(Cohen & Welling, 2016; Dieleman et al., 2016), steerable
convolution networks and harmonic networks for rotation
equivariance, scale equivariance (Lindeberg, 2021; Worrall
& Welling, 2019), and permutation equivariance (Thiede
et al., 2020). Such convolution layers equipped with vari-
ous types of equivariance have been proven to be beneficial
to better performance in tracking (Sosnovik et al., 2021),
classification, trajectory prediction (Walters et al., 2021), seg-
mentation (Müller et al., 2021), and image generation (Dey et
al., 2020). However, these methods have never been applied
to visual navigation.

A primary purpose of pursuing various types of equivari-
ance is to achieve a certain type of invariance. A mapping
is called invariant if the output remains the same no mat-
ter how the input changes. Although data augmentation and
invariance-oriented loss functions (Cheng et al., 2016) may
enhance global invariance, it is not guaranteed to generalize
to OOD data. By contrast, global invariance can be imposed
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by a global pooling layer following equivariant layers.Global
rotation invariance is enforced in (Cheng et al., 2016) for
texture classification by combining equivariant convolution
layers with a global average pooling layer in this order. Sev-
eral studies (Lindeberg, 2021; Sosnovik et al., 2020) attain
global scale-invariance by combining layers having scale-
equivariance with global max pooling.

3 Symmetry-aware Neural Architecture

3.1 Problem of Visual Exploration and Object Goal
Navigation

This study considers visual exploration and object goal nav-
igation tasks. Visual exploration asks an agent to explore
an unknown 3D environment, e.g., a floor of a building,
that allows only 2D motion. The goal for the agent is to
go everywhere in the environment it can go while creating
an environment’s 2D map. Object goal navigation requires
an agent to quickly find a designated object specified by
instructions in a novel environment. We employ the Habitat
simulator (Savva et al., 2019) as the framework for studying
both tasks.

For both tasks, the agent receives several inputs from the
environment, i.e., an image or a depth map of the scene in
front of it, the agent’s pose, and anodometry signalmeasuring
its motion. Then, the agent moves to visit the environment by
feeding the actuation signal to its motor. Thus, the problem is
to compute the actuation signal and update the environment
map at every time step, given the history of the inputs the
agent has received until then. See the literature (Chaplot et
al., 2020a, b) for more details.

Recent studies have formulated the problem as learning
policies that yield actions (or intermediate representation
leading to actions) from the received inputs; most of them
employ reinforcement learning (RL) (Chen et al., 2019;
Chaplot et al., 2020a; Ramakrishnan et al., 2020; Jayara-
man & Grauman, 2018; Chaplot et al., 2020b). Recently,
Chaplot et al. (2020a) proposed a method named active
neural SLAM (ANS) for visual exploration, having estab-
lished the new state-of-the-art. Subsequently, Chaplot et al.
(2020b) extendedANS to goal-oriented semantic exploration
(SemExp) for object goal navigation by integrating semantic
knowledge and object goal reward. Our study is built upon
ANS and its variant SemExp. We will first revisit and sum-
marize them below.

3.2 Reivisiting Active Neural SLAM (ANS) and Its
Variants

ANS has a modular and hierarchical structure to better solve
the visual exploration problem. Instead of learning a direct

mapping from the inputs to an action, ANS learns two differ-
ent policies in a hierarchy, i.e., a global policy that yields an
intermediate goal, named long-term goal, in the 2D environ-
ment map and a local policy that yields actions to approach
a short-term goal, which is subsampled from the path to the
long-term goal.More specifically, ANS consists of fourmod-
ules, i.e., a neural SLAM module, a global policy module, a
path planner, and a local policy module.

The neural SLAM module computes a local top-view 2D
egocentric map pt ∈ [0, 1]2×v×v and estimates an accurate
agent pose from the current inputs. (The first and second
channel of pt represents the obstacle and the explored region
at time t , respectively.) Then, the computed local egocentric
map is registered to the global map ht ∈ [0, 1]4×M×M using
the estimated pose. (The first and second channel of ht rep-
resents the obstacles and explored area at time t respectively.
The third channel indicates the computed agent position. The
last channel records the path that has been visited by the
agent.)

The global policy module makes ANS the most distinct
from other methods. It predicts a long-term goal gt given two
different views hgt and h

l
t of the latest map ht ; h

g
t is a rescaled

version of ht , and hlt is a local view cropped from ht with
the agent position as its center; and hgt and h

l
t have the same

size G × G and are concatenated in the channel dimension.
The module is implemented as an advantage actor-critic

(A2C) network (Mnih et al., 2016). As shown in Fig. 3, it
consists of an actor network and a critic network. Each net-
work has a similar design of a convolutional block, which
consists of a stack of convolutional and max-pooling layers,
and subsequent fully connected layers. In a standard design,
they share the convolutional block.

