
International Journal of Computer Vision (2024) 132:1219–1241
https://doi.org/10.1007/s11263-023-01926-3

Skeleton Ground Truth Extraction: Methodology, Annotation Tool and
Benchmarks

Cong Yang1 · Bipin Indurkhya2 · John See3 · Bo Gao4 · Yan Ke4 · Zeyd Boukhers5 · Zhenyu Yang6 ·
Marcin Grzegorzek7

Received: 23 June 2022 / Accepted: 8 October 2023 / Published online: 1 November 2023
© The Author(s) 2023

Abstract
Skeleton Ground Truth (GT) is critical to the success of supervised skeleton extraction methods, especially with the popularity
of deep learning techniques. Furthermore,we see skeletonGTs used not only for training skeleton detectorswithConvolutional
Neural Networks (CNN), but also for evaluating skeleton-related pruning and matching algorithms. However, most existing
shape and image datasets suffer from the lack of skeleton GT and inconsistency of GT standards. As a result, it is difficult
to evaluate and reproduce CNN-based skeleton detectors and algorithms on a fair basis. In this paper, we present a heuristic
strategy for object skeleton GT extraction in binary shapes and natural images. Our strategy is built on an extended theory of
diagnosticity hypothesis, which enables encoding human-in-the-loop GT extraction based on clues from the target’s context,
simplicity, and completeness. Using this strategy, we developed a tool, SkeView, to generate skeleton GT of 17 existing shape
and image datasets. The GTs are then structurally evaluated with representative methods to build viable baselines for fair
comparisons. Experiments demonstrate that GTs generated by our strategy yield promising quality with respect to standard
consistency, and also provide a balance between simplicity and completeness.

1 Introduction

Skeleton Ground Truth (GT) is critical to the success of
supervised skeleton extraction in binary shapes (Panichev
et al., 2019) and natural images (Wang et al., 2019) (here-
after referred to as “shape" and “image", respectively, see
Fig. 1a, b). A number of modern skeleton detectors, i.e.
AdaLSN (Liu et al., 2021) and SkeletonNetV2 (Nathan and
Kansal, 2021), are based on Convolutional Neural Networks
(CNN), which are trained using skeleton GTs from image
and shape datasets, respectively. Moreover, skeleton GT is
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important to facilitate skeleton-related algorithms such as
pruning (Bai et al., 2007), matching (Bai and Latecki, 2008),
and classification (Bai et al., 2009). In addition to skeletoniza-
tion with morphological and geometrical operations (Giesen
et al., 2009; Ge and Fitzpatrick, 1996; Jalba et al., 2015; Liu
et al., 2011; Telea and Wijk, 2002; Zhang and Suen, 1984),
skeleton GT extraction should also meet the eye-level view
assumption (Firestone and Scholl, 2014) of skeleton sim-
plicity and completeness in different domains. For clarity
in terminology, commonly used skeleton components (Bai
and Latecki, 2008; Bai et al., 2007; Cornea et al., 2007) and
expressions (Shen et al., 2013) are defined (see Fig. 1c, d):

• Endpoint: a skeleton point with only one adjacent point.
• Junction point: a skeleton point with three or more adja-
cent points.

• Connection point: a skeleton point that is neither an end-
point nor a junction point.

• Skeleton branch: a sequence of connection points within
two directly connected skeleton points.

• Skeleton simplicity: higher skeleton simplicity means
simpler skeleton structure, e.g. minimal number of
branches.
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• Skeleton completeness: higher completeness means a
finer-grained representation of object features, e.g. small
branches correlated to shape boundary perturbations.

As presented in Fig. 2, the requirement of complexity is
different in real-world applications (Saha et al., 2016). For
instance, in the scenario of farmland ridge detection for agri-
cultural robot navigation, the ridge skeletons are relatively
simple and close to curves). Differently, plant root skele-
tons are primarily complex, thereby preserving root hair and
other details. To properly encode such requirement, skeleton
GT extraction is normally addressed by a human-in-the-loop
fashion (Ilke et al., 2019). Particularly, an optimal skeleton
GT requires a trade-off between its simplicity and complete-
ness. Thus, following the convention in (Bai et al., 2007;
Firestone and Scholl, 2014; Lowet et al., 2018; Shen et
al., 2013; Yang et al., 2016), skeleton GT is a satisfaction
of the branch simplicity between domain requirements and
human perception. An intuitive explanation of such trade-
off is that a skeleton GT should satisfy the requirement of
simplicity in various domains, while including a proper num-
ber of desirable branches (aka. completeness) to preserve
object geometrical features. Otherwise, for instance, a skele-
ton with over-detailed branches could lead to a higher cost
on computation and an occurrence of over-fitting problems
on matching (Bai and Latecki, 2008). However, one crucial
limitation in existing skeleton GTs lies in the lack of clarity
and inconsistency of standards.

Lack of clarity: Skeleton GTs of most existing shape
datasets are unclear. As presented in Table 1, only two
(SkelNetOn (Ilke et al., 2019) and WH-SYMMAX (Shen
et al., 2016b)) of thirteen actively used shape datasets have
publicly available skeleton GTs, though SkelNetOn is only
accessible to the registered participates of the SkelNetOn
Challenge (Ilke et al., 2019). For image datasets, skeleton
GTs are semi-automatically extracted by object segmenta-
tion and skeletonization approaches (Durix et al., 2019; Shen
et al., 2011). However, it is unclear whether humans have a
similar and stable perception on simplicity and completeness,
especially under different contexts from object foreground,
background and shape. Context usually refers to the source
of contextual associations to be exploited by the visual sys-
tem (Oliva andTorralba, 2007).Anaturalwayof representing
the context of an object is in terms of its relationship to
other objects. In our case, object context is defined as an
object’s foreground, background, and shape, which are pri-
marily associated with the object skeleton. Theoretically,
shape is part of the information in the foreground, while we
can easily extract shape by binarizing and filling an object’s
foreground. Here, we denote shape as an independent context
since ten datasets contain only shapes without foreground
(see Table 1). In short, there are two uncertainties: (1) it is
unclear whether humans have a similar and stable percep-

tion of skeleton simplicity and completeness, and (2) it is
unclear whether such a perception could be influenced by
object foreground and background. Such uncertainties were
not structurally studied in existing literature. They can have
a tremendous impact on training CNN-based skeleton detec-
tors, making it difficult to compare different skeleton-related
algorithms.

Inconsistency of standards: We observe glaring inconsis-
tencies among various existingGTs: (1) GT skeletons among
existing shape datasets are not always the same. For example,
in Fig. 3a, the main skeleton branches are shortened whereas
some spurious skeleton branches remain in the mouth, neck
and hind leg regions. In contrast, in another dataset shown
in Fig. 3b, only the main branches (not shortened ones) are
preserved. (2) GT skeletons from existing image datasets are
not consistent. We can clearly see that the GT skeletons in
Fig. 3d are in discrete segments, rather than a single con-
nected medial-axis as in Fig. 3c. Skeleton GT in Fig. 3e is
not accurate. (3) GT skeletons of the shape and the image
datasets are not always consistent (Fig. 3b, c). Although the
main skeleton branches are preserved in both horses, skele-
ton branches in (c) are shortened. Typically, the shortening of
branchesmay cause blurring between the branches of signifi-
cant visual parts and branches resulting from noise (Bai et al.,
2007). To sum up, the standards on GT structure (simplicity,
completeness, connectivities to branch and boundary) are not
consistent. As a result, evaluating skeleton-related pruning,
matching and classification approaches with inconsistent GT
is an ill-posed problem.

In this paper, we introduce an annotation tool, SkeView,
for skeleton GT extraction in image and shape datasets. To
do so, we first report an empirical study of human perception
on skeleton structure based on the theory of diagnosticity
hypothesis (Tversky, 1977). Diagnosticity hypothesis aims
to capture the effect of context on target similarity from
the perspective of human perception. In our case, explor-
ing human perception on skeleton structure by varying the
object context (foreground, background, and shape), time,
and participants. Based on these studies, we introduce a gen-
eral strategy for extracting skeleton GT in image and shape
datasets. Our proposed strategy is able to encode human-in-
the-loopGTextraction based on clues from the target context,
simplicity and completeness. Using this strategy, SkeView is
designed and developed to generate skeleton GTs for exist-
ing datasets including those in Table 1. Our generated GTs
have consistent standards, and properly represent the object
geometrical and topological features. These aspects provide
a reliable benchmark for assessment. Thus, we can system-
atically evaluate representative methods using our GTs on
skeleton detectors and skeleton-based algorithms, and gen-
erate viable baselines for the community.

