
Journal of VLSI Signal Processing 40, 383–396, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Methodology for Refinement and Optimisation of Dynamic Memory
Management for Embedded Systems in Multimedia Applications∗

MARC LEEMAN
ESAT/K.U. Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

DAVID ATIENZA
DACYA/UCM, Avda. Complutense s/n, 28040 Madrid, Spain

GEERT DECONINCK AND VINCENZO DE FLORIO
ESAT/K.U. Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

JOSÉ M. MENDÍAS
DACYA/UCM, Avda. Complutense s/n, 28040 Madrid, Spain

CHANTAL YKMAN-COUVREUR, FRANCKY CATTHOOR AND RUDY LAUWEREINS
IMEC vzw, Kapeldreef 71, B-3001 Leuven, Belgium

Received September 18, 2003; Revised November 12, 2003; Accepted January 9, 2004

Abstract. In multimedia applications, run-time memory management support has to allow real-time memory
de/allocation, retrieving and processing of data. Thus, its implementation must be designed to combine high speed,
low power, large data storage capacity and a high memory bandwidth. In this paper, we assess the performance
of our new system-level exploration methodology to optimise the memory management of typical multimedia
applications in an extensively used 3D reconstruction image system [1, 2]. This methodology is based on an
analysis of the number of memory accesses, normalised memory footprint1 and energy estimations for the system
studied. This results in an improvement of normalised memory footprint up to 44.2% and the estimated energy
dissipation up to 22.6% over conventional static memory implementations in an optimised version of the driver
application. Finally, our final version is able to scale perfectly the memory consumed in the system for a wide range
of input parameters whereas the statically optimised version is unable to do this.

Keywords: multimedia, memory management, memory bandwidth, low power, memory footprint, dynamic
memory management, memory hierarchy, dynamic data types, system-level exploration

1. Introduction

The fast growth in the variety and complexity of multi-
media applications and platforms has created the need

∗The original version of this paper first appeared in the Proceedings
of Signal Processing Systems 2003.

for optimal algorithms on the one hand, and the devel-
opment of high storage capacity and efficient memory
systems on the other hand. Good examples where they
become necessary are archaeological site recording and
reconstruction, architectural planning, augmented re-
ality and film industry [2–4]. These systems depend
upon dynamic data management, which constitutes one



384 Leeman et al.

of the most difficult design challenges when mapping
them on low-power and high-speed processors that are
often not equipped with extensive hardware and system
support for dynamic memory. This dynamic memory
management (DMM) must provide an efficient mem-
ory de/allocation, retrieving and processing of the data
involved in the multimedia algorithms by combining
speed, low power, large data storage and an optimal
management of multiple Dynamic Data Types (DDTs).
It has to take into account the fact that these DDTs have
a limited lifetime and a variable behaviour while the ap-
plication is running. As a consequence, three factors in-
fluence the overall performance of the memory system:

1. The access pattern over time of the algorithm imple-
mented (temporal locality). If some (dynamic) data
is reused throughout the entire application, e.g. in
the form of a small dynamic buffer, it will occupy
precious internal memory.

2. The amount of memory accesses. If the data is
present in the processor registers, the elements have
no access penalty. Since the number of registers is
limited, access will be needed from lower, larger and
slower levels of the memory hierarchy and each ac-
cess to such a lower memory hierarchy can result in
CPU stalls if this is not properly addressed.

3. The size of the required data. Just as in statically
dominated applications, the size of the data has an
important impact on the use of the memory hierar-
chy. Contrary to the static data types, the dynamic
data types can be refined to exploit this memory
hierarchy.

4. The mechanisms to access the data (as defined by
the data structures of the system). The retrieval of a
particular data element can incur several other ac-
cesses in complex data types. For example, access-
ing a random element in a double linked list (an
often used dynamic data type) requires on average
N
4 pointer dereferences.

Taking all these factors into account, it is clear that
a systematic exploration at the system-level of the
possible choices for memory management in multime-
dia applications is a necessity. Thus, detailed power
consumption, memory footprint and performance
profiling must be available at this system-level.

For statically allocated data and operations, the
aforementioned information is available from modern
analysis and profiling tools (e.g. [5, 6]). However, for
dynamically (de)allocated data types implementations,
the situation is much worse. At the most, summarised

information can be available for the pools of data, but
the details about individual DDTs are lost. Also, sim-
ulation data can be generated at a much closer level
to the final implementation on a certain platform, e.g.
at instruction or cycle accurate hardware level. This is
however very CPU-time consuming and requires the
complete mapping trajectory, thus it is not acceptable
for system-level exploration purposes.

In this paper, we demonstrate the efficiency of our
new system-level exploration methodology, which op-
timises the DMM for typical 3D multimedia applica-
tions with the aforementioned behaviour [1, 2, 7]. Af-
ter applying the methodology, the results improve to
a great extent the memory footprint, memory accesses
and estimated energy dissipation compared to manu-
ally optimised implementations.

The remainder of this paper is organised as follows.
In Section 2, the foundations of the methodology and
design features of DMM for multimedia systems are
presented. In Section 3, the specification of the 3D
multimedia application used to apply our methodol-
ogy is illustrated. In Section 4, we characterise the
behaviour of the relevant DDTs of the system. After
that, in Section 5, we explain all the different steps to
optimise the DMM of the system. In Section 6, the ex-
perimental results are presented. Finally, in Section 7,
we draw our conclusions and present future extensions.