The actor network outputs a 2D likelihood map of the
long-term goal gt represented in the coordinates of the global
map hgt . It learns a global policy, denoted by gt = π(st |θG),
where st = (hlt , h

g
t ) is the state at time t and θG are parame-

Fig. 3 Overall architecture of SymmetricGlobal PolicyNetwork (using
G-convolution, blur pooling and SGPP) and Global Policy Network of
ANS (using convolution,maxpooling andwithout usingSGPP).The red
dashed circle illustrates the featuremaps produced by p4G-convolution
assuming its input isE and the filter is a horizontal edge extractor (Color
figure online)

123



1096 International Journal of Computer Vision (2024) 132:1091–1107

ters. The critic network represents a value function V (st |θV );
V (st |θV ) estimates the expected future accumulated reward,
area coverage in the exploration task, with the agent, which
is currently at state st and will take actions by following the
current policy π(st |θG). The parameters θG and θV are opti-
mized to maximize the area coverage.

The other two modules, i.e., the path planner and the local
policy module, play the following roles. The path planner
computes the shortest path from the current location to the
long-term goal, which is subsampled to generate a number
of short-term goals. The local policy module predicts actions
to reach the next short-term goal.

SemExp extends ANS to address object goal navigation.
It upgrades the global policy of ANS mainly in two aspects.
The first is the input map fed to the global policy. It combines
a semantic layout map hst ∈ [0, 1]C×G×G , where C is the
number of semantic categories, with the egocentric maps,
i.e., hgt and hlt , inputting it into the global policy. To obtain
hst , SemExp first predicts semantic segmentation maps for
the RGB inputs using pretrained Mask-RCNN (He et al.,
2017) and combines them with corresponding scene depths,
creating semantic point clouds of the environment. Then it
converts the semantic point clouds to voxel representation
and projects it to a 2D semantic layout map by summing
over the height dimension, yielding hst . The second upgrade
in SemExp is with the reward. It implements a reward

rt = ret + γ ∗ rot , (1)

to encourage exploration as in ANS and alsomoving towards
the target object, where ret is the increased coverage area at
time t ; rot is the distance to the nearest target object; and γ is
a hyperparameter to balance ret and rot . Note that ANS uses
only ret as its reward.

3.3 Symmetries in the Global Policy

3.3.1 Outline

Although ANS and SemExp are the current state-of-the-
art for visual exploration and object goal navigation, they
employ neural networks consisting only of generic net-
work components, such as convolutional and fully connected
layers. This leaves room for improvement in architectural
design.

While maintaining the basic framework of ANS that is
proven to be effective, we propose to redesign its global pol-
icy module, which consists of the actor and critic networks.
We consider what conditions the mappings realized by the
two networks should satisfy. We pay attention to symmetry
of the mappings, more specifically, their equivariance and
invariance to translation, rotation, and scaling. Leveraging
the fact that the exploration task is a geometric problem, we

Table 1 Upper three rows: ideal symmetries that should be imple-
mented by the actor and critic networks of the ANS framework.

Equivariance Invariance

Trans Rot Scale Trans Rot Scale

Ideal actor ✓ ✓ ✗

Ideal critic ✗ ✓ ✗

↑at the last conv. – ✓ –

ANS actor ✓ ✗ ✗

ANS critic ✗ ✗ ✗

↑at the last conv. ✓ ✗ ✗

Lower three rows: actual symmetries realized by the original actor and
critic networks of ANS. ✓ indicates the network is equipped with the
symmetry. ✗ indicates the network does not have the symmetry. ‘–’
indicates the symmetry is not specified. Blank cells mean the symmetry
is irrelevant.✗ in red color indicates that the symmetry ofANSnetworks
differs from the ideal one

derive what symmetry the ideal actor and critic networks
should implement, based on which we redesign the two net-
works.

In other words, we incorporate the inductive bias of the
task into the network design. When training a neural net-
work, the goal is to search for a target function, within a
set of functions known as the hypothesis space (or solution
space). Inductive bias, based on prior knowledge, constrains
the search space to a specific hypothesis space, biasing the
learning algorithm towards that particular space (Shalev-
Shwartz&Ben-David, 2014). By having a precise hypothesis
space, the learning algorithm is more likely to find the tar-
get function or a good approximation of it. This, in turn,
can lead to avoid overfitting and better generalization on
unseen data. Convolutional neural networks (CNNs) pro-
vide a notable example ofmodels that enhance generalization
ability through the use of inductive biases. The convolution
operation restricts the hypothesis space to a set of functions
that are equivariant to translation, which has been a key fac-
tor in the success of CNNs in image processing tasks. In our
proposed method, we introduce navigation-specific symme-
tries (as described in Table 1) as inductive biases to enhance
the generalization ability for visual navigation tasks.

3.3.2 Invariance and Equivariance

As mentioned above, we are interested in equivariance and
invariance. Their mathematical definitions are as follows.
Given a group G on a homogeneous space X , a mapping
� : f (x) → f ′(x) that has the property

�[Tg f (x)] = Tg′�[ f (x)],∀ f , x ∈ X , g ∈ G, (2)

is said to be equivariant to the group G (or G-equivariant) if
g = g′ and to be invariant to the group G (or G-invariant) if
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g′ = e, the identity. Tg is the transformation corresponding
to its group action g.