It should be emphasized that introducing a new skele-
tonization method is not the focus of this paper, though
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Fig. 1 Definition of skeletons and components in a higher level: a in binary shape, b in natural image, c endpoints (orange) and junction points
(green), d skeleton branches with different colours (Color figure online)

(a) (b) (c)

Fig. 2 Object skeletons (from simple to complex) in various applications: a farmland ridge detection for agricultural robot navigation (Li and Qu,
2018; Shokouh et al., 2021), b character recognition (Bag et al., 2011; Zhang et al., 2015), and c plant analysis (Bucksch, 2014; Sharma et al., 2021)

Table 1 Comparison of skeleton GT in actively used shape and image datasets

Dataset Type Size GT Dataset Type Size GT

Animal2000 (Bai et al., 2009) Shape 2000 × ArticulatedShapes (Ling and Jacobs, 2007) Shape 40 ×
SkelNetOn (Ilke et al., 2019) Shape 1725

√
Kimia99 (Sebastian et al., 2004) Shape 99 ×

Kimia216 (Sebastian et al., 2004) Shape 216 × MPEG7 (Latecki et al., 2000) Shape 1400 ×
MPEG400 (Yang et al., 2014) Shape 400 × SwedishLeaves (Söderkvist, 2001) Shape 1125 ×
Tari56 (Asian and Tari, 2005) Shape 56 × Tetrapod120 (Yang et al., 2016) Shape 120 ×
SK506 (Shen et al., 2016a) Image 506

√
SK1491 (Shen et al., 2017) Image 1491

√
SYMMAX300 (Tsogkas and Kokkinos, 2012) Image 300

√
SymPASCAL (Ke et al., 2017) Image 1435

√
EM200 (Yang et al., 2014) S&I 200 × SmithsonianLeaves (Ling and Jacobs, 2007) S&I 343 ×
WH-SYMMAX (Shen et al., 2016b) S&I 328

√
Our S&I All

√

S&I: Shape and Image.
√

(Yes) and × (No) denote whether skeleton GT of the full dataset is public available. The size column detail the number
of images in each dataset

SkeViewcanbe extended for this purpose. This is because our
proposed strategy is applied semi-automatically, and there-
fore is not suitable for real-time (or quasi real-time) skeleton
extraction in various applications. Moreover, desirable prop-
erties of skeletons have been well-defined (in 2D at least) via
Blum Transform (Blum, 1967), discontinuities of the Dis-
tance Transform (Ge and Fitzpatrick, 1996), and many other
equivalent definitions from Ogniewicz and Ilg (1992), Telea
and Wijk (2002), Latecki et al. (2000), Bai et al. (2007)

and Cornea et al. (2007), etc. Therefore, in this paper, we
underscore the suitability of SkeView for training and test-
ing data extraction of skeleton GTs, especially in this era of
deep learning. Moreover, skeletons and GTs can be defined
in general on a higher level, while it is not possible to find a
general definition on a lower level, particularly towards var-
ious applications. This is because different applications may
have different requirements on skeleton properties (e.g., 2D,
3D, and simplicity). Thus, we also underscore the generaliza-
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(a) SkelNetOn-Pixels (b) Kimia216 (c) WH-SYMMAX (d) SYMMAX300* (e) SK506

Fig. 3 Skeleton GTs in shape (SkeNetOn (Ilke et al., 2019) and
Kimia216 (Sebastian et al., 2004)) and image (WH-SYMMAX (Shen
et al., 2016b), SYMMAX300 (Tsogkas and Kokkinos, 2012) and

SK506 (Shen et al., 2016a)) datasets. �: since there is no public available
GT for Kimia216, we take the optimal pruning result of a horse shape
presented in Bai et al. (2007) for comparison

tion of our GTs (see Sect. 4.2) to specific vision tasks in the
original datasets, such as skeleton detector training, skeleton
matching and shape retrieval, etc.

Succinctly, the main contribution is that we introduce a
general strategy to extract skeleton GTs in shape and image
datasets. Our strategy meaningfully considers human per-
ception on skeleton simplicity and completeness to adopt
various requirements for real-world applications. We present
a tool, SkeView, which utilises the proposed methodology to
generate skeletonGTs in image and shape datasets. This con-
tributes towards facilitating practical applications and proper
benchmarking in future. We also generate skeleton GTs for
17 actively used datasets in Table 1 to build new baselines
on a consistent and standardizedmanner. Our comprehensive
evaluation demonstrates the efficacy of SkeView, highlight-
ing the need for a new perspective for CNN-based skeleton
detectors to become practically relevant and feasible.

2 RelatedWorks

We present here a brief overview of several existing meth-
ods that were proposed for extracting skeleton GTs. For a
more thorough treatment on skeletonization methods, com-
pilations by Saha et al. (2016), Tagliasacchi et al. (2016) and
Liu et al. (2011) offer sufficiently good reviews.

2.1 GT in Shape Datasets

Figure 4 presents existing approaches that could be applied
for skeleton GT extraction in shape datasets. As men-
tioned in Sect. 1, these methods are normally applied semi-
automatically to meet human perception on complexity.
Otherwise, the extractedGTs are too simple or contain redun-
dant small branches. For instance, Bai et al. (2007) requires
a stop parameter k to control the simplicity of skeleton struc-
tures. If k is fixed without manual calibration, redundant
small branches are not removed completely in simple shapes,
e.g. the GT in Fig. 4a with a fixed k = 30. In contrast, the GT

in Fig. 4b is extracted based on an optimized k in SkeView.
We can clearly see that it is more perception friendly in terms
of balancing the skeleton simplicity and completeness.

In contrast to semi-automatic approaches, purely manual
GT extraction is conducted with more user interaction, typi-
cally using a variety of tools. As shown in Fig. 4c, Firestone
and Scholl (2014) developed an application for a touch-
sensitive tablet computer to display single closed geometric
shapes, thereby collecting touch data from the participants.
Each participate could tap on the displayed shapes anywhere
they wished. The collection of their tapped locations pro-
vide a global representation of the crowd-sourced perception
of major skeletons (aka. GTs). Instead of generating skele-
tons from scratch, Yang et al. (2016) generated a set of
GT candidates with different complexity, and then applied
a voting scheme based on questionnaires. Each participant
was provided with three candidates in a questionnaire, and
was asked to select the most promising one, or to draw a
new one. Though both these manual approaches can cap-
ture crowd-sourced perceptions on skeleton complexity in
a proper manner, they are not efficient enough for datasets
with a massive number of shapes. Unlike the purely manual
approaches, our proposed strategy is more efficient as it gen-
erates GT via SkeView semi-automatically and in parallel.

2.2 GT in Image Datasets

In practice, GTs in image datasets are extracted semi-
automatically via two steps: segmentation and skeletoni-
sation. The segmentation step is mostly applied manually.
For instance, in the SYMMAX300 (Tsogkas and Kokkinos,
2012) dataset, each image was accompanied by 5-7 human
segmentations. Thus, multiple binary objects can be obtained
for the followed skeletonisation and integration. Although
purelymanual segmentation can properly ensure the integrity
of objects while reducing boundary noises, it is not efficient
enough to be applied in practice, particularly preparing mas-
sive skeleton GTs for training scenarios. In terms of the
skeletonisation step, some existing shape skeleton extrac-
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(a) (b) (c)

Fig. 4 Skeleton GT extraction in shape dataset: a automatically with a fixed pruning power (Bai et al., 2007). b semi-automatically with a manual
optimized pruning power in SkeView. c Purely manual via shape tapping (Firestone and Scholl, 2014)

tion approaches (Bai et al., 2007; Shen et al., 2011; Telea
andWijk, 2002) are applied semi-automatically on the shape
of segmented objects. As shown in Fig. 3, these skeleton
extraction approaches have different preferences on skele-
ton geometry and topology. Moreover, it is not clear whether
humans have a similar and stable perception of skeleton com-
plexity under different contexts. As a result, skeleton GTs
in the existing image datasets are not very consistent (see
Fig. 3c, d, e).

In contrast, our proposed method is better in terms of
efficiency and consistency. Specifically, our strategy is more
general and standardized, as it is built on a structural study of
human perception on skeleton GT. Besides, SkeView has an
easy-to-use user interface, and a set of convenient functions
to improve the efficiency of GT extraction in both shapes and
images.

3 Methodology

Here, we first present a study of human perception of
skeleton structure based on the theory of diagnosticity
hypothesis (Tversky, 1977). Based on these observations, we
introduce a strategy for skeleton GT extraction in the shape
and the image datasets.

3.1 Diagnosticity Hypothesis

The diagnosticity hypothesis is a classic framework to
explore the relation between similarity and context (or group-
ing) in the domain of cognitive science (Skov and Sherman,
1986). Specifically, the diagnosticity hypothesis implies that
the change in context, induced by the substitution of an odd
element, will change the similarities in a predictable man-
ner. An example is shown in Fig. 5: consider two sets of four
countries, which differ in only one of their elements (p and q).
The four countries of each set were presented to participants,
who were instructed to select the country most similar to
Austria (a). Note that this experiment was done in the 1970s,
so one has to remember the political map of Europe at that

Set1

Set2

(a) Austria

(b) Sweden
49%

(p) Poland
15%

(c) Hungary
36%

(a) Austria

(b) Sweden
14%

(q) Norway
26%

(c) Hungary
60%

Fig. 5 An example of diagnosticity hypothesis (Tversky, 1977). The
percentage of participants who selected each country (as most similar
to Austria) is presented below the name

time. The final statistical results are shown in percentages.
It is interesting to observe that the selection results in Set 1
and Set 2 are different (Austria (a) is grouped with Sweden
(b) in Set 1, and with Hungary (c) in Set 2) by changing only
one element (p to q), though both (p) and (q) are not the
final results. The diagnosticity hypothesis example in Fig. 5
demonstrates that human perception of selection (a country
most similar to Austria) could be influenced by a change of
context (from Poland to Norway). In our case, human per-
ception of selection (a branch to prune) could be affected by
the shift in object contexts, such as shape, foreground, and
background.