2. Related Work

Conceptually, the basis of a good DMM is already well
established for general-purpose systems [8]. Also, sev-
eral implementations for dynamic memory managers
exist in a general-purpose context to allow large data
storage, real-time de/allocation and frequent updates of
the data structures [8, 9].

Due to the behaviour of multimedia applications
(with a high demand of data retrieval and storage), the
access to the data must be highly optimised. Presently,
research has been started to propose suitable access
methods to DDT implementations [10].

For manual and automatic memory management in
embedded systems, research is performed [11, 12]. In
manual memory management work, dynamic mem-
ory is partitioned into blocks and tracked by single
linked lists [12]. For general purpose manual memory
managers, Berger et al. [9] describes a fast C++ tem-
plate infrastructure to improve performance of general
purpose dynamic memory allocators. However, from
our point of view, its main definition for performance



Methodology for Refinement and Optimisation of Dynamic Memory Management 385

exploration and enhancement of general-purpose mem-
ory managers limits its extensibility for other met-
rics (e.g. power consumption, memory accesses), as
embedded systems require.

In a different field, telecom network applications,
an approach that performs an exploration methodology
driven by the number of memory accesses has been out-
lined in [13]. These applications have very specific be-
haviour dominated by key accesses, lookups and sparse
data structures. Furthermore, they use one or few inde-
pendent DDTs. These and other characteristics restrict
the work to the telecom domain (see [13] for details).

System-level optimisations and techniques for
general-purpose design to reduce power consumption
are explained in [14]. Nevertheless, optimising the
memory management at the system-level in multime-
dia applications with complex dynamic behaviour has
not been given much attention.

Regarding power consumption estimation and profil-
ing in general, a lot of work based on software instead
of at a circuit level can be found. Most of this work
is done using an instruction level analysis (amongst
others [15–17]). Work to obtain accurate figures on
a higher level is more recent [6, 18, 19]. Also, sev-
eral analytical and abstract power estimation models
at the architecture-level have received more attention
recently [20] since they are needed for high-level power
analysis in very large scale integration systems. How-
ever, such estimations are based on an analysis and
design space without run-time analysis. This is not
sufficient to deal with algorithms governed by their
dynamic memory accesses and storage (such as mul-
timedia applications). In this kind of applications, the
control flow and accesses to the DDTs are unknown
at compile-time, and run-time analysis and exploration
becomes necessary.

In this paper, we propose to use a fast, stepwise,
cost-driven exploration and refinement for the DDTs in

Figure 1. Overview of the system design in the optimisations.

multimedia applications at the system-level, where the
impact on memory performance is the most important
part.

3. Demonstrator

The 3D image reconstruction algorithm used as case
study in this paper (to show in detail the applicabil-
ity and flow of our approach) is heavily characterised
by intensive internal dynamic memory use. This met-
ric 3D-reconstruction from video algorithm [1] allows
the reconstruction of 3D scenes from images and re-
quires no other information apart from multiple frames.
This makes the code especially useful for situations
where extensive 3D setup with sensitive equipment is
extremely difficult, e.g., crowded streets or remote lo-
cations, or impossible as when the scene is no longer
available [2, 3].

For quick on-site visualisation and processing of
more frames for a more detailed reconstruction, speed-
ing up the application is necessary and demands ex-
tensive code transformations and optimisations. More-
over, energy consumption is paramount for hand-held
visualisation devices.

Within the application framework of our methodol-
ogy, we depict a typical dedicated system for intensive
numeric processing (see Fig. 1). An instance of this can
be a representative example of the platforms used for
multimedia applications, where the data is immediately
transferred into memory via DMA and the execution
is triggered by a software interrupt. When processing
is finished, another software interrupt is fired to handle
the processed data.

The software module used as our driver application
is one of the basic building blocks in many current
3D vision algorithms: feature selection and matching.



386 Leeman et al.

Figure 2. Initialisation of the matching of corners on two images of the steps of amphitheatre (archaeological site): based on neighbourhood
search. Already most matches seem to be correct (partially due to the minor difference between the images, which can be seen at the right hand
bottom corner). Part of the centre is enlarged.

The algorithm selects and matches features (corners)
on different images and the relative offsets of these
features define their spatial location (see Fig. 2).

The number of generated candidate matches is
highly dependent on a number of factors. Firstly, the
image properties affect the generation of the matching
candidates. Images with highly irregular or repetitive
areas will generate a large number of localised can-
didates, while a low number will be detected in other
parts of the image. Secondly, the corner detection pa-
rameters have a profound influence on the results (and,
consequently, on the input to the subsequent match-
ing algorithm) because they affect the sensitivity of the
algorithm used to identify the interesting features in
the images/frames [21]. Finally, the corner matching
parameters that determine the matching phase have a
profound influence and are changed at runtime (e.g. the
acceptance and rejection criterion changes over time as
more 3D information is retrieved from the scene).

Taking all the previous factors into account, the pos-
sible combinations of parameters in the system make
an accurate estimation of the memory cost, memory
accesses and energy dissipation at compile time very
hard or nearly impossible. This unpredictable mem-
ory behaviour can be observed in many state-of-the-art
3D vision algorithms [22] and multimedia algorithms
because they use some sort of candidate selection fol-
lowed by a criterion evaluation.

4. Memory Performance

In this paper, we will not focus on the static data (im-
ages and detected points), but on the internal DDTs
of the algorithm. The optimisation of the transfers
and accesses to the static data can be done by other

techniques [23,24]. The memory performance and be-
haviour of the 3D module is characterised by the fol-
lowing DDTs:

1. ImageMatches is the list of pairs where, for every
point in the first image, (new) matches on a second
image are considered based on neighbourhood or
epipolar distance [1].

