
Algorithmic-level Speci�cation and Characterization of
Embedded Multimedia Applications with Design Trotter

Yannick Le Moullec, Jean-Philippe Diguet, Nader Ben Amor,
Thierry Gourdeaux, Jean-Luc Philippe

LESTER, Université de Bretagne Sud, 56321 Lorient Cedex, France
Jean-Philippe.Diguet@univ-ubs.fr

Abstract

Designing embedded system is a non-trivial task during which wrong choices can lead to

extremely costly re-design loops. The extra cost is even higher when wrong choices are made

during the algorithm speci�cation and mapping over the selected architecture. In this paper

we propose a high-level approach for design space exploration, based on a usual standard

language. More precisely we present the characterization step which is located at the very

beginning of our hardware / software codesign framework. Once transformed into our internal

representation, the speci�cation is rapidly and automatically characterized and explored at

the algorithmic level. Metrics are provided to the designer in order to evaluate very early

in the design process, the impact of algorithmic choices on resources requirements by means

of processing, control, memory bandwidth capabilities and potential parallelism at di�erent

levels of granularity. The aim is to improve the algorithm / architecture matching that sorely

in�uences the implementation e�ciency in terms of silicon area, performances and energy

consumption. We give examples which illustrate how designers can refer to the outcomes of

our methodology in order to select or build suitable architectures for speci�c applications.

Keywords: speci�cation, characterization, algorithm / architecture matching, design-space

exploration, SoCs.

1 Introduction

The context of our work is the hardware/software co-design in the domain of embedded multimedia

applications. In this area, algorithmic and architectural choices have a strong impact on the

power vs. performance trade-o� which is a key issue regarding the evolution of mobile electronic

devices. Thus, designers have to face a number of challenges. Three main situations can be

considered: i) a chosen target architecture must be used, in that case optimizations have to be

carried out on the speci�cation and its implementation; ii) the speci�cation cannot be changed,

in that case optimizations have to be performed on the architecture which has to be selected

1

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

and/or tailored to match the speci�cation and iii) neither the speci�cation nor the architecture

are �xed, in that case optimizations have to be performed using feedbacks between them. In

all cases the designer needs relevant knowledge about the speci�cation. Such knowledge includes

operation granularity, potential parallelism, orientation (processing, control, memory) and data

locality (memory hierarchy).

Consequently, a fast automated exploration process is required to alleviate the designer with the

tedious task consisting in evaluating a large number of potential solutions based on the previously

mentioned algorithmic options.

We tackle this problem by considering a high-level algorithmic approach using a standard proce-

dural language for specifying the application. This speci�cation is then automatically transformed

into a fully graph-based representation which enables a fast and automatic characterization and

exploration of the application in terms of algorithmic options.

Namely we consider a system as event-based at the highest levels of hierarchy - Hierarchical

Finite State Machines (HFSMs) or task-graphs (TG)- encapsulating function calls. These functions

are described with Hierarchical and Control Data-�ow Graphs (HCDFGs), presented in this paper.

It is the responsibility of the designer to choose the granularity of the speci�cation, and therefore his

responsibility to choose what should be described by means of HFSMs/task-graphs and HCDFGs.

However, since this task is not trivial the designer can use the characterization step (presented in

section 4) to get metrics about the control or data-�ow orientation of the functions and iterate

towards the most appropriate separation. It is worth noting that tools are available for simulation,

formal proof and code generation at the event-based level. The goal of our work is to performed

automatically and rapidly the tedious algorithmic exploration for the functions called from the

event-based level.

This work is part of a complete design framework called Design Trotter, presented in [1].

This is a set of cooperative tools which aim at guiding embedded system designers early in the

�ow by means of design space exploration, as summarized in Fig. 1. It operates at a high-level

of abstraction (algorithmic-level). Firstly the di�erent functions of the applications are handled

separately. For each fonction, the �rst step presented in this paper, includes the graph building

(HCDFG speci�cation) and the characterization metric computation. Then a scheduling step [1] is

performed for each data-�ow graph and loop nest within the function, the design space exploration

is obtained by means of a large set of time constraints (e.g. from the critical path to a complete

sequential execution). Finally, the results are combined to produce trade-o� curves (#ressource

vs. #cycles). The scheduling process o�ers di�erent options including the balance between data-

transfers and data-processings and the use of loop unrolling to meet time constraints. After the

2

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

intra-function scheduling an inter-function scheduling step [2], based on the previous trade-o�

curves, can be performed if functions can be executed concurrently. Then a projection step enables

the exploration of the design space targeting recon�gurable architectures (FPGAs) [3], [4] and

processors (HW and SW projections in Fig. 1 respectively). Finally results can be used within our

HW/SW partitioning and real-time scheduling tool [5].

SELECTION

SET OF FUNCTIONS

FUNCTION

CHARACTERIZATION

SOFTWARE

PROJECTION

HARDWARE

PROJECTION

SCHEDULING/COMBINATIONS/DESIGN SPACE EXPLORATION

Tasks Graph

Radha Ratan

(Synopsis - Univ. IRVINE)

Hierarchical FSM (ESTEREL
Technologies)

HCDFG GRAMMAR

HIERARCHICAL GRAPHS
 SYSTEM LEVEL UAR

 SOFTWARE UAR

(e.g ARM10)

 HARDWARE UAR

(e.g XILINX XCV200E)

 POTENTIAL SOLUTIONS

INTRA-FUNCTION TRADEOFFS CURVES

INTER-FUNCTION SCHEDULING/EXPLORATION

HW/SW PARTITIONING – RT SCHEDULING

DATA STRUCTURE GENERATOR

PARSER

Figure 1: Design Trotter design �ow.

The rest of the article is organized as follows: in section 2 we give an overview of existing speci-

�cation models and characterization tools. Then, we expose the contributions of our paper for both

speci�cation and characterization aspects. Sections 3 and 4 detail these two points respectively. In

section 5 we present some results of the characterization step showing the interest of the proposed

method. Finally in section 6 we conclude about our work and present some perspectives.

3

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

2 Related work

2.1 Part 1: speci�cation

One of the �rst issue when designing a system is its speci�cation. Specifying a system is a complex

task which can have a major in�uence on the subsequent steps of the design �ow. Choosing

a speci�cation model can, for example, stress more or less hardware vs. software orientations,

event-based vs. data-�ow based approaches, data-processings vs. data-transfers. Granularity is

another important feature which greatly in�uences the possibilities of the exploration process. For

example a �ne grain granularity speci�cation focusing on implementation details usually enables

very accurate results at the cost of long exploration processes. It is crucial to control these aspects

and not to be restricted to one level of granularity (for subsequent steps such as characterization,

cf. section 4).

2.1.1 Existing work for speci�cation

Generally, existing design approaches consider only partial design �ow. The decomposition of the

design �ow results from the architectural target and/or from the type of information handled by

the application. We can mention control oriented models [6], [7],[8],[9], data-�ow models [9],[10],

Khan process networks [11], Ptolemy so-called domains (e.g. DE, DF).

To alleviate this problem, some attempts to de�ne an uni�ed modeling and design framework

have been proposed. They are generally based on co-simulation (e.g., CoWare, VCC from Cadence).

However, these approaches do not really support a complete and seamless design �ow, from high-

level speci�cation to the generation of VHDL code for synthesis and assembly code for processors.

SystemC [12] is a design and veri�cation language enabling the description of systems from

high-levels (algorithmic-level) down to implementation in hardware and software. The modeling

features of SystemC are provided as a C++ class library. It is a possible candidate for becoming

a standard for the design of embedded systems. Reducing the productivity gap in system design

can be achieved by raising the level of abstraction. However, as mentioned in [13], it is important

to well-de�ne the abstraction levels and models. The authors propose system-level semantics that

cover the system design process and de�ne properties and features for each model. By formalizing

the �ow, design automation for synthesis and veri�cation can be performed and productivity gains

can be achieved. Moreover, customizing the semantics enables the creation of specialized design

methodologies.

4

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

2.1.2 Contribution

Initiatives like SystemC and SpecC [14] aim to provide the designer with a common language for

progressively modeling an application by re�ning steps, from the system un-timed level to the

implementation cycle accurate level. Such framework are necessary, however the designer remains

responsible for choosing the appropriate computation model. One of the main in�uent speci�cation

decision is the separation between an event-based FSM model and a data-�ow model, the boundary

is not necessarily clear and can vary depending on the designer background.

The requirements of the tools included in Design Trotter have guided our choice towards a

suitable internal representation model. This model should have the following features:

• Hierarchy: enables structured exploration of the speci�cation such as bottom-top and top-

bottom approaches but also partial exploration;

• Multi-granularity: enables coarse and/or �ne grain speci�cation depending on the utilized

tool: fast characterization, system-level estimation (scheduling/combinations/exploration in

Fig. 1), architectural estimations (HW and SW projections in Fig. 1);

• Attributes: used to save critical information. We consider two types of attributes: those cre-

ated during the parsing step (e.g. data-type) and those created during the exploration/characterization

steps (e.g. metrics);

• Parallelism speci�cation: parallelism is a key feature in design space exploration. The model

must enable the clear speci�cation of processing and data-transfers parallelism in order to

detect and exploit them;

• Openness: the model must be open to new languages and can be easily changed/extented.

We found out that none of the existing (and easily available) models had all the required

features. Therefore we have de�ned our own model: HCDFG. The de�nition of its formalism (and

underlying grammar rules) has been guided by a pragmatic approach considering that the most

important point is to stay close to the original algorithmic speci�cation of the application. This

internal representation model, based on graphs, o�ers the �exibility required for the development

of the tools implemented in Design Trotter.