Accordingly, our study was conducted by evaluating the
robustness of human perception on skeletons spatially and
temporally. In other words, (1) perception of an object skele-
ton in the context of object shape, segmented foreground
and full image, (2) perception of an object skeleton in dif-
ferent time slots, and (3) perception of an object skeleton by
different volunteers. Thus, our study is an extension of diag-
nosticity hypothesis: verifying whether a skeleton GT could
be robust for different people, at different times, and in differ-
ent contexts. Due to the limitations of face-to-face surveying
during the global pandemic (Fanelli and Piazza, 2020), we
developed a phone application (APP) to collect perceptions
from different participants, as presented in Fig. 6. Our APP
contained four major components: a counter showing pro-
cessed/remaining images (top right), a setting panel for the
boundary, colour and transparency (top left), a selection area
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Fig. 6 Interfaces of our APP for skeleton selection (best viewed in color)

for the skeletons (middle), and buttons for page navigation
and submission (bottom). In total, 90 volunteers (45 females,
45 males) participated in the study (January toMarch, 2021),
most of whom were students and teachers from Northeast
Normal University (NENU), China.

We randomly selected 30 images from the existing
datasets in Table 1, and applied manual segmentation and
semi-automatic skeletonization with the method introduced
in Bai et al. (2007). For some images with complex back-
grounds, we intentionally generate two segmented samples, a
promising one and a noisy one, for comparison.Wegenerated
six skeleton candidates for each shape with different levels of
complexity, resulting in a total of 40×6 skeletons. To reduce
the influence of context from different formats, we organized
our volunteers into three groups (30 in each group) and pre-
sented object shapes, foregrounds and full images to each
group independently. To facilitate the study (see Table 2),
we repeated the survey every two weeks so that the effect of
context memorisation could be reduced. For each trial, the
skeleton format was changed in each group so that the three
formats could be fully surveyed from all groups. We also
conducted an additional survey seven weeks later, using the
format of the first survey, to measure the stability of results
with respect to time passing.

For quantitative analysis, the number of endpoints (more
branches implies more endpoints) is used in our study.
It should be noted that skeleton simplicity (see Eq. 5 in

Sect. 4.2.4) can also be used for the quantitative analysis. Par-
ticularly, it has higher discriminative power than the number
of endpoints. Here, we employed the number of endpoints in
Table 2 for two reasons: (1) The differences between man-
ually voted skeletons from Shape, Object, and Image are
distinct, e.g., 378, 326, and 314, respectively. Thus, end-
point statistics are already enough to tell the difference at
the coarse-grained level. (2) It is easier to count and visu-
ally recheck, particularly in our user study scenario using
the questionnaire in APP. Based on the statistics shown in
Table 2, we found that the number of endpoints in shapes,
foregrounds and full images (“shape", “object", “image") are
within [373, 380], [322, 330] and [314, 320], respectively. In
other words, each group has a rather consistent perception on
skeleton structure, with differences of only about 2%. How-
ever, as shown in Fig. 7, individual perception are varied,
ranging from 365 to 385 for shapes, 323 to 338 for objects
and 310 to 332 for images. For instance, ID 27 prefers con-
cise skeletons while the perception of IDs 11 and 28 are
erratic. We believe the idea of group integration (Tsogkas
and Kokkinos, 2012; Yang et al., 2016) produces a more con-
sistent performance than the individual scheme in (Ke et al.,
2017; Shen et al., 2016b, a, 2017). As the endpoint numbers
on January 21 and March 04 were almost the same, we can
assume that the human perception of skeleton structure is sta-
ble over time. Considering themean values of shape (377) vs.
object (326), we find that the foreground context has a con-
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Table 2 Statistics of total
endpoint numbers from the most
voted skeletons

Date Group1 Group2 Group3

Shape Object Image Shape Object Image Shape Object Image

Jan 21 378 – – – 330 – – – 315

Feb 04 – 326 – – – 320 380 – –

Feb 18 – – 314 373 – – – 322 –

Mar 04 378 – – – 330 – – – 315

Fig. 7 Comparison of each
participant in Group2. The
participant IDs are shown on the
horizontal axis (1–30) (best
viewed in color)

siderable influence on human perception, with about 13.5%
reduction from shape to object formats. However, the differ-
ence between object (326) and image (316) is less obvious,
with only about 3.1% reduction.

To better understand these results, the most voted skele-
tons of a sheep image are presented in Fig. 8a, together with
its two segmentations (noisy (b) and good (d)) and their cor-
responding shapes. We intentionally eliminated the fore- and
background of the object in (c) and (e) to reduce their context
influence. The only difference is that Shape 1 contains noises
in the top-left region (head and neck). We find that skeletons
in (a), (b) and (d) are almost the same. This is understandable
as illusions from the background and the boundary noise can
be easily filtered by human inspection.However, as presented
in (c) and (e), most volunteers tended to use more skeleton
branches to fill their perceptual gaps on shapes (where there
is less context information). In cognitive science, the percep-
tual gap (Teichmann et al., 2021) refers to cognitive biases
from information gaps, such as occlusion (internal and exter-
nal) and misunderstanding, etc. In our case, a perceptual gap
occurs since it is difficult to identify the original object (a
sheep or something else) from the noisy shape in (c). As a
result, volunteers tend to use more skeleton branches to fill
their perceptual gaps in this shape. For instance, it is difficult
to identify the original object of Shape 1 in Fig. 8c, particu-
larly at the head and neck regions. As a result, the skeleton in
Shape (c) is erroneously more extensive than the ones in (b),
(d) and (e). Overall, our observations can be summarized as
follows:

• O1: Perception is robust to the time and volunteer groups.

• O2: Perception is robust to segmented objects and
images.

• O3: Perception of shapes is not robust and is easily influ-
enced by deformations from noises and occlusion.

• O4: People tend to use more skeleton branches when
there exist perceptual gaps on shapes, and vice versa.

These four observations are used to design the strategy
and Graphical User Interface (GUI) of the annotation tool
for extracting the skeleton GT in the image and the shape
datasets.

3.2 Strategy

Given an image I, let M and ̂M denote a segmented object
and its shape, respectively. Let the final GT skeleton be S. In
brief, our GT extraction strategy is composed by two steps:
preprocessing and pruning. The preprocessing step includes
target object segmentation (for image datasets) and initial GT
extraction in a coarse level. Then, a heuristic pruning process
is conducted semi-automatically based on the above obser-
vations (O1-O4) and the human perception on simplicity and
completeness.

Such coarse-to-fine strategy can inherently improve the
efficiency of GT extraction, as most time-consuming opera-
tions are automatically applied in the first step. Specifically,
based on the segmented ̂M (Fig. 9b, c) with He et al. (2017),
the skeletonization approach Shen et al. (2013) is employed
for extracting the initial skeleton. This process effectively
reduces the workload of the manual pruning that follows, as
most of the redundant branches are removed in the initial
skeleton. To bring more flexibility, we intentionally preserve
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Fig. 8 Most selected skeletons of a sheep in the full image, two segmentations, and the correlated shapes, using our APP (best viewed in color)

…

…
(a) Image (b) Segmented Object (c) Shape

(e) Pruning(d) Candidates

(f) GT

Manual Selection Manual Pruning

Fig. 9 Pipeline of our proposed skeleton GT generation strategy in the image scenario. p(·) and f (·) denote the satisfaction of human perception
and shape reconstruction error, respectively (best viewed in color)

more branches than the optimal ones from the automatic
approach to generate a set of candidates with different lev-
els of complexity (Fig. 9d). S′ denotes the selected initial
skeleton from the candidates.

The second step of skeleton pruning is a heuristic and a
semi-automatic process to identify the skeleton GT: that is,
maximizing the (human) perceptual simplicitywhile keeping
the skeleton as much complete as possible. For simplic-
ity, Fig. 9d, e depicts how the skeletons appear during the
selection and the pruning processes. This is motivated by
our observations in O2 and O3. For completeness, inspired
by Shen et al. (2013), we introduce a shape reconstruction
error to represent the skeleton completeness: that is, keep-
ing the reconstruction error of S to ̂M as small as possible
(Fig. 9e). Then, the skeleton GT S is extracted by:

Simage = max(p(min( f (S′, ̂M)),M)) . (1)

where p(·) and f (·), respectively, represent the (human) per-
ceptual satisfaction and the shape reconstruction error. Thus,
Eq. 1 is a semi-automatic annotation method as the vari-
able f (·) is computed automatically and p(·) is determined
by a human during manual pruning (i.e. manual selection
of branch candidates for pruning). That is, calculating f (·)
to inspire a human on trading-off the skeleton simplicity
(domain requirement) and completeness ( f (·) value). As a

result, p(·) and f (·), respectively, are inherently maximized
and minimized.