Intuitively, they are intepreted as follows. Suppose a map-
ping that receives an input and yields an output and also
applying a geometric transformation to the input of the map-
ping. If the mapping is invariant to the transformation, the
output for the transformed input will remain the same as the
original output. If the mappping is equivariant to the trans-
formation, that will be the same as the result of applying the
same transformation to the original output.

Convolutional layer are equivariant to input translation.
Thus, shifting an input map results in the same shift of the
output map. This applies to the input/output of a stack of any
number of convolutional layers. (Rigorously, the output map
undergoes the input shift plus downscaling corresponding
to the downsampling in those layers.) On the other hand,
global average pooling (GAP) layers are invariant to input
translation. Thus, CNNs having a GAP layer on top of the
stack of convolution layers are invariant to input translation.
CNNs and a stack of convolution layers are not equivariant
to rotation nor scaling. They are not invariant to them, either.

3.3.3 Ideal Symmetries of Actor and Critic Networks

Now we consider what symmetry the actor and critic net-
works should have. First, the actor network receives a 2D
map encoding the current state of the agent, and outputs a
2D map containing a long-term goal, as explained above and
shown in Fig. 3. It is easy to see that this mapping should
ideally be equivariant to translation and rotation. It should
not be equivariant to scaling.

The critic network receives the same input map and out-
puts a scalar value, the expected future accumulated reward
when following the current policy given the current state.
The mapping should be invariant to rotation since the future
accumulated reward should be independent of the orientation
of the input map. It should not be invariant to translation or
scaling, since applying these transformation to the input map
should change the reward.

Table 1 (the first two rows) summarizes the requirements
for the ideal actor and critic networks.

To design a new critic network, we limit our attention to
networks having a stack of convolutional layers at their initial
section. This is also the case with the critic network of ANS,
which has a stack of fully connected layers right after the
convolutional layer stack, and we will redesign this section.
Now, for the mapping from the input to the final output to be
invariant to rotation as mentioned above, the mapping to the
last convolutional layer needs to be equivariant to rotation.
This is because otherwise, it will be extremely hard, if not
impossible, to achieve the rotation-invariance at the final out-
put. We express this requirement in the ‘↑ at the last conv.’
row in Table 1.

The actor and critic networks of the original ANS global
policy does not have the same symmetries as the ideal ones.
The missing symmetries are indicated by the ✗’s in Table 1.
Specifically, the actor should be rotation-equivariant but is
not; the critic should be rotation-invariant but is not. As
discussed above, the mapping from the input to the last con-
volutional layer of the critic should be rotation-equvariant
but is not.

3.4 Rotation-Equivariance of the Actor Network

Thus,weneed to newly equip the actor networkwith rotation-
equivariance while maintaining its translation-equivariance.
To do so, we propose to employ G-convolution (Cohen &
Welling, 2016) and blur pooling (Zhang, 2019); specifically,
we replace the standard convolution and max pooling of the
original ANS actor network with the two, respectively.

Considering computational efficiency, we employ p4 G-
convolution. All combinations of translations and rotations
by 90 degrees form the group p4,which can be parameterized
by

g(m, z1, z2) =
⎡
⎣
cos(mπ/2) − sin(mπ/2) z1
sin(mπ/2) cos(mπ/2) z2

0 0 1

⎤
⎦ , (3)

where m ∈ {0, 1, 2, 3} and (z1, z2) ∈ Z
2 (Cohen &Welling,

2016).
As shown in Fig. 3, p4 G-convolution can be performed

by first rotating filters with angles mπ/2,m = {0, 1, 2, 3} to
form a filter bank, and then applying it to the input feature
map.

As mentioned above, we redesign the convolutional layer
stack of the actor network with the same number of lay-
ers performing p4 G-convolution. The original ANS actor
network employs max pooling for downsampling the fea-
ture map. However, max pooling makes the translation-
equivariance inaccurate. Max pooling ignores the Nyquist
sampling thereom, breaking translation equivariance. Blur
pooling filters the signal before downsampling to better
preserve translation equivariance. Hence, we employ blur
pooling and replace max pooling with this.

By revising the convolutional block (i.e., the stack of con-
volutional and pooling layers) in the original ANS actor
network as above, the mapping represented by the block
becomes approximately equivariant to rotation and precisely
equivariant to translation. We need to maintain the fully con-
nected layers after the convolutoinal block since predicting
the agent’s goal seems to need them to integrate the global
features in a non-simple manner. Fully connected layers are
not inherently equipped with the desired equivariance, and
we leave it to training; owing to their flexibility, we expect
the actor network to gain the desired equivariance at the final
output.
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On the other hand,wewant tomake the critic network have
rotation-invariance. As mentioned earlier, to do so, we want
the mapping represented from the input to the output of the
convolutional block to be rotation-equivariant. We employ
here the design of the original ANS that the critic network
share the convolutional block with the actor network. Then,
the above redesign of the convolutional block achieves what
we want. We further revise the section on top of the convo-
lutional block to realize the desired symmetries for the critic
network.