We preferentially use the Esterel framework [15] to perform the �rst speci�cation step since it

o�ers various interesting features such as concurrent and hierarchical �nite state machines (HFSM

called Safe State Machine in Esterel framework) and tools for formal proof computation, simulation

and code generation. Our approach enables a clear control of the model separation in a top down

5

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

approach: when the designer estimates that a data-�ow speci�cation can be e�ciently used at a

given state level of the HFSM he can insert calls to C functions. The HCDFG description starts

at this level. Then depending on metric computation results (cf. 4), the designer can decide to

modify his speci�cation choices in terms of HFSM/C separation. We use the C language for three

main reasons, �rstly a lot of standards (e.g. ITU) and applications are written with this language,

secondly it can be naturally inserted in various framework like SystemC and Esterel, and �nally

the GCC compiler provides a good starting point for building a graph representation. Actually, we

use GCC to perform lexical and grammatical checkings and then introduce our own syntactic tree

in order to extract the information we consider relevant (see 3.3).

In our approach the next step after the speci�cation is the characterization of the application.

In what follows we present existing work on this aspect.

2.2 Part 2: characterization

Several design-�ows include a step used to characterize the speci�cation of an application. The

main objective of characterization is to extract relevant information from the speci�cation to guide

the designer and/or synthesis steps towards an e�cient application-architecture matching. For

this purpose, metrics can be e�ciently used to rapidly stress the proper architecture style for

the application or for part of it (sub-tasks, functions). Some of the relevant features include

the wider/deeper trade-o�, namely the ratio of explicit parallelism versus the pipeline depth, the

necessity of complex control structures, the requirements in terms of local memories and speci�c

bandwidth, and the need for processing resources for speci�c computations or address generation.

Contrary to partial available approaches, we consider that an e�cient characterization step

should include all the following requirements:

• Independence & �exibility: during the characterization step the designer should have the

option to specify or not an architectural target since the objective of this step is to guide

either the choice of an existing architecture or the construction of a new one. Moreover, the

implementation of new metric computations must be easy;

• Hierarchy & multi-granularity: enables the characterization of the di�erent ganularity lev-

els: e.g i) loop body, ii) loop, iii) sequence of loops, it also o�ers the possibility to reuse

characterizations for di�erent "mappings" of a given graph (e.g. various calls of the same

sub-function);

• Data and control dependency analysis: the information about critical paths at di�erent levels

of granularity is required for in-depth parallelism characterization.

6

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

2.2.1 Review of existing metrics

Recently works dealing with metrics in the domain of high-level synthesis [16], [17] and hardware

software co-design [18], [19], [20] have been proposed. In [16] the metrics provide algorithm prop-

erties regarding a hardware implementation; the quanti�ed metrics address the concurrency of

arithmetic operations based on uniformed scheduling probabilities and the regularity that mea-

sures the repetition rate of a given pattern. In [17], some probability based metrics are proposed

to quantify the communication link between arithmetic operators (through memory or registers).

These metrics focus on a �ne grain analysis and are mainly used to guide the design of data-paths,

especially to optimize local connections and resource reuse. The metrics from [18] are computed

at the functional level to highlight resource, data and communication channel sharing capabilities

in order to perform a pre-partitioning resulting in function clustering to guide the next design step

(hardware/software partitioning). The main issue is the placement of close functions on the same

component in order to optimize communications and resource sharing. An interesting method for

processor selection is presented in [19]. Three metrics representing the orientation of functions in

terms of control, data transformation and data accesses are computed by counting speci�c instruc-

tions from a processor independent code. Then a distance is calculated, with speci�c characteristics

of processors regarding their control, bandwidth and processing capabilities. In this framework a

coarse and �xed granularity level is considered and the target is limited to prede�ned processors.

Moreover the technique does not take into account instruction dependencies and there is no detail

about the di�erent types of memory accesses regarding the abstract processor model used. How-

ever we can reuse the concept of distance during the design steps located at lower levels. Finally,

in [20] �ner metrics are de�ned to characterize the a�nity between functions and three kinds of

targets: GPP, DSP and ASIC. The metrics are the result of the analysis and counting of C code

instructions in order to highlight instruction sequences which can be DSP-oriented (bu�er circu-

larity, MAC operations inside loops,...), ASIC-oriented (bit level instructions) or GPP-oriented

(conditional or I/O instructions ratio). Then a HW/SW partitioning tool is driven by the a�nity

metrics. Like in [19] these metrics are dedicated to HW/SW partitioning, they do not exploit

instruction dependencies and address a �xed (C procedures) granularity. Moreover, the locality of

data bandwidth is not clearly taken into account.

2.2.2 Contributions

Although a number of existing works dealing with metrics can be found in the literature, some

important features are not yet covered. In our work we propose to ful�ll this requirements by

7

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

means of new metrics which are detailed in section 4.

Firstly, the analysis performed in other works is generally dedicated to a class of applications

and architectures; our framework provides the designer with a generic library UAR (User Abstract

Rules, described in 3.3.4) that can be more or less specialized to o�er either independency or to

match a given architecture. Secondly, regarding the heterogeneity of applications, di�erent pieces

of an application can present various features, so metrics at di�erent levels of granularity can

help to localize parts with speci�c features (e.g. parallelism). As explained later, our metrics are

computed at each level of granularity and thus are naturally available at all levels from the leaf

DFGs (Data-Flow Graph) to the complete HCDFG representing the whole C code. Finally, the

system metrics from [20, 19] do not address data dependencies so can not include the critical paths

during the parallelism analysis; our metric computation includes this feature.

The characterization step implemented in Design Trotter analyzes the functions of an applica-

tion in order to determine the orientation and the criticity of a function. The orientation indicates

if a function is processing, control or memory oriented. The criticity indicates the average paral-

lelism available in a function. For that purpose a set of metrics has been de�ned, it is presented in

section 4.

3 HCDFG Speci�cation

The aim of the HCDFG model is to represent a function in a way that facilitates its estimation and

exploration. The notion of function di�ers according to the designer point of view. In our work

two speci�cation models are considered. The �rst one, HFSM-HCDFG is based on Hierarchical

Finite State Machines, the second one, TG-HCDFG is based on task-graphs (TG).

3.1 HFSM-HCDFG

This type of representation is presented in Fig. 2. The HFSMmodel has been used in the EPICURE

project [21]. The hierarchical decomposition at the system-level is made with Esterel Studio [15].

The speci�cation is based on a two level decomposition approach: event-based with Esterel and

calls to C functions. During the speci�cation step, the designer inserts calls to C functions (in the

states of the system) when he considers that the HFSMmodel is no longer suitable. Then, regarding

the model presented in Fig. 2, the speci�cation corresponds to the "Process" view. In this view

the representation is based on a graph of functions enabling sequentiality, mutual exclusion and

parallelism. The designer is responsible for organizing the function setup and for de�ning their

granularity. Finally, the "Function" view corresponds to a speci�c function, described with the

8

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

HCDFG model.

3.2 TG-HCDFG

The other type of speci�cation is related to a classic real-time speci�cation model, i.e., a task-graph.

This type of speci�cation is used to performed HW/SW partitioning and real-time scheduling

considering cyclic and a-cyclic tasks [5]. This model is described in Fig. 3. It is composed of four

levels: the system-level (describing the inputs/outputs constraints), the task-graph, the function

graph and the HCDFG level (used to describe a function). We use the Radha Ratan model [22] to

specify the task-graph.

3.3 The HCDFG model

3.3.1 HCDFG basics

As previously mentioned (see 2.1.2), the HCDFG model is used to describe the application when

the designer evaluates that a control-data �ow is well suited at a given hierarchy level during the

speci�cation procedure. The HCDFG generation is based on GCC from which a parser has been

devised in order to extract and structure only relevant information for design exploration. Namely

we build a HCDFG using the following principles :

• Single assignment with comprehensive renaming rules. Firstly we eliminate false dependencies

by introducing dependence edges. Then the name of scalar or array variables is built by

combining the original name with integer values that are incremented after each read and

write accesses (cf. 3.4.2);

• The initial hierarchical structure is used in order to preserve data locality;

• The code hierarchy is also exploited to perform a component based-approach through graph

patterns usage. A given C function/block is seen as a single graph-component (HCDFG)

that can then be instantiated several times distinguished with speci�c numbers;

• An e�cient multi-dimensional data representation;

• Data-transfer and data-processing nodes are mapped onto a generic library which can be

personalized depending on the target architecture (e.g., a graph-component can be associated

to a processing unit);

• To summarize, all the elements of the model are represented by graphs. Thus, during the

9

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

System view

P1 Audio

P2 Video

P3 User interface

I1

I2

I3

O1

O2

O3

HFSM (ESTEREL) Processes

S2

S3

S1

S21 S22

S23S24
Control
process

Process view

x

HCDFG

HCDFG

Function view

Sp313 Sp311

Sp312
Sp314

F[M,N]

Data Set

P3 HFSM

Sp32 Sp33

Sp31
P31 Mouse driverI31 O31

P31 FSM

F2

If

C[M,N]

F1

B[M,N]

B[M,N]

S1

S2 A[M,N]

B[M,N]

F3

eIf

C

D

D[M,N]

D[M,N]

F4

E[M,N]

S

F6

F7

F[M,N]

G[M,N]

F8

F5

E[M,N]

E

G[M,N]

HCDFG
IF

A[N,M]

A[N,M]x

B[N,M]

B[N,M]

HCDFG
LOOP

HCDFG

HCDFG
IF

x
B[N,M]

Figure 2: Speci�cation example with the HFSM-HCDFG model.