The rational behind Eq. 1 is that, as O4 suggests, peo-
ple intend to use fewer branches (simple skeleton) on I and
M. This applies the diagnosticity hypothesis, whereby fac-
tors from other contexts (i.e. the reconstruction error) could
potentially influence human perception. In practice, p(·) is
maximized by dynamically selecting and pruning branches
based on the eye-level view assumption of skeleton simplic-
ity, and hints from the reconstruction error f (S′, ̂M):

f (S′, ̂M) = |�(̂M) − �(R(S′))|
�(̂M)

. (2)

where �(·) denotes the area in terms of pixels, R(S′) is the
shape reconstructed from S′:

R(S′) =
⋃

s∈S′
B(s, r(s)) . (3)

where r(s) is the radius of the maximal disc B(s, r(s)) cen-
tered at a point s ∈ S′. In practice, r(s) is approximated
with the values of the distance transform at s. Motivated by
the observation in O1, we suggest to conduct observations
according to Eq. 1 by at least three participants, and heuris-
tically take Simage to be the one with the maximum votes
(when 2 skeletons are the same) or median reconstruction
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error (when 3 skeletons are different). To promote the effi-
ciency of the human-in-the-loop approach, we introduce a
new tool, SkeView, in Sect. 4 with various functions for seg-
mentation, initialization, pruning, and integration.

For the shape scenario, as presented in Fig. 10, our strategy
is similar to the workflow from Fig. 9c–f. As there is no M
displayed below the skeletons, only shape contour and the
skeleton are fused in the illustration in Fig. 10c. Thus, shape
skeleton GT is generated by:

Sshape = max(p(min( f (S′, ̂M)), ̂M)) . (4)

where p(·) and f (·) are same to Eq. 1. An intuitive example
is presented in Fig. 11. We can clearly observe the changes
in simplicity (SS) and reconstruction error (RE) during the
pruning process. With the hints from RE and SS, most vol-
unteers tend to select the third one (marked by the rectangle)
since it strikes the best balance, being structurally complete
and relatively simple. As shown in Figs. 9f and10d, skeleton
GT generated by our strategies are perception-friendly, while
at the same time properly balancing the skeleton simplicity
and the shape reconstruction error.

4 Annotation Tool and Ground Truth

In this section, we first introduce the design of an annotation
tool, SkeView, based on our proposed strategy. Then, using
SkeView, we generate GTs for the 17 existing datasets shown
in Table 1.

4.1 SkeView

To facilitate the strategies in Eq. 1 and 4, we developed a tool,
SkeView, for extracting skeleton GTs in shape and image
datasets. The user interface contains five major panels (see
Fig. 12):
(a) Source. SkeView supports five source data types includ-
ing shape, image, object (segmented foreground) and skele-
ton (only for pruning-related operations).
(b) Operations. This includes image segmentation (only
available for the “Image" format), initial skeleton genera-
tion/selection, and dynamic skeleton branch pruning. For
instance, there are two modes to address segmentation: man-
ual and semi-automatic. If themanual mode is selected, users
can dynamically plot a polygon to crop the region-of-interest.
Otherwise, a Mask RCNN model (He et al., 2017), pre-
trained with COCO dataset (Lin et al., 2014), is loaded to
extract the initial segmentation masks. Then, the selected
mask is transformed into a polygon by uniformly insert-
ing interactive plots along the mask boundary. This way,
each interactive plot can be manually moved to optimize the
shape of the mask. For images with multiple objects (i.e.

SYMMAX300 (Tsogkas and Kokkinos, 2012) and SymPA-
SCAL (Ke et al., 2017)), users can flexibly add and remove
targets via buttons.

For initial skeleton extraction, the automaticmode Shen et
al. (2013) is selected by default. According to the proposed
strategy in Sect. 3.2, we intentionally added slightly more
branches in the initial skeleton to provide more flexibility in
the following pruning step. SkeView also allows users to gen-
erate initial skeleton semi-automatically using the discrete
curve evolution (DCE) method Bai et al. (2007) by varying
the stop parameter k. Either way, users can coarsely add (or
remove) skeleton branches by simply clicking on the “+"
(or “-") buttons until the generated skeleton is satisfactory.
SkeView preserves all branches in each step of the skeleton
evolution from complex to simple in Shen et al. (2013) and
Bai et al. (2007). This operation is functionally similar to the
skeleton selection process in Fig. 9d. Finally, as presented
in Fig. 12e, users can finely prune redundant branches by
selecting a target branch (marked in yellow) and clicking the
“Prune" button (or the “Delete" key).
(c) Exports. Each export format is a structure with mul-
tiple elements: “Skeleton" (skeleton binary matrix, list of
endpoints and junction points), “Object" (segmented fore-
ground, shape and boundary matrices) and “Thumb" (pure
skeleton and preview images, as shown in (e)). SkeView also
preserves the pruning parameters and the correlated skeletons
for future domain mapping and learning.
(d) Reconstruction error. In this panel, current and his-
toric reconstruction errors (Eq. 2) of each target are displayed
during skeleton initialization and pruning. To facilitate com-
parison between the current and the previously pruned
skeleton, the current reconstruction error is presented in bold
font at the top right corner, and also plotted dynamically (as
blue points) on the graph. Moreover, users can easily click
a point to load the previous pruning result for visualization
and reconsideration.
(e) Preview and branch selection. Users can preview
images, segmented objects and initial skeletons in this panel.
Similar to the APP in Fig. 6, the background transparency,
skeleton colour and boundary visibility can be adjusted here.
During the fine-grained pruning process, users can select
multiple branches by clicking on the target while pressing
the “Shift" key.

Tsogkas (2016) have introduced a tool with a user
interface for annotating skeletons bymanually drawing poly-
lines. Besides being less efficient due to its purely manual
operation, it also cannot ensure the symmetry of poly-lines
according the 2D object contour. SkeView is advantageous
in both these aspects. As SkeView is developed for individ-
ual users, we also provide a tool for skeleton integration and
selection fromagroup of users (Fig. 12 (bottom left)). As pre-
sented in Fig. 13, skeletons frommultiple users are presented
together for final determination of the acceptable annotation.
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Fig. 10 Pipeline of our
proposed skeleton GT
generation strategy in the image
scenario. Best viewed in color

(a) Shape

(b) Candidates (c) Pruning

(d) GT

Manual Selection

Manual Pruning

Fig. 11 The changes in simplicity (SS) and reconstruction error (RE) during the pruning

Fig. 12 User interface of SkeView. a Data and format selection. b Operations including segmentation, initial skeleton generation and pruning. c
Result format and exporting. d Reconstruction error and log. e Preview of image, object, shape and their skeletons
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Fig. 13 User interface of the integration function

The tool can automatically count the duplicated skeletons
(“Hints") and calculate reconstruction error (“Error"). By
default, the final skeleton is automatically selected according
to themaximum“Hints" andmedian “Error". For groupswith
fewer than three volunteers, SkeView integrates branches
from the candidates to extract a new skeleton candidate.
To evaluate the efficiency, we compare SkeView with the
method in Shen et al. (2016a) on SK506 dataset. Our statis-
tics show that the time cost per image is reduced from
86.4 to 27.2 s. This suggests that SkeView is suitable for
medium-scale datasets which are mostly those listed in
Table 1.

For large-scale datasets (e.g. more than 10,000 shapes),
an efficient way is to generate initial skeletons using the
SkeView semi-automatic method with big pruning power
(e.g. k = 50). The pruning process is conducted via online
labelling tools (such as LabelMe (Russell et al., 2008)) by
drawing bounding boxes on the endpoints that are intended
to preserve. The pruned skeleton is generated by mapping
skeleton paths between the preserved endpoints to a zero
matrix. Comparedwith the branch-based pruning in Fig. 12c,
the box-based pruning only offers a slight consideration
of the context arising from dense endpoints. However, it
is more efficient for the purpose of group collaboration
with its range of rich online annotation tools (Dasiopoulou
et al., 2011). SkeView is developed with Matlab R2015b
with GUIDE for user interface. The toolbox SkeView is
compiled into executable applications in both Windows
and Linux. We will be making SkeView (including source
codes) publicly available to the developers and the research
community.

