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Abstract -- This paper presents a compressed-domain fall incident detection scheme for 

intelligent homecare applications.  For object extraction, global motion parameters are 

estimated to distinguish local object motions from camera motions so as to obtain a rough 

object mask. We then perform change detection and/or background subtraction on the 

DC+2AC images extracted from the incoming coded bitstream to refine the object mask. 

Subsequently, an object clustering algorithm is used to automatically separate the 

individual video objects iteratively. After detecting the moving objects, compressed-

domain features of each object are then extracted for identifying and locating fall 

incidents. Our experiments show that the proposed method can correctly detect fall 

incidents in real time. 
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1. INTRODUCTION 

Electronic visual surveillance systems are an emerging application field involving 

multidisciplinary technologies spanning from image/video processing to communication, 

pattern recognition, and computer vision [1][2].  The ever-increasing demands on public 

area monitoring, transportation facilities (subways, highways, tunnels, etc.) monitoring, 

and indoor monitoring (homecare, home/office security, etc.) have been urging the 

development and deployment of new-generation visual surveillance systems. New-

generation visual surveillance systems can benefit from new advances in digital video 

communication (video compression, bandwidth reduction, and convenient networking), 

digital video processing, and broadband access network infrastructures [3][4]. For 

example, digital video compression allows efficient transmission and recording of video 

events.  Video enhancement algorithms can be used to enhance the quality of video under 

poor illumination conditions or low-resolution video captured by a low-cost camera.  

Video streaming and real-time video networking can provide flexible and ubiquitous 

video monitoring from remote locations. Automatic alarms can be generated and sent 

through networks or pagers to notify the users of abnormal situations. Research work on 

advanced video processing techniques for robust video transmission, color-video 

processing, event-based attention focusing, model-based sequence understanding in 

surveillance applications has been providing more and more interesting and useful 

features, thanks to the availability of low-cost high-performance computers, and mobile 

and fixed multimedia communications. In an intelligent visual surveillance system, it 

would be very helpful to provide features of automatically detecting and locating unusual 

events, such as, fall incident detection, intruder detection and tracking, and fire/smoke 

detection. 

Automatically monitoring abnormal activities of the elderly and children using video 

cameras at home is an important issue for homecare. In the case of elderly people living 

on their own, there is a particular need for monitoring their behavior, such as a fall, 

unusual squatting, or a long period of inactivity. Falls amongst the elderly are particularly 

serious and often lead to injury, restricted activities, fear, or death. It is shown in [5] that 

28-34% elderly people in the community experience at least one fall every year, and 40-
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60% of the falls lead to injury. The main reasons elderly people become bedridden are 

apoplectic ictus, decrepitude, falls, and fractures [6]. Fall-related injuries have also been 

among the five most common causes of death amongst the elderly population [7]. The 

early detections and recording of fall incidents can help the elderly to obtain in-time 

medical treatments as well as help identify reasons of incidents while sustaining a fall. 

Most of the existing fall detection schemes described in [6]-[9] propose to use 

specially designed sensors and circuitry, which may not be convenient for the elderly to 

wear or bring all the time. Recently, several computer vision based techniques, such as 

object tracking, behavior understanding and description, personal identification, and 

event detection, have been developed for visual surveillance and homecare applications 

due to the wide deployment of low-cost video cameras [4][10][11]. A few computer 

vision based methods have been proposed for detecting falls or other events at home. In 

[12], the authors propose a method of detecting portions of a video which are likely to 

contain a dynamic event from a compressed video. The events are assumed to happen in 

discontinuities in a motion field, or nonlinear changes of sizes in a moving region. 

Detection of specific events was not addressed in [12]. The method presented in [13] and 

[14] uses an omni-directional camera to track a video object modeled with an ellipse 

contour using a particle filter. The tracked object trajectory within different regions of a 

living room is analyzed by temporal segmentation so as to train and annotate the models 

of different activities using Gaussian mixture models (GMMs). Abnormal events such as 

falls and unusual inactivity can be classified using the trained GMMs. The method, 

however, may not be able to differentiate the activities of humans and pets or similar 

activities such as fall and squatting. 

Many networked video cameras currently deployed are equipped with a video 

encoder in order to achieve efficient bandwidth consumption. Their computing power and 

storage capacity are, however, usually still rather limited due to the cost consideration. 