10

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

System Level

system

Environment outputs

T4 T1
e1

en
sm

s1

f21

f33

C31

Task level

inputs

 T4 T1

T2
 en

sm

s1
e1

f22

T6

T3 T5

f32

HCDFG of f32

Operation Level

D323

D324

C322 D321

Function level T6

HCDFG-T3
Loop1

HCDFG
Loop2

HCDFG
Loop3

HCDFG
Loop Body

 Loop Nest

Figure 3: Speci�cation example with the TG-HCDFG model.

characterization and estimation steps, important elements and structures can be easily iden-

ti�ed by means of our uniform model.

3.3.2 De�nitions

The HCDFG model enables the representation of a function in the form of a hierarchical graph

containing control structures and processing operations manipulating scalar and array data. This

graph has been de�ned in order to make the characterization and estimation steps e�cient. The

required information and the results are stored as attributes in the graph. Attribute examples

are the ASAP and ALAP dates of nodes, hierarchy levels for memory nodes, metric results and

so on. Each function described in the C language is parsed to a HCDFG, an example is given in

Fig. 4. A HCDFG is composed of elementary nodes (processing, memory, control), dependence

edges (control, data) and graphs that can be hierarchical. The di�erent key features are detailed

hereafter.

Elementary nodes A processing node (processing vertex) can represent several types of opera-

tions: �ne grain arithmetic /logic operations but also coarse grain computations (MAC, Butter�y,

FIR, DCT, Pixel Shader,...). As the association between operations and resources is de�ned in the

UAR �le (described in 3.3.4), it is possible to reference the name of a sub-graph (instance of a

graph pattern) in the UAR, indicating that a resource is dedicated to this computation. In that

case the graph is seen as a black box, which may already have been estimated (in particular the

cycle budget). Processing nodes can be seen on the right part of Fig. 4.

11

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

A memory node (memory vertex) represents a data-transfer. The main node parameters are

the transfer direction (read / write), the data format and the hierarchy level which can be �xed

by the designer. Data are explicitly represented by nodes in the graph, and are not, like in many

other models, associated to edges. The advantage of such a model is to not duplicate information

concerning data and to not overload the speci�cation. For multi-dimensional data (arrays, vectors),

addressing mechanisms are explicitly represented in the graph through index DFGs. Memory

vertices (scalar and array) are exposed on the right and left part of Fig. 4 respectively.

A conditional node represents a test operation (if, case, loops, etc.).

Dependence edges Three types of oriented edges are used to indicate scheduling constraints.

A Control dependency indicates an order between operations without data-transfer, for instance

a test operation must be scheduled before mutual exclusive branches.

A Scalar data dependency between two nodes A and B indicates that node A uses a scalar data

produced by node B.

A Multidimensional data dependency is a data-dependency where the data produced is not a

scalar but an array. For instance such an edge is created between a loop CDFG (Control-Data

Flow Graph) reading an array transformed by another loop CDFG.

Graphs There are six kinds of graphs.

A DFG is a graph which contains only elementary memory and processing nodes. Namely it

represents a sequence of non-conditional instructions of the 'C' code. The graph on the right part

of Fig. 4 is a DFG.

A CDFG is a graph which represents a test or a loop pattern with associated DFGs. A CDFG

is made of: two control nodes (begin and end) which indicate the type of the structure (if, switch-

case, while, do-while and for), an evaluation graph, plus an evolution graph in the case of a FOR

structure, and �nally one or more H/CDFGs which represent the processing conditioned by the

control node. Moreover, an attribute enables the saving of the execution probability of each branch

(for control structures). The probabilities can be obtained by pro�ling or can be speci�ed directly

by the designer through an interactive and user-friendly interface. The graph in the center of Fig.

4 is a CDFG.

An Evaluation graph produces a boolean data, it corresponds to the computation of a condition.

The boolean data node is connected to the control node by an order edge.

An Evolution graph is found in FOR structures. It represents the increment mechanism of

loop indexes (only a�ne increment mechanism are allowed). An evolution graph corresponds to

12

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

the computation of the index increment. The data node representing the index of a FOR loop is

connected to the control node by an order edge.

An Index graph represents index computations (e.g., i + (j ∗ 2) in array[i+(j*2)] = 0). This is

a key feature for detecting the need for address generation units (AGUs).

A HCDFG is a graph which contains elementary conditional nodes, HCDFGs and CDFGs. It

represents the application hierarchy, i.e., the nesting of control structures and graphs executed in

sequential or parallel patterns. The graph on the left part of Fig. 4 is a HCDFG.

HCDFG1#0

HCDFG2#0

HCDFG FOR 1#0

HCDFG3#0 HCDFG6#0

HCDFG4#0

HCDFG7#0

DFG FOR 1#0

()RU

�)RU

*

+

arrayA#0

data1#1

data4#0

data3#0

data4#0 data3#0

data4#0

data4#1

data1#0 data2#0

arrayC#1

data3#0

arrayB#0

arrayB#1

arrayB#2

arrayC#0

arrayA#0

arrayA#0

DFGind#0

Ind#0

data5#0

HCDFG

CDFG

DFG

DFG
(Index graph)

Processing
Vertices

Memory
Vertex (array)

Memory
Vertex
(Index)

Memory Vertex
(scalar)

Figure 4: Elements of a HCDFG.

3.3.3 Graph creation rules

The composition principle is quite natural. The graph is traveled with a depth-�rst search algo-

rithm. When no more conditional nodes are found, a DFG is built. Then a H/CDFG is created

each time a conditional node is found in the upper hierarchy level. Another stop condition is en-

countered when the name a graph pattern can be associated to a function already referenced in the

architectural model (UAR). In order to facilitate the estimation process, classic CDFG patterns

have been de�ned to identify rapidly the usual nodes like loop, if, etc..

3.3.4 Architecture de�nition

The designer de�nes a set of rules, named "UAR" (User Abstract Rules) which aims at describing

an architectural model for both characterization (optional) and exploration (at system-level or for

13

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

HW and SW projections). When no architecture has been selected the designer can describe any

kind of abstract architecture to start the exploration process. Then the UAR can be re�ned using

some feedback from the exploration process. As the UAR model is �exible, the designer can also

describe an existing architecture.

The processing part of the architecture is characterized by the type of available resources :

ALU, MAC, etc. and the operations they can perform; a number of cycles is associated to every

type of operator. The granularity of the operators is not �xed, and coarse grain operators (MAC,

FFT or more complex functionality) can be described and associated to operations/functions of the

HCDFG description of the application. Regarding the memory part, the user de�nes the number

of levels (Li) of the hierarchy and the number of cycles (li) associated for each type of access.

Fig. 5 shows an example of two User Abstract Rules �les. The �rst one (left) is the initial

�le where all resources have a latency equal to one cycle. When the designer starts to re�ne the

architectural model (using results given by the system-level estimation), he can add new types of

resources or specify resource latencies like in the second �le (right). Thus the designer may improve

his analysis by means of system-level estimation.

<LIBRARY> system
<OPERATOR> Alu

<OPERATIONS>
"+","-","*","/",
"<=","=","!=",">="

<ENDOPERATIONS>
<ATTRIBUTES>

latency:cycle:=1
datawidth:INT:=8

<ENDATTRIBUTES>
<ENDOPERATOR>
<OPERATOR> Mac

<OPERATIONS> "*+"
<ENDOPERATIONS>
<ATTRIBUTES>

latency:cycle:=1
datawidth:INT:=8

<ENDATTRIBUTES>
<ENDOPERATOR>

/* MEMORY */
<MEMORY> RAM_DP

<ATTRIBUTES>
access_mode:=rw
latency_read:cycle:=1
latency_write:cycle:=1

<ENDATTRIBUTES>
<ENDMEMORY>

<ENDLIBRARY>

<LIBRARY> system
<OPERATOR> Alu

<OPERATIONS>
"+","-","*","/",
"<=","=","!=",">="

<ENDOPERATIONS>
<ATTRIBUTES>

latency:cycle:=2
datawidth:INT:=32

<ENDATTRIBUTES>
<ENDOPERATOR>
<OPERATOR> Mac

<OPERATIONS> "*+"
<ENDOPERATIONS>
<ATTRIBUTES>

latency:cycle:=3
datawidth:INT:=32

<ENDATTRIBUTES>
<ENDOPERATOR>

/* MEMORY */
<MEMORY> RAM_DP_LEVEL_1

<ATTRIBUTES>
access_mode:=rw
latency_read:cycle:=1
latency_write:cycle:=2

<ENDATTRIBUTES>
<ENDMEMORY>
<MEMORY> RAM_DP_LEVEL_2

<ATTRIBUTES>
access_mode:=rw
latency_read:cycle:=2
latency_write:cycle:=3

<ENDATTRIBUTES>
<ENDMEMORY>

<ENDLIBRARY>

Figure 5: UAR �le examples (left: �rst approach; right: re�nement)

14

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

3.4 Java data structure

3.4.1 Two step construction

This section brie�y presents how the graph-component approach is implemented in Java. Basically,

the internal model is built in two main steps as illustrated in Figs. 6, 7 and 8. The �rst step

consists in translating the C code into the HCDFG grammar and the second one converts the

HCDFG description into a Java data-structure. The main advantage of this construction is the

independence during the �rst step from the architectural model de�ned in the UAR �le. The

�rst step extracts the relevant information and the second one exploits it regarding the target

architecture.

