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Abstract Visual obstacle discovery is a key step towards
autonomous navigation of indoor mobile robots. Successful
solutions have many applications in multiple scenes. One
of the exceptions is the reflective ground. In this case, the
reflections on the floor resemble the true world, which con-
fuses the obstacle discovery and leaves navigation unsuc-
cessful. We argue that the key to this problem lies in ob-
taining discriminative features for reflections and obstacles.
Note that obstacle and reflection can be separated by the
ground plane in 3D space. With this observation, we firstly
introduce a pre-calibration based ground detection scheme
that uses robot motion to predict the ground plane. Due
to the immunity of robot motion to reflection, this scheme
avoids failed ground detection caused by reflection. Given
the detected ground, we design a ground-pixel parallax to
describe the location of a pixel relative to the ground. Based
on this, a unified appearance-geometry feature representa-
tion is proposed to describe objects inside rectangular boxes.
Eventually, based on segmenting by detection framework,
an appearance-geometry fusion regressor is designed to uti-
lize the proposed feature to discover the obstacles. It also
prevents our model from concentrating too much on parts
of obstacles instead of whole obstacles. For evaluation, we
introduce a new dataset for Obstacle on Reflective Ground
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(ORG), which comprises 15 scenes with various ground re-
flections, a total of more than 200 image sequences and 3400
RGB images. The pixel-wise annotations of ground and ob-
stacle provide a comparison to our method and other meth-
ods. By reducing the misdetection of the reflection, the pro-
posed approach outperforms others. The source code and
the dataset will be available at https://github.com/
XuefengBUPT/IndoorObstacleDiscovery-RG.

Keywords Reflective Ground · Obstacle Discovery ·
Homography

1 Introduction

In indoor environments, obstacles, e.g., charging cable, key
chain, and wallet, etc., endanger mobile robots by tangling
wheels or causing the robot to overturn. However, the 2D
LiDAR commonly used for navigation only perceives ob-
stacles with large heights, while obstacles lower than Li-
DAR are hard to be perceived. Hence, as a potentially ef-
fective way, cost-effective cameras are usually used in many
researches [48,21,6] for discovering these hazards. While
most existing approaches are mainly applied in environ-
ments with texture-less and non-reflective floor, and lack
discussion on the indoor scene laying reflective floor. In
practical scenarios, the floor with a mirror surface is preva-
lent and brings a challenge to obstacle discovery. In the Field
of View (FOV) of a robot, the floor reflects real-world ob-
jects that we call unreal objects (UOs), e.g. the reflections
of plant, gate, and person in Fig. 1. UOs generally have
complex textures and surround obstacles, making them even
harder to detect using classic depth sensors (see Appendix
C) or eliminate with reflection removal algorithm (see Ap-
pendix B). This makes it challenging for discovery models
to distinguish the obstacles from the floor, ultimately leads
to confusion in robot navigation.
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Discovery result of Xue et al. Discovery result of our method

Discovery result of BiSeNet Discovery result of FCN

Fig. 1 Results of BiSeNet [47], FCN [40], Xue et al. [45] and our
method on an exemplary scene of the proposed dataset. True positives
are marked in green, red for false positives, blue for false negatives.
Yellow boxes mark the mis-classified pixels. Magenta circles indicate
the reflection.

As we know, there are currently no obstacle discovery
methods investigating this task. Thus, in the following para-
graphs, we discuss the feasibility of using the existing ob-
stacle discovery methods on reflective ground. Overall, they
can be mainly assigned to three groups.
Stereo-based conventional methods [36,3] reconstruct 3D
scenes by using a stereo camera, and classify the 3D points
higher than the ground plane as obstacle. However, the ac-
curacy of obstacle discovery highly depends on the quality
of 3D reconstruction that is easily affected by the mirror re-
flection. Thus, obstacles cannot be distinguished from UOs
by using the unreliable 3D information.
Monocular-based conventional methods [48,6,49,23]
first estimate a ground plane by registered feature point pairs
[39,5] between consecutive monocular images. Then, they
judge whether a pixel is coplanar with the estimated ground.
The pixels that are not coplanar with the ground indicate ob-
stacles. However, the feature points of reflection dominate
the ground area, and their 3D information is totally differ-
ent from the ground plane, leading to the mis-detection of
ground. For this reason, these solutions cannot be directly
used to distinguish obstacles from UOs.
Learning-based methods [21,45,37,11,46,42,25] train
models to classify pixels or region proposals [10,22] in a
single image into obstacle and non-obstacle. However, these
methods do not capture the difference between reflections
and the real world. Thus, in the face of complex, diverse
and unseen ground textures, it is difficult for them to avoid
mis-detecting the ground as obstacles. Fig.1 depicts the pre-
diction of two segmentation models and the baseline. These
methods mistake the reflection of plant and gate for obsta-
cles, and miss the real obstacles.

Although the use of homography for obstacle detec-
tion is not really new [49,48,6], we found that homog-
raphy is good for expressing the difference between UOs
and obstacles because different planes, which is rarely dis-
cussed in previous works. To fully leverage such a key

characteristic, we first follow [45] to gain the candidate
proposals enclosing objects, and then construct a unified
appearance-geometry feature representation to express and
re-score the candidate proposals. In detail, the homogra-
phy of ground is firstly estimated for feature construction.
To avoid the failed ground detection [48,49] on the reflec-
tive floor, a pre-calibration based ground detection scheme
is introduced. This scheme uses robot motion, instead of
registered feature point pairs [48], to figure the ground ho-
mography. Thus, it avoids failed detection caused by reflec-
tion. Secondly, we take the occlusion edge point [31] of the
scene as the key point for feature extraction, and propose
a ground-pixel parallax. It measures the homography dif-
ference between an occlusion edge point and the detected
ground, thus is able to express whether this point is above
or below the ground. Then, as a key discriminative feature,
the parallax incorporates with appearance features [45] to
form a unified appearance-geometry feature representation
for region proposals. Finally, an appearance-geometry fu-
sion model (AGFM) is designed to re-score all proposals.
In AGFM, we carefully study the effects of fast-moving ob-
jects on features, and adaptively use the geometric and ap-
pearance features to eliminate the effects of fast-moving.
Besides, to segment obstacles more accurately, AGFM uti-
lizes a well-designed weight-decayed probability generation
scheme to gain an obstacle-occupied probability map. It re-
duces weights of low-rank obstacle proposals to avoid con-
centrating too much on parts of obstacles.

To evaluate the effectiveness of our method, a dataset
named Obstacle on Reflective Ground (ORG) is introduced,
which is the first dataset focusing on discovering obstacles
on reflective floor, as far as we know. Inspired by the obsta-
cle discovery task in other scenarios [45,11,16], several seg-
mentation methods [40,4,47,35,45] are employed to com-
pare with our method. The experimental results prove that
the presented approach significantly alleviates false posi-
tives and false negatives compared with other methods, and
is robust against the noise of robot motion and motion blur.

To our knowledge, our method is the first stab to dis-
cover obstacle on reflective ground. The key insights lie in:

– A pre-calibration based ground detection scheme is in-
troduced, which uses robot motion that is immune to re-
flection, thus avoiding detection failure.

– A ground-pixel parallax is introduced to form a unified
appearance-geometry feature representation for region
proposals together with appearance feature.

– An appearance-geometry fusion model (AGFM) is pro-
posed to locate obstacle. It also avoids the performance
degradation caused by fast-moving objects and propos-
als too concentrated on parts of obstacles.

– An Obstacle on Reflective Ground (ORG) dataset is pro-
posed, which contains 15 challenging scenarios, and 200
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Fig. 2 The result obtained by previous method [45]. (a) the occlusion edge map. (b) the region proposals with high score (marked in red boxes).
(c) the obstacle-occupied probability map constructed by these high-score boxes. (d) the final obstacle masks (using threshold 0.49 to segment the
obstacles). In the grayscale images (a)(c), the value of each pixel ranges from 0 to 1. The darker it is, the closer it is to 1.

sequences. Compared to other segmentation models, our
approach achieves a better performance on this dataset.

