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Abstract

To improve the reliability of telephone-based speaker verification systems, channel com-

pensation is indispensable. However, it is also important to ensure that the channel com-

pensation algorithms in these systems surpress channel variations and enhance interspeaker

distinction. This paper addresses this problem by a blind feature-based transformation ap-

proach in which the transformation parameters are determined online without any a priori

knowledge of channel characteristics. Specifically, a composite statistical model formed by

the fusion of a speaker model and a background model is used to represent the characteristics

of enrollment speech. Based on the difference between the claimant’s speech and the com-

posite model, a stochastic matching type of approach is proposed to transform the claimant’s

speech to a region close to the enrollment speech. Therefore, the algorithm can estimate the

transformation online without the necessity of detecting the handset types. Experimental

results based on the 2001 NIST evaluation set show that the proposed transformation ap-

proach achieves significant improvement in both equal error rate and minimum detection

cost as compared to cepstral mean subtraction, Znorm, and short-time Gaussianization.
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1 Introduction

The accuracy of speaker recognition systems that enroll client speakers under one acoustic

environment (e.g., using a close-talk microphone in offices) but verify claimants under another

environment (e.g., using mobile phones on the street) could be significantly lower than the

ones that enroll and verify speakers under the same environment. This is mainly due to the

acoustic mismatch between the training and recognition conditions, which presents one of the

major technological challenges faced by speaker recognition researchers today. One cause of the

mismatched conditions is transducer mismatch. Transducer mismatch occurs when a system

is trained with speech data obtained from one type of transducer and is subsequently tested

on speech data recorded from other types of transducers. The goal of channel compensation is

to achieve performance approaching that of the matched condition without the need of a large

amount of training data.

Channel compensation can be applied in feature space, model space, or score space.

Feature-based compensation [1, 2] transforms channel-distorted speech features to fit clean speaker

models, whereas model-based compensation [3, 4] adapts or transforms the parameters of clean

models to fit a new acoustic environment. On the other hand, score-based compensation [5–7]

aims to minimize environment-dependent bias by normalizing the distribution of speaker scores.

Channel compensation can also be supervised or unsupervised. Supervised compensation

assumes that the channel or handset characteristics are known a priori. Therefore, channel-

specific compensation can be derived before recognition takes place. If handset labels are

available during recognition, the corresponding channel-specific compensation can be applied

to reduce the mismatch effect. Alternatively, one can detect the handset label from the speech

signal during verification [2]. However, this approach may not be practical because users may

use a new handset, which is not well represented in the training set, during verification. While

this problem can be partially resolved by using a handset classifier with out-of-handset rejec-

tion capability [8, 9], it is difficult to find a threshold for detecting unseen handsets. On the
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other hand, unsupervised (blind) compensation does not assume any knowledge of the channel

characteristics. In particular, it adapts speaker models or transforms speaker features to accom-

modate channel variations based on verification utterances only. Therefore, handset detectors

are no longer required.

In speaker verification, it is important to ensure that channel variations are suppressed

so that the interspeaker distinction can be enhanced. In particular, given a claimant’s utter-

ance recorded in an environment different from that during enrollment, one aims to transform

the features of the utterance so that they become compatible with the enrollment environment.

Therefore, it is not appropriate to transform the claimant’s utterance either to fit the speaker

model only or to fit the background model only because the former will result in an unacceptably

high FAR (false acceptance rate) and the latter an excessive FRR (false rejection rate). This

paper proposes a feature-based blind transformation approach to solving this problem. Specif-

ically, a feature-based transformation is estimated based on the statistical difference between a

test utterance and a composite acoustic model formed by combining the speaker and background

models. The transformation is then used to transform the test utterance before verification. The

transformation is blind in that it compensates the handset distortion without a priori informa-

tion about the channel’s characteristics. Hereafter, this transformation approach is referred to

as blind stochastic feature transformation (BSFT).

The paper is organized as follows. In Section 2, the procedures for estimating the parame-

ters of BSFT are detailed and the philosophy behind this transformation approach is explained.