Lexical & grammatical
verification (GCC)

+ C-to-HCDFG Parser
C file

HCDFG grammar

UAR

Data structure
generator

Java data structure

Figure 6: From C to data structure

3.4.2 Data and graph representation

The main issues of a graph representation for system design is the size of the resulting structure

and its capabilities for information retrieving and synthesis. To cope with this trade-o�, we �rst

implement a graph-component approach where a single graph de�nition can be mapped several

times. The second point is the data representation: in order to limit the memory requirements for

representing all data and accesses to these data, we use a single assignment rule. It implies that a

data is represented only once and that each data access (R/W) can be clearly identi�ed through

false data-dependencies elimination. This is done by means of a speci�c formalism: data names

are kept but are extended with two su�xes. For instance, if we consider accesses to data A, the

node A]k%n is interpreted as follows : the "] k" symbol indicates the kth write access to data A

and the "% n" symbol indicates the nth read access to data A following the kth write acces.

For example, the following C code:

y = a*b;

b = y+2;

c = y;

b = c + 1;

15

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

will lead to the following accessEdge elements:

a#0%0 , b#0%0 , y#1 ; y#1%0 , b#1 ; y#1%1 , c#1 ; b#2 , c#1%0

To avoid size explosion, the array accesses are treated in the same way, independently from the

index values. Firstly the index computations are considered during the characterization step as

processing operations since they also can impact the critical path computation. Secondly, they are

taken into account during the scheduling/combinations/design space exploration step (Fig. 1) since

they introduce data dependencies. Finally, the index evolution is considered during the memory

size �ne-estimation based on polyhedral computation [23]. This is not the topic of this paper but

this point also explains our choices. Brie�y, the default memory size estimation considers array

de�nitions, the dynamic memory size estimation has been integrated in our tool as an option that

takes bene�t from our graph structure and scheduling algorithms to implement a polyhedral-based

memory size estimation method.

Examples of transformations from a C �le to a HCDFG and from a HCDFG to the data

structure are given in Fig. 7 and Fig. 8 respectively.

3.4.3 Interactive facilities

The aim of our work is to provide the designer with a fast and easy to use analysis tool. Thus the

designer can modi�y, once HCDFGs have been built, the following parameters :

• Constant values such as loop bounds, array size, etc. The designer can also choose a set of

values in order to observe the evolution of the metrics regarding a given constant;

• Test probabilities such as IF or CASE conditions which are equiprobable by default. When

such a modi�cation occurs the occurrence probabilities of all graphs are updated and stored.

The result data are stored in an XML �le to facilitate exchanges with other tools, to keep the

graph hierachy and to get a generic graphic interface.

4 Characterization

The functions composing an application can have very di�erent features in terms of orientation

(processing, control, memory) and potential parallelism. Characterizing functions has two objec-

tives: i) guide the designer in his architectural choices and ii) guide the function estimation step

in order to use the most adequate scheduling algorithms [1].

We have de�ned the following metrics:

16

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

Figure 7: From C to HCDFG.

17

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

Figure 8: From HCDFG to data structure.

18

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

• orientation metrics: Memory Orientation Metric (MOM), Control Orientation Metric (COM).

• criticity metric: γ.

• data reuse metric (DRM) and Hierarchical Data Reuse Metric (HDRM).

4.1 De�nitions and memory model

Before to give the metric formula details, we introduce some terms which will be used in what

follows.

• Processing: includes computation operations (ALU, MAC...), addresses computation (which

can be performed on ALUs or speci�c units such as AGUs Address Generator Unit) [24], de-

terministic control (e.g. constant loop bounds that can be eliminated by unfolding);

• Control: includes tests, namely control operations that are not computable by a compiler

(data-dependant control);

• Memory: includes read/write data-transfers. We distinguish the size, read/write access

timing and the simultaneous number of accesses. Moreover the memory can be hierarchical.

In this work, we have considered two levels from an architectural point of view: i) the local

memory which includes cache units and internal registers and ii) the global memory which

include RAM, ROM, hard-drives, cf. section 4.1.1.

4.1.1 Memory model

A key point in the following sections is the notion of local and global accesses from a graph

point of view. This notion is used during the characterization and the estimation steps. We have

distinguished several types of memory nodes (the type is saved as an attribute for each node in a

graph):

• N1: inputs/outputs: data identi�ed as inputs/outputs of a graph;

• N2: temporary data: produced by internal processings;

• N3: reused data: input data (N1 subset) reused in a graph (detected with su�xes values);

• N4: accumulation data: annotated with pragmas during the speci�cation.

At the system-level the local memory size associated to the processing unit is not yet known.

It is therefore necessary to de�ne a general notion of locality related to the application and not

to the architecture. A global access is a data transfer to/from a data which is de�ned outside the

19

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

considered graph. A local access is a data transfer to/from a data de�ned in the considered graph

(register-register transfer from an architectural point of view). N1 data are always global, N4 data

always local, N2 and N3 data are initially local but can generate local/global swapping during the

scheduling steps if the local memory size is limited [1].

4.2 Computation of the metrics for a function (i.e., for a HCDFG)

The computation of the metrics is performed hierarchically, with an ascending approach. First, the

metrics are computed for the leaf graphs (DFGs), then for control graph (CDFG) and hierarchical

graphs (HCDFGs) using mutual-exclusive rules (CDFGs) and parallel and sequential rules (CDFGs,

HCDFGs). The metrics at a level i of the hierarchy are not simply obtained by a combination

of metrics at level i-1, instead they are computed using the features stored a level i-1 such as

the number of processing operations, memory accesses, control nodes and the critical paths as

explained in sections 4.3.1, 4.3.2, 4.4.3 and 4.4.3.

Note also that on the one hand the orientation metrics (section 4.3) are computed without

knowledge of the node ASAP/ALAP dates, only by counting the relevant elements. On the other

hand the criticity (section 4.4) and (H)DRM (section 4.5) metric computations use ASAP/ALAP

dates computed with UAR features.

Abbreviation Meaning
Np number of processing operations
Nc number of tests (control operations which can not be eliminated at compile time)
Nm number of global memory accesses operations with Nbp = number of operations of

type ALU, Macs,...+ Index computation + tests
tr/fa graphs of mutually exclusive branches in "IF-THEN-ELSE" structures
ptr, pfa execution probabilities of true and false branches respectively (obtained by pro�ling

or speci�ed by the designer, equals 0.5 by default)
for graph of the core of a "FOR" structure
eval graph of the evaluation part of a "FOR" structure
evol graph of the evolution part of a "FOR" structure
Nite number of iterations in a loop structure

Table 1: Abbreviation used

4.3 Orientation metrics

For the three orientation metrics we �rstly give a general formula. Then we detail the computations

for DFGs, CDFGs (IF-THEN-ELSE and FOR) and HCDFGs. The computation of SWITCH,

WHILE and DO-WHILE structures are not presented since they are generalization of IF-THEN-

ELSE and FOR computations. The abbreviations used are presented in table 1.

20

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

4.3.1 Memory Orientation Metric (MOM)

MOM indicates the frequency of memory accesses in a graph. The general formula for MOM

is the ratio between the number of global memory accesses and the number of global memory

accesses plus the number of processing operations. Its value is bounded in the interval [0;1]. High

MOM values indicates that processing operations are applied to new data (i.e., data entering the

graph, as opposed to data computed previously which might reside in the local memory). The

more MOM → 1, the more the function is data transfer oriented (if MOM = 3
4 then a processing

operation requires, in average, three memory accesses). In the case of hard time constraints, high

performance memories are required (large bandwidth, dual-port memory,...) as well as an e�cient

use of memory hierarchy and data locality [25].

• DFG MOM

For a DFG MOM is computed as follows:

MOM =
Nm

Nm + Np

• IF-THEN-ELSE MOM (and SWITCH by extension)

For this structure MOM is given as the ratio between the number of memory operations in

the branches multiplied by their respective execution probabilities and the sum of all the

operations in the branches multiplied by their respective execution probabilities.

MOMIF =
Nmtr ∗ ptr + Nmfa ∗ pfa + Nmeval∑

x=p,c,m(Nxtr ∗ ptr + Nxfa ∗ pfa + Nxeval)

• FOR MOM (and WHILE DO-WHILE by extension)

For this structure MOM is given as the ratio between the number of memory operations in

each part of the loop (evaluation, core and evolution) and the sum of all the operations in

each part.

MOMFOR =
Nmeval + Nmfor + Nmevol∑

x=p,c,m(Nxeval + Nxfor + Nxevol)

• HCDFG MOM

For a HCDFG MOM is given as the ratio between the sum of all memory operations in the

21

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

sub-graphs of the HCDFG and the sum of all the operations in the sub-graphs.

MOMHCDFG =

∑
sub-graphs j Nmj∑

sub-graphs j, x=p,c,m Nxj

4.3.2 Control Orientation Metric (COM)

COM indicates the appearance frequency of control operations (i.e., tests that cannot be eliminated

during compilation) in CDFGs and HCDFGs (since there is no test within a DFG).

The general formula of COM is the ratio between the number of tests and the total number of

operations including processing operations, tests and accesses to global memories. COM values are

bounded in the interval [0;1]. The closer to 1 COM is, the more the function is control dominated,

so needs complex control structures (if COM = 3
4 then 1 operation out of 4 is a non-deterministic

test). It also indicates that the use of the pipeline technique is not e�cient for such functions.