2 Related Work

Since our method is related to the general obstacle discovery
[45,46], occlusion edge, proposal extraction, and the ground
homography. Brief introductions for them are given.

2.1 The Method Segmenting Obstacle by Detection

Xue et al. [45] propose to segment the obstacle by detection.
In this pipeline, each region proposal obtained by [28] is ex-
pressed by a feature vector, which is used to train the random
forest to detect the obstacle from proposals. Finally, all ob-
stacle proposals are used to construct an obstacle-occupied
probability map which is used to determine the obstacle pix-
els. Due to locating obstacles by the confidence of numerous
proposals, instead of one proposal, this method achieves an
approximate performance of the Convolutional Neural Net-
works (CNN) based methods [11,37].

Unfortunately, the UOs are usually so complicated that
the existing features cannot express the difference between
them and obstacles, e.g. the occlusion edge in Fig.2(a).
Hence, the UOs and obstacles are captured indiscriminately
(see Fig.2(b)). Eventually, the UOs obtain high confidence
and are mis-detected as obstacles, as shown in Fig.2(c)(d).
This phenomenon accounts for a large proportion of indoor
scenarios. Thus, our method aims to distinguish the propos-
als of UOs and obstacles by appearance-geometry features,
boosting the performance of obstacle discovery.

2.2 Occlusion Edge and Region Proposal

Occlusion edge [15,26,32] locates the pixels indicating
depth discontinuity between objects and background. Due
to exploiting surface cue, it generally has a more robust
confidence in the object contour than the typical edge cues
[43,1,24]. By considering the occlusion edge points inside
a bounding box, object-level proposal (OLP) [28] models

an occlusion-based objectness score to measure the proba-
bility that the bounding box contains object. The high-score
bounding boxes are retained from densely sampled sliding
windows, and are considered as the candidate proposals.

In this paper, we firstly employ [31] to detect the oc-
clusion edge from the scene (see Fig.3 I), and then utilize
OLP [28] to extract a set of candidate obstacle proposals
(see Fig.3 II). The resulting occlusion edge and proposals
are taken as the inputs of our method.

2.3 Homography of Planar Surface

With the representation in [48,21,49], for a set of the point
pairs {xi ↔ x′i} from two images, if the points {xi} are
coplanar, there is a homography matrix H ∈ R3×3:

xi = Hx′i (1)

where xi, x
′
i ∈ R3×1 are the homogeneous image coordi-

nates. Since the matrix H has eight degrees of freedom [49,
12], a minimum of four non-degenerate point correspon-
dences are required to determine H.

By searching for the coplanar points on the ground and
registering them between two frames, several methods [6,
34] estimate the homography matrix to represent the ground
plane. However, in the case of reflective ground, the com-
plex UOs produce a lot of feature point pairs that are the
outliers to the ground homography. Evidently, detecting the
ground plane from point pairs with numerous outliers is dif-
ficult. Even, this phenomenon easily results in the virtual
plane problem [48], namely, detecting a plane that does not
correspond to the physical ground plane. In this paper, we
utilize the robot motion, instead of the point pairs, to calcu-
late the ground homography. Since the robot motion is inde-
pendent of ground appearance, the proposed ground detector
is immune to reflection.

3 Method

3.1 Overview

Given an image sequence {I1, I2, ..., It} acquired by the
robot, where t ∈ N+ is the current time, our approach takes
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Fig. 3 The pipeline of our method. The inputs are consecutive RGB images and the robot pose corresponding to the two images. I-IV are the
byproducts. V is the output, an obstacle-occupied probability map. In I and V, the value of each pixel ranges from 0 to 1. The darker it is, the
closer it is to 1. In III, the points are divided into two types by setting threshold: the red points are above the ground, the green points are below
the ground.

two frames It and It−q as inputs and generates a probability
map P . Each element in the map P represents the presence
of obstacles in image It and q ∈ N+ is the time interval. To
simplify the representation, we default q to 1.

The pipeline is shown in Fig.3. We extract the occlu-
sion edge map and the candidate proposals from image It, as
mentioned in Sec. 2.2. To reduce the computation, we only
preserve τe percent occlusion edge points with the top re-
sponse. The candidates with the highest objectness score are
denoted as B = {btj |j ∈ {1, 2, ..., J}}, as the red rectangles
shown in Fig. 3 II. However, through the projection from
the 3D space to the 2D image plane, the detailed 3D infor-
mation is lost in the 2D image. Thus, B contains many false-
positive obstacle proposals caused by the reflective ground.
A key observation of our approach is that different planes in
the 3D space satisfy different homography, thus, aiming to
distinguish the real obstacles and the UOs, we leverage the
discriminative characteristic of the homography, construct
a unified appearance-geometry feature representation to ex-
press and re-score the obstacle proposals in B.

More specifically, taking the occlusion edge points Pt =

{xt
1, x

t
2, ..., x

t
n} as the key point for feature extraction, the

Lucas-Kanade(LK) optical flow approach [27] is employed
to track the occlusion edge point xt

i ∈ Pt from image It

to It−1, capturing the appearance corresponding point at−1
i

on image It−1. In addition, we leverage the ground plane as
the base reference plane, and compute the homography H

of the ground plane (see Sec 3.2). By using H , we find the
geometric corresponding point gt−1

i = Hxt
i of xt

i ∈ Pt in
It−1. Furthermore, we define the parallax of the points by
considering the relationship of at−1 and gt−1

i (see Sec 3.3).
As shown in Fig. 4, such a parallax reflects a significant dif-
ference when the obstacle exists above or under the ground,
and hence we leverage such a difference as a key discrimina-
tive feature to distinguish the UOs. Therefore, we gather the
parallax values of the occlusion edge points inside a region
proposal, and then express a proposal by jointly consider-
ing both the appearance cues and the geometric cues (see

Sec 3.4). An appearance-geometry fusion model (AGFM) is
trained to re-score all region proposals (see Sec 3.5). Mul-
tiple proposals with the highest confidence are employed to
form an obstacle-occupied probability map. Compared with
the existing approaches, our approach takes the intrinsic ge-
ometric cue of the proposals into consideration and hence
alleviates the false-positive obstacle proposals caused by the
reflection of the ground efficiently.

3.2 Ground Plane Detection via Pre-calibration

The homography of the ground plane between both consec-
utive frames is a basic component for the geometric repre-
sentation of proposal. However, the reflection obstructs the
ground detection. To detect the ground without the effect
from reflection, we first calibrate the ground parameter of-
fline. In detail, since the camera is mounted on the robot
platform that moves on a planar floor, the ground is indicated
as a constant vector π = {nT,d}, and the camera moves on
a plane that satisfies nTX + d = 0, where nT ∈ R3×1 de-
notes the ground normal. The camera height d can be mea-
sured directly, and the normal nT is calibrated as follows:

1. Take two images by the camera in two different poses of
robot.

2. Manually mark a few (≥ 4) ground points pairs. {xi}
and {x′

i} denote the ground points of the two images,
which is one-to-one correspondences: {xi ↔ x′

i}.
3. Compute a homography H by these correspondences:

x′
i = Hxi.

4. Decompose the homography H by the decomposing
method [29] to obtain a proper ground normal nT.

Based on the pre-calibrated ground π and the robot pose,
the ground homography can be determined online. Specifi-
cally, we firstly utilize the odometer-camera calibration ap-
proach [9,14] to obtain the transformation matrix from the
robot’s wheel odometer to the camera. Then, given the robot
poses from the odometer at time t and t − 1, the poses
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Fig. 4 (a) the case that the observed point is above the ground. (b) the case that the observed point is below the ground. For each case, the points
are zoomed in to the right-side images to obtain a clear view.

of the camera at time t and t − 1 are figured by transfor-
mation, which are denoted as T t and T t−1, where T t =

[Rt|Ct](Rt ∈ R3×3, Ct ∈ R3×1). Referring to [49,12], the
homography of ground π can be directly calculated by the
formulation in [12]:

H = K(∆R−∆CnT/d)K−1 (2)

where K ∈ R3×3 is the intrinsic matrix of the camera, and
∆R = Rt−1(Rt)−1 is the relative rotation of the camera
from T t to T t−1, ∆C = Ct−1−Ct corresponds to the rela-
tive translation. Since the ground vector nT is pre-calibrated,
and the camera motion [∆R|∆C] is independent of the pat-
tern inside the ground area, Equation 2 avoids false ground
detection when working on reflection floor. Thus, the pro-
posed scheme is suitable for reflective ground.