4.2 Ground Truth

To ensure the quality of annotation, each GT was gener-
ated by four participants (two males and two females) from
NENU. To meet different requirements in image and shape
datasets, imageGTs included segmented foregrounds, binary
shapes, skeletons, lists of endpoints and junction points.
Shape GTs included skeletons, and the list of endpoints
and junction points. All skeleton branches in our GTs are
one pixel wide, and are connected to shape boundaries: this
meets the quality requirements of most skeleton extraction
and matching algorithms. Users can intentionally dilate and
dilute a GT skeleton point depending on algorithms (Atienza
et al., 2019; Wang et al., 2019). In practice, there are two
strategies to ensure the application requirements onGT prop-
erties:

• Annotation documents: written by domain experts, detail
the annotation and quality requirements, including anno-
tation examples and corner cases.

• Annotation training: annotators (volunteers in our case)
study the annotation documents, followed by a trial-
checking process using some samples.

Built on that, annotators not only follow their perception of
skeleton simplicity and reconstruction error, but also consider
the requirements of different domains. Besides, such strate-
gies can ensure the quality and consistency of GTs. In our
case, the extracted shape skeletons on the existing ten datasets
are general enough for CNN-based skeleton detector training
and skeleton matching. This is because these datasets were
typically collected for the shape retrieval scenario. In terms
of the four image datasets, the datasets are used for general
object detection and analysis. Thus, our GTs not only respect
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their original setting and domain requirements, but also have
better quality, clarity, and consistency.

4.2.1 Image Datasets

Figures 14 and 15 present comparisons between the orig-
inal GTs and our GTs generated by SkeView among four
image datasets:
SK506 Shen et al. (2016a) (also known as SK-SMALL) was
selected from the MS COCO Lin et al. (2014) dataset, with
506 natural images (300 for training and 206 for testing)
and 16 object classes including humans, animals and arti-
facts. For each image, there is only one target for the skeleton
GT generation. Due to inaccurate segmentation and unstable
individual perception, the quality of the original GT is not
promising. For instance, as shown inFig. 14 (top),weobserve
the following issues: shortened branches of the elephant, the
asymmetric branches in the airplane, an overly-simplified
skeleton for the bird, and noisy branches in the hydrant. In
contrast, GTs generated by SkeView are better in terms of
various qualitative properties: consistency, perception friend-
liness, and the representation of object geometrical features.
SK1491 Shen et al. (2017) (also known as SK-LARGE) is an
extension of the SK506 by selecting more images from the
MSCOCOdataset. It includes 1,491 images (746 for training
and 745 for testing). Similar to SK506, there is one target for
each image and the GT skeletons are annotated in the same
way.
SYMMAX300 Tsogkas and Kokkinos (2012) is adapted
from the Berkeley Segmentation Dataset (BSDS300) (Mar-
tin et al., 2001) with 300 images (200 for training and 100
for testing). There are multiple targets in most images. This
dataset is used for local reflection symmetry detection, which
is a low-level image feature, without paying attention to
the concept of ‘object’. While most branches are discon-
nected and the original GTs do not encode information about
the connectivity of skeleton branches. Hence, it is ill-suited
to evaluate object skeleton extraction methods as a large
number of symmetries occur in non-object parts (see the
bear, rhinoceros and lion images in Fig. 15 (top)). For this,
we regenerated GTs only on target objects, as it was more
meaningful to use object symmetry (foreground) instead of
whole-image symmetry. As suggested in Tsogkas (2016), we
ignore images without specific target objects.
SymPASCAL (Ke et al., 2017) was selected from the
PASCAL-VOC dataset (Everingham et al., 2010), with 1,435
images (648 for training and 787 for testing). Most images
contain multiple targets, partial visibility and complex back-
grounds. However, there are still noisy symmetries from
the background, incomplete skeleton graph and shortened
skeleton branches. In contrast, GTs from SkeView focus
only on the foregrounds, maintaining the same quality as
with the other three image datasets. In Fig. 15, we clearly

observe that our GTs in SYMMAX300 and SymPASCAL
have the same quality as SK506, and skeleton branches for
each object are well-connected. Such features can ensure a
reliable evaluation on both skeleton extraction and matching
algorithms (Bai and Latecki, 2008).

It should be noted that our annotation mainly captures the
2D contours, and partly loses the 3D symmetry awareness for
some objects in images. However, our labelling is superior to
the original GTs of the four image datasets, especially con-
sidering the consistency standards, branch connectivity and
distinguished graphs. As a result, our GTs are more appli-
cable for training and testing CNN-based skeleton detectors,
as well as benchmarking skeleton-related pruning, matching
and classification algorithms. In the future, we plan to update
SkeView for 3D object and symmetry annotation (Tagliasac-
chi et al., 2016) based on our strategy.

4.2.2 Image and Shape Datasets

There are three datasets with both images and corresponding
foreground shapes (Fig. 16). For this, we extracted initial
skeletons using shapes and applied pruning using images in
SkeView.

EM200 Yang et al. (2014) contains 200 microscopic images
(10 classes) of environmental microorganisms (EM). There
are two types of segmented foregrounds provided by the orig-
inal dataset: those generated manually or semi-automatically
with the methods introduced in Li et al. (2013). This dataset
is challenging on colourless, transparent and spindly regions
(flagellum). To ensure the quality of GTs, we employed the
manual approach for initial skeleton generation. Then an effi-
cient pruning in SkeView can best protect skeleton branches
in those spindly regions for fine-grained EM matching and
classification.

SmithsonianLeaves Ling and Jacobs (2007) contains 343
leaves (187 for training and 156 for testing) from 93 differ-
ent species of plants. Each leaf was photographed on a plain
background. K-means clustering was employed to estimate
the foreground based on colour, followed by morphological
operations to fill in small holes. Thus, this dataset is relatively
less challenging with respect to occlusion and complex back-
grounds, but has richer geometrical characteristics. Our GTs
can be used by botanists to compute leaf similarity in the
digital archives of the specimen types.

WH-SYMMAX Shen et al. (2016b) contains 328 cropped
images (228 for training and 100 for testing) from the Weiz-
mann Horse dataset (Borenstein and Ullman, 2002). Each
image contains one manually segmented target. The origi-
nal skeleton annotations are not only inconsistent concerning
completeness across different horse shapes but also contain
shortened branches. On the other hand, our GTs yield better
quality with respect to consistency and completeness.
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Fig. 14 Comparison of the
original (yellow) GTs with the
ones generated with our
SkeView (red) in SK506 (Shen
et al., 2016a) and SK1491 (Shen
et al., 2017) datasets (Color
figure online)

Fig. 15 Comparison of the original (yellow) GTs with the ones generated with our SkeView (red) in SYMMAX300 (Tsogkas and Kokkinos, 2012)
(top two rows) and SymPASCAL (Ke et al., 2017) (bottom two rows) (Color figure online)
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Fig. 16 From left to right,
skeleton GT of EM200 (Yang et
al., 2014), Smithsonian
Leaves (Ling and Jacobs, 2007)
and WH-SYMMAX (Shen et
al., 2016b) generated by
SkeView (Color figure online)

(a) (f)(c) (d) (h)(b) (g)(e) )i( )j(

Fig. 17 Skeleton GTs of a Animal2000 (Bai et al., 2009), b Articu-
latedShapes (Ling and Jacobs, 2007), c SkelNetOn (Ilke et al., 2019),
d Kimia99 (Sebastian et al., 2004), e MPEG7 (Latecki et al., 2000), f

Kimia216 (Sebastian et al., 2004), g MPEG400 (Yang et al., 2014), h
Tetrapod120 (Yang et al., 2016), i SwedishLeaves (Söderkvist, 2001),
j Tari56 (Asian and Tari, 2005) datasets generated by SkeView

4.2.3 Shape Datasets

Figure 17 presents samples of ten shape datasets and their
GTs generated by SkeView:

Animal2000 Bai et al. (2009) contains 2,000 shapes (20 cat-
egories, 100 shapes each) ranging from poultry and domestic
pets to insects and wild animals. Each class is characterised
by large intra-class shape variations. Due to occlusion, some
parts of certain objects (e.g. legs) are missing. There are also
holes and boundary noises in some shapes due to incorrectly
segmented foregrounds and backgrounds. This dataset is
actively used in shape matching, classification and skeleton-
based shape retrieval. As the shape category can be easily
identified by human perception, critical parts of an object
(e.g. legs, head, tentacles) are all preserved by the skeleton
branches of our GTs.

ArticulatedShapes Ling and Jacobs (2007) contains 40
images from eight different objects. This challenging dataset
consists of various tools including scissors with holes. To
preserve the original topology, our GTs at such regions are
closed branches (Fig. 17b (top)). Most existing matching

algorithms (Bai and Latecki, 2008) cannot properly deal with
skeleton graph structures with cycles, however we could pro-
vide skeleton GTs after filling the holes (Fig. 17b (bottom)).

SkelNetOn Ilke et al. (2019) contains 1,725 shapes (1,218 for
training, 241 for validation and 266 for testing) represented
as pixels. All shapes are of high quality with the holes and
isolated pixels having removed by morphological operations
(dilation and erosion) and manual adjustments. However,
skeleton branches in this dataset are shortened and suffer
from imbalance in simplicity, i.e. the original GTs in some
shapes are extremely simple while others are overly com-
plex. As such, it is difficult to conduct a fair comparison on
skeleton-related algorithms such as extraction and matching.
Moreover, this dataset is available only to registered partic-
ipants in the SkelNetOn Challenge (Ilke et al., 2019). Our
GTs are only for the purpose of skeleton quality analysis as
shown in Table 3.