2. CandidateMatches is the list of candidates that
needs evaluation, e.g. normalised cross correlation
of a a window around the points [22].

3. MultiMatches is the list that stores the match pairs
that pass the evaluation criterion. In this list, one
point can have still multiple counterparts on the
other image.

4. BestMatches is a subset of MultiMatches and
retains only the best match for a point, according to
the criterion already mentioned (if the evaluation is
satisfied).

All these DDTs were originally implemented using
a double linked list and exhibit typical data consump-
tion and generation behaviour. Figure 3 shows the in-
teraction of the DDTs in the algorithm code. From the
images, corners are selected. On each corner of one im-
age, a neighbourhood search is done and the pairs that
pass a threshold are stored in ImageMatches. Based
on information of previous frames, these are accepted
into CandidateMatches. Every pair in CandidateM-
atches is checked by a normalised cross correla-
tion and stored in MultiMatches and BestMatches.
These results are passed to the next software module
involved in the 3D reconstruction algorithm. It is im-
portant to mention that, although in this phase of the
algorithm the image is still being accessed, these ac-
cesses are randomised. As such, classic optimisations



Methodology for Refinement and Optimisation of Dynamic Memory Management 387

Figure 3. The interaction of the dynamic variables.

like row dominated accesses versus column wise ac-
cesses and other image access optimisations are not
relevant. Furthermore, this algorithm variant uses the
variant that re-uses the intermediate data in later steps.

5. Memory Management

In order to optimise the dynamic memory performance,
our methodology uses a layered approach. It starts
from a high level specification and adds more system-
specific information in each step. This new information
is used to refine previously made estimations. This ap-
proach allows to obtain an early idea of representative
implementation costs and requirements without going
through the entire expensive design process.

Figure 1 shows the three most important steps to
optimise the aforementioned dynamic memory in the
methodology. Firstly, the approach starts with the
premise that the algorithm interacts directly with the
memory, this is the Dynamic Data Type Transforma-
tion and Refinement step (DDTTR). Secondly, mem-
ory allocators that handle and optimise the dynamic
memory de/allocations are added to the design space
evaluation in the Dynamic Memory Management Re-
finement step (DMMR). Finally, a physical memory
manager layer is added to optimise further, e.g. solve
bank conflicts and introduce paging; this is the Phys-
ical Memory Management step (PMM). Because the
last step tackles specific system and hardware infor-
mation with all their complexities, it falls outside the
scope of this paper.

5.1. Dynamic Data Type Transformation
and Refinement

DDTs define the way in which the memory is allocated,
accessed and free. Initially, simple DDTs are mod-
elled by Data Types (DTs), e.g. lists, arrays or graphs,
in combination with operations like add, remove and
get. Then, these simple DDTs can be combined in lay-

ered structures that offer a compromise between flex-
ibility, memory use and access time. For instance, a
linked list solution is very flexible, but slow in access,
while an array offers fast access, but it is hard to main-
tain and rigid in size. Highly optimised programs com-
bine these simple data types in some sort, but these
decisions are rarely taken in a methodological way and
are left to the experience and inspiration of the pro-
grammer. Our methodology makes these decisions in
a systematic way. In order to do this and identify the
optimal DDT implementation for each variable, rel-
atively detailed information of the dynamic memory
behaviour at run-time is required.

The results described in this paper are based on
DDTs that are modelled in “low level” C++, which
means that it provides some object oriented concep-
tual benefits, while the code is still easy to convert to
C (the code size overhead we have obtained due to our
“low level” C++ compared to C is really negligible, i.e.
2% or 3% on average), the target language of many
SoC integration flows. The choice also allows minimal
changes in the C algorithm code to integrate the DDTs.

The C++ code used is actually only a subset of the
language and is still relatively close to what is expected
further down the optimisation flow and more to the
hardware level: C. The main constructs that are used
are:

1. simple template classes allow to write program
code, making abstraction from the type. This is es-
pecially useful for writing containers: there is lit-
tle difference from a coding perspective between
the access of an array of ints or doubles or even
more complex data structures. Template code al-
lows to postpone this decision until it is known
what types are going to be used in the code
by the program: at compile time. At that point,
the template instantiation mechanism embedded
in the C++ compiler will specialise and instanti-
ate the code and create intermediate, type specific
code [25].



388 Leeman et al.

Figure 4. An algorithm uses multiple classes. Each object reports to profile object as defined while creating the algorithm DDT. For clarity
purposes, not all associations are shown in the left and right DDT.

2. simple derived classes allow to postpone the de-
cision of the precise implementation of a particu-
lar base class until at runtime. For exploration of
the optimal DDT implementation this is useful be-
cause the program can be run and re-initialised with
other derived sibling classes without expensive re-
compilation and relinking of the program.

The tool developed to support this step has two main
building blocks. First, profile objects are added and sup-
ported by an object oriented profiling framework. This
way, the use of combined layered DDTs is made trans-
parent to the algorithm since all memory behaviour (al-
locations, accesses, . . .) is contributed to the complex
DDT, and not to the composing simple DDTs. With the
creation of a DDT, a profile object is created. From that
point onward, the DDT master object passes a refer-
ence down to each object it creates, and so forth (see
Fig. 4).

For example, one possible DDT implementation for
CandidateMatches can be seen in Fig. 5. It is an array
to do the first lookup. Then, each position in the array
points to a tree, which points to an array that finally
stores the data (pairs of related points in the frames).
When the memory behaviour of a DDT is evaluated,
the developer is not only interested in the contribution
of the array type in the DDT, but rather what the com-
bined cost of this complex structure is. Finally, this
profile framework, together with all the required code
transformations and instrumentation are added auto-
matically to the code.