3.3 Ground-Pixel Parallax of Occlusion Edge Point

By modeling the contrastive property between point and
ground plane, we propose ground-pixel parallax to judge
whether an occlusion edge point is real or reflection. With
the representation in Sec. 3.1, the observed occlusion edge
points are denoted as Pt = {xt

1, x
t
2, ..., x

t
n}. For each point

inside set Pt, the point’s appearance and geometry corre-
sponding points in frame t − 1 are denoted as at−1

i and
gt−1
i , as shown by the green and red circles in Fig.4. In ad-

dition, we denote the epipoles of frames It, It−1 as et and
et−1, namely, the yellow circles in Fig.4. Since gt−1

i is de-
termined by the ground homography H, it can be considered
as the projection of a 3D ground point. Hence, the parallax
of point xt

i to the ground is defined as the difference between
the appearance corresponding point at−1

i and the geometry
corresponding point gt−1

i :

pt
i = at−1

i − gt−1
i (3)

According to [12], since the three points gt−1
i , et−1, and

at−1
i are collinear, the vector pt

i can also be extended as:

pt
i = at−1

i − gt−1
i = ρ(gt−1

i − et−1) (4)

where ρ is a scalar representing the deviation relative to the
ground. It indicates which side of ground the real 3D loca-
tion of point xt

i is in the following way:

– If ρ = 0, the real 3D location is coplanar with the
ground.

– If ρ < 0, the real 3D location is above the ground, as
depicted in Fig.4 (a).

– If ρ > 0, the real 3D location is under the ground, as
depicted in Fig.4 (b).

Observably, vector pt
i reveals that point xt

i is above or below
the ground. The proofs of Equation 4 and detailed technical
discussion are included in the supplementary materials.

3.4 Appearance-Geometry Feature Representation

For each proposal btj in B, we propose a unified appearance-
geometry feature representation, which has two parts, as
shown in Table 1. Inspired by another obstacle detector [45],
the first part contains edge cue, pseudodistance, objectness
score, and color cue. For the second part, we gather the par-
allaxes of occlusion edge points inside the proposal as fea-
ture. As the ground-pixel parallax pt

i cannot be normalized
and is easily affected by failed optical flow tracking, we de-
compose it into two features: homography error and devia-
tion angle.
Region-level Homography Error: To express the relative
distance of a proposal btj to the ground, we define the ho-
mography error of occlusion edge points xt

i enclosed by btj :
ϕt
i = ∥at−1

i −gt−1
i ∥, as shown in Fig.4. According to [21,48,

49], it depicts the 2D deviation from occlusion edge point xt
i

to the ground. For proposal btj , the region-level homography
error is defined as the mean error of occlusion edge points
xt
i enclosed by proposal btj :

Φt
j = 1/N t

j

∑
xt
i∈btj

ϕt
i (5)

where N t
j is the number of occlusion edge points in the pro-

posal btj . The region-level homography error indicates how
far the proposal btj is from the ground.
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Table 1 The appearance-geometry feature representation of region
proposal.

Part Category Feature name

Appearance

Edge cue

max edge response
proportion of most response

average edge response
average edge response in inner ring

Pseudo
distance

normalized area
aspect ratio

X,Y coordinate of the region center
width, height

Objectness occlusion-based objectness

Color color deviations in the H,S,V channel
color contrasts of the H,S,V channel

Geometry Parallax homography error
deviation angle

Region-level Deviation Angle: To express which side of the
plane π the observed 3D point is, we define the deviation an-
gle as the angle of point at−1

i in the polar coordinate system
centered on point gt−1

i , which is formulated as:

θti = γarcsin(
[at−1

i ]2 − [gt−1
i ]2

ϕt
i

) (6)

where [.]2 denotes taking y-value of a pixel. γ is a parameter,
which is +1 when the robot moves forward, conversely −1.
The region-level deviation angle of proposal btj is stated as:

Θt
j = 1/N t

j

∑
xt
i∈btj

θti (7)

Although it seems feasible to use [at−1
i ]2 − [gt−1

i ]2 directly
to distinguish the proposals of obstacles and UOs, the devi-
ation angle θti is more suitable. The reason is that θti has a
fixed value range and is not easily affected by sharply chang-
ing noise points, which is further proved by the experiments
in Sec 4.5.1.
Region-level Feature Confidence: However, in a hands-on
environment, robots might move a lot suddenly, causing the
objects move fast between frames. Due to the high sensitive-
ness of the optical flow tracking to fast moving, the point
xt−1
i is located inaccurately at times. Thus, feature confi-

dence is necessary. Specifically, the forward-backward er-
ror [18], indicating the distance between the original point
and its position after the forward and backward optical flow
tracking, is employed to calculate feature confidence. As-
suming that edge point xt

i is the backward optical flow point
of at−1

i from images It−1 to It, the forward-backward er-
ror of point xt

i is formulated as the Euclidean distance from
xt
i to xt

i: λ
t
i = ∥xt

i − xt
i∥. Thus, the feature confidence of

proposal btj is stated as:

Λt
j = 1/

√
(1/N t

j

∑
xt
i∈btj

λt
i) (8)

If the point at−1
i calculated by tracking xt

i is inaccurate,
the backward-tracking point xt

i would be far away from the
original point xt

i, which leads to a large distance λt
i. In this

case, the confidences of the proposals containing point xt
i

are decreased.

3.5 Appearance-Geometry Fusion Model

To locate the obstacles, we re-score the proposals by a joint
model, i.e., appearance-geometry fusion model (AGFM),
that consists of two parts: The first appearance-geometry re-
gressor (AGR) distinguishes UO and obstacle which fully
uses the proposed features. The second appearance regres-
sor (AR) handles proposals affected by fast motion.

3.5.1 Model Structure

Our AGFM employs a random forest structure [7] to achieve
an accuracy-efficiency trade-off. In detail, the regressor
AGR = {fag

k |k = 1, ...,Kag} consists of Kag decision
trees, and each one contains several internal nodes and leaf
nodes. With the same structure, the regressor AR contains
Ka trees, and fa

k for each tree in AR. In the training phase,
the extracted proposals are taken as training samples. Each
internal node selects a feature and splits the samples into
two parts, each leaf node stores the mean label of propos-
als reaching on it during training. In the inference phase, by
inputting the proposals to root nodes of these trees, each pro-
posal is separated by internal nodes, and passed to the left or
right pathway until a leaf node is reached.

3.5.2 Training Data

For our AGFM, all the samples, i.e., the proposals {btj},
are predefined as (i) floor or (ii) background. The proposal
whose more than 40% pixels are occupied by floor or ob-
stacle is marked as floor, otherwise background. Similar to
[45], only the proposals of the floor are selected for training.
In terms of the features, as depicted in the last section, each
training sample of AGR is represented by the unified fea-
tures, that is, a sample btj corresponds to 19-dimensional fea-
ture vector vtj ∈ R19, as shown in Table 1. The detailed for-
mulation of each feature channel can be found in Appendix
D. In contrast to AGR, the sample of AR is represented by
the first 17 dimensions of vtj , i.e., denoted as v̄tj ∈ R17.
With the training samples mentioned above, AGR and AR
are trained to regress the Intersection over Union (IoU) be-
tween a proposal and obstacle segmentation.