In Section 3, speaker verification experiments that demonstrate the advantage of BSFT over

other channel compensation approaches are presented. Finally, a conclusion of the paper is

provided in Section 5.

2 Blind Stochastic Feature Transformation

As discussed in the preceding section, one popular approach to compensating for handset dis-

tortion is to divide handsets into several broad categories according to the type of transducer

(e.g., carbon button and electret). During operations, a handset selector is used to identify the

most likely handset type from speech signals and handset distortion is compensated for based
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on some a priori information about the identified type in the database. Although this method

works well in landline phones, it may encounter difficulty in mobile handsets because they have

a large number of categories, new handset models are frequently released, and models can be-

come obsolete in a short time. Maintaining a handset database for storing the information of all

possible handset models is a great challenge and updating the compensation algorithm whenever

a new handset is released is also difficult. Therefore, it is imperative to develop a channel com-

pensation method that does not necessarily require a priori knowledge of handsets. This section

describes a blind compensation algorithm for this problem. The algorithm is designed to handle

the situation in which no a priori knowledge about the channel is available (i.e., a handset model

not in the handset database is being used). Because the algorithm does not require a handset

selector, it is suitable for a broader scale of deployment than the conventional approaches.

2.1 Estimation of Transformation Parameters

Figure 1 illustrates a speaker verification system with BSFT, whose operations are divided into

two separate phases: enrollment and verification.

1. Enrollment Phase. The speech of all client speakers are used to create a compact univer-

sal background model (UBM) ΛM
b with M components. Then, for each client speaker, a

compact speaker model ΛM
s is created by adapting the UBM ΛM

b using maximum a pos-

teriori (MAP) adaptation [10]. Because verification decisions are based on the likelihood

of the speaker model and background model, both models must be considered when the

transformation parameters are computed. This can be achieved by fusing ΛM
b and ΛM

s

to form a 2M -component composite GMM Λ2M
c . During the fusion process, the means

and covariances remain unchanged but the value of each mixing coefficient is divided by 2.

This step ensures that the output of the composite GMM represents a probability density

function.

2. Verification Phase. Distorted features Y = {y1, . . . ,yT } extracted from a verification

utterance are used to compute the transformation parameters ν = {A,b}. This is achieved

by maximizing the likelihood of the composite GMM Λ2M
c given the transformed features
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X̂ = {x̂1, . . . , x̂T }:
x̂t = fν(yt) = Ayt + b, t = 1, . . . , T, (1)

where A is a D×D identity matrix for zeroth-order transformation and A = diag{a1, a2, . . . , aD}
for first-order transformation, and b is a bias vector. The transformed vectors X̂ are then

fed to a full size speaker model ΛN
s and a full size UBM ΛN

b for computing verification

scores in terms of likelihood ratio:

s(X̂) = log p(X̂|ΛN
s )− log p(X̂|ΛN

b ).

The transformation parameters ν = {A,b} can be estimated by the EM algorithm. More

specifically, given the current estimate ν ′ = {A′,b′}, we compute

ν = arg max
ν

Q(ν|ν ′) = arg max
ν

T∑

t=1

2M∑

j=1

hj(fν′(yt)) log {ωc,jp(fν(yt)|µc,j , Σc,j , ν) |Jν(yt)|} ,

where {ωc,j , µc,j ,Σc,j}2M
j=1 are the parameters of Λ2M

c , hj(fν′(yt)) is the posterior probabil-

ity

hj(fν′(yt)) = P (j|yt,Λ2M
c , ν ′) =

ωc,jp(fν′(yt)|µc,j ,Σc,j)∑2M
l=1 ωc,lp(fν′(yt)|µc,l, Σc,l)

,

and |Jν(yt)| is the determinant of a Jacobian matrix with (r, s)-th entry given by Jν(yt)rs =

∂fν(yt)s/∂yt,r.

The main idea of BSFT is to transform the distorted features to fit the composite GMM Λ2M
c ,

which ensures that the transformation compensates the acoustic distortion.