The combination of multiple DTs in multiple layers
and the use of multiple DDTs in an application results

Figure 5. Example of a simple layered DDT. The organisation can
be more complex as the DDT organisation is adjusted to the data
access requirements of the application at hand.

in an exponential search space. Currently, some sim-
ple heuristics (e.g. limited ranges of values for size of
the basic blocks some of the DDTs) in are employed
to automatically explore the search space, using a rep-
resentative input data set. The evaluation of the solu-
tions is based on multiple objectives. As such, an opti-
mal solution in the classical sense can normally not be
identified. A better approach is to use Pareto optimal
points. A point is said to be Pareto optimal if it is not
longer possible to improve upon one cost factor with-
out worsening any other. As a result of the exploration
process, Pareto optimal solutions are located, based on
normalised memory use, memory accesses and energy
estimates (see Figs. 6 and 7) and the final solution de-
pends on the restrictions of the designer and system. If
constraints change (e.g., the available cycle budget), a
new optimal Pareto point can be indicated. By modi-
fying the heuristics, more details about (sub-optimal)
DDTs can be obtained, at the cost of an increased ex-
ploration time.

Finally, the automated post-processing generates a
list of Pareto solutions and each DDT is linked with a



Methodology for Refinement and Optimisation of Dynamic Memory Management 389

Figure 6. This figure shows a typical set of global Pareto solutions
(Power in mW, Normalised memory in Bytes) as combinations of
Pareto optimal solutions for every DDT in the application under
study. They form a Pareto curve.

Figure 7. This figure shows a projection of the 3D space of Pareto
optimal solutions in the Power (mW) / Memory (Bytes) plane.

particular DDT implementation according to the sys-
tem constraints.

5.2. Dynamic Memory Management Refinement

The purpose of DMMR is an efficient use of the the
dynamic memory available in the system for certain
constraints. An inattentive management of the DDTs
of the application can lessen severely the performance
of the whole system and increase the memory accesses
and the energy dissipation. Current general-purpose

dynamic memory managers include inside them a very
broad range of mechanisms and policies [8]. This fact
allows them to accomplish a relatively good trade-off
between performance and memory footprint in general-
purpose systems (e.g., desktops), where the applica-
tions that are going to be executed are unknown at de-
sign time. Hence, these dynamic memory managers are
very complex in their internal organisation and design
(e.g., fit algorithms, several data structures for the free
blocks, etc. [8]) and not really optimised for a par-
ticular dynamic memory behaviour, consuming thus a
lot of available resources in the system [26]. However,
for embedded systems, the dynamic memory managers
must be implemented inside their constrained operating
system making use of the knowledge of the application
(or set of applications) that will run on the platform
(e.g. 3D games, video algorithms, etc.). Then, a well-
adjusted custom dynamic manager can be designed for
the multimedia application under study taking really
into account the limited resources available in the sys-
tem.

In order to select efficiently the dynamic memory
manager, first we analyse the run-time dynamic mem-
ory behaviour of the application under study. Then, we
design a custom dynamic memory manager for this
specific behaviour taking into account a wide range
of high-level strategic issues [8, 27, 28]. For example,
the organisation overhead and internal data structures
of the dynamic memory manager, fit algorithms (e.g.,
best fit, first fit, etc.), additional mechanisms to pre-
vent and eliminate fragmentation (e.g., coalescing or
splitting mechanisms, etc. The final dynamic memory
manager has to allow certain trade-offs between per-
formance of the application and other constraints (e.g.,
memory footprint, power consumption, etc.). Within
this context, the profiling information obtained in the
previous steps of the methodology is used to charac-
terise the evolution in time of the DDTs involved in the
application and its de/allocation pattern (see Fig. 8).

The information about the DDTs is characterised
in this set of high-level strategic issues, which tackles
different parts of any possible allocator [8] for man-
ual memory management. The choices from this set of
high-level strategic issues are combined to eventually
constitute global dynamic memory managers accord-
ing to the constraints of the system.

After that, we explore the different candidates of
suitable dynamic memory managers using a fast in-
frastructure of C++ mixin layers [26], which allows to
compose and create these managers with very complex



390 Leeman et al.

Figure 8. On the left, memory footprint over time (micro-secs) in the original implementation. All plots mapped on the left axis, except
CandidateMatches and CMCopyStatic (right one). On the right, the use of different block-size allocation for the original algorithm.

de/allocation strategies [26]. For example, first fit with
address ordered for the free blocks and deferred co-
alescing allowed [8]. This allows fast changes in the
features of dynamic memory managers (e.g. replace-
ment policies or sizes of the pools). Due to mixin based
template instantiation, localised changes for detailed
profiling can be made by inserting additional layers.
An example is shown in Fig. 11, where a simplified
definition of our Loglayer is added to the Kingsley al-
locator [8] to obtain information of what memory is
requested from the system and recycled (fragmenta-
tion). The infrastructure of layers and profiling objects
is used to heuristically explore the values in many char-
acteristics of the DMM candidates and select the ideal
one for the application.

6. Results

As we have already explained, optimising the mem-
ory management at system-level in multimedia appli-
cations with complex dynamic behaviour has not been
given much attention. Therefore, our methodology will
be used to refine the 3D image reconstruction system
used as our case study.