3.5.3 Prediction

Following the inference process of decision tree [7], each
decision tree inputs the 19-dimensional feature vector vtj ,
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Fig. 5 Exampler images and pixel-level annotations taken from the proposed dataset. The floor is marked in yellow, and green for obstacle. The
images are zoomed in to clearly show these obstacles. The right-side image exhibits our platform, a Kobuki robot that provides the odometer data.
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Fig. 6 The illustration of weight-decayed probability generation. (a)
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without decayed weights. (c) proposed generation scheme.

and outputs the predicted IoU between proposal btj and ob-
stacle. The outputs of the two regressors are stated as:

AGR(btj) = 1/Kag
∑Kag

i=1
fag
i (vtj)

AR(btj) = 1/Ka
∑Ka

i=1
fa
i (v̄

t
j)

(9)

Since some objects move fast in the view of robot, the failed
optical flow tracking leads to a low feature confidence Λt

j .
Thus, confidence Λt

j indicates if an object moves fast in the
field view of robot. Based on this, the entire prediction is
formulated as follows:

F (btj) =

{
AGR(btj), if Λt

j < τgc

AR(btj), otherwise
(10)

where τgc represents the confidence threshold used to se-
lect between AR or AGR for scoring bounding boxes. The
geometry features express the difference between obstacle
and UO, which accordingly helps AGFM to limit the score
of the UO. Furthermore, since the appearance features are
independent of the fast motion, AR makes up for the inac-
curacy of AGR in fast motion.

3.5.4 Weight-decayed Scheme for Obstacle-occupied Map

After scoring all proposals by AGFM, the scores of top τb
proposals, i.e., {F (btj)|btj ∈ B̂}, are accumulated to con-

struct an obstacle-occupied probability map, where B̂ de-
notes the set of top τb proposals. However, the previous
methods [45,46] often obtain a large number of low-score
proposals in a similar location, even if using Non-Maximum
Suppression (NMS) to remove many low-score proposals.
This issue makes the probability map concentrates too much
on parts of obstacles, instead of whole obstacles.

To segment obstacles as completely as possible, we
propose a weight-decayed generation scheme for obstacle-
occupied probability map. In more detail, assuming that the
proposals covering a certain pixel p are sorted in descending
order of score, and the numerical order of the j-th proposal
is represented as rpj , each proposal has a weight that is an
reciprocal of order rpj . The obstacle-occupied probability of
pixel p is formulated as:

P (pixel(p)) =
1

NP

∑
btj∈B̂

1(p, btj)× F (btj)×
1

rpj
(11)

where pixel(p) denotes the coordinate of pixel p. 1
NP de-

notes the normalization term. 1(p, btj) is an indicator. If
p ∈ btj , then 1(p, btj) = 1. Otherwise, 1(p, btj) = 0. As
shown in Fig. 6 (b)(c), when pixel p is enclosed by pro-
posal btj , the proposal’s score F (btj) is added to this pixel.
Finally, each pixel in this map P indicates the probability to
be obstacle. By setting a parameter to segment the map into
a mask, the obstacle is eventually located by the segmented
mask. Since the low-score proposal has lower weight, the
proposed scheme avoids an extremely high response in parts
of obstacles caused by a large number of proposals with sim-
ilar locations, as shown in Fig. 6 (c).

4 Evaluation

4.1 Obstacle on Reflective Ground (ORG) Dataset

To evaluate the proposed method, a novel dataset for Obsta-
cle on Reflective Ground (ORG) is proposed, which consists
of 15 different indoor scenes and 42 types of obstacles, as
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Fig. 7 The pixel-level ROC of different methods. The performance
when FPR is 2% is used to compare with other methods in the instance-
level performance comparison, which is indicated by ⋆.

shown in Fig.5. The scenes of this dataset are mainly divided
into three types: high contrast floor, smooth floor, and blurry
floor. In these scenes, the ground of each scene has vary-
ing UOs to evaluate the robustness of the algorithm. Even,
low illumination, different patterned floor, and small obsta-
cle also appear in this dataset. In terms of the obstacle, the
obstacles with different sizes and materials are contained in
the dataset, which have low height and therefore fail to be
perceived by 2D LiDAR.

The ORG dataset contains 223 monocular video se-
quences in total. In each sequence, several additional in-
formation is provided, i.e., a set of pose information given
by the wheel odometer, the pixel-level annotation of the
ground and the obstacles. Each video contains about 10 to
20 frames annotated, and each object has a different cat-
egory ID. In terms of the dataset structure, the dataset is
split into a Train set (117 videos/1711 images) and a Test
set (106 videos/1709 images), each of which contains com-
pletely different scenes, As the platform shown in Fig. 5, the
monocular camera is fixed with a height of 60 cm from the
ground and features a focal length of 2.8 mm, a spatial res-
olution of 1920×1080, and a pixel size of 8 bit. The Kobuki
robot provides the wheel odometer for our method.

4.2 Metrics

To evaluate our method fairly, a pixel-level metric and an
instance-level metric are employed to quantitatively analyze
the performance of all methods, respectively.
Pixel-level Metric: Referring to other discovery methods
[45,36,37], we employ the Pixel-level Receiver-Operator-
Characteristic (ROC) curve that measures the True-Positive
Rate (TPR) under different False-Positive Rate (FPR):

TPR =
TP

GTobs
, FPR =

FP

GTground
(12)

Table 2 Instance-level results of all methods, The thresholds are set
according to FPR of 2%. Bold numbers indicate the 1-st results, and
underlined numbers for the 2-nd results.

Method ITPR↑ /% MIFP↓ TPR↑ /% FPR↓ /%
(Instance) (Instance) (Pixel) (Pixel)

FCN [40] 54.29 1.15 48.43 0.78
ENet [35] 51.43 55.22 64.88 0.96
BiSeNet [47] 64.85 5.37 76.98 4.33
DeepLab v3+ [4] 52.02 2.48 68.05 0.28

TOD [45] 61.72 3.46 47.00 2.01
AGR+AR 77.46 1.87 74.23 1.98

where TP denotes the number of obstacle pixels which are
correctly discovered, and FP corresponds to the number
of floor pixels which are predicted as obstacle. GTobs is
the total number of pixels inside the obstacle proposal, and
GTground is the total number of pixels labeled as the floor.
Instance-level Metric: Referring to [36,37], since the pixel-
level metric suffers from the bias toward object instances
that cover large areas in the images, we employ the instance-
level metric to evaluate our method, namely Instance-level
True-Positive Rate (ITPR) and Mean Instance-level False
Positives (MIFP). Inspired by [36,37], each consecutive area
in the generated segmentation is an instance. An obstacle in-
stance is marked correctly detected if more than 50% of the
pixels of the instance is obstacle. An instance is considered
as incorrectly detected if its overlap with the floor area is
larger than 50%. Based on these definitions, ITPR is defined
as the fraction of obstacle instances in the ground truth map
which are correctly detected. MIFP is defined as the mean
incorrectly detected instances per frame.

ITPR =
iTP

Nobs
, MIFP =

iFP

Nimg
(13)

where iTP denotes the total number of correctly detected
obstacles, and iFP corresponds to the total number of false-
positive instances. Nobs is the total number of obstacle in-
stances, and Nimg is the number of frames in the test set.

4.3 Experimental Setup

Several variants are compared to illustrate the effectiveness
of our method. AGR denotes the geometry-appearance fu-
sion regressor F ag , and AR denotes the appearance based
regressor F a. AGR+AR denotes our method that uses AR
to handle the proposal with fast moving. Note that the tree
numbers Ka and Kag are set to 50. In addition, τe is set to
0.8, τgc is set to 0.1, and τb is set to 50. When discovering
the obstacles in image It, q is set to ensure that the distance
the robot moves ∥∆C∥ is larger than 20 cm.