Kimia99 Sebastian et al. (2004) contains 99 shapes (9 cate-
gories, 11 shapes each) assembled from a variety of sources
such as tools and hands, etc. Challenges in each category
come from occlusion, and articulation of missing parts. To
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Table 3 Mean reconstruction error (RE) and skeleton simplicity (SS) of our GTs. Skeletons from the automatic approaches DCE (Bai et al., 2007)
(fixed k = 10), AutoSke (Shen et al., 2013) and Grafting (Yang et al., 2020) are also detailed for reference

SK1491 EM200 Kimia216 MPEG7 Animal2000 SkelNetOn

RE SS RE SS RE SS RE SS RE SS RE SS

DCE 0.90 0.09 0.90 0.07 0.81 0.09 0.92 0.08 0.86 0.09 0.87 0.07

AutoSke 0.89 0.08 0.91 0.15 0.82 0.11 0.92 0.11 0.86 0.09 0.85 0.09

Grafting 0.89 0.07 0.90 0.13 0.82 0.11 0.92 0.11 0.86 0.08 0.85 0.09

GTs 0.88 0.05 0.90 0.07 0.81 0.08 0.92 0.08 0.85 0.07 0.82 0.07

In each dataset, the lowest RE (towards complete skeleton structure) and the highest SS (towards simple skeleton structure) values are in boldface.

avoid topology violation of shapes, branches of extrinsic
regions (e.g. Figure 17d (top)) are preserved in GTs.

MPEG7 Latecki et al. (2000) contains 1,400 (70 categories,
20 shapes each) shapes definedby their outer closed contours.
It poses challenges with respect to deformation (e.g. change
of view points and non-rigid object motion) and noises (e.g.
quantisation and segmentation noise). This dataset is actively
used for benchmarking shape representation, matching and
retrieval algorithms (Yang et al., 2016, 2020). Similar to
Kimia99, our GTs respect the topology of original shapes
and properly preserve the challenges posed in each category.

Kimia216 Sebastian et al. (2004) contains 216 shapes
(18 categories, 12 shapes each) selected from the MPEG7
dataset. It is actively used in skeleton extraction, pruning,
matching and shape retrieval scenarios. Our GTs in this
dataset form a subset of MPEG7.

MPEG400 Yang et al. (2014) contains 400 shapes selected
from the MPEG7 dataset (20 categories, 20 shapes each).
Instead of directly using the original shapes, boundary noises
of these shapes were manually removed for ablation study.
Thus, our GTs are slightly different from the corresponding
ones in the MPEG7 dataset.

Tetrapod120Yang et al. (2016) contains 120 tetrapod animal
shapes from six classes. As shapes of some species are visu-
ally similar, this dataset is normally employed to evaluate
shape matching and fine-grained classification algorithms.
An advantage of SkeView is that branches of major regions
are preserved. However, our GTs are not recommended for
evaluating fine-grained classification algorithms as some ani-
mal species can only be distinguished via branches in small
regions (e.g. floppy vs. pointy ears).

SwedishLeaves Söderkvist (2001) contains 1125 leaf shapes
from 15 different Swedish tree species, with 75 leaves per
species (25 for training, 50 for testing). This dataset is chal-
lenging as some species are quite similar. Past works (Ling
and Jacobs, 2007; Söderkvist, 2001) have shown that it is not
possible to distinguish them based on shape features alone.
We do not intend to perform the same task using our GT
skeletons. Instead, our GTs can be used for a wider scope of

tasks – evaluating general skeleton extraction, pruning and
matching algorithms.

Tari56 Asian and Tari (2005) contains 56 shapes (14 cate-
gories, 4 shapes each) for evaluating matching performance
under visual transformations. Shapes of the same category
show variations in orientation, scale, articulation and small
boundary details. Motivated by this, our GT skeletons are
useful for evaluating various skeleton-based shape matching
algorithms. This is because our GTs contain branches with
respect to the major and contextual shape regions. Moreover,
our skeleton GTs are inherently robust to orientation and
scale.

4.2.4 Properties

We discuss two measured properties of skeleton GTs: the
mean Reconstruction Error (RE) and Skeleton Simplicity
(SS). RE is already calculated byEq. 2. Here, SS is calculated
by:

s(S) = exp(−log(�(S) + 1)) . (5)

where �(S) denotes the normalized curve length of skele-
ton S. Since the GT skeletons are one pixel wide, �(S) can
be calculated simply from the number of skeleton points,
normalized by the average path length of the skeleton. A
constant value of 1 is added to ensure that the value from log
function is positive. Equation 5 is motivated by the intuitive
understanding that shorter skeletons have simpler structures.
Here, SS is used for quantitative analysis since the differences
between GTs are primarily at the fine-grained level. We note
that another quantitative way to measure the simplicity of
S is to use the number of junction and endpoints. However,
experiments in Yang et al. (2020) show that endpoint statis-
tics (both mean and standard deviation values) from different
methods are similar to each other. In contrast, �(S) is more
distinguishable as it is sensitive to slight changes in the skele-
ton structure. In other words, SS has higher discriminative
power than the number of endpoints, particularly at the fine-
grained level.
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(a) AutoSke (b) Grafting (c) DCE (d) SkeView

Fig. 18 Sample GTs generated by a AutoSke (Shen et al., 2013), b
Grafting (Yang et al., 2020), c DCE (Bai et al., 2007) and d SkeView
in MPEG7 dataset

Table 3 presents the RE and SS of our GTs. For com-
parison, skeletons generated by three automatic approaches
DCE (Bai et al., 2007) (with the fixed stop parameter k = 10
recommended in Yang et al. (2016)), AutoSke (Shen et al.,
2013) and Grafting (Yang et al., 2020) are also presented.We
first report their statistical distribution of RE and SS values.
Taking the Kimia216 dataset as an example, the statistics of
216 shapes are twofold: statistics within the same method
and between different methods:

• With our proposed SkeView, the values are close to
each other. Notably, the statistical distribution of RE is
between 0.80−0.82, and SS is between 0.08−0.09. In
other words, our GTs strike a stable balance, being struc-
turally complete and relatively simple.

• With different approaches (DCE, AutoSke, Grafting),
the distributions are more varied. RE and SS of DCE:
0.73−0.97, 0.05−0.09;REandSSofAutoSke: 0.67−0.94,
0.06−0.14;REandSSofGrafting: 0.73−0.91, 0.06−0.14.
Though the mean values of RE and SS are close to Ske-
View, skeleton structures are unstable. In other words,
some skeletons are either too simple, or too complex.
This phenomenon is inherently similar to our observa-
tions in Sect. 3.1, such as O1 (Perception is robust to the
time and volunteer groups) and O2 (Perception is robust
to segmented objects and images).

We also observe that our GTs have the lowest RE, while
the structures are more complex (smaller SS means more
complex structure). For instance, RE in the MPEG7 datasets
are the same (0.92), while SS of AutoSke (Shen et al., 2013)
andGrafting (Yang et al., 2020) are the smallest (0.11). How-
ever, as shown in Fig. 18a, b, their skeleton completeness are

not perceptually promising. Though skeletons generated by
the DCE method (Bai et al., 2007) are the simplest in both
SK1491 and Animal2000 datasets, their RE are relatively
high (the first row in Table 3) while their skeleton struc-
tures are not visually promising (Fig. 18c). Overall, our GT
skeletons strike the best balance, being perceptually friendly,
structurally complete (in most cases), and relatively simple
(the median SS is only 0.03 lower than AutoSke).

5 Benchmarks

In this section,wepresent a benchmark evaluation of skeleton
detectors (mostly CNN-based methods) and skeleton-based
matching methods using our GTs. For fairness, all settings
follow their original papers unless stated otherwise.

5.1 Skeleton Detectors in Shapes

To quantitatively evaluate the performance of different
skeleton detectors, we employed the average error pixel
(AEP) proposed in Krinidis and Chatzis (2009) as the error
measure. Specifically, it measures the error e(̂S,S) between
a detected skeleton̂S against a GT S using the mean square
error of their skeleton points:

e(̂S,S) = 1

N

N
∑

i=1

(

√

(̂Sx (i) − Sx (i))2 + (̂Sy(i) − Sy(i))2 .