In the first step, DDTTR, the representation of the
four main DDTs described in Section 4 is optimised.
After running the tool to get the profiling information
from the original code, memory use graphs are gener-
ated (see left chart in Fig. 8). In order to account for
the varying memory use during the program run, nor-
malised memory is used to get an estimation of the

overall contribution of each DDT to the energy dis-
sipation (see Table 1). This attributes more accurate
contributions to energy cost estimates and avoid that
e.g. DDTs with very short and high memory usage
distort and hide the memory contribution from other
DDTs. The model used in the results to obtain energy
estimations is described in [29] for large SRAMs with
.25 µm technology. This model depends on memory
footprint factors (i.e. memory size, internal structure
of banks and sub-banks, memory leaks, working time
of the memory and technology) and energy consump-
tion factors created by memory accesses (i.e. number of
memory accesses, energy consumption in active mode,
size of the memory and technology). In the tools, the
memory model can be replaced by others in a modular
way.

A first analysis of the run-time profiling informa-
tion of Fig. 1 shows the existence of a dynamic array

Table 1. Dynamic memory use from DDTs in the original
implementation.

Memory Memory Energy
Variable accesses footprint (B) (nJ)

ImageMatches 1.201 × 106 0.340 × 103 2.162 × 104

CandidateMatches 8.442 × 105 2.486 × 105 3.039 × 105

CMCStatic 9.140 × 107 6.247 × 104 1.695 × 107

MultiMatches 1.849 × 104 0.678 × 103 3.328 × 103

BestMatches 1.664 × 104 0.623 × 103 2.996 × 103

Total 9.348 × 107 3.127 × 105 1.728 × 107



Methodology for Refinement and Optimisation of Dynamic Memory Management 391

copy of CandidateMatches in the original code to
optimise the vast amount of accesses to this DDT. This
copy is the DDT CMCopyStatic (CMCStatic). Also
three dynamic sets form clear bottlenecks. First of all,
CandidateMatches is the largest dynamic data struc-
ture in the application. Secondly, ImageMatches has
a low normalised memory use, but it is accessed ex-
tensively. Finally, the CMCStatic speed optimisation
dynamic array accounts for the most important part of
the memory accesses and consumes most of the energy
in the application.

After the subsequent exploration step, our tool sug-
gested an ideal solution for the different DDTs accord-
ing to the constraints entered. We used minimal energy
dissipation and two layered DDT structures (pointer-
arrays to arrays) with array sizes of 756, 1024 and
16384 Bytes (B) were selected. As Fig. 9 depicts, the
DDT refinement already attains a significant influence
on performance and dynamic memory footprint.

Finally, because of the optimised DDTs found in
the exploration, it is possible to remove CMCStatic
and refine even more the algorithm combining it with
CandidateMatches (for more details, see [30]). After
this, the figures in Table 2 and Fig. 10 are generated.
They show that the accesses to ImageMatches are less
than half of the original ones and the normalised mem-
ory use of CandidateMatches is 43.9% less. The re-
moval of CMCStatic influences the normalised mem-
ory footprint (and removed the short memory peak used
while copying), but has little effect on the performance
(speed) of the overall program. This shows the impor-

Figure 9. On the left, memory footprint over time (micro-secs) in the Pareto implementation with CMCopyStatic. All plots mapped on the
left axis, except CandidateMatches and CMCopyStatic (right one). On the right, the use of different block-size allocation for this version.

Table 2. Dynamic memory use from relevant DDTs after
DDTTR.

Memory Memory Energy
Variable accesses footprint (B) (nJ)

ImageMatches 4.020 × 105 0.624 × 103 7.243 × 104

CandidateMatches 3.898 × 105 1.174 × 105 7.017 × 104

MultiMatches 7.684 × 103 1.391 × 103 1.383 × 103

BestMatches 7.161 × 103 1.368 × 103 1.289 × 103

Total 8.066 × 105 1.208 × 105 1.452 × 105

tance of DDTTR to speed up the application compar-
ing the values of the X-axes from Figs.8–10 to match
two images (time values of ×107 microseconds in the
first plot, in the refined ones with our methodology
only ×105 microseconds). Furthermore, DDTTR re-
duces memory footprint and power of the DDTs, and
allow further global refinements.

In the next DMMR phase, an optimised dynamic
memory manager is selected. After the exploration has
been performed using the profiling information from
the previous steps and our search space, the dynamic
memory manager selected discerns the different be-
haviours of the DDTs in the case study, which are just
a few now as the right plot of Fig. 10 shows. It partitions
the dynamic memory of the system in three different re-
gions or pools with different sizes that suit the DDTs in
the application. Inside every block allocated, the object
size is recorded and, for every region, a double linked
list is used to lessen the time required to traverse and



392 Leeman et al.

Figure 10. On the left, memory footprint over time (micro-secs) in the Pareto implementation after removing CMCopyStatic. All plots mapped
on the left axis, except CandidateMatches. On the right, the use of different block-size allocation for this final version.

Figure 11. Definition and use of a LogLayer

access the data. Furthermore, the blocks are stored in-
side each sublist of sizes using a LIFO order. When
a block is freed, the manager returns the deallocated
memory to the appropriate region and it becomes avail-
able for block requests inside the specific range of sizes
allowed in this pool. It provides an excellent perfor-
mance and fragmentation is minimised. It only adds
approximately a 10% overhead in normalised memory
footprint and 18% in energy consumption compared
to the results of the bare DDTs shown in Table 2 due
to internal management and fragmentation. These fi-
nal values (e.g. memory footprint, energy consump-
tion) substantially improve the results obtained in our
experiments with state-of-the-art general-purpose dy-
namic memory managers. For example, the Lea Allo-
cator [28] (typical in Linux-based systems) added 30%
overhead in memory footprint and 78% overhead in
energy consumption to the bare DDTs, or the Kingsley
manager [8, 9] (from Windows-based systems) added
90% overhead in memory footprint and 28% in energy
consumption.