• DFG COM

For a DFG, COM equals 0 since there is no control in a DFG.

• For a CDFG the generic formula for COM is computed as follows:

COM =
Nc

Np + Nc + Nm

• IF-THEN-ELSE COM (and SWITCH by extension)

For this structure COM is given as the ratio between the number of control operations in

the branches multiplied by their respective execution probabilities and the sum of all the

operations in the branches multiplied by their respective execution probabilities.

COMIF =
Nctrptr + Ncfapfa + Nceval∑

x=p,c,m(Nxtr ∗ ptr + Nxfa ∗ pfa + Nxeval)

• FOR COM (and WHILE DO-WHILE by extension)

For this structure COM is given as the ratio between the number of control operations in

each part of the loop (evaluation, core and evolution) and the sum of all the operations in

each part.

COMFOR =
Nceval + Ncfor + Ncevol∑

x=p,c,m(Nxeval + Nxfor + Nxevol)

22

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

• HCDFG COM

For a HCDFG COM is given as the ratio between the sum of all control operations in the

sub-graphs of the HCDFG and the sum of all the operations in the sub-graphs.

COMHCDFG =

∑
sub-graphs j Ncj∑

sub-graphs j, x=p,c,m Nxj

4.4 Criticity metric

The approach used in our methodology consists in estimating the most critical functions �rst (the

less critical ones may reuse the resources allocated to the most critical ones and are therefore

estimated after). Criticity is de�ned by the γ metric such as:

γ =
Nb processing and memory accesses operations

Critical Path

The critical path of a DFG is de�ned as the longest chain of sequential operations (expressed in

cycle number). The critical path for a function is computed hierarchically by combining the critical

path of its HCDFGs.

γ indicates the average parallelism available at a speci�c hierarchy level: lets consider a HCDFG

composed of 5 identical parallel DFGs. If each DFG is internally executed in a sequential manner

then γ for each DFGs equals 1 but γ for the whole HCDFG equals 5.

A function with a high γ value can bene�t from an architecture o�ering high parallelism capa-

bilities. On the other hand, a function with a low γ value has a rather sequential execution. In that

case the acceleration of this function can be made via temporal parallelism (e.g., long pipeline),

depending on COM value. From a consumption point of view a function with a high parallelism

o�ers the opportunity to reduce the clock frequency by exploiting the spacial parallelism.

4.4.1 IF-THEN-ELSE γ (and SWITCH by extension)

The criticity metric for this structure is the ratio between the number of operations in the sub-parts

of the control structure multiplied by their respective probabilities and the sum of the critical paths

of the sub-parts.

γIF =

∑
x=p,c,m(Nxtr ∗ ptr + Nxfa ∗ pfa + Nxeval)

ptr ∗ CPtr + pfa ∗ CPfa + CPeval

23

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

4.4.2 FOR γ (and WHILE DO-WHILE by extension)

The criticity metric for this structure is the ratio between the sum of the operations in each part

of the loop and the sum of the critical paths of the sub-parts.

γFOR =

∑
x=p,c,m(Nxevol + Nxfor + Nxeval)

CPevol + CPfor + CPeval

4.4.3 HCDFG γ :

For a HCDFG representing a serial execution of sub-graphs the criticity metric is given as the ratio

between the sum of all control operations in the sub-graphs of the HCDFG and the sum of all the

critical paths.

γserial =

∑
sub-graphs j, x=p,c,m Nxj∑

sub-graphs j CPj

For a HCDFG representing a serial execution of sub-graphs the criticity metric is given as the

ratio between the sum of all control operations in the sub-graphs of the HCDFG and the longest

of all the critical paths.

γparallel =

∑
sub-graphs j, x=p,c,m Nxj

MAXsub-graphs j(CPj)

4.5 DRM and HDRM metrics

4.5.1 DRM metric

Balancing processing and memory access operations is a critical point in system design to face

the memory bandwidth bottleneck (as compared to the processors performances). The balance

can be obtained through the use of scheduling algorithms adapted to the function orientation.

In order to guide function analysis and DFG scheduling we have de�ned a metric called DRM:

Data Reuse Metric. At system-level the only memory hierarchy information available is naturally

extracted from the algorithmic memory hierarchy (i.e., from the high-level language speci�cation).

This metric takes into account the local memory size, which has to be �xed by the designer or

estimated. The estimation is performed as explained in the next paragraph. Moreover, as we

want to obtain estimates rapidly, methods such as clique coloring have been discarded. The DRM

metric gives the global/local accesses ratio. A local access which produces a memory con�ict (local

memory full) involves a global read and write, thus the number of extra global accesses is β×EGT

with β the average number of cycles required by an access to the global memory (main memory

24

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

with or without cache capabilities.) In the case of a single main memory which requires only one

cycle per access β = 2 (read plus write).

We use average data lifetime to estimate the quantity of data alive in each cycle, from which

the minimum memory size can be derived. Minimum and maximum data-life of data d are de�ned

as follows:

MinDL(d) = ASAP (dn)−ALAP (d1) + 1

MaxDL(d) = ALAP (dn)−ASAP (d1) + 1

where ASAP and ALAP are the earliest and latest scheduling dates respectively, d1 and dn the

earliest and the latest read access to data d for a given time constraint respectively. The average

data-life of data d is then given by:

AvDL(d) =
1
2

(MinDL(d) + MaxDL(d))

Finally, the number of data alive per cycle is given by:

AAD =
1
T

∑

d

AvDL(d)

where T is the number of cycles allocated to the estimated function (the estimation process is based

on a time constraint scheduler, using several time constraints [1]). The number of local transfers

turning into global transfers because of a too small local memory is given by:

EGT =





(AAD − UM)T if AAD > UM

0 otherwise

where UM is the local memory sized. UM can be de�ned by the user, its default value is AAD.

If we consider a memory hierarchy with the following characteristics, Level 1 (L1): latency1(l1) =

1cycle, L2: l2 = 2cycles, L3: l3 = 3cycles, and if MRi is the miss ratio of the cache level i, then:

β = 1.(1−MR1) + 2.MR1.(1−MR2) + 3.MR1.MR2

If we generalize to K levels of hierarchy (including hard disk and network for instance) we obtain:

β =
K∑

k=1


lk.(1−MRk).

K−1∏

j=1

MRj




25

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

Finally the DRM metric is given by:

DRM =
N1 + β.EGT

N1 + N2 + N3 + N4

The DRM metric is computed for DFGs and can be used for selecting the most appropriate

scheduling algorithm during the estimation step [26].

4.5.2 HDRM metric

The hierarchical DRM (HDRM) extends the DRM metric to inter-HCDFG data reuse (remember

that a HCDFG is a graph which contains elementary conditional nodes and parallel and serial

HCDFGs and CDFGs). Its computation is general and used for all hierarchical estimations, it is

based on two by two HCDFGs clustering. The principle is given in Fig. 9: A1 and A2 are the

amount of exclusive input data read by the HCDFG1 and HCDFG2 respectively. A12 quanti�es

the input data which are common to both graphs and A3 is the amount of result data from the

�rst graph transmitted to the second one. Thus the HDRM computed by the formula 8 provides

the ratio of reused data between two HCDFG which can be parallel (A3 = 0), sequential (A12=0)

or a combination.

The HDRM metric is computed as follows:

HDRM =
A3 + A12

A1 + A2 + A3 + A12

HCDFG1

A1

A12 A2

A3

HCDFG2

Figure 9: Illustration of the HDRM metric.

HDRM = 1 means that the reuse ratio is maximal: all data read by the HCDFG2 are shared

or produced by HCDFG 1, it also denotes that a local memory could be e�ciently implemented.

On the other hand DRM12 = 0 means that no data-reuse is available for memory optimization. In

multimedia applications, data reusing has a important impact especially because the optimization

opportunities are mainly due to memory management of loop nests. According to that point, we

26

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

observe that the HRDM computation can be computed while considering HCDFG1 and 2 as two

successive loop iterations.

Illustrative example

We now present how the HDRM computation can be applied to the six nested loops of a classical

motion estimation algorithm. Our aim here is to use the HDRM in order to highlight data reuse

between subsequent iterations at a given level of hierarchy. If we refer to the illustration in Fig. 9,

it means that we virtually consider a loop unrolling where each iteration is embodied by a HCDFG.

The HDRM has been computed for the di�erent loop levels: column and row of a n∗n (with n=8),

column and row of the 2m+n−1∗2m+n−1 reference window (with m=16) and column and row

of a WxH frame (QCIF format: W=174, H=144). Table 2 presents the results regarding the Ai

and HDRM values for each hierarchical level. (OF and NF mean Old and New frame respectively).

The last column shows the size of the memory candidate to store the old frame data at each level of

hierarchy. We observe that the best data reuse opportunities are available when the HCDFG-core

of the following loop indices are considered: column of the reference window (HDRM = 88%), row

of the reference window (HDRM = 81%) and row of the frame (HDRM=87%). It means that

including an ad hoc memory hierarchy to locally store these highly reused data can provide high

performance and power optimizations.