(6)

where (̂Sx (i),̂Sy(i)) are the coordinates of a skeleton point in
̂S, N is their total number of points, and (Sx (i)),Sy(i)) is the
closest point in S to the point (̂Sx (i),̂Sy(i)). Table 4 details
the evaluation results of five representative methods on eight
shape datasets. The Physics method (Krinidis and Chatzis,
2009) generates skeleton points iteratively starting from a
boundary point set based on a physics-based deformable
model. Though it can be used to obtain stable skeletons with
a fixed parameter setting, the results are not symmetric to
the boundary and are sensitive to noises. The BPR (Shen et
al., 2011) method of pruning skeletons is based on the con-
text (modelled by the bending potential ratio) of the boundary
segment that corresponds to the branch. TheU-Net (Panichev
et al., 2019) is a typical CNN-based method, which employs
a modified U-Net architecture for direct skeleton regression.
We can clearly see that most of the skeletons generated by
AutoSke (Shen et al., 2013) have the lowest AEP and thus are
closest to GTs. Though the DCE (Bai et al., 2007) method
achieves the best result on Animal2000, it is still close to
the result generated by AutoSke (only around 0.04 lower).
Among all themethods, theCNN-basedU-Net has the lowest
performance, with around 0.31 and 2.62 higher AEP than the
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Table 4 Average error pixel (AEP) of shape skeletons from different methods and datasets

Kimia216 Ani2000 SL1 SL2 Tari56 MPEG7 AS EM

DCE (Bai et al., 2007) 1.04 0.97 8.05 5.84 0.91 3.90 0.61 6.18

AutoSke (Shen et al., 2013) 0.80 1.01 3.67 3.19 0.51 3.03 0.39 4.10

Physics (Krinidis and Chatzis, 2009) 1.29 1.18 10.15 7.09 1.09 4.73 0.67 7.47

BPR (Shen et al., 2011) 0.88 1.14 4.13 3.66 0.56 3.33 0.44 4.55

U-Net (Panichev et al., 2019) 1.41 1.32 11.15 7.87 1.32 5.65 0.81 8.32

Ani2000: Animal2000. SL1: SmithsonianLeaves. SL2: SwedishLeaves. AS: ArticulatedShapes. EM: EM200. The smallest AEP in each dataset
are shown in boldface

AutoSke method in Animal2000 and MPEG7, respectively.
This is because skeletons generated by CNN-based methods
normally yields low-quality branches (Zhang et al., 2022).
To verify it, we visualize skeletons from existing five CNN-
based methods trained using our GTs (see Fig. 19). We can
clearly observe the noisy, disjointed, and incomplete skeleton
branches.

5.2 Skeleton Detectors in Images

Skeletons in image are usually represented by binarymaps
after applying non-maximal suppression (NMS) and thresh-
olding. The binary maps between the generated and the GT
skeletons are matched pixel-wise to calculate the precision
and recall values of the skeleton points. In practice, some
small localization errors are allowed. Here, we used the F1
score (i.e. 2×(precision×recall)/(precision+recall)) to evalu-
ate the performance of skeleton detectors on image datasets.
Particularly, five CNN-based methods (HED (Xie and Tu,
2015), SRN (Ke et al., 2017), Hi-Fi (Zhao et al., 2018), Deep-
Flux (Wang et al., 2019) and Ada-LSN (Liu et al., 2021)) are
trained and tested using ourGTs. To address a fair evaluation,
we used their original settings on the backbone, image input
size, and loss function. The initial network weights were ini-
tialized by Xavier. We optimized the loss functions using
AdamW (Loshchilov and Hutter, 2018) with a mini-batch
size of 1, an initial learning rate of 2e−4, and a weight decay
of 1e−4. Regarding data augmentation, we applied random
transformations to the image, including rotation, flipping,
resizing and color jittering. For each method, we generated
a precision-recall curve by varying the threshold value. The
optimal threshold was selected as the one that produces the
highest F1 score along the curve.

Their best results are presented in Table 5. We can see
that Ada-LSN (Liu et al., 2021) achieves the highest score on
almost all datasets. Figure 20 presents some sample results.
It can be observed that the predictions are generally conver-
gent towards our GTs, though their performances are clearly
different. Particularly, most methods are not feasible to gen-
erate high-quality skeleton graphs. For instance, skeletons
fromHED(Holistically-NestedEdgeDetection), SRN (Side-

output Residual Network), and Hi-Fi (Hierarchical Feature
integration) contains lots of noise and limited smoothness.
Deep-Flux and AdaLSN (Adaptive Linear Span Network)
output clearer and slimmer results, while there remain some
false positive points, disjointed segments, and incomplete
branches. The main reason is that most CNN-based methods
output noisy, disjointed, and incomplete skeleton branches
in heat maps (also called skeleton maps). Some networks
cannot guarantee the topological and geometrical features
in the representation. In practice, skeleton heat maps from
existing CNN-based methods usually require heavy and
semi-automatic processes to extract slim skeletons (one pixel
wide). Nevertheless, the geometrical and topological features
of the processed skeletons are still not ensured. We can also
observe that F1 scores on the EM200 are the lowest among
all the evaluated datasets. A major reason for this occurrence
is that the training data is very limited (only 10 images),
resulting in under-fitted models.

It is still possible to extract one-pixel-wide skeleton
graphs. As presented in Fig. 20 (rightmost), we introduced
a novel framework, BlumNet, for object skeleton extraction
from shapes and images (Zhang et al., 2022). Unlike skele-
ton heat map regression with existing CNN-based methods,
BlumNet decomposes a skeleton graph into structured com-
ponents and simplifies the skeleton extraction problem into
graph component detection and assembling tasks. Conse-
quently, the quality of extracted skeletons is dramatically
improved since BlumNet directly outputs slim, low-noise,
and identified skeleton graphs. It should be noted that Blum-
Net was trained using our GTs from SkeView.

Figure 21 visually compares the detected skeletons on
two sample images from SK1491 and SmithsonianLeaves.
Specifically, skeletons from DeepFlux (Wang et al., 2019)
and Ada-LSN (Liu et al., 2021) are slimmer and these two
methods yield better performances in terms of continuity
and completeness. Skeletons produced by HED are not well-
integrated and are prone to noise. Though SRN and Hi-Fi
yield clearer skeletons, they are not smooth and contain
many false positive points. It is also interesting to find that
most methods yield a better F1 score using the training and
testing data from our GTs. For instance, the Fl score of Deep-
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Fig. 19 Shape skeleton
extraction using CNN-based
methods: FHN (Jiang et al.,
2019), U-Net (Panichev et al.,
2019), DISCO (Song et al.,
2021), SDE (Tang et al., 2021),
and SkeletonNetV2 (Nathan and
Kansal, 2021)

Table 5 F1 scores of skeleton
detectors in images

SK506 SK1491 SYMM SymP EM200 SL WHS

HED (Xie and Tu, 2015) 0.552 0.494 0.431 0.370 0.298 0.580 0.741

SRN (Ke et al., 2017) 0.652 0.677 0.447 0.443 0.303 0.593 0.780

Hi-Fi (Zhao et al., 2018) 0.693 0.727 0.460 0.458 0.311 0.620 0.822

DeepFlux (Wang et al., 2019) 0.715 0.752 0.494 0.520 0.315 0.625 0.849

Ada-LSN (Liu et al., 2021) 0.748 0.798 0.497 0.504 0.319 0.672 0.883

SYMM: SYMMAX300. SymP: SymPASCAL. SL: SmithsonianLeaves. WHS: WH-SYMMAX

Fig. 20 Image skeleton detection results from HED (Xie and Tu, 2015), SRN (Ke et al., 2017), Hi-Fi (Zhao et al., 2018), DeepFlux (Wang et al.,
2019), Ada-LSN (Liu et al., 2021), and BlumNet (Zhang et al., 2022) methods, trained using our GTs

HED SRN Hi-Fi DeepFlux Ada-LSN

Fig. 21 Visual comparison of HED (Xie and Tu, 2015), SRN (Ke et al., 2017), Hi-Fi (Zhao et al., 2018), DeepFlux (Wang et al., 2019), and
Ada-LSN (Liu et al., 2021) skeletons, trained using our GTs
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Table 6 Skeleton detection performance (F1 scores) comparison of 6 methods trained and tested using GTs from Original and SkeView on SK1491

HED (Xie and Tu, 2015) SRN (Ke et al., 2017) Hi-Fi (Zhao et al., 2018) DeepFlux (Wang et
al., 2019)

Ada-LSN (Liu et al.,
2021)

GT (original) 0.497 0.678 0.724 0.732 0.786

GT (SkeView) 0.494 0.677 0.727 0.752 0.798

Flux (Wang et al., 2019) method improved from 0.732 to
0.752 on the SK1491 dataset (Table 6). This is because, com-
paring to the original GTs in the SK1491, our GTs are more
consistent and possess better completeness in representing
objects’ geometrical features (see Fig. 14). As a result, these
CNN-based models converge faster and generalize easier.