Furthermore, due to lacking the source code of obsta-
cle discovery methods [36,37,11], we cannot compare our
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Fig. 8 Qualitative results for obstacle discovery in the indoor environment. In the ground truth, the floor is marked in yellow, and green for the
obstacle. The images could be zoomed in to clearly observe these tiny obstacles. In the results, the true-positive pixel of obstacles are marked in
green, blue for false-negative pixels, and red for false-positive pixels.

method with them. To make a full comparison with the state-
of-the-art methods, we are inspired by the existing CNN-
based obstacle discovery methods [37,11,16,30,41], and
employ several classic semantic segmentation networks to
discover obstacles, namely FCN [40], ENet [35], BiSeNet
[47], and Deeplab v3+ [4]. For these networks, the param-
eters of the optimizer are set to the same as those proposed
in their papers. Note that ENet uses Adam [19] as the opti-
mizer, while other methods take stochastic gradient descent
(SGD) [20]. To adapt these networks to our hardware en-
vironment, we conduct several modifications when training
these networks. For clarity, ResNet-50 [13] is employed as
the backbone for Deeplab v3+. The batch sizes of FCN and
Deeplab v3+ are set to 6 and 4, respectively. During train-
ing, we randomly crop the image into a fixed size as in-
put. Specifically, the resolution for training FCN or ENet
is 960×540, a half resolution of the original image, while
BiSeNet and Deeplab v3+ take the crop size 1024×1024
and 513×513 respectively. For all the methods, we use full
resolution image as input during testing. All networks are
trained on two NVIDIA GeForce GTX 1080 Ti GPUs. In

addition, the base method, namely segmenting by detection
framework [45], is denoted as TOD in the experiment.

4.4 Result

4.4.1 Quantitative Result

Fig.7 depicts the pixel-level ROC of different methods. One
can see that AGR+AR outperforms TOD by a large mar-
gin. Especially, by jointly utilizing AGR and AR, the FPR
of our method is 0.85% when the TPR is 60%, a drop of
about 76.94% (from 3.69% to 0.85%) compared to TOD,
which proves the effectiveness of our method in avoiding the
mis-detection of the UOs. Besides, our method even outper-
forms ENet [35] and BiSeNet [47] and achieves a compar-
ative pixel-level performance to DeepLab v3+ [4] and FCN
[40]. Note that, since the proposed method segments obsta-
cles by the detection, most of the mis-detected pixels are in
a rectangular area that includes the irregular-shape obstacle.
More details can be found in the instance-level result and the
qualitative results.
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Fig. 9 The pixel-level ROC of models using different features.

Table 3 Instance-level results of models using different features. Bold
numbers indicate the 1st results, and underlined numbers for the 2nd

results. w/o means ’without’, HE for homography error, DA for devia-
tion angle.

Method ITPR↑ /% MIFP↓ TPR↑ /% FPR↓ /%
(Instance) (Instance) (Pixel) (Pixel)

AR 64.47 1.86 61.39 2.00
AGR w/o HE 76.46 2.07 66.92 2.00
AGR w/o DA 73.24 1.91 63.28 2.00
AGR 76.83 1.94 67.67 1.99
AGR+AR 77.46 1.87 74.23 1.98

Table 2 shows the instance-level results of different
methods. For TOD and our method, the ITPR, MIFP, and
TPR are determined by setting the FPR to 2%. Observably,
our method achieves 15.74% ITPR improvement over TOD
and obtains 1.59 fewer false detection instances per pic-
ture than TOD. Besides, ENet [35] performs poor at TPR,
ITPR, and MIFP. BiSeNet [47] obtains high TPR and ITPR
at the cost of poor FPR and MIFP. The reason is that the
lightweight spatial branch of BiSeNet [47] fails to suppress
the high-frequency visual information and instead retains it
as noise, while the context branch is unable to eliminate the
noise when fusing two branches’ features. As a result, more
false positives are generated in high-contrast areas, as ob-
served in Fig. 8. On the contrary, DeepLab v3+[4] and FCN
[40] achieve better FPR and MIFP but poor TPR and ITPR.
Compared to these CNN-based methods, although the FPR
of our method is not the lowest one, our method achieves
the best performance of ITPR, and the second-best perfor-
mance of MIFP. Thus, our method achieves a better trade-
off. Besides, this comparison also indicates that most of the
false-positive pixels of our model is adjacent to the pixels of
obstacle, not scattered to the area of UOs, which is consis-
tent with the visualization in Fig. 8. Thus, our method avoids
the wrong detection of UOs better than all others.
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Fig. 10 The visualized result of different variants. In the ground truth,
the floor is marked in yellow, and green for the obstacle. In the results,
the true-positive pixel of obstacles are marked in green, blue for false-
negative pixels, and red for false-positive pixels. The yellow dotted
boxes enclose the wrong prediction.

4.4.2 Qualitative Result

Fig.8 depicts the qualitative result of different methods in
indoor scenarios with different UO in the Test subset. Note
that, we take the obstacle segmentation of TOD and our
method by fixing the FPR to 2%, which is consistent with
the setting of Table 2. In the visualization of results, the
green pixels denote the true-positive pixels of obstacle, the
red pixels for the false-positive pixels, and the blue pixels
for the false-negative pixels. Besides, in the ground truth,
the green pixels and the yellow pixels indicate obstacle and
floor, respectively. The area near the obstacle is zoomed in
for clear observation.

The first column shows a bunch of data lines on a smooth
floor, where the reflection causes an extremely large color
difference. It can be seen that all other methods are con-
fused by the reflective door. The CNN-based segmentation
methods suffer from a lot of false-positive pixels, and TOD
is also degraded due to the wrong segmentation of the re-
flective door handle. Although our method generates a few
false positives nearby the obstacle, no false positive exists
in the area of UOs. The reason is that the proposed features
well represent the obstacle and the reflection. The second
column shows a guardrail base in the lobby. The floor re-
flects some fuzzy highlights due to its matte surface. FCN
wrongly takes the fake TV as the obstacle. ENet, BiSeNet,



Indoor Obstacle Discovery on Reflective Ground via Monocular Camera 11

Table 4 Instance-level results when using various τb in generating
probability map. The thresholds are set according to FPR of 2%. Bold
numbers indicate the 1-st results, and underlined numbers for the 2-nd
results.

Method ITPR↑ /% MIFP↓ TPR↑ /% FPR↓ /%
(Instance) (Instance) (Pixel) (Pixel)

Original [45] 76.23 2.46 65.52 2.00

Top 10 71.47 1.72 70.30 2.00
Top 50 77.46 1.87 74.23 1.98
Top 100 78.37 1.97 74.36 1.99
Top 200 78.00 2.05 73.10 1.99
Top 500 76.55 2.19 71.35 2.02

and TOD not only generate many false-positive pixels, but
also fail to segment the real obstacle. In contrast, our method
corrects the misclassification of TV and highlight reflection,
and segments the complete obstacle. The third column de-
picts a tube of hand cream and a pair of glasses on the floor
of the office building. Due to the extremely smooth surface,
the floor reflects all the scenes in the real world, making it
hard to distinguish the real obstacles. FCN and ENet fail
to discover the two obstacles. BiSeNet discovers one of the
obstacles, but suffer from the wrong classified pixels inside
the area of reflection. DeepLab v3+ successfully discovers
them all, but misses several obstacle pixels. TOD is unable
to distinguish the reflection and the real obstacle. Compared
to them, our method segments all the obstacles and avoids
false-positive pixels in the area of reflection. The fourth col-
umn shows a round stool on the ground with multiple tex-
tures. The four thin legs and the base of this stool can hardly
be captured by the LiDAR of the robot. The reflection is not
obvious, but the different texture obviously confuses all the
CNN-based methods. TOD performs poorly due to the inac-
curate segmentation of the obstacle, but our method avoids
all the problems. The fifth column shows two cellphones.
The floor is full of reflections and multiple textures. And the
dim illumination makes it harder to recognize the cellphones
on the ground. Intuitively, FCN, ENet, BiSeNet, and TOD
cannot discover all the cellphones, while failing to avoid the
false positives. DeepLab v3+ avoids the wrong classification
to the obstacle pixel, but is unable to discover the two obsta-
cles. By contrast, our method avoids the false positives, and
discovers the two cellphones. The last column shows a mop
leaning against the wall. Due to the similar appearance with
the ground, almost all the methods cannot discover it totally.
However, our method can capture this mop completely.