3.5 Rotation-Invariance of the Critic Network:
Semi-global Polar Pooling

The critic network should represent a mapping that is
rotation-invariant and is not translation-invariant or scale-
invariant, as shown in Table 1. We assume the convolutional
block to have rotation-equivariance due to its design, as
explained above. To attain the above (in)variance, we then
propose a new network component, named the semi-global
polar pooling (SGPP) layer.

SGPP is illustrated in Fig. 4. It first converts the input fea-
ture map from Cartesian space to polar space. Let I (x, y) ∈
R
c×h×w denote the feature map represented in Cartesian

space, where x, y are the Cartesian coordinates. The feature
map I ′(ρ, φ) ∈ R

c×h×w represented in polar space is given
by

ρ =
√
x2 + y2,

φ = arctan
y

x
,

(4)

where ρ and φ are the coordinates in polar space. We finally
apply average-pooling to the features over all φ’s as

� = 1

n

∑
φ

I ′(ρ, φ), (5)

to obtain a pooled feature � ∈ R
c×h .

As the convolutional block, whose output is the input to
the SGPP layer, is equivariant to rotation, � is invariant to

Fig. 4 Illustration of the proposed semi-global polar pooling (SGPP)

rotation since it is pooled over the coordinate φ (i.e., the
circumferential direction). � is further processed by fully
connected layers, computing the final output of the critic net-
work. As � is already invariant to rotation, these additional
layers do not change the invariance. While the convolutional
block is also equivariant to translation, the Cartesian-polar
conversion invalidates the equivariance; thus � is not invari-
ant to translation. It is not invariant to scaling, either. Thus,
the critic network having the SGPP layer in between the con-
volutional block and the fully connected layers attains the
desired (in)variance to translation, rotation, and scaling, as
illustrated in Table 1.

3.6 Symmetry-aware Exploration and Object Goal
Navigation

We apply the above symmetry-aware architecture to ANS
(Chaplot et al., 2020a) for exploration and SemExp (Chaplot
et al., 2020b) for object goal navigation, respectively.Wewill
refer them as S-ANS (Symmetry-aware ANS) and S-SemExp
(Symmetry-aware SemExp), respectively, in what follows.

To implement S-ANS, we integrate our method for gener-
ating global policy to ANS by replacing the original global
policy module with ours. Specifically, the G-convolution,
blur pooling and proposed SGPP layer are integrated into
the global policy module.

Object goal navigation aims at finding designated objects
in novel environments. SemExp (Chaplot et al., 2020b)
addresses it by incorporating semantic layout to the global
policy of ANS, as in Sect. 3.2, establishing state-of-the-
art. S-SemExp replaces the global policy in SemExp with
ours. Specially, we equip the actor of SemExp with rotation-
equivariance by employingG−convolution and blur pooling,
given in Sect. 3.4. The critic is equipped with rotation invari-
ance by inserting our proposed SGPP layer, as described in
Sect. 3.5.

4 Experimental Results

We conduct experiments to examine the effectiveness of the
proposed approach.

4.1 Experimental Setup

Aswith previous studies (Singh Chaplot et al., 2020; Chaplot
et al., 2020a; Ramakrishnan et al., 2020; Chen et al., 2019;
Chaplot et al., 2020b; Gan et al., 2020; Chaplot et al., 2020c),
we use the Habitat simulator (Savva et al., 2019) for our
experiments. We choose the configuration that depth images
are available as the visual input and the actuation and sensory
signals include noises for visual exploration. This applies to
the training and test times. For object goal navigation, we
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follow the setting in Chaplot et al. (2020b), assuming the
availability of RGBD images and noise-free actuation and
sensory signals.

To evaluate the performance for visual exploration, we
use the area coverage (i.e., the area seen during exploration)
within a time budget for the primary metric, following Chen
et al. (2019); Chaplot et al. (2020a). A greater coverage of
the area indicates better exploration performance with a des-
ignated time budget. We compare our method with several
baselines. We run each method five times and report their
average area coverage with the standard deviation.

Similarly, we compare our method with several baseline
methods for object goal navigation. To evaluate their per-
formance, we employ the area under the success rate curve
(AUC), average completion time, and SPL metrics. The suc-
cess rate is the ratio between the successful episodes and all
the test episodes. AUC quantifies the comprehensive perfor-
mance throughout the entire time duration by calculating the
area under the success rate curve. Average completion time
is the time steps spent finding target objects, averaged over
all successful episodes. SPL (Anderson et al., 2018) com-
putes success rate weighted by path length, indicating the
efficiency of reaching the target goal. A higher AUC, larger
SPL and reduced average completion time indicate superior
performance in object goal navigation. For the target goals,
we use the object categories shared among Gibson, MP3D,
and MS-COCO (Lin et al., 2014), following (Chaplot et al.,
2020b). They are the categories of ’bed’, ’chair’, ’couch’,
’potted plant’, ’tv,’ and ’toilet’.