Level A1-
OF

A1-
NF

A2-
OF

A2-
NF

A12-
OF

A12-
NF

A3 HDRM OF Memory size

block column 1 1 1 1 0 0 1 0,20 1
block row 8 8 8 8 0 0 1 0.03 n

window column 8 0 8 0 56 64 0 0,88 n ∗ n
window row 39 0 39 0 273 64 0 0,81 (2m + n− 1) ∗ n

frame column 312 312 312 312 1209 1209 0 0,66 (2m + n− 1)2

frame row 1408 1408 1408 1408 5456 25336 0 0,87 W ∗ (2m + n− 1)

Table 2: HDRM metric Motion estimation theoretical results. OF: Old Frame, NF: New Frame

Final remark on the metrics

Compiler optimizations and transformations can have strong impacts on the �nal code and it

would be therefore desirable to evaluate these impacts as regard to the metrics. This point is out

of scope of this paper, however it should be possible to evaluate these impacts by accessing post

target-independent optimized code and to characterize this code. Finally by comparing the two

characterizations, the compiler impact could be evaluated.

27

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

5 Results

We have applied the previously de�ned metrics to functions widely used in embedded systems.

Hereafter we present results computed with the aim to be as much as possible independent from

any architecture, namely we consider an algorithmic characterization based on a unspecialized

UAR. The following examples are detailed: a wavelet transform (DWT) and a 2D-DCT transform,

a G722 audio decoder, a TCP protocol and two video applications matching pursuit (MP): Object

Motion Detection (OMD). Regarding the OMD application we also provide estimations results on

a FPGA target.

5.1 DWT

The DWT algorithm [27] has been implemented using the lifting scheme. It is composed of two

sequential blocks (C sub-functions translated into HCDFGs, level N-1) which operate sequentially

in the horizontal and vertical dimensions respectively. Each block is made of 6 sub-blocks (C sub-

functions translated into HCDFGs, level N-2). The C code is made of one function (translated

into a HCDFG, level N) englobing the code for the sub-blocks. The lower level of granularity

depend on the structure of each sub-blocks whose metrics are automatically computed like for

upper levels. The delay for the whole characterization step equals 500ms on a PIII@700Mhz with

Java implementation. Table 3 provides the results for the six functional sub-blocks and for the

whole function (top graph). The �rst observation is that the COM metric equals zero for all graphs,

since this application is composed of deterministic loops and does not contain any test. Secondly

we observe that MOM values for the wavelet functional blocks are higher than 0,7; this means

that more than 7/10 of operations are data accesses, so the application is clearly, at all levels,

memory oriented. Finally, γ values are around 1,5 for all the functional blocks. The horizontal

and vertical blocks have gamma values equal to 2,704. As the two blocks are executed sequentially,

the gamma value for the whole function (top graph) also equals 2,704. This indicates that spatial

parallelism is rather weak considering the �ne grain sub-blocks and a that a coarse grain parallelism

is available, i.e., parallelism between the horizontal and vertical blocks. By analyzing the metrics

values, the designer can notice that there i) is no need for complex control structures, ii) are

important needs for high data-access requirements and iii) is a coarse grain parallelism. This

means that optimizations can be obtained with a pipelined architecture with possible coarse grain

dedicated hardware modules providing a large bandwidth. So if high performances are required, a

(programmable) dedicated hardware can be introduced within the SOC.

28

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

Sub-blocks N-2 MOM N-2 COM N-2 γ N-2
HFirstLiftingStepFOR11 0,721 0 1,576
HFirstDualLiftingStepFOR21 0,721 0 1,576
HSecondLiftingStepFOR31 0,721 0 1,576
HSecondDualLiftingStepFOR41 0,722 0 1,579
HScalingFOR51 0,802 0 2,136
HRearrangeFOR61 0,904 0 1,843
VFirstLiftingStepFOR71 0,721 0 1,576
VFirstDualLiftingStepFOR81 0,721 0 1,576
VSecondLiftingStepFOR91 0,721 0 1,576
VSecondDualLiftingStepFOR101 0,722 0 1,579
VScalingFOR111 0,802 0 2,136
VRearrangeFOR121 0,904 0 1,843
Blocks N-1 MOM N-1 COM N-1 γ N-1
Hlines ? ? 2,704
Vlines ? ? 2,704
Top-graph N MOM N COM N γ N
DWT (top graph) 0,765 0 2,704

Table 3: DWT characterization

5.2 G722 Decoder

The UIT-T G722 recommendation is one of the audio part of the H320 standard for video-

conference. We have studied the coder part of the application, and more speci�cally the adaptive

predictor block (predicSup). This block is made of 8 sub-blocks (�lters) which execute concurrently.

The characterization results are found in table 4. We can notice that the results are quite similar

to those of the previous example. First of all the COM values are very small, which indicates that

there is almost no tests. Next we observe high MOM values which re�ect a large number of global

memory accesses. Finally the parallelism is weak at �ne grain levels (between 1.33 and 2.33 for the

eight sub-blocks) and increases at the highest levels of the hierarchy, since the sub-blocks execute

concurrently (3.60 and 3.62 for predic and predicSup respectively). The parallelism evolution is

quite similar to the DWT example since the parallelism is increasing from level N-2 to N-1 and

remains stable at level N, however larger gains are obtained. By considering a cross analysis of

MOM and γ we observe that in order to exploit the available parallelism (γ = 3.62) the architec-

ture should provide enough simultaneous memory accesses since more than 70% of operations are

data-transfers. By referring to the metrics the designer should select an architecture with good

I/O capabilities and enough computational power to execute the sub-blocks concurrently. For ex-

ample a large DSP such as the Texas Instrument TMS320C6201 coupled with a I/O co-processor

featuring large FIFOs could be used.

29

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

Sub-blocks N-2 MOM N-2 COM N-2 γ N-2
parrecEecons 0,714 0 2,333
upzero 0,758 0,039 1,686
uppol2 0,674 0,087 2,045
uppol1 0,743 0,086 2,188
recons 0,603 0,081 2,128
�ltez 0,688 0 1,375
�ltep 0,5 0 2,000
predic 0,75 0 1,333
Sub-blocks N-1 MOM N-1 COM N-1 γ N-1
predicSup 0,738 0,037 3,602
Sub-blocks N MOM N COM N γ N
predictorSup (top graph) 0,739 0,037 3,621

Table 4: G722 characterization

5.3 2D DCT

This application is a well known 2D-DCT for 8x8 image blocks, this example is interesting to

illustrate metric interpretations. From a structural point of view, it is composed of two identical

and sequential 1D-DCT sub-blocks (operating on lines and columns), so the corresponding graphs

have the same metric values as seen in table 5. We can notice that the γ metric extracts the high

degree of parallelism (5,71) provided at the lowest level of granularity (N-1). The parallelism does

not increase at the second level of granularity (N) because of strict data-dependencies between

sub-functions. We also observe that MOM metric is near to 0,5 compared to the DWT example

where MOM is greater than 0,7. It means that the reuse of temporary local data is here much

more important, it is also related to the larger degree of available parallelism.

Sub-blocks N-1 MOM N-1 COM N-1 γ N-1
DCT8L 0,575 0 5,714
DCT8C 0,575 0 5,714
Sub-blocks N MOM N COM N γ N
DCT8x8 (top graph) 0,575 0 5,714

Table 5: 2D DCT characterization

5.4 TCP

We have computed the TCP protocol metrics in order to test another kind of classical application.

Each function represents a TCP state within a FSM speci�cation. Table 6 shows the analysis

result for some representative functions of TCP. We can notice that the functions have relatively

high COM values denoting heavily conditioned data-�ows. The MOM metric values (greater than

1/3) also indicate an important data accesses frequency. It means that these functions are control-

30

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

oriented and require high memory bandwidth. So, a suitable target architecture is a GPP powered

by e�cient I/O devices. There is no need for a DSP and for a complex data path structure, since

the parallelism cannot be exploited since the functional blocks are clearly control oriented. Note

that another very e�cient architecture could be implemented using a dedicated FSM associated

with fast FIFOs.

Functional blocks MOM COM
TCPTIMEWAIT 0,482 0,06
TCPFINWAIT2 0,534 0,055
TCPABORT 0,457 0,343
TCPwakeup 0,333 0,556
T�nsert 0,5 0,01
TCPdodat 0,375 0,06
TCPSENT 0,508 0,320
TCPRESET 0,667 0,148

Table 6: TCP characterization

5.5 Matching pursuit

We have been provided with the Matching pursuit application in the context of a collaboration

project with EPFL [28]. The matching pursuit application is a new compression mode which does

not operate on pixels but on "atoms" representing basic patterns in a picture. This example is

interesting because it is still under development: the speci�cation is still evolving, it is therefore

interesting for the designer to be able to evaluate rapidly any modi�cation of the speci�cation. In

this example modi�cations include classical algorithmic transforms such as loop unrolling and so

on, but also structural transforms and organization of the code, which can have considerable e�ects

on the performances. This shows that performing fast algorithmic characterization as proposed

in our method is justi�ed. Fig. 10 shows the elements of the processing setup. The encoder is

based on a genetic algorithm and implemented on a server, we have not focused on this part. The

decoding part can be implemented on several systems, including embedded systems. Fig. 10 shows

the 4 main blocks of the decoding part.

Fig. 11 shows the results for the 4 main functions of the decoder. Clearly, "DecodeVideo" is the

only function which includes some tests, limited however to 3%. We also notice that global memory

accesses are frequent, this is due to the reads of the data from the video stream. "DecodeVideo" and

"SetPixelValue" have the highest γ values, therefore they are to be examined �rst for optimization.

These metrics have been computed with the �rst initial speci�cation, these results have been used

to re�ne the speci�cation of the MP application [28], especially to increase the intrinsic parallelism

of the "ComputeNorm" function.