In general, it can be seen from all the above results that
our method successfully avoids the confusion brought by the
ground reflection, and discovers the obstacles better than
other methods. It is noteworthy that our method obtains a
few false-positive obstacle pixels in the rectangle region en-
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Fig. 11 The pixel-level ROC of variants with different numbers of top
proposals in generating the probability map.

closing the obstacle. The reason is that we segment the ob-
stacle by detection, the region proposal inevitably covers
these false-positive pixels. Fortunately, due to connection
with the obstacles, these few false-positive pixels do not af-
fect the robot navigation at all. Moreover, this observation
also exposits the highest ITPR and low MIFP mentioned in
the last subsection.

4.5 Analysis and Discussions

4.5.1 Effectiveness of appearance-geometry feature

In this paper, we propose a unified appearance-geometry
feature representation for bounding box proposals. The ef-
fectiveness of the proposed feature is evaluated in the com-
parisons in Fig. 9 and Table 3. Intuitively, AR only employs
the appearance features, and suffers from the low ITPR and
TPR. The reason is that the lack of geometry feature leads
to a reduced ability to distinguish obstacles from UOs. By
additionally using the homography error (HE), the TPR is
further improved by 1.89%, and 8.77% for ITPR. By addi-
tionally using the deviation angle (DA), the TPR is further
improved by 5.53%, and 11.99% for ITPR. The two results
demonstrate the effectiveness of homography error and de-
viation angle, respectively. By jointly using the two features,
the improvement of TPR is 6.28% (comparing AGR and
AR), and that of ITPR for 12.36%. Besides, the model using
AGR and AR, namely the proposed model, achieves the best
performance, 6.56% TPR higher than the second-best result,
and 0.63% ITPR higher than the second best result. The rea-
son is that, by using AR to avoid the misclassification of
proposals with low confidence, the proposed model better
utilizes the appearance-geometry feature representation.

Fig. 10 shows the visualized results of the mentioned
variants. The first column shows a wired mouse on the re-
flective ground with extreme illumination change. Due to
the insufficient expression of feature to reflection, AR, AGR
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Fig. 12 The pixel-level and instance-level results of variants with dif-
ferent distance threshold when determining q. We select the results
when FPR is fixed to 2%.

w/o DA, and AGR w/o HE wrongly segment the reflection.
AGR performs better than the prior variants, and AGR+AR
has the best result. The second column shows a watch and
a wallet on the floor of the mall. The size of the watch is
small, which makes almost all the variants fail to capture
it. AGR+AR not only segments the watch, but also avoids
the false positives on the floor. The third column depicts a
mouse on the ground with complex reflection. AR is com-
pletely incapable of avoiding false detection of reflection.
AGRs with only HE or DA also cannot completely avoid
false detection. AGR and AGR+AR perform well in this
scene.

4.5.2 Different settings of weighted-decay probability map

In this paper, the weighted-decay probability generation
scheme is proposed to avoid that the final segmentation con-
centrates too much on parts of obstacles. To validate its ef-
fectiveness, the original generation scheme in [45,46] is em-
ployed to compare with the proposed method. It firstly uses
NMS to remove redundant proposals, then accumulates the
top 50% proposals to generate the probability map. Besides,
we take five number of top proposals in the generation pro-
cess to find the best parameter.

Fig. 11 and Table 4 show the results when using dif-
ferent parameters in generating the probability map. Firstly,
by comparing the original generation method and the pro-
posed one, it can be seen that our method fully outperforms
the original generation method. Secondly, as the number of
top proposals increases, the pixel-level accuracy first im-
proves and then decreases, and the instance-level accuracy
follows the same way. Intuitively, top 50, top 100, and top
200 achieve better performances than others. Eventually, we
consider that the optimal number of top proposals is 50,
which is brought by two reasons:

– It performs best when FPR ranges from 0% to 2%, which
makes our model obtains fewer wrong segmentation pix-
els.
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Fig. 13 The pixel-level and instance-level results of variants with dif-
ferent τgc. We select the results when FPR is fixed to 2%.

– Although its instance-level accuracy is slightly poorer
than top 100 and top 200, it obtains fewer false-positive
instances.

4.5.3 Different settings of distance threshold

In our method, the parameter q, which represents the frame
interval of two consecutive images, is set to ensure that the
distance the robot moves is larger than a certain distance
threshold. Fig. 12 displays the pixel-level and instance-level
results of the model with different distance thresholds. The
results illustrate that the TPR and ITPR decrease signifi-
cantly when the threshold is lower than 20 or larger than
100. The reason is that excessive movement would result in
a large change in the camera view. Furthermore, there are no
significant changes in accuracy when the threshold ranges
from 20 to 100, and the model that uses a threshold of 20
achieves the best TPR and the third best ITPR.

4.5.4 Different settings of confidence threshold τgc

The variable τgc represents the confidence threshold used to
select between AR or AGR for scoring bounding boxes. Fig.
13 illustrates the pixel-level ROC curve and instance-level
results obtained by varying τgc from 0.04 to 0.20. Notably,
setting τgc to 0.1 yields the highest ITPR, lowest MIFP, and
third-highest TPR. Furthermore, when τgc is set below 0.08,
TPR and ITPR decrease significantly due to insufficient us-
age of AGR, and when τgc exceeds 0.12, TPR and ITPR
continue to decrease due to the limited representation abil-
ity of the low-confidence geometry feature.

4.5.5 Robustness to motion blur noise

In actual application, when the robot moves on the ground,
the mounted camera is inevitably impacted by the fast mo-
tion and the violent shaking. In these cases, the long ex-
posure time of the camera causes the blurred image, which
presents the obstacle discovery method with challenges. To
verify the robustness of our method to the motion blur, the
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Fig. 14 The visualized results of variants adding different levels of the motion blur. In the results, the true-positive pixel of obstacles are marked
in green, blue for false-negative pixels, and red for false-positive pixels.
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Fig. 15 The pixel-level ROC of variants impacted by different level of
motion blur.

random motion blurring scheme [16] is employed to intro-
duce the noise in the testing phase, which uses the point
spread function [17] to simulate the motion blur of image.
More specifically, we utilize a blurring filter with k×k size
and θ∗ direction to blur the image before being fed into our
method, where k determines the intensity of motion blur.
According to the resolution of the proposed dataset and our
experience, most of the blur kernels are within 15 pixels in
size. Thus, the kernel size used for the testing is 11, 15, and
19 pixels, and the blur direction ranges from 0◦ to ±180◦

randomly. Note that, our model is trained on the image with-
out blurring.

Fig. 15 and Table 5 illustrate the result of our method
affected by the motion blur. Intuitively, when the size of the
blurring filter is 11×11, the pixel-level accuracy is barely af-
fected, and the instance-level accuracy is reduced by 8.62%.
The reason is that several small obstacles are smaller than
the blurring kernel, and thus their visual information is lost.
The failure to discover these extremely tiny obstacles has a
small impact on pixel-level accuracy, but has a great impact
on instance-level accuracy. When the size of the blurring fil-

Table 5 Instance-level result of models impacted by different levels
of motion blur. The thresholds are set according to FPR of 2%. Bold
numbers indicate the 1-st results, and underlined numbers for the 2-nd
results.

Kernel size for
motion blur

ITPR↑ /% MIFP↓ TPR↑ /% FPR↓ /%
(Instance) (Instance) (Pixel) (Pixel)

k = 0 77.46 1.87 74.23 1.98
k = 11 68.84 1.97 74.37 1.99
k = 15 64.04 1.97 70.81 2.01
k = 19 57.32 1.85 67.21 2.00

ter is enlarged to 15× 15, both the instance-level and pixel-
level accuracy are further reduced by around 4%. When the
intensity of blurring is maximized, the accuracy is further
reduced. The above comparison proves that although our
method suffers from the noise given by motion blur, the ac-
curacy is still comparable to other methods, which proves
the robustness of our method.