4.2 Datasets

Following previous studies, we employ two datasets, Gib-
son (Xia et al., 2018) and MP3D (Chang et al., 2017). Both
of them contain photorealistic virtual environments created
fromreal-world scenes.Most environments contained inGib-
son are office spaces, while those in MP3D are homes. Thus,
the environments of Gibson differ from those of MP3D in
terms of scenarios, layout, area, and so on. Both the Gib-
son and MP3D datasets comprise 3D reconstructions of
real-world environments. However, Gibson dataset utilizes a
distinct set of cameras and primarily focuses on office spaces,
whereas MP3D dataset predominantly includes homes and
exhibits a larger average scene area and more irregular lay-
out. Figure1 provides the layouts of several representative
examples from Gibson and MP3D. It is seen that there is a
gap in various aspects between the two.

The visual exploration task leverages depth images to
build occupancy maps, while the object goal navigation task
uses RGB and depth images to compute semantic maps.
Images are with a spatial size of 640 × 480. The visual
exploration uses the standard Gibson and MP3D dataset for
training and evaluation, including 72/16 train/test scenes in

Gibson, 61/18 train/test scenes inMP3D.Object goal naviga-
tion task utilizes Gibson tiny and MP3D datasets for training
and evaluation, following Chaplot et al. (2020b). The Gib-
son tiny dataset contains 25/5 train/test scenes. The MP3D
test set contains 8 scenes for evaluation. The validation set
in Gibson is used as the test set because the true test set is
held-out for the online evaluation server. The reported results
are averaged over 1120/1008 episodes onGibson/MP3D test
set for visual exploration and 1000/1600 episodes onGibson
tiny/MP3D test set for object goal navigation.

To evaluate the generalization ability of the methods
across different datasets, we train each model on Gibson and
test it either on Gibson or on MP3D, following the experi-
ments of Chaplot et al. (2020a) and Chaplot et al. (2020b) for
visual exploration and object goal navigation respectively.

4.3 ComparedMethods

To evaluate our approach for visual exploration, we exper-
imentally compare S-ANS, which employs our symmetry-
aware architecture to extend ANS as explained in Sect. 3.6,
with FBE (Frontier based Exploration)(Yamauchi, 1997),
FBE-RL, a variant of FBE, and ANS. Details of the base-
line methods are provided in appendix A. We replace the
global policy module in ANS with FBE and FBE-RL and
evaluate their performance,respectively. We run each model
five times and report their average and standard deviation of
the area coverage at time step 1000, aligning with the setting
in ANS.

To evaluate our approach for object goal navigation, we
compare S-SemExp, which extends SemExp in the sameway
as ANS/S-ANS as explained in Sect. 3.6, with several base-
lines. The first is the original SemExp.We also consider FBE
and ANS for comparison, searching objects via exploration.
The maximum number of timesteps is set to 1000.

4.4 Results of Visual Exploration

4.4.1 Results of Training on Gibson

Wefirst show the resultswhenwe train themodels on theGib-
son training set and test them on either the Gibson or MP3D
test sets. Table 2 shows the results. Comparing the methods
in the case of training and testing on Gibson, the proposed
S-ANS outperforms ANSwith the margin of 0.8m2 (33.7 vs.
32.9m2). The margin becomes more significant when testing
the same models on MP3D, i.e., 8.1m2 (84.4 vs. 76.3m2).
This demonstrates the better generalization ability of S-ANS.

Figure 5 shows the representative examples of their
exploration paths of ANS and S-ANS on the same four envi-
ronments of MP3D. The first and second columns of Fig. 5
show typical examples for which S-ANS explores a much
larger area than ANS; S-ANS explores twice as large area
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Table 2 Exploration performance (in area coverage, m2) of different
models on Gibson and MP3D.

Gibson (m2) MP3D (m2)

FBE 26.5 ± 0.5 69.6 ± 1.9

FBE-RL 28.2 ± 0.3 63.0 ± 3.2

ANS 32.9 ± 0.2 76.3 ± 2.8

S-ANS 33.7 ± 0.2 84.4 ± 1.7

The bold text indicates the best performance achieved among different
methods
All the models are trained on Gibson

Fig. 5 Exploration paths of ANS (top row) and S-ANS (bottom row)
for four representative environments from MP3D. The number at the
bottom left of each box indicates the area coverage (m2). The dissimi-
larity of the environment from the training data tends to widen the gap
between the two methods

as ANS. As with these examples, S-ANS tends to show bet-
ter exploration performance for environments that are more
dissimilar from those of Gibson. When the environments are
similar, their performances tend to be close, as shown in the
third and fourth columns of Fig. 5. Figure6 illustrates a com-
parison between the global target points computed by ANS
and S-ANS, using the same input from the Gibson dataset.
The input maps in Fig. 6b and d are derived by rotating the
maps in Fig. 6a and c by 15 degrees counterclockwise. Upon
observing Fig. 6a and c, it is evident that the global target
point computed by S-ANS is more reasonable, providing
an easily reachable target point and greater opportunities to
explore unknown area. Figure 6a and b exhibit approximate
rotation equivariance, as the global target point computed by
S-ANS rotates accordinglywith the inputmap. However, this
is not observed for the target points computed by ANS, as
depicted in Fig. 6c and d. These observations further verify
the improved generalization ability of S-ANS.