Because the computation complexity of estimating SFT parameters grows with the amount

of adaptation data and the total number of mixture components in the GMMs, BSFT will be-

come computationally intensive when the number of components is large. To perform rapid

adaptation, we propose adopting a light-weight approach to computing transformation param-

eters. One of the positive properties of SFT is that the transformation can be estimated using

GMMs with only a few components. In the light-weight approach, we synthesize a compact

composite GMM (Λ2M
c ) by fusing a compact speaker GMM (ΛM

s ) and a compact background

GMM (ΛM
b ), both with M components where M ¿ N . It was found that a good trade-off

between performance and computation complexity can be maintained by using a suitable value

of M .
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Figure 1: Estimation of BSFT parameters. The background model ΛN
b , speaker model ΛN

s ,

and composite model Λ2M
c , produced during the enrollment phase, are subsequently used for

verification purposes.

2.2 A Two-Dimensional Example

Figure 2 illustrates the idea of BSFT in a classification problem with two-dimensional input

patterns. Figure 2(a) plots the clean and distorted patterns of Class 1 and Class 2. The upper

right (respectively, lower left) clusters represent the clean (respectively, distorted) patterns. The

ellipses show the corresponding equal density contours. Markers ‘¨’ and ‘¥’ represent the centers

of the clean models. Figure 2(b) illustrates a transformation matching the distorted data of Class

2 and the GMM of Class 1 (GMM1). Because the transformation only takes GMM1 into account,

while ignoring GMM2 completely, it results in a high error rate. Similarly, the transformation

in Figure 2(c) also has a high error rate. The transformation in Figure 2(d) was estimated

from the distorted data of Class 1 and a composite GMM formed by fusing GMM1 and GMM2.

In this case, the transformation adapts the data to a region close to both GMM1 and GMM2,
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Figure 2: A Two-class problem illustrating the idea of BSFT. (a) Scatter plots of the clean and distorted

patterns corresponding to Class 1 and Class 2. The thick and thin ellipses represent the equal density contours of

Class 1 and Class 2, respectively. The upper right (respectively, lower left) clusters contain the clean (respectively,

distorted) patterns. (b) Distorted patterns of Class 2 were transformed to fit Class 1’s clean model. (c) Reversely,

distorted patterns of Class 1 were transformed to fit Class 2’s clean model. (d) Distorted data of Class 1 were

transformed to fit the clean models of both Class 1 and Class 2 using first-order BSFT. For clarity, only the

distorted patterns before and after transformation were plotted in (b) through (d).
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because it takes both GMMs into account. Therefore, instead of transforming the distorted data

to a region around GMM1 or GMM2 as in Figures 2(b) and 2(c), the transformation in Figure

2(d) attempts to compensate the distortion. The capability of BSFT is also demonstrated in a

speaker verification task to be described next.

3 Experimental Evaluations

3.1 Enrollment and Verification

Per discussion earlier, the experiments were divided into two phases: enrollment and verification.

1. Enrollment Phase. A 1,024-component UBM Λ1024
b (i.e., N = 1,024 in Figure 1) was

trained using the training utterances of all target speakers. The same set of data was

also used to train an M -component UBM (ΛM
b in Figure 1). For each target speaker,

a 1,024-component speaker-dependent GMM Λ1024
s was created by adapting Λ1024

b using

MAP adaptation [10]. Similarly, ΛM
s was created by adapting ΛM

b , and the two models

were fused to form a composite GMM Λ2M
c . The value of M was varied from 2 to 64 in

the experiments.

2. Verification Phase. For each verification session, a feature sequence Y was extracted from

the utterance of a claimant. The sequence was used to determined the BSFT parameters

(A and b in Eq. 1) to obtain a sequence of transformed vectors X̂. The transformed

vectors were then fed to Λ1024
s and Λ1024

b to obtain verification scores for decision making.

3.2 Speech Data and Features

The 2001 NIST speaker recognition evaluation set [11], which contains cellular phone speech of

74 male and 100 female target speakers extracted from the SwitchBoard-II Phase IV Corpus, was

used in the evaluation. Each target speaker has 2 minutes of speech for training (i.e., enrollment);

a total of 850 male and 1,188 female utterances are available for testing (i.e., verification). Each

verification utterance has a length of between 15 and 45 seconds and is evaluated against 11

hypothesized speakers of the same sex as the speaker of the verification utterance. Out of these
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11 hypothesized speakers, one is the target speaker who produced the verification utterance.