Fig.14 shows three scenes blurred by different kernels.
The first row depicts a wireless mouse. It can be seen that,
since it is close to our robot, this mouse can be discovered
well in all intensities of motion blur. The second row shows
a pair of glasses, it is farther from the robot than the mouse
in the first row. Observably, even if some false-positive pix-
els are generated when using 19 × 19 kernel, the pair of
glasses can be completely segmented. The last row shows a
pad, which is far from the robot. Intuitively, the visual in-
formation is largely blurred. Our method still successfully
discover this obstacle.

4.5.6 Robustness to robot motion noise

Since our method exploits the robot motion to figure the mo-
tion of the mounted camera, theoretically, the accuracy of
the robot motion determines the performance of our method.
Hence, we add the noise of different intensities on the robot
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Table 6 Instance-level results when adding noise to the robot motion. The thresholds are set according to FPR of 2%.

Variants Translation Noise Rotation Noise ITPR↑ /% MIFP↓ TPR↑ /% FPR↓ /%
(Instance) (Instance) (Pixel) (Pixel)

1 - - 77.46 1.87 74.23 1.98
2 [−5%, 0] ∪ [0, 5%] - 77.69 1.89 74.44 2.02
3 [−10%,−5%] ∪ [5%, 10%] - 77.01 1.88 74.06 1.99
4 - [−0.007,−0.003] ∪ [0.003, 0.007] 77.51 1.87 74.17 2.01
5 - [−0.011,−0.007] ∪ [0.007, 0.011] 77.46 1.86 74.26 2.00
6 - [−0.016,−0.011] ∪ [0.011, 0.016] 77.10 1.85 73.42 2.00
7 [−5%, 0] ∪ [0, 5%] [−0.011,−0.007] ∪ [0.007, 0.011] 77.41 1.87 73.99 2.00
8 [−10%,−5%] ∪ [5%, 10%] [−0.016,−0.011] ∪ [0.011, 0.016] 76.64 1.85 73.43 2.01
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Fig. 16 The pixel-level ROC when adding different levels of the mo-
tion noise.

motion to validate the robustness of our method. In more
detail, the robot motion can be decomposed into translation
and rotation. Assuming that the time difference between the
wheel odometer and the camera is less than 10 ms, the robot
moves at a speed of 200 mm per second, and the maxi-
mum angular velocity is 90 degrees per second, the maxi-
mum angular error caused by the unsynchronized sensor is
90◦/s × 0.01s = 0.9◦ ≈ 0.016rad. Hence, we add the
random noise of two intensities on the translation of robot,
i.e., [−5%, 0] ∪ [0, 5%] and [−10%,−5%] ∪ [5%, 10%].
In addition, we add the noise of three intensities on the
rotation of robot, i.e., [−0.007,−0.003] ∪ [0.003, 0.007],
[−0.011,−0.007] ∪ [0.007, 0.011], and [−0.016,−0.011] ∪
[0.011, 0.016]. Finally, we add the maximum translation
noise and rotation noise on the motion of the robot.

Table 6 and Fig.16 show the effect of noise on the perfor-
mance, and Fig. 17 presents the TPR in a three-dimensional
coordinate system. Observably, as the noise added to the
translation increases from 0 to 10%, both TPR and ITPR
decrease slightly. Similarly, the TPR is also slightly down
when rotation noise is lower than 0.011. The performance
degradation is so insignificant that our model is barely af-
fected. Finally, when both types of noises are increased si-
multaneously, with magnitudes greater than 5% and 0.011,
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2 1
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Fig. 17 Pixel-level true-positive rate (TPR) of models disturbed by
translation and rotation noise. The gray strength and the height of the
points indicate the TPR of the variants.

respectively, both TPR and ITPR experience a more se-
vere drop although the ITPR is only reduced by as much
as 0.82% and 0.81% for the pixel-level accuracy. Overall,
we infer that the confidence interval for translation noise is
[−5%, 5%], and the confidence interval for rotation noise is
[−0.011, 0.011].

4.5.7 Inference time analysis

Our method is implemented in MATLAB and runs on a PC
with 16GB memory and an AMD Ryzen 2700 CPU. The
current implemented version of our method fails to run in
real-time with an input resolution of 1920 × 1080. But we
believe that the proposed method can achieve real-time per-
formance in the C++ implementation with parallel comput-
ing. The inference time of each component is shown in Table
7. Specifically, our method consists of five parts, edge de-
tection, proposal extraction, feature extraction, AGFM, and
obstacle occupied map generation.

The first two parts employ the original occlusion edge
detection [31] and object-level proposal [28], which account
for the majority of time consumption. In the third part, the
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Table 7 Inference time of our method and the basic methods.

Modules Time of basic method Basic method Time

Edge Detection 3.411 s [31] 3.411 s
Proposal Extraction 2.826 s [28] 2.826 s
Feature Extraction 2.339 s [45] 3.507 s
AGFM 0.053 s [7] 0.058 s
Probability Map 0.007 s [45] 0.016 s

ALL 8.636 s - 9.818 s

extraction of appearance features takes 2.339 seconds, while
the extraction of geometry features takes 1.168 seconds. Fi-
nally, the random forest and obstacle occupied probability
map generation take 0.058 seconds and 0.016 seconds, re-
spectively. In summary, the first three parts take up most of
the overall time cost, namely, 9.744 seconds, while the basic
algorithms [31,28,45] is the core factor.

In principle, the proposed features can be calculated us-
ing integral images and can be computed in parallel with
a time complexity of O(n), while part appearance features
that cannot be computed using integral images have a time
complexity of O(nl), where n denotes the number of pro-
posal and l for pixel number of a proposal. Therefore, we
infer that the reason for the current slower speed is the lack
of optimized compilation processes and parallel computing.

5 Conclusion and Future Work

In this paper, a novel method is proposed to discover the ob-
stacles on the reflective ground. To construct the feature rep-
resentation that reveals the difference between obstacles and
UOs, we first propose a ground detection scheme with pre-
calibration, and introduce the ground-pixel parallax to rep-
resent the location of an occlusion edge point relative to the
ground. Subsequently, by aggregating the parallax and the
appearance cue, we propose a unified appearance-geometry
feature representation for object bounding box proposal.
Then, an appearance-geometry fusion model is proposed
to locate the obstacle, meanwhile, avoids concentrating too
much on parts of obstacles. Finally, a novel ORG dataset is
proposed to evaluate our method, which is the first dataset
focusing on the obstacle discovery on reflective ground.

This paper specializes in the problem of discovering ob-
stacle on reflective ground. In the future, we are going to ex-
tend our method to address more challenges, such as small
obstacle discovery, mirror obstacle discovery, and dynamic
obstacle discovery, by a unified discovery framework. In this
unified framework, monocular depth prediction [38,2,44]
and dynamic objects tracking [50,51] will be combined to
further safeguard robot navigation. Additionally, to acceler-
ate the running speed, we will adopt deep feature extraction
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Fig. 18 The ground-pixel parallax in two-view geometry.

and region proposal methods in future work, and implement
parallel computation of features using C++.
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The code of the MATLAB implementation and datasets gen-
erated during the current study are available in the GitHub
repository, https://github.com/XuefengBUPT/
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Appendix

A Principle of Ground-pixel Parallax

In this section, we state the correctness of Equation 4 in the
main manuscript, and prove that this equation determines
the relationship between an observed point and the ground.