It is seen from Table 2 that FBE and FBE-RL show infe-
rior performance. It is noteworthy that FBE and FBE-RL
behave differently for different combinations of the train
and test data. While FBE-RL performs better on Gibson by

Fig. 6 Comparison of global target points computed by S-ANS and
ANS for original inputs a and c and their corresponding rotated inputs
b and d. The yellow point represents the location of the robot, while the
red point indicates the target point (Color figure online)

1.7m2 (28.2 vs 26.5m2), it performs worse on MP3D by
−6.6m2 (63.0 vs 69.6m2). We can say that learning bet-
ter policies improves exploration performance when there
is only a little gap between the train and test data. How-
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ever, this improvement comes at a cost as it introduces the
risk of overfitting, consequently resulting in reduced explo-
ration capability when there exists a significant gap between
the train and test data. This demonstrates the difficulty with
learning-based approach to the exploration task.

4.4.2 Results of Training on MP3D

We next show the results when we train the models onMP3D
and test them on Gibson and MP3D. We evaluate two mod-
els, the original ANS and the proposed S-ANS. Figure7 and
8 show the results including those trained onGibson.Method
X trained on Gibson and MP3D is denoted by X-Gibson and
X-MP3D, respectively. We can make the following obser-
vations. First, it is seen from Fig. 8 that when trained and
tested on MP3D, S-ANS outperforms ANS by a large mar-
gin of 5.4m2 (i.e., S-ANS-MP3D = 86.2m2 vs. ANS-MP3D
= 80.8m2)). This validates the effectiveness of the proposed
method (i.e., S-ANS). Second, it is also seen from Fig. 8
that the performance gap between models trained on Gib-
son and MP3D is smaller for S-ANS (i.e., S-ANS-Gibson
= 84.4m2 vs. S-ANS-MP3D = 86.2m2) than for ANS (i.e.,
ANS-Gibson = 76.3m2 vs. ANS-MP3D = 80.8m2). Gener-
ally, we may consider the performance of models trained
and tested on the same dataset as the upper bound of their
performance. S-ANS is closer to it, supporting our conclu-
sion that the proposed approach better handles the domain
gap between the two datasets by equipping the network with

Fig. 7 Exploration performance (in area coverage,m2) of ANS trained
on Gibson and MP3D and S-ANS trained on Gibson and MP3D when
tested onGibson.ThemethodX trained onGibson andMP3D is denoted
byX-Gibson andX-MP3D, respectively. The dashed box shows the data
points mapped linearly to the normalized [0,1] range for better visibility

Fig. 8 Exploration performance (in area coverage,m2) of ANS trained
on Gibson and MP3D and S-ANS trained on Gibson and MP3D when
tested onMP3D. ThemethodX trained onGibson andMP3D is denoted
byX-Gibson andX-MP3D, respectively. The dashed box shows the data
points mapped linearly to the normalized [0,1] range for better visibility

the symmetries necessary for the task. Third, when tested
on Gibson, the gaps between the models and between train-
ing datasets are small, as shown in Fig. 7. Thus, the above
two tendencies are not observed. We believe this is because
Gibson contains smaller scenes and is simpler in complexity
than MP3D. Thus, models trained on MP3D tend to achieve
good performance on Gibson, e.g., ANS-Gibson = 32.9m2

vs. ANS-MP3D = 33.1m2.

4.4.3 Error Cases

Figure9 shows example error cases on the MP3D dataset;
the target points predicted by the model, which was trained
on the Gibson dataset, exhibit less reasonable outcomes in
some cases. For instance, in Fig. 9(a), the predicted tar-
get point is situated in the southeastern direction, whereas
a more reasonable target point would be positioned along
the corridor. Similarly, in Fig. 9(b), a preferable target point
would be in the north direction, but the model predicts a
location in the southeastern direction instead. These discrep-
ancies can be attributed to the substantial deviation of these
cases from the training samples in the Gibson dataset, partic-
ularly concerning their irregular shapes. It is noteworthy that
the Gibson dataset predominantly consists of environment
maps with regular shapes, which could have influenced the
model’s predictions in these atypical scenarios.
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Fig. 9 Error cases in MP3D dataset produced by the model trained on
Gibson dataset. The yellow point represents the location of the robot,
while the red point indicates the target point (Color figure online)

4.5 Results of Object Goal Navigation

We then show the results for object goal navigation. Fig-
ure10(a) shows the mean and standard deviation of success
rate from time step 0 to 1000 when the methods are trained
on the Gibson training set and tested on the Gibson test set.
Table 3 provides their corresponding AUC, SPL and aver-
age completion time at the time step of 1000. As shown in
the table, S-SemExp achieves the highest AUC = 530.0,
SPL = 0.29, and least average completion time of 146.6
time steps on the Gibson dataset. Namely, S-SemExp can
navigate to targets more successful and quickly than others,
demonstrating the effectiveness of our method.