Therefore, there are one target and 10 impostor trials for each verification utterance, which

amounts to a total of 2,038 target trials and 20,380 impostor attempts for 2,038 verification

utterances.

Mel-frequency cepstral coefficients (MFCCs) [12] and their first-order derivatives were

computed every 14ms using a Hamming window of 28ms. Cepstral mean subtraction (CMS)

[13] was applied to the MFCCs to remove linear channel effects. The MFCCs and delta MFCCs

were concatenated to form 24-dimensional feature vectors.

3.3 Performance Measures

Detection error trade-off (DET) curves and equal error rates (EERs) were used as performance

measures. They were obtained by pooling all scores of both sex from the speaker and impostor

trials. In addition to DET curves and EERs, decision cost function (DCF) was also used as

performance measure. The DCF is defined as

DCF = CMiss × PMiss|Target × PTarget

+ CFalseAlarm × PFalseAlarm|Nontarget × PNontarget,

where PTarget and PNontarget are the prior probability of target and nontarget speakers, respec-

tively, and where CMiss and CFalseAlarm are the costs of miss and false alarm errors, respectively.

Following NIST’s recommendation [14], these parameters were set as follows: PTarget = 0.01,

PNontarget = 0.99, CMiss = 10, and CFalseAlarm = 1.

4 Results and Discussions

4.1 Verification Performance

Figure 3 and Table 1 show the results of the baseline (CMS only), Znorm [5], and BSFT with

different order and number of components M .1 Evidently, all cases of BSFT show significant
1Theoretically, the larger the value of M , the better the results. However, setting M larger than 64 will result

in unacceptably long verification time.
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reduction in error rates when compared to the baseline. In particular, Table 1 shows that first-

order BSFT with Znorm achieves the largest error reduction. The DET curves also show that

BSFT with Znorm performs better than the baseline and Znorm alone for all operating points.

Because the evaluation trials in NIST01 are gender-matched, gender-dependent back-

ground models can also be used for enrollment and estimation of BSFT parameters. In another

experiment, speaker models were adapted from gender-dependent background models using

MAP adaptation. A compact gender-dependent background model (with 64 components) was

used to estimate the BSFT parameters. As shown in Table 1 and Figure 4, using gender-

dependent background model helps to reduce the EERs and minimum DCF further for all cases

of BSFT. However, Znorm and BSFT with Znorm seem to perform better when the background

model is gender-independent. This may be attribute to the fact that less data are available for

determining the Znorm parameters (score mean and variance) for each speaker when gender-

dependent background models were used, which results in less reliable Znorm scores for verifica-

tion. For the gender-independent case, the training utterances of 60 speakers from the “devtest”

section of NIST2001 were used for estimating the Znorm parameters. For the gender-dependent

case, however, the Znorm parameters of each speaker were estimated from the respective gender

of these 60 speakers. Among these 60 speakers, 38 are male and 22 are female, and each of them

has one training utterance. As a results, the Znorm parameters of the female speakers were

determined by 22 utterances only.

4.2 Comparison with Other Models

It is of interest to compare BSFT with the short-time Gaussianization approach proposed in Xi-

ang et al. [15] because both methods transform distorted features in the feature space and their

transformation parameters are estimated by the EM algorithm [16]. The short-time Gaussian-

ization achieves an EER of 10.84% in the NIST 2001 evaluation set [15], whereas BSFT achieves

an EER of 9.26%, which represent an error reduction of 14.58%.2 The minimum decision cost

of BSFT is also lower than that of short-time Gaussianization (0.0384 versus 0.0440).

2Because Xiang et al. did not use Znorm in [15], their results should be compared with the one without Znorm

here.
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Figure 3: DET curves comparing speaker verification performance using CMS (dashed), Znorm
(dotted), first-order BSFT (dash-dot), and first-order BSFT with Znorm (solid). For BSFT, the
number of components M in the compact GMMs was set to 64. The circles represent the errors
at which minimum decision costs occur. A gender-independent background model was used in
all cases.