31

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

(QFRGHG�9LGHR�03 0375$16&2'(03'(&2'('HFRGHG�YLGHR

'(&2'(9,'(26(73,;(/9$/8(&20387(12506&$/(

(QFRGHU���VHUYHU 'HFRGHU���HPEHGGHG��ODSWRS��3'$������

(QFRGHG�9LGHR�03 0375$16&2'(03'(&2'('HFRGHG�YLGHR

'(&2'(9,'(26(73,;(/9$/8(&20387(12506&$/(

(QFRGHU���VHUYHU 'HFRGHU���HPEHGGHG��ODSWRS��3'$������(QFRGHU���VHUYHU 'HFRGHU���HPEHGGHG��ODSWRS��3'$������

Figure 10: Matching Pursuit setup (courtesy S. Bilavarn)

-0,01
-0,01
0,00
0,01
0,01
0,02
0,02
0,03
0,03
0,04
0,04
0,05

0,00 0,20 0,40 0,60 0,80 1,00

MOM

C
O

M

DecodeVideo

ComputeNorm

Scale

SetpixelValue

Gamma = 1.2

MOM = 0.73

COM = 0

Gamma = 2.12

MOM = 0.48

COM = 0

Gamma = 3.67

MOM = 0.64

COM = 0
Gamma = 4.14

MOM = 0.7

COM = 0.03

Figure 11: Matching Pursuit characterization. γ is proportional to the size of the circle.

32

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

5.6 Object Motion Detection (OMD)

This motion detection application have been developed by the LIST laboratory of the CEA research

center [29] for the EPICURE project [21]. The typical target architecture is presented in Fig. 12.

This is an intelligent video camera made of a CMOS sensor and a processor along with some

recon�gurable logic. This application is typically embedded in video cameras and used for parking

lot monitoring (detection of car and person moves), person counting in places such as subways

and so on. We have used a large set of representative input data (from a parking lot monitoring

appliance) to produce a pro�ling of the application functions used to �ll the probability attributes

of the graphs (cf.3.3). Fig. 13 illustrates how the OMD application works.

 Ext. Digital

Interface
CMOS

Sensor VIDEO
PROCESSOR

PROCESSOR + RECONFIGURABLE
LOGIC

DSP
reconfigurable

logic

Other sensors

Figure 12: Motion detection architecture. (Copyrights CEA).

Figure 13: OMD motion detection example. Video / background detection / moving object detection

The OMD application is made of a hundred of functions. The main processing part is made of

31 functions, representing 1740 lines of C code. We have characterized these functions and found

out that 16 of them are the most critical ones (i.e., those with the highest criticity metric (γ)

values). These functions are those which should be optimized. The functions are quite complex,

for example the function "Ic_gravityTest" is composed of 378 C code lines, translated into 2408

lines of HCDFG, the corresponding graph is made of 200 sub-graphs. The function "Ic_labelling"

is made of about 200 lines of C code and 1200 lines in the HCDFG description. The results of the

OMD characterization are presented in Fig. 14 and table 7. The possibility of characterizing an

application rapidly is a important and very useful feature which enables the designer to sketch a

33

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

new architecture or to tune an existing one. In this case, all OMD functions have been characterized

in a few seconds.

-0,10

-0,05

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,00 0,20 0,40 0,60 0,80 1,00

MOM

C
O
M

Ic_gravityTest

Ic_labelling

Ic_backgroundUpdate

Ic_reconstDilat

Ic_dilatBin

Ic_histoThreshold

Ic_envelop

Ic_absolute

Ic_thresholdAdapt

Ic_convolveTabHisto

Ic_div

Ic_getHistogram

Ic_setValue

Ic_add

Ic_sub

Ic_erodBin

Avg = 0.72

Figure 14: OMD characterization. γ is proportional to the size of the circle.

Solution
number

Function name Critical
Path (Nb
cycles)

Gamma MOM
[0,1]

COM
[0,1]

1 Ic_gravityTest 2102 43,88 0,78 0,22
2 Ic_labelling 395269 10,31 0,74 0,07
3 Ic_BackgroungUpdate 73 5,62 0,76 0,03
4 Ic_reconstDilat 848144 4,75 0,65 0,32
5 Ic_dilatBin 49 4,69 0,70 0,02
6 Ic_histoThreshold 3 4,00 0,64 0,29
7 Ic_envelop 6098184 3,91 0,66 0,13
8 Ic_absolute 327683 2,60 0,71 0,08
9 Ic_thresholdAdapt 327683 2,20 0,75 0,08
10 Ic_convolveTabHisto 15879 1,27 0,70 0,03
11 Ic_div 524291 1,25 0,73 0,00
12 Ic_getHistogram 591622 1,22 0,75 0,00
13 Ic_setValue 1795 1,14 0,78 0,00
14 Ic_add 294919 1,11 0,75 0,00
15 Ic_sub 294919 1,11 0,75 0,00
16 Ic_erodBin 4776219 1,10 0,73 0,01

Table 7: OMD characterization.

The �rst observation which can be made is that all the functions have high MOM values, (0,72

on the average, which indicates that more than 2 operations out of 3 are memory accesses). This

is due to the fact that there are numerous reads of data from the video stream and that the

application is highly hierarchical (nested control structures for example), it also indicates that the

inner DFGs are rather small so few local temporary data can be reused. This implies that the

OMD application requires either a large local memory to store reused image data or high end

input/output mechanisms (parallel data reading/writing).

34

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

Next we observe that γ variations are very signi�cant since it evolves from 1,27 for "Ic_convolveTabHisto"

up to 43.8 for "Ic_gravityTest". Using these values it is possible to sort the functions and to �nd

out in what order they should be considered regarding the design of a speci�c architecture. Focus-

ing on the most critical ones �rst enables to sketch an appropriate architecture and also to take

reusing into account (the functions less critical can be implemented on existing resources allocated

to the most critical ones). Finally COM values are comprised between 0 and 0,3 which denotes

that that tests are not dominant (most of the control in the application is deterministic).

In the Epicure project we have performed the next steps after characterization, i.e., the schedul-

ing/combinations/exploration step (Fig. 1) and a HW architectural estimation (HW projection

in Fig. 1). In the overall design �ow the characterization has been used to i) select the 16 most

critical functions, ii) explore and detect the functions which have been implemented on FPGA

(Xilinx V400EPQ2) and iii) choose a processor for the other functions (ARM922). The func-

tions chosen for hardware implementation (Ic_gravityTest, Ic_labelling, Ic_BackgroundUpdate,

Ic_dilatBin, Ic_envelop and Ic_absolute) are those which present high parallelism opportunities

(high γ), high MOM and low MOC. In order to illustrate the usefulness of the metrics we present

some results of the next steps of Design Trotter, namely the system-level estimation presented in

table 8 computed with generic UAR and its projection on a Xilinx V400EPQ2 architecture given

in table 9. The functions selected for hardware implementation by means of the metrics have been

scheduled/combined/explored with Design Trotter. The results found during that step corrobo-

rate the indication given by γ and MOC: in terms of speed-up is has be found for example that

Ic_gravityTest can be accelerated with factors up to 2614 as shown in table 8. Finally table 9

gives the results for the hardware projection of Ic_gravityTest on the Xilinx V400EPQ2 FPGA.

The choice of the V400EPQ2 is based on the analysis of the metrics and the result of the schedul-

ing/combination/exploration step, since its features suit well the need highlighted by the metrics

and the system-level estimation.

6 Conclusion

In this paper we have proposed a high-level methodology and presented an interactive CAD tool

which aims at guiding designers of embedded systems. More speci�cally, the framework enables the

rapid characterization and exploration of applications speci�ed using a usual standard language.

The outcome is a set of metrics characterizing the application at all levels of hierarchy in terms

of processing, control and memory orientation as well as in terms of potential parallelism. This

information can be used in three ways:

35

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

Solution number Nb cycles Speed-up ALU MULT Nb memory accesses local memory size
1 10940 2614,85 2775 1 14020 25236
2 12634 2264,24 2755 1 13764 24788
3 13265 2156,53 2755 1 13764 24788
4 13461 2125,13 2755 1 13763 24788
5 22267 1284,70 2751 1 13743 24752
6 37979 753,22 791 1 3943 7112
7 41181 694,65 789 1 3933 7094
8 43925 651,26 789 1 3933 7094
9 49413 578,92 789 1 3933 7094
10 52157 548,47 789 1 3931 7094
11 54901 521,05 789 1 3929 7094
12 57645 496,25 789 1 3929 7094
13 60389 473,70 789 1 3928 7094
14 63133 453,11 789 1 3927 7094
15 71365 400,85 789 1 3927 7094
16 75828 377,25 397 1 1967 3566
17 85085 336,21 397 1 1967 3566
18 137221 208,47 397 1 1967 3566
19 139965 204,38 397 1 1966 3566
20 142709 200,45 396 1 1965 3566
21 145467 196,65 396 1 1964 3566
22 145582 196,50 395 1 1963 3564
23 264758 108,05 115 1 563 1044
24 529260 54,05 59 1 283 540
25 1055520 27,10 31 1 143 288
26 2414976 11,85 11 1 43 108
27 4302848 6,65 7 1 23 72
28 8009992 3,57 5 1 13 54
29 8547816 3,35 5 1 13 54
30 9623464 2,97 5 1 13 54
31 10161288 2,82 5 1 11 54
32 10699112 2,67 5 1 9 54
33 11236936 2,55 5 1 9 54
34 11774760 2,43 5 1 8 54
35 12312584 2,32 5 1 7 54
36 13926056 2,05 5 1 7 54
37 16615176 1,72 5 1 7 54
38 26833832 1,07 5 1 7 54
39 27371656 1,05 5 1 6 54
40 27909480 1,02 4 1 5 54
41 28447500 1,01 4 1 4 54
42 28447503 1,01 3 1 3 52
43 28592958 1,00 2 1 3 34
44 28592960 1,00 2 1 2 34
45 28606419 1,00 1 1 2 18
46 28606421 1 1 1 18

Table 8: System-level scheduling/exploration of IC_gravityTest

Solution number Time (ns) Nb states Nb Logic Cells Nb Dedicated Cells
25 20191042,08 4384 868 357
26 46196075,90 4415 428 191
27 82309179,39 857 340 56
28 153223136,97 614 296 36
31 194375278,15 618 296 32
36 266391525,22 625 296 28

Table 9: IC_gravityTest hardware projection on a Xilinx V400EPQ2 FPGA

36

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

i) when using a �xed architecture the speci�cation characterization guides his algorithmic

choices (e.g., parallel vs. sequential execution, loop unrolling, dedicated coprocessors, etc.)

ii) for a �xed speci�cation the characterization guides his implementation choices (e.g., DSP

vs. GPP vs FPGA).

iii) when neither the speci�cation nor the architecture are de�nitely set, the designer can re�ne

conjointly both aspects.