Finally, in addition to the original implementation
with dynamic memory, we have created a manually op-
timised version of the algorithm. We consider that the
designer, after manually profiling and extracting the
necessary information from the original code (for the
full code of the entire 3D algorithm with 1.75 million
lines of high level C++, see [22]), was able to select an
optimal static DT representation of the relevant DDTs.
This static version achieves very good performance and
the energy consumed is much lower than the original
version, as Table 3 shows. However, since it is really
optimised for a specific configuration of parameters, it
does not scale for larger resolutions, different parame-
ters or abnormal images features.

After both steps (DDTTR and DMMR), the total
memory used in the application is greatly improved
compared to the manually optimised version and the
original one, as shown in Table 2. The DDTs require
less dynamic memory than the original version (see

Table 3. Dynamic memory use from DDTs in the manually op-
timised version.

Memory Memory Energy
Variable accesses footprint (B) (nJ)

ImageMatches 4.020 × 105 0.857 × 103 7.243 × 104

CandidateMatches 3.151 × 105 2.021 × 105 1.134 × 105

MultiMatches 5.856 × 103 6.876 × 103 1.054 × 103

BestMatches 4.913 × 103 6.876 × 103 0.884 × 103

Total 7.282 × 105 2.167 × 105 1.878 × 105



Methodology for Refinement and Optimisation of Dynamic Memory Management 393

Table 1, Figs. 8 and 10) and the manually optimised
version (see Table 3). The energy consumed is also re-
duced significantly comparing with the best version,
i.e. the manually optimised version (see Tables 2 and
3). Finally, compared to the original version the mem-
ory accesses are reduced enormously, as Tables 1 and
2 show. Summing up, with the whole methodology ap-
plied, compared to the manually optimised version, the
memory footprint improves up to 44.2% and estimated
energy dissipation up to 22.6%. In addition, the sys-
tem can scale with extreme-cases of input parameters
whereas the manually optimised version cannot do so.

7. Conclusions

One of the crucial and most difficult parts in multimedia
applications is DMM. In this paper, we prove the effec-
tiveness of a new system-level exploration methodol-
ogy to optimise the aforementioned DMM for typical
multimedia applications applying it to a relatively new
3D reconstruction algorithm. This methodology allows
a structured analysis of the memory access patterns
hidden in algorithms with complex dynamic memory
use and can also help to solve fundamental algorithmic
problems. It allows the system integrator to obtain a de-
tailed and clear view of the dynamic memory behaviour
and optimise it. In a first phase, the way in which the
data is stored for the algorithm studied is optimised.
By doing this, the access patterns to memory are trans-
formed and optimised, reducing power consumption
and memory footprint. Since most embedded systems
do not have complex memory management provided
by a combination of hardware and system software, an
approach is proposed to compose efficient custom dy-
namic memory managers in a modular way, using high-
level C++ code. Even though this paper only presents
one driver application in detail for simplicity and ac-
curacy purposes, similar results have been obtained in
game engine algorithms [31].

Acknowledgments

This work is partially supported by the Fund for Sci-
entific Research - Flanders (Belgium, F.W.O.) through
project G.0036.99 and a Postdoctoral Fellowship for
Geert Deconinck. Furthermore, this work is partially
supported by the Spanish Government Research Grant
TIC2002/0750.

Note

1. The sum of the memory used at a time slice, multiplied by
the time. This amount is then divided over one run of the
algorithm

References

1. M. Pollefeys, R. Koch, M. Vergauwen, and L. Van Gool, “Met-
ric 3D Surface Reconstruction from Uncalibrated Image Se-
quences,” in Lecture Notes in Computer Science, vol. 1506,
1998, pp. 139–153.

2. J. Cosmas, I. Taki, D. Green, O. Zalesny, L. Van Gool, M.
Pollefeys, R. Degeest, M. Waelkens, K. Hraby, M. Kampel,
and R. Sablatnig, “3D Murale,” 2002. http://www.brunel.
ac.uk/project/murale/home.html.

3. Eyetronics, “Eyetronics 3D Scanning Solutions,” http://
www.eyetronics.com.

4. R. Rowe, “Industrial Light and Magic,” Linux Journal, vol. 99,
2002, pp. 32–36.

5. F. Catthoor, K. Danckaert, C. Kulkarni, E. Brockmeyer, P.
Kjeldsberg, T. Van Achteren, and T. Omnes, Data Access and
Storage Management for Embedded Programmable Processors,
Boston, USA: Kluwer Academic Publishers, 2002.

6. N. Vijaykrishnan, M. Kandemir, M.J. Irwin, H.S. Kim, W. Yw,
and D. Duarte, “Evaluating Integrated Hardware-Software Op-
timizations Using a Unified Energy Estimation Framework,”
IEEE Transactions on Computers, vol. 52, no. 1, 2003, pp. 59–
75.

7. id, “id Software Inc.” 2002. http://www.idsoftware.com.
8. P.R. Wilson, M.S. Johnstone, M. Neely, and D. Bowles, “Dy-

namic Storage Allocation, A Survey and Critical Review,” in
Internation Workshop on Memory Management. Kincross, Scot-
land, UK, 1995.