ANS does not access semantic layout information, result-
ing in inferior performance compared with SemExp. FBE
falls behind other methods with the longest time steps =
173.4, smallest AUC = 443.0 and SPL= 0.25, as expected.
When they are given more time, all but FBE tend to reach a
similar success rate, as shown in Fig. 10.

We can draw the same conclusion as the Gibson test set,
for the MP3D test set, which simulates testing on OOD data.
The results are shown in Fig. 10(b) and Table 3. S-SemExp
demonstrates superior performance in terms of AUC, SPL,
and average completion time.

To summarize, S-SemExp obtains better object goal navi-
gation performance than the benchmark methods, establish-
ing new state-of-the-art. It enhances state-of-the-art method
SemExp by 6.0(1.1%)/6.0(1.7%) in terms of AUC and saves

Fig. 10 Success rate curve ofFBE,ANS,SemExpandS-SemExp tested
on a Gibson and b MP3D. All the models are trained on the Gibson
training set

3.5 (2.3%)/15.1 (6.2%) time steps on average to reach goal
objects on Gibson/MP3D test set.

4.6 Ablation Study

As explained earlier, our method imposes translation- and
rotation-equivariance on the actor network and (approxi-
mate) rotation-invariance on the critic network. The former is
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Table 3 Performance of FBE,
ANS, SemExp and S-SemExp
on the Gibson and MP3D test
set at time step 1000 in terms of
AUC, SPL and average
completion time.

Method Gibson MP3D

AUC SPL Comp. Time AUC SPL Comp. Time

FBE 443.0 0.25 173.4 282.0 0.18 267.5

ANS 516.0 0.28 155.5 351.0 0.18 238.7

SemExp 524.0 0.29 150.1 354.0 0.19 242.3

S-SemExp 530.0 ↑ 0.29 146.6 ↑ 360.0 ↑ 0.19 227.2 ↑
The bold text indicates the best performance achieved among different methods
The upward arrow ↑ indicates an improvement in performance compared to the baseline methods

implemented by theG-convolution and the blur pooling. The
latter is implemented by SGPP in addition to G-convolution
and the blur pooling. To examine the effectiveness of each
component, we create two variants of the proposed network,
named E-ANS and G-ANS, and compare their performance
on the visual exploration task.

E-ANS is a model created by removing the SGPP layer
from the critic network of S-ANS. Without SGPP, it is not
(even approximately) invariant to rotation, translation, or
scaling. Its actor network maintains the ideal property of
equivariance. G-ANS is an intermediate model between E-
ANS and S-ANS; it is created by replacing the SGPP layer
with a global average pooling (GAP) layer in the critic net-
work of S-ANS. The added GAP layer makes the critic
network invariant to both rotation and translation; recall that
the convolutional block before the GAP layer is equivari-
ant to rotation and translation due to the employment of the
G-convolution and the blur-pooling. The added translation
invariance is superfluous compared with the ideal invari-
ance of the critic network shown in Table 1. In summary,
E-ANS introduces rotation equivariance on top of ANS,
while S-ANS integrates rotation invariance on top of E-ANS.
Additionally, G-ANS further introduces other invariance to
S-ANS by replacing SGPP with GAP. In short, considering
the excesses and deficiencies of the implemented invari-
ance/equivariance, the expected performance will be S-ANS
> E-ANS, E-ANS > G-ANS.

We train E-ANS and G-ANS on Gibson and test them on
Gibson and MP3D in the same way as ANS and S-ANS.
Figure 11(a) and (b) show the explored areas by the four
models on the test splits of Gibson and MP3D, respectively.
Each solid curve and shadowed area indicates the mean and
standard deviation over five runs, respectively, of the area
coverage at a different time step.

It is seen from the results that the fourmodels are ranked in
the performance as S-ANS>E-ANS>G-ANS>ANS.This
matches well with our expectation mentioned above. The
results further tell us that the excessive translation-invariance
of the critic network in G-ANS does more harm than defi-
cient rot-invariance of that of E-ANS. Overall, these results
validate the effectiveness of our approach.

4.7 Qualitative & Quantitative Analysis for Invariant
Representation

We experimentally evaluate rotation invariance of the critic
of S-ANS over the visual exploration task. Specifically, we
compute the standard deviation of its output and the simi-
larity of its feature representations over inputs with different
orientations.

To compute the standard deviation of the critic’s output
over input rotation, we firstly sampled Q state inputs si , i =
1, 2, . . . Q of the global policy from the evaluation episodes
of Gibson (Q = 1988) andMP3D (Q = 3960), respectively.
Then, we compute a rotated state inputs set S∗ = {ski |ski =
rk · si , i ∈ {1, 2, . . . , Q}, k ∈ {0, 1, . . . , K − 1}} for all
the samples, where rk represents rotating si by 2πk/K [rad]
about its center. Then, the standard deviation is given by

std = 1

Q

Q∑
i=1

√√√√ K∑
k=0

(yki − ȳi )2, (6)

where ȳi = 1
K−1

∑K−1
k=0 yi and yki = q(ski ); q(·) represents

the function approximated by the critic. A smaller std indi-
cates better rotation invariance.