Therefore, by using our methodology the designer is guided, very early in the design process,

for evaluating rapidly the impact of his algorithmic choices and choosing or building the most

appropriate architecture for his application. This step is part of a high-level co-design environment

called Design Trotter of which the goal is to assist designers of embedded systems such as SOCs.

We have presented two key points of this work: the �rst one is the HCDFG internal represen-

tation. This model is fully based on graphs and has been designed to ful�ll our own requirements

for the characterization and exploration of applications originally speci�ed with the 'C' language.

The second one is the characterization step itself. Two types of information are provided for each

granularity level of the application functions. Firstly two orientation metrics are given, the MOM

metric indicates how in�uent are data-transfers compared to data-processings, this point is usually

related to the data-�ow graph depth. The COM metric exhibits the weight of undesirable tests

within the application. The MOM metric can be interpreted as a balance between the bandwidth

and processing parallelism requirements, the MOC metric predicts the e�ciency of spatial and

temporal parallelisms. The second kind of metric produces the average level of parallelism com-

paratively to the critical path. Besides the information given about the available parallelism, this

metric also shows up how it is ditributed over the di�erent levels of granularity. Thus it indicates

where large gain can be obtained with spatial parallelism but also where pipeline architecture is

required.

We have illustrated these concepts with experiments conducted using the Design Trotter frame-

work, which implements the C to HCDFG parser, the computation of the metrics and user interface

for results analysis. By referring to the characterization results, designers of embedded systems

can get rapidly feedback on their algorithmic choices and be guided in their architectural choices

during the selection or the building of an appropriate architecture for the application.

The Design Trotter tool set has been designed as an open and �exible framework for imple-

menting and testing new methods in the area of hardware / sofware codesign of embedded system,

thus it constitutes an open space for future work.

37

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

References

[1] Y. Le Moullec, J-Ph. Diguet, and J-L. Philippe, �Design-trotter: a multimedia embedded

systems design space exploration tool,� in Ieee Workshop on Multimedia Signal Processing

(MMSP 2002), St. Thomas, US Virgin Islands, December 2002.

[2] Th. Gourdeaux, J-Ph. Diguet, and J-L. Philippe, �Design trotter: Interfunction cycle distri-

bution step,� in 11th Int. Conf. RTS Embedded Systems, Paris, France, April 2003.

[3] S. Bilavarn, G. Gogniat, J.L. Philippe, and L. Bossuet, �Fast prototyping of recon�gurable

architectures >from a c program,� in ISCAS 2003, Bangkok, Thailand, May 2003.

[4] L. Bossuet, W. Burleson, G. Gogniat, V. Anand, A. La�ely, and J.L. Philippe, �Targeting tiled

architectures in design exploration,� in 10th Recon�gurable Architectures Workshop (RAW),

Nice, France, April 2003.

[5] A. Azzedine, J-Ph. Diguet, and J-L. Philippe, �Large exploration for hw/sw partioning of

multirate and aperiodic real-time systems,� in International Symposium on Hardware/Software

Codesign (CODES), Estate Park, USA, May 2002.

[6] Gérard Berry, �The esterel primer,� http://www-sop.inria.fr/meije/esterel/esterel-eng.html.

[7] N. Halbwachs, �Synchronous programming of rective systems,� Kluwer Academic Publisher,

1993.

[8] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, C. Passerone,

A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and B. Tabbara, Hardware-Software

Co-Design of Embedded Systems: The Polis Approach, Kluwer Academic Publisher, June

1997.

[9] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli, �Design of embedded

systems: formal models, validation and synthesis,� Proceedings of the IEEE, March 1997.

[10] J. Buck and E.E. Lee, �, the token �ow model,� in Data Flow Workshop, Hamilton Island,

Australia, May 1992.

[11] A. D. Pimentel, L. O. Hertzberger, P. Lieverse, P. van der Wolf, and Ed F. Deprettere,

�Exploring embedded-systems architectures with artemis,� Ieee Computer, vol. 34, no. 11,

pp. 57�63, November 2001.

[12] �Systemc web page,� http://www.systemc.org/.

[13] A. Gerstlauer and D. Gajski, �System level abstraction semantics,� in IEEE International

Symposium on System Synthesis (ISSS), Kyoto, Japan, 2002.

38

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

[14] L.Cai, S.Verma, and D.D.Gajski, �Comparison of specc and systemc languages for system

design,� Tech. Rep. CECS-03-11, Univ. of California, Irvine, Irvine, USA, 2003.

[15] �Esterel studio web page,� http://www.esterel-technologies.com/.

[16] L. Guerra, M. Potkonjak, and J. Rabaey, �System-level design guidance using algorithm

properties,� in Ieee Workshop on Vlsi Signal Processing, San Diego, USA, October 1994.

[17] J-Ph. Diguet, O. Sentieys, J-L. Philippe, and E. Martin, �Probabilistic resource estimation for

pipeline architecture,� in Ieee Workshop on Vlsi Signal Processing, Sakai, Japan, October

1995.

[18] F. Vahid and D. D. Gajski, �Closeness metrics for system-level functional partitioning,� in

EDAC, Brighton, U.K., September 1995, pp. 328�333.

[19] L. Carro, M. Kreutz, F. Wagner, and M. Oyamada, �System synthesis for multiprocessor

embedded applications,� in Design Automation and Test in Europe Conference (DATE),

Paris, France, March 2000.

[20] D.Sciuto, F.Salice, L.Pomante, and W.Fornaciari, �Metrics for design space exploration of

heterogeneous multiprocessor embedded systems,� in International Symposium on Hard-

ware/Software Codesign (CODES), Estes Park, USA, May 2002.

[21] M.Auguin, K.Ben Chehida, J-Ph.Diguet, X.Fornari, A-M.Fouilliart, C.Gamrat, G.Gogniat,

P.Kajfasz, and Y.Le Moullec, �Partitioning and CoDesign tools & methodology for Recon�g-

urable Computing: the EPICURE philosophy,� in 3rd Int. Work. on Systems, Architectures,

Modeling Simulation (SAMOS03), Greece, July 2003.

[22] A.Dasdan, D.Ramanathan, and R.K.Gupta, �Rate derivation and its application to reactive

real-time embedded systems,� in 35th Acm/Ieee Design Automation Conf., San Francisco,

USA, 1998.

[23] P.Grun, F.Balasa, and N.Dutt, �Memory size estimation for multimedia applications,� in 6th

Int. Work. on HW/SW Co-Design, Seattle,USA, Mar. 1998.

[24] M. Miranda, M. Janssen, F. Catthoor, and H. De Man, �ADOPT: E�cient Hardware Address

Generation in Distributed Memory Architectures,� in 9th Ieee/Acm Int. Symp. on System

Synthesis, La Jolla, USA, November 1996.

[25] S. Wuytack, J-Ph. Diguet, F. Catthoor, and H. De man, �Formalized methodology for data

reuse exploration for low-power hierarchical memory mappings,� Ieee Transaction on Vlsi

Systems, vol. 6, no. 4, pp. 529�537, December 1998.

39

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

[26] Y. Le Moullec, J-Ph. Diguet, D. Heller, and J-L. Philippe, �Fast and adaptive data-�ow and

data-transfer scheduling for large design space exploration,� in Great Lakes Symposium on

Vlsi(GLSVLSI), New-York, USA, April 2002.

[27] M.Antonini, M.Barlaud, P.Mathieu, and I.Daubechies, �Image coding using wavelet trans-

form,� IEEE Transaction on Image Processing, vol. 1, no. 2, pp. 205�206, April 1992.

[28] S.Bilavarn, P.Vandergheynst, and E.Debes, �Methodology and tools to de�ne special purpose

processor architecture,� http://ltswww.ep�.ch/ bilavarn, 2003, Intel grant 11409.

[29] L. Letellier and E. Duchesne, �Motion estimation algorithms,� Tech. Rep., L.C.E.I, C.E.A,

Saclay, France, 2001.

40

Yannick
Typewriter
This is the authors' version of a paper that has been published in THE JOURNAL OF VLSI SIGNAL PROCESSING, Volume 42, Number 2, 2006, Copyright 2006 Springer