9. E.D. Berger, B.G. Zorn, and K.S. McKinley, “Composing High-
Performance Memory Allocators,” in Proceedings ACM SIG-
PLAN Conference on Programming Language Design and Im-
plemenatation (PLDI), Snowbird, Utah, 2001.

10. E.G. Daylight, S. Wuytack, F. Catthoor, and C. Ykman-
Couvreur, “Analyzing Energy Friendly Steady State Phases of
Dynamic Application Execution in Terms of Sparse Data Struc-
tures,” in Proceedings of ISLPED 2002, Monterrey, California,
USA, 2002.

11. R. Henriksson, “Scheduling Garbage Collection in Embedded
Systems,” Ph.D. thesis, Lund Institute of Technology, 1998.

12. N. Murphy, “Safe Memory Usage with Dynamic Memory Allo-
cation,” Embedded Systems, pp. 49–57, 2000.

13. S. Wuytack, J.L. da Silva Jr., F. Catthoor, G. de Jong, and C.
Ykman, “Memory Management for Embedded Network Appli-
cations,” IEEE Transactions on Computer-Aided Design, vol. 18,
no. 5, 1999, pp. 533–544.

14. L. Benini and G. De Micheli, “System Level Power Optimization
Techniques and Tools,” in ACM Transaction on Design Automa-
tion for Embedded Systems (TODAES), 2000.

15. V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of Embedded
Software: A First Step Towards Software Power Minimization,”
in Proceedings of ICCAD, San Jose, California, USA, 1994.

16. D. Sarta, D. Trifone, and G. Ascia, “A Data Dependent Approach
to Instruction Level Power Estimation,” in Proceedings of IEEE



394 Leeman et al.

Alessandro Volta Memorial Workshop on Low-Power Design,
Como, Italy, 1999, pp. 182–190.

17. M.T.-C. Lee, V. Tiwari, S. Malic, and M. Fujita, “Power Analysis
and Minimization Techniques for Embedded DSP Software,”
IEEE Transactions on Very Large Scale Integration Systems,
1997, pp. 123–135.

18. T. Tan, A.K. Raghunathan, G. Lakishminarayana, and N.K. Jha,
“High-Level Software Energy Macro-Modeling,” in Proceed-
ings of the 38th Design Automation Conference (DAC), Las Ve-
gas, NV, USA, 2001, pp. 605–610.

19. I. Kadayif, N. Vijaykrishnan, M.J. Irwin, and A.
Sivasubramaniam, “EAC: A Compiler Framework for
High-Level Energy Estimation and Optimization,” in Proceed-
ings of Design, Automation and Test in Europe, Paris, France,
2002, pp. 436–442.

20. R.Y. Chen and M.J. Irwin, “Architecture-Level Power Estima-
tion and Design Experiments,” ACM Transactions on Design
Automation of Electronic Systems, vol. 6, no. 1, 2001.

21. C.J. Harris and M. Stephens, “A Combined Corner and Edge
Detector,” in 4th Alvey Vision Conference. Manchester, 1988,
pp. 147–151.

22. Target Jr, ‘Target Jr’. 2002. http://www.targetjr.org.
23. T.M. Chilimbi, M.D. Hill, and J.R. Larus, “Cache-Conscious

Structure Layout,” in SIGPLAN Conference on Program-
ming Language Design and Implementation, 1999, pp. 1–
12.

24. P.R. Panda, N. Dutt, and A. Nicolau, “Memory Organization for
Improved Data Cache Performance in Embedded Processors,”
in 1996 International Symposium on System Synthesis, La Jolla
CA, 1996, pp. 90–95.

25. D. Vandevoorde and N.M. Josuttis, C++ Templates, The Com-
plete Guide, London, UK: Addison Wesley, 2003.

26. D. Atienza, S. Mamagkakis, M. Leeman, F. Catthoor, J.M.
Mendı́as, D. Soudris, and G. Deconinck, “Fast System-Level
Prototyping of Power-Aware Dynamic Memory Managers for
Embedded Systems,” in Proceedings of Workshop on Compilers
and Operating Systems for Low Power, New Orleans, LA, USA,
2003.

27. M.S. Johnstone and P.R. Wilson, “The Memory Fragmentation
Problem: Solved?” in Proceedings of the International Sympo-
sium on Memory Management, Vancouver, British Columbia,
1998.

28. D. Lea, “The Lea 2.7.2 Dynamic Memory Allocator,” 2002.
http://gee.cs.oswego.edu/dl/.

29. B.S. Amrutur and M.A. Horowitz, “Speed and Power Scaling of
SRAM’s,” IEEE Transactions on Solid-State Circuits, vol. 35,
no. 2, 2000.

30. M. Leeman, D. Atienza, F. Catthoor, G. Deconinck, J. Mendias,
V. De Florio, and R. Lauwereins, “Intermediate Variable Elim-
ination in a Global Context for a 3D Multimedia Application,”
in Proceedings of International Conference on Multimedia and
Expo, Baltimore, MD, 2003a.

31. M. Leeman, D. Atienza, F. Catthoor, G. Deconinck, J.M.
Mendias, V. De Florio, and R. Lauwereins, “Power Esti-
mation Approach of Dynamic Data Storage on a Hardware
Software Boundary Level,” in Integrated Circuits and Sys-
tem Design—Power and Timing Modelling, Optimization and
Simulation, 13th International Workshop, vol. 2799 of Lec-
ture Notes in Computer Science, Turin, Italy, 2003b, pp. 289–
298.