First of all, we give the proof of Equation 4 in the main
manuscript. Supposing It and It−1 denote two consecutive
images from robot’s view, π denotes the ground plane, and
et, et−1 denote the epipoles on the two images, which re-
spectively are two intersection points of the two images and
a line, i.e., the line connecting two camera optical centers,
as the yellow points in Fig.18. xt

i = {ut
i, v

t
i , 1} denotes an

occlusion edge points of image It in its homogeneous form,
and it is also the 2D projection of a 3D point X ′ on im-
age It. A ray emitted from It’s optical center, denoted as l⃗,
penetrates X ′ and xt

i, and intersects the ground π at a 3D
point X . In addition, with the representation of the main

https://github.com/XuefengBUPT/IndoorObstacleDiscovery-RG
https://github.com/XuefengBUPT/IndoorObstacleDiscovery-RG
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RGB Non-Reflection ReflectionConfidence RGBNon-Reflection Reflection

Fig. 19 Example results of the single frame reflection removal algorithm [8] and the multi-frame reflection removal algorithm [33] on multiple
training scenes.

manuscript, the geometric and appearance corresponding
points are denoted as gt−1

i and at−1
i . According to Epipo-

lar Constraints, the 3D line l⃗ can be projected to image It−1

to form a projected 2D line, denoted as
−−−−−→
gt−1
i et−1. Since the

3D point X ′ is on the 3D line l⃗, its projection on image It−1,

namely at−1
i , is on the projected 2D line

−−−−−→
gt−1
i et−1. Hence,

these 2D points at−1
i , gt−1

i , and et−1 are collinear. Based on
this, 2D point at−1

i can be stated as:

at−1
i = gt−1

i + ρ(gt−1
i − et−1) (14)

where ρ is a scalar. This equation can be reformulated as
Equation 4 in the main manuscript.

Then, we discuss the reason that Equation 4 in the main
manuscript can be used to distinguish the points above the
ground and below the ground. Noteworthily, since gt−1

i

uniquely represents the projection of 3D ground point X ,
gt−1
i can be considered as the dividing point, and all points

on both sides of this 2D line are partitioned into two spaces,
above the ground and below the ground, as shown in Fig.18.
Hence, the space of point xt

i can be determined by compar-
ing at−1

i and gt−1
i .

B Feasibility of Reflection Removal Methods

In scenes of reflection ground, it is intuitive to incorpo-
rate reflection removal approaches into the feature extraction
part. Therefore, we employ the state-of-the-art single frame
reflection removal algorithm [8] (ICCV 2021) and multi-
frame reflection removal algorithm [33] (ECCV 2022), both
of which have publicly available code. Their results on our
dataset are visualized in Fig. 19. Note that since the real-
world interfaces the reconstruction of multi-frame-based
methods, we only conduct the reflection removal in the bot-
tom half of the image, i.e., in the ground area.

Observably, both reflection removal methods are inef-
fective in removing reflections in our benchmark scenarios.
In fact, they even damage the information of obstacles that
needed to be detected. The single-frame-based method [8]
produced confidence maps that failed to highlight the reflec-
tion, and the non-reflection images were almost identical to
the original RGB images. Despite being free from the inter-
face of the real world, the multi-frame-based method [33]
still fails to eliminate reflections. The reason is that both al-
gorithms require strong textures of main object for adequate
reconstruction, but the ground texture is too weak to be per-
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Table 8 Formulation of each feature representing a bounding box.

Category Feature of bounding box Formulation index

Edge cue

Max edge response max ({xt
i|xt

i ∈ b}) 1
Proportion of most response 1/Nt

j

∑
xt

i
∈b

(
xt
i = argmaxr

∑
xt

i
∈b [x

t
i = r]

)
2

Average edge response 1/Nt
j

∑
xt

i
∈b x

t
i 3

Average edge response in inner ring 1/N̂t
j

∑
xt

i
∈b̌ x

t
i , where b̌ = (u+ w/4, v + h/4,w/2, h/2) 4

Pseudo distance

Normalized area (w × h) / (W × H) 5
Aspect ratio of box w/h 6
X coordinate of the box center u+ w/2 7
Y coordinate of the box center v + h/2 8
Width of box w 9
Height of box h 10

Objectness Occlusion-based objectness score Referring to [28] 11

Color

Color standard deviation in the H channel

√
1/hw

∑
p∈b

(
H (p)− 1/hw

∑
p∈b H (p)

)2
12

Color standard deviation in the S channel

√
1/hw

∑
p∈b

(
S (p)− 1/hw

∑
p∈b S (p)

)2
13

Color standard deviation in the V channel

√
1/hw

∑
p∈b

(
V (p)− 1/hw

∑
p∈b V (p)

)2
14

Color contrast in the H channel 1− histH
b
·histH

b̂

∥histH
b
∥2∥histH

b̂
∥2

, where b̂ = (u− w/4, v − h/4, 2w, 2h) 15

Color contrast in the S channel 1− histS
b
·histS

b̂

∥histS
b
∥2∥histS

b̂
∥2

, where b̂ = (u− w/4, v − h/4, 2w, 2h) 16

Color contrast in the V channel 1− histV
b
·histV

b̂

∥histV
b
∥2∥histV

b̂
∥2

, where b̂ = (u− w/4, v − h/4, 2w, 2h) 17

Parallax Homography error Referring to Sec. 3.4 18
Deviation angle Referring to Sec. 3.4 19

RGBD data captured by Kinect v1 RGBD data captured by RealSense D455

Fig. 20 RGBD data captured by Kinect v1 and Realsense D455.

ceived. In contrast, the reflection has a stronger texture than
ground, making it appear as the main object. Overall, exist-
ing reflection removal algorithms cannot be directly used in
the scene with reflective ground, and even damage obstacle
information.

C Feasibility of Depth Sensors

In recent years, multi-modal sensors have been increasingly
popular in autonomous driving. Thus, we evaluate the us-

ability of radar or depth cameras in reflective ground envi-
ronments. To this end, we collect depth data of several re-
flective scenes by two classical sensors, i.e., the structured
light camera (Kinect v1, released in 2010, priced at $150),
the stereo camera (RealSense D455, released in 2019, priced
at $249). The exemplar RGBD data is visualized in Fig. 20.
Intuitively, the depth data obtained by these cameras in re-
flective environments is of such low quality that it cannot
be applied in reflective scenes. Specifically, the structured
light camera generates many void areas on the ground plane,
while the stereo camera matches corresponding pixels erro-
neously between the cameras and results in completely in-
correct depth data. Clearly, both types of cameras are unsuit-
able for reflective ground scenes.

Furthermore, we conduct capability tests of laser sen-
sor using a single-beam 360-degree LiDAR, which is illus-
trated in Fig. 21. The results illustrate that the single-beam
LiDAR is not affected by reflections in all angles, which
means that 3D LiDAR can obtain reliable depth informa-
tion in reflective scenes. Unfortunately, although 3D LiDAR
almost avoid the issue brought by reflective ground, it is too
expensive to be deployed on a robot compared other depth
sensor.



18 Feng Xue et al.

Single-beam LiDAR
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Reflective ground
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(a) (b)

Fig. 21 Capability tests of laser sensor. (a) Side view of scanning
ground with a single-beam LiDAR. (b) Laser scan obtained in different
angle.

D Detailed Formulation of Feature Vector

To clearly represent the feature used in this paper, Table 8
shows the formulation of each feature channel. Note that,
according to Sec. 3.4, btj denotes the j-th bounding boxes
in the t-th image, and its feature vector is denoted as vtj ,
which consists 19 channels grouped into five categories. To
simplify the notation, we use b to represent the bounding
box btj , specified by its top-left pixel coordinates (u, v) and
its width and height (w, h). In Table 8, the notation b̌ refers
to the inner ring of the bounding box b, while b̂ represents
the outer ring.

In the 2-nd channel, the notation [.] represents an indi-
cator function that outputs 1 if the input is correct and 0
otherwise. In the 5-th channel, (W,H) denotes the width
and height of the input image. For the 12-th - 17-th chan-
nels, the variables H, S , and V correspond to the input im-
age’s HSV channels, and H (p) denotes the p-th pixel in
the channel H. Note that, the color contrast formulation in-
volves the normalized histogram of box b’s H channel, rep-
resented as histHb , which is discretized into 18 bins denoted
by {hH

k , k ∈ [1, 18]}, where k ranges from 1 to 18. The
value of hH

k is obtained as the sum over all pixels p in box b

such that hH
k =

∑
p∈b

[⌊
H(p)
360/18

⌋
= k

]
. Additionally, simi-

lar histograms histSb , histVb , histH
b̂

, histS
b̂

, histV
b̂

are com-
puted in the same way.
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