Figure 12 shows std’s of the critic of ANS and that of S-
ANS (both trained on Gibson) when we set K = 24. In this
case, Each rotation angle corresponds to a 15-degree incre-
ment, whichwe consider to be fine enough to demonstrate the
rotation invariance property. It is seen that S-ANS achieves
better rotation invariance than ANS for the both test datasets.
It is worth noting that S-ANS employs p4 G-convolution,
which theoretically attains only invariance to 90 degree rota-
tions, and has fully connected layers that are not invariant
to rotation; it nevertheless achieves better invariance over
K = 24 sampling of the rotation angles.

Next, we evaluate the similarity of the internal features
of ANS and S-ANS over rotated inputs. We use the feature
vector before the fully-connected layers for each model. For
this purpose, we compute the similarity between two rotated
inputs as
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Fig. 11 Expolaration performance (in area coverage, m2) of ANS, S-
ANS, G-ANS, and E-ANS tested on a Gibson and b MP3D. All the
models are trained on the Gibson dataset

sim(ξ(sα), ξ(sβ)) = 1

Q − 1

Q−1∑
i=0

ξ(sα
i ) · ξ(sβ

i )

‖ξ(sα
i )‖ · ‖ξ(sβ

i )‖
, (7)

where α, β ∈ {0, 1, · · · , K − 1}; sα = rα · s, s ∈ S∗;
and ξ(·) represents the function approximated by the layers
before fully connected layers in the critic networks.

Fig. 12 Rotation invariance (i.e., std) of the critics of ANS and S-
ANS trained on Gibson seen over the evaluation episodes of Gibson
and MP3D

Figure 13 shows the matrices storing the above similarity
as elements for ANS and S-ANSover the evaluation episodes
of Gibson and MP3D. The average similarity increases from
0.06 of ANS to 0.40 of S-ANS on Gibson and from 0.07
to 0.55 on MP3D, respectively. These verify that S-ANS
achieves better rotation invariance in its feature represen-
tation.

5 Limitation

While our approach offers valuable benefits, one notable
limitation with it is the increased memory consumption
when using G-convolution compared to standard convolu-
tion. Specifically, a CNN consisting of p4 G-convolution
requires four times the memory space compared to a net-
work utilizing standard convolution. This increased memory
requirement can be a concern, particularly when working
with large backbone networks or resource-constrained envi-
ronments. Researchers should carefully consider thememory
limitations of their computational resources when applying
our method.

6 Conclusion

Existing learning-based methods for visual navigation tend
to struggle with generalization to out-of-distribution envi-
ronments, i.e., statistically different environments from those
used for training. To cope with this, we propose to use the
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Fig. 13 Similarity of internal features over rotated inputs for a ANS
on Gibson, b S-ANS on Gibson, c ANS on MP3D, and d S-ANS on
MP3D. The two models are trained on Gibson. Avg. indicates the mean
value except the diagonal elements

inductive biases available for the task that previous meth-
ods do not use effectively. Employing the framework of
active neural SLAM (ANS), we have shown that the actor
and the critic should satisfy specific symmetries with their
mappings. We then propose a design of neural networks that
inherently possesses the ideal symmetries. Specifically, we
propose to use G-convolution instead of the standard convo-
lution layer. We also propose the semi-global polar pooling
(SGPP) layer, which makes the network invariant to rotation
and not invariant to translation when using it at the final sec-
tion of the critic network. Experimental results show that our
method, integrated into the current state-of-the-art, ANS for
visual exploration and SemExp for object goal navigation,
improves their performance, particularly in terms of gener-
alization ability, having established the new state-of-the-art
with the standard datasets, Gibson and MP3D.
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ons.org/licenses/by/4.0/.

Appendix A Implementation Details of Base-
line Methods

This section gives implementation details of baseline meth-
ods FBE, FBE-RL and ANS. FBE is a heuristic method that
iteratively selects a point at the frontiers (boundaries between
explored free region and unexplored region) using various
strategies. We follow the strategy implemented in Ramakr-
ishnan et al. (2021), selecting a random point at the longest
boundary. We replace the global policy module in ANS with
FBEandevaluate its performance. FBE-RL, a variant of FBE,
which replaces the global policy module in ANS with a RL-
based FBE.

It is created by combining FBE and the global pol-
icy network of ANS. Concretely, FBE-RL first computes
the frontiers of the local map hlt , gaining its frontier map
m f ∈ R

G×G . The elements on hlt are 0 except for those at
frontiers. Then it is combined with themap of long-term goal
m∗, computed by the global policy network ofANS, to obtain
a frontier likelihood mapm′

f ∈ R
G×G by element-wise mul-

tiplicationm′
f = m∗	m f . At last the the normalized frontier

likelihood map m′′
f (x, y) is computed by the softmax func-

tion

m′′
i = emi∑

j e
m j

, (A1)

where mi and m′′
i is the i th element of m′

f and m′′
f respec-

tively. A long-term goal is sampled from m′′
f for navigation.

For ANS, we use the code 1 and the settings given in
Ramakrishnan et al. (2020).
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