5.3 SkeletonMatching

In practice, the similarity of a shape pair can be calcu-
lated by matching their skeleton graphs. For instance, the
Path Similarity (PS) method (Bai and Latecki, 2008) aims
to match skeleton endpoints using the similarity between
their corresponding skeleton paths (Fig. 22 (left)). The final
shape similarity is calculated by summing up the similar-
ity of corresponded endpoints. Based on the idea of shape
context (Belongie et al., 2002), the skeleton context (SC)
method (Kamani et al., 2016) employs log-polar histograms
to describe sample skeleton points along the paths for match-
ing (Fig. 22 (right)). The final shape similarity is computed
by adding the distances between thematched skeleton points.
Weemploy thesemethods to build baselines using ourGTson
the Kimia216, MPEG400, Tetrapod120 and SwedishLeaves
datasets (as they are actively used in this scenario). Specif-
ically, we use each shape as a query and retrieve ten most
similar shapes from the whole dataset according to their sim-
ilarities. As shown in Table 7, the final value in each position
(columns) is the total number of occurrences that matches
query class at that position based on all shapes within a
dataset. For example, the third position of the PS method on
Kimia216 dataset shows that from216 retrieved results in this
position, 197 shapes have the same class as their query. We
can see that the PS (Bai and Latecki, 2008) method achieves
the best result among all the datasets, across all positions.
This is because the PS method employs geodesic paths for
matching endpoints, which makes it robust to scaling, rota-
tion, occlusion, and also to same-class-objects of different
topological structures.

For the MPEG7 and Animal2000 datasets, the Bulls-eye
Scores (BES) (Latecki et al., 2000) are normally computed
for quantitative evaluation. BES is calculated as a ratio
between the correctly matched shapes to the total number of
possible matches. For instance, as there are 1400 and 2000
queries in MPEG7 (20 in each class) and Animal2000 (100

in each class) datasets, the total number of possible matches
are 1400×20 and 2000×100, respectively. Accordingly, we
employ GTs for skeleton-based shape retrieval. In addition
to the PS and SC algorithms, the High-order (HO) matching
method proposed in Yang et al. (2020) is also used in the
evaluation. The HO method fuses similarities between the
skeleton graphs with their geometrical relations character-
ized by multiple skeleton endpoints. Motivated by Yang et
al. (2020), Bai (2012) and Kontschieder et al. (2010), exper-
iments on both datasets are clustered into two groups: (1)
pairwise matching similar to the experiments in Table 7, and
(2) context-based matching by increasing the discrimination
between different classes within the shapemanifold. For this,
theMutual kNNGraph (MG) (Kontschieder et al., 2010) and
Co-Transduction (CT) (Bai, 2012) methods are employed
(Table 8).

For the pairwise experiments, we can clearly see that the
HOmethod yields the best performance in both datasets. For
the context experiments, we find that the BES improves after
applying the MG and CT methods on the matching results
from PS and HO. However, we find that both methods are
ineffective on SC, with a decline in BES. The main reason is
that similarity values between skeletons as calculated by the
SC method are close to each other, and this results in poor
shape retrieval performance: 13.67% and 8.88% on MPEG7
and Animal2000, respectively. Thus, the similarity values
within skeletons of the same class are easilymixedwith other
classes.

6 Discussion and Conclusion

We present a brief overview of the challenges posed by the
GT baselines and possible directions for future research.

6.1 Analysis of Challenges

Skeleton Extraction: For most shape skeleton extraction
approaches, we find that they cannot properly handle shapes
with long and narrow (or lathy) regions. For instance, needle-
like axopodia of actinophryid (EM200), petiole of leaves
(SwedishLeaves), and antenna of insects (MPEG7). One
possible solution is to generate their skeletons regionally,
followed by integration and post-pruning steps. It is also
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Fig. 22 Skeleton-based shape matching algorithms in our evaluation. Left: Path Similarity (PS) (Bai and Latecki, 2008). Right: Skeleton Context
(SC) (Kamani et al., 2016)

Table 7 Comparison of two
skeleton-based shape retrieval
methods using our GTs

Kimia216 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

PS (Bai and Latecki, 2008) 216 206 197 185 173 169 154 150 140 119

SC (Kamani et al., 2016) 196 91 80 82 77 71 70 72 61 57

MPEG400 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

PS (Bai and Latecki, 2008) 400 384 380 367 363 351 339 338 327 318

SC (Kamani et al., 2016) 382 131 148 164 162 150 144 142 117 123

Tetrapod120 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

PS (Bai and Latecki, 2008) 120 110 90 86 73 73 72 55 55 51

SC (Kamani et al., 2016) 113 48 33 24 34 32 18 31 23 21

SwedishLeaves 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

PS (Bai and Latecki, 2008) 1125 974 914 881 868 833 813 790 785 767

SC (Kamani et al., 2016) 1057 220 207 203 198 190 204 198 169 184

PS: path similarity. SC: skeleton context

Table 8 Bulls-eye scores (BES,
%) of three skeleton matching
methods (PS: Path
Similarity (Bai and Latecki,
2008), SC: Skeleton
Context (Kamani et al., 2016)
and HO: High-order
Matching (Yang et al., 2020))
based on MPEG7 (M7) and
Animal2000 (A2) GTs

PS PS+MG PS+CT SC SC+MG SC+CT HO HO+MG HO+CT

M7 62.96 75.46 80.98 13.67 9.40 13.20 78.74 83.22 87.28

A2 24.26 29.52 34.27 8.88 6.54 8.32 34.14 37.95 40.19

MG (Mutual kNNGraph (Kontschieder et al., 2010)) and CT (Co-Transduction (Bai, 2012)) are their context-
based extensions. The best scores are in boldface

Fig. 23 Evaluation of
Ada-LSN (Liu et al., 2021) on
rotation, scaling and flipping

Original Rotation Scaling Flipping

123



International Journal of Computer Vision (2024) 132:1219–1241 1239

HED SRN Hi-Fi DeepFlux Ada-LSN

Fig. 24 Poor detection samples from HED (Xie and Tu, 2015), SRN (Ke et al., 2017), Hi-Fi (Zhao et al., 2018), DeepFlux (Wang et al., 2019) and
Ada-LSN (Liu et al., 2021) methods

interesting to note that most approaches are not guaranteed
to preserve the topology of shapes containing holes. The
simple way to resolve this issue is to fill the holes during
the pre-processing step. Connected shapes with such kinds
of complexity frequently occurs in the real-world but are
rarely studied, e.g. classNo. 10 in the SwedishLeaves dataset.
Inspired by the theorems in Bai et al. (2007), we suggest to
incorporate boundary curves from both shapes and holes for
skeleton extraction. For image skeleton extraction, the influ-
ence of the quality of training data is obvious. As a direct
result of the consistent quality of our GTs, the F1 scores
in Table 5 are generally higher than their original reported
results (Ke et al., 2017; Liu et al., 2021; Xie and Tu, 2015;
Wang et al., 2019; Zhao et al., 2018). However, it is desir-
able for the community to introduce higher quality and larger
scale datasets. Our GTs also capture richer dynamics that
cannot be learned from existing datasets. For instance, we
find that all CNN-based methods in Table 5 are sensitive to
image rotation, scaling and flipping, which are fundamental
requirements towards robust skeleton extraction in the real-
world. However, there remains some inadequately addressed
issues. As shown in Fig. 23, even for Ada-LSN (Liu et al.,
2021) trained with data augmentation (rotation, scaling and
flipping) on the SmithsonianLeaves dataset, we still find that
some major skeletons branches are shortened, disconnected,
and erased. For this, junction points, endpoints and skeleton
graph could be encoded to restrict skeleton regression during
the training period.
SkeletonMatching:We further evaluate the pairwisematch-
ing algorithms inTable 8using theArticulatedShapes dataset.
This is because its GTs contain closed branches (Fig. 17b
(top)) with holes in tools such as scissors. We found that
both the PS (Bai and Latecki, 2008) and HO (Yang et al.,
2020) algorithms cannot properly deal with skeleton graphs
containing cycles. Though the SC (Kamani et al., 2016)
algorithm can be applied to such skeletons, it yields a poor
performance with only 13.67 and 8.88 BES in MPEG7 and
Animal2000, respectively. Therefore, we propose to improve
the existing matching algorithms to support skeletons with
closed branches. In Fig. 24, we see that most skeletons pre-

dicted in images are discontinuous with different widths and
false positive points. In such cases, it is difficult to apply the
existing algorithms for matching, classifying, and retrieval.
In particular, these algorithms have been designed for one-
pixel wide skeletons. To facilitate using image skeletons in
practice,we propose to explore post-processing algorithms to
bridge the gap between the image skeletons and the existing
matching algorithms. Thus, a significant amount of research
in future is necessary before image skeletons can become
practically robust in many real-world objects.

6.2 Conclusion

We introduced a heuristic strategy for skeleton GT extraction
in shape and image datasets. Our strategy is substantiated
on both theoretical grounding and empirical investigation of
human perception of skeleton complexity. To facilitate this,
we developed a tool, SkeView, for skeleton GT extraction
and used it on 17 existing image and shape datasets. We
also systematically evaluated the existing skeleton extrac-
tion and matching algorithms to generate valid baselines
using our GTs. Experiments demonstrate that our GT is
consistent and can properly balance the trade-off between
skeleton simplicity and completeness. We expect that the
release of SkeView and the GTs to the community will bene-
fit future research, particularly to address practical real-world
challenges in CNN-based skeleton detectors and matching
algorithms.
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