Marc Leeman has as professional research interests hard-
ware/software co-design, code optimisation in general and optimi-
sation of dynamic data types and dynamic memory management for
low power embedded systems in particular. Personal interests in-
clude Open and Free software development, software configuration
and GNU/Debian package maintenance. He received an engineering
degree, a master in artificial intelligence and a Ph.D. in electrical en-
gineering in 1997, 1998 and 2004 respectively, all at the K.U. Leuven.
He is a member of the IEEE Computer Society. Currently, he works
as an R&D Engineer for Barco Control-rooms Division (BCD) on
hardware/software co-design for streaming video products.
marc.leeman@ieee.org

David Atienza received the M.Sc. degree in Computer Sciences from
the Complutense University of Madrid (UCM), Spain in 2001. Since
then he has joined the Department of Computer Architecture and Au-
tomation of Complutense University of Madrid as a sandwich Ph.D.
student half-time at the Inter-university Micro-Electronics Centre
(IMEC), Heverlee, Belgium. His research interests include optimi-
sation of dynamic memory management on multimedia and wireless
network applications for low power and high performance embedded
systems, computer architecture and high-level design automation.
datienza@dacya.ucm.es

Geert Deconinck is Associate Professor (hoofddocent) at the K.U.
Leuven (Belgium) since 2003 and staff member of the research group



Methodology for Refinement and Optimisation of Dynamic Memory Management 395

ELECTA (Electrical Energy and Computing Architectures). His re-
search interests include the design and assessment of software-based
solutions to meet dependability, real-time, and cost constraints for
embedded systems. In this field, he has authored and co-authored
more than 120 publications in international journals and conference
proceedings. He received his M.Sc. in Electrical Engineering and
his Ph.D. in Applied Sciences from the K.U. Leuven, Belgium in
1991 and 1996 respectively. He was a visiting professor (bijzonder
gastdocent) at the K.U. Leuven in 1999–2003. - Flanders (Belgium)
in the period 1997–2003.
geert.deconinck@esat.kuleuven.ac.be

Vincenzo De Florio received his MSc degree in computer science
in 1987 and his PhD degree in engineering in 2000, respectively
from the University of Bari, Italy, and the University of Leuven,
Belgium. He is currently post-doctoral researcher at the University of
Antwerp, where he is doing research on adaptive and dependable mo-
bile applications. Previously he had been researcher and lecturer with
Tecnopolis/SASIAM (ECMI School for Advanced Studies in Indus-
trial and Applied Mathematics) and member of Tecnopolis/Robotic
lab, where he was responsible for design of parallel robotic vision
applications. Currently he is also a reviewer for several conferences
and for the Journal of System Architectures.
vincenzo.deflorio@ua.ac.be

José M. Mendı́as received the M.Sc. and Ph.D. degrees in physics
from the Complutense University of Madrid in 1992 and 1998, re-
spectively. He joined the Department of Computer Architecture and
Systems Engineering, Complutense University in 1992 as a lecturer,
and became an associate professor in 2001. Since 2002, he is Vice-
dean of the Computer Science Faculty at the same University. His
current research interests include design automation, computer ar-
chitecture and formal methods.
mendias@dacya.ucm.es

Chantal Ykman-Couvreur is born in 1956. She received the math-
ematics degree from the “Facultes Universitaires Notre-Dame de
la Paix” of Namur in 1979. She first worked at PHILIPS Re-
search Laboratory of Belgium, from 1979 until 1991. Her main
activities were concentrated on information theory and coding,
cryptography and multi-level logic synthesis for VLSI circuits.
Then, she joined IMEC, where she was responsible at IMEC
for the dynamic memory management and the system-level de-
sign flow in the Matisse compiler for network protocol com-
ponents (ATM, Internet Protocol, etc). Currently, she works on
the task concurrency management design flow in the Matador
project.
ykman@imec.be

Francky Catthoor received the engineering degree and a Ph.D.
in electrical engineering from the Katholieke Universiteit Leuven,
Belgium in 1982 and 1987 respectively. Since 1987, he has headed
several research domains in the area of high-level and system syn-
thesis techniques and architectural methodologies, all within the De-
sign Technology for Integrated Information and Telecom Systems
(DESICS—formerly VSDM) division at the Inter-university Micro-
Electronics Centre (IMEC), Heverlee, Belgium. Currently he is an
IMEC fellow. He is part-time full professor at the EE department of
the K.U. Leuven.

In 1986 he received the Young Scientist Award from the Marconi
International Fellowship Council. He has been associate editor for
several IEEE and ACM journals, like Transactions on VLSI Signal
Processing, Transactions on Multi-media, and ACM TODAES. He
was the program chair of several conferences including ISSS’97 and
SIPS’01.
catthoor@imec.be



396 Leeman et al.

Rudy Lauwereins is vice-president of IMEC, Belgium’s Interuni-
versity Micro-Electronic Centre, which performs research and de-
velopment, ahead of industrial needs by 3 to 10 years, in microelec-
tronics, nano-technology, enabling design methods and technologies
for ICT systems. He leads the DESICS division of 185 researchers,
currently focused on the development of re-configurable architec-
tures, design methods and tools for wireless and multimedia applica-
tions. He is also a part-time Professor at the Katholieke Universiteit
Leuven, Belgium. He had obtained a Ph.D. in Electrical Engineering
in 1989. Rudy Lauwereins served in numerous international program
committees and organisational committees, and gave many invited
and keynote speeches. He is vice-chair of the board of DSP Val-
ley and member of the board of several spin-off companies. He is a
senior member of the IEEE.
lauwerei@imec.be