4.3 Computation Consideration

In BSFT, a set of transformation parameters ν is computed by the EM algorithm in which

the likelihood function of a composite GMM given the transformed test data is maximized. In

short-time Gaussianization, a linear, global transformation matrix, which aims to decorrelate the

distorted features, is estimated by the EM algorithm using the training data of all background

speakers. The distorted features are then transformed and mapped to fit a normal distribution.

The linearly transformed features are divided into a number of overlapping segments, with each

segment containing a number of consecutive transformed vectors. The consecutive vectors in

a segment are then sorted in ascending order. The rank of the central frame is used to find a

warped feature so that its cumulative density function (CDF) matches the CDF of a standard

normal distribution.
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Figure 4: DET curves comparing speaker verification performance using CMS (dashed), Znorm
(dotted), first-order BSFT (dash-dot), and first-order BSFT with Znorm (solid). For BSFT, the
number of components M in the compact GMMs was set to 64. The circles represent the errors
at which minimum decision costs occur. Gender-dependent background models were used in all
cases.

It can be argued that the inferior performance of Gaussianization is due to the nonadap-

tive nature of its transformation parameters. However, the adaptive nature of BSFT comes

with a computational price: different transformation parameters have to be computed for each

speaker. Therefore, it is vital to have a cost effective computation approach for BSFT. Note

that the computation complexity of estimating BSFT parameters grows with the amount of

adaptation data (i.e., the value of T in Eq. 1) and the number of mixture components in the

compact GMMs (i.e., the value of M). To reduce computation time, M should be significantly

smaller than N , the number of components in the full size speaker and background models. This

is particularly important for the computation of BSFT parameters during the verification phase

because the computation time of this phase is a significant part of the overall verification time.

The evaluations suggest that a good tradeoff between performance and computation complexity

can be achieved by using a suitable value of M .
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5 Conclusions

We have presented a new approach, namely blind stochastic feature transformation, to channel

robust speaker verification and provided experimental results on the 2001 NIST evaluation set.

The algorithm computes feature transformation parameters based on the statistical difference

between a test utterance and a composite GMM formed by combining the speaker and back-

ground models. The transformation is then used to transform the test utterance to fit the clean

speaker model and background model before verification. Experimental results show that the

proposed algorithms achieves significant improvement in both equal error rate and minimum

detection cost when compared to cepstral mean subtraction, Znorm, and short-time Gaussian-

ization.
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Background Model (ΛN
b )

Gender-Independent Gender-Dependent

Compensation SFT M Equal Error Minimum Equal Error Minimum

Method Order Rate (%) Decision Cost Rate (%) Decision Cost

Baseline NA NA 12.02 0.0477 11.44 0.0477

BSFT Zeroth 2 11.90 0.0473 11.49 0.0440

BSFT Zeroth 4 11.82 0.0458 11.16 0.0427

BSFT Zeroth 8 11.39 0.0449 10.89 0.0428

BSFT Zeroth 16 11.24 0.0450 10.79 0.0420

BSFT Zeroth 32 11.22 0.0450 10.80 0.0422

BSFT Zeroth 64 11.16 0.0443 10.61 0.0414

BSFT First 2 12.00 0.0506 11.29 0.0445

BSFT First 4 11.55 0.0471 10.27 0.0425

BSFT First 8 10.70 0.0464 9.77 0.0409

BSFT First 16 10.47 0.0454 9.48 0.0394

BSFT First 32 10.43 0.0446 9.38 0.0395

BSFT First 64 10.00 0.0428 9.26 0.0384

Znorm NA NA 10.39 0.0447 10.61 0.0427

BSFT+Znorm First 64 8.18 0.0369 8.36 0.0355

Table 1: Equal error rates and minimum decision cost achieved by the baseline (CMS only),

Znorm, and zeroth- and first-order BSFT with different order and number of components M in

the compact GMMs. The number of components in the full size speaker and background models

is 1,024. The columns “Gender-Independent” and “Gender-Dependent” represents the types of

background models being used for obtaining the results.
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