Because detecting events such as fall incidents in a video clip usually needs to process a 

sustained period of video data (e.g., 1~2 seconds for fall detection), pixel-domain 

processing would require a large size of frame buffer, leading to prohibitively expensive 

memory cost and high power consumption to the low-cost cameras. As a result, event 

detection often needs to be done by using video post-processing in a surveillance control 
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center, in which relatively powerful computers are equipped and videos are 

stored/received in compressed formats. Compressed-domain processing techniques are 

efficient in terms of computational complexity and storage cost because they can take 

advantage of the information already carried in a compressed video bitstream without the 

need of decoding the compressed video into pixel values, thereby drastically reducing the 

amount of data to be processed. Should the event detection be performed in a video 

camera, the camera can also use the information available in the compressed video 

bitstream (e.g., motion information and coding modes of macroblocks) to reduce the 

computation for event detection significantly. 

In this work, we focus on compressed-domain fall incident detection schemes. The 

first task for vision-based fall incident detection is to detect human objects. There have 

been some research works for video object segmentation in the compressed domain [15]-

[17]. For example, the method in [15] proposes an EM (Expectation-Maximization) 

approach to estimate the camera parameters so as to generate the object masks. Similarly, 

the method in [16][17] also proposes to extract object by applying the EM algorithm. 

Both the two methods utilize the motion vectors (MVs) available in a standard video 

encoder to segment object. However, the MVs are usually irregular and coarsely sampled, 

due to the use of “non-sophisticated” block matching motion estimation algorithm in 

generating the MV field, so the results of object segmentation may not be precise enough 

for the use of event detection. 

In this paper, we propose a compressed-domain vision-based fall detection scheme 

for intelligent homecare applications. The proposed scheme can detect and track moving 

objects from a compressed video captured by a fixed or a pan-tilt-room (PTZ) camera in 

the compressed domain. In addition to using motion information to obtain an initial 

object segmentation mask, we propose to utilize DC+2AC image to perform change 

detection and/or background subtraction to refine the object mask. After detecting the 

moving objects, compressed-domain features of each object are then extracted for 

identifying and locating fall incident. The proposed system can also differentiate fall-

down and squatting by taking into account the event duration. The main contributions of 

this work are three-fold. First, we propose a novel integral compressed-domain 

framework for fall incidents detection, involving compressed-domain object 
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segmentation, feature extraction, and statistical decision. Second, We introduce a new 

adaptive object mask refinement procedure using DC+2AC coefficients and DCT-MC for 

enhancing the resolution of segmentation so as to achieve better accuracy of event 

detection compared to the motion-based methods [15]-[17]. Third, we propose three 

useful feature parameters which can effectively identify falls and suggest a statistical 

method to determine appropriate thresholds for the feature parameters. 

The remainder of this paper is organized as follows. Sec. 2 presents the proposed 

system architecture and describes the compress-domain feature extraction and distance 

metrics used in our work. Sec. 3 describes the proposed fall incident detection scheme. 

The experimental results are provided in Sec. 4. We present our concluding remarks in 

Sec. 5. 

 

2. OVERVIEW OF THE PROPOSED SCHEME 

Fig. 1 shows the conceptual diagram of the proposed intelligent networked visual 

surveillance system. The control center contains a server which is responsible for 

receiving compressed video bitstreams from mobile surveillance cameras, recording 

video data on the storage device, and managing the video access from remote users. The 

video captured by a camera is compressed using an MPEG-4 encoder, and the 

compressed video is subsequently sent to the server via UDP (User Datagram Protocol) 

packets.  Remote users can access the surveillance video data ubiquitously using different 

multimedia terminal devices through the Internet. An automatic fall-incident detection 

scheme is implemented in the system for intelligent homecare applications. 

The flowchart of the proposed compressed-domain fall incident detection scheme is 

given in Fig. 2. The proposed scheme involves two steps: compressed-domain object 

extraction and fall-down detection.  At first, the MVs and the DC+2AC image [18] of 

each video frame are extracted from the incoming bitstream for subsequent processing. 

The MVs extracted from the incoming bitstream are fed into the Global Motion 

Estimation (GME) module to estimate the global motion (GM) parameters. As a result, 

the global motion and local object motion(s) are separated, and then those macroblocks  

with significant local motions are grouped together to obtain a rough object mask. 
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Fig. 1. Conceptual diagram of proposed intelligent networked home surveillance. 

 

If the video shot contains global motion, the GM-compensated Change Detection 

operation is performed to refine the object mask. Otherwise, the Change Detection 

module is used to refine the object mask. For frames that contain more than a single 

object, the object clustering operation is performed to separate the object mask into 

multiple individual object sub-masks. 

After extracting the video object, the fall-down detection module uses three feature 

parameters: the centroid of a human object, the maximum vertical projection histogram 

value, and the duration of an event to identify and locate fall-down events. Object 

tracking is activated in our method when the video has more than one object. The Object 

Labeling module is used to find the correspondence of video objects between two 

consecutive frames so as to obtain the associated feature parameters of each object. 
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Fig. 2. Flowchart of the proposed compressed-domain fall incident detection scheme. 
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3. COMPRESSED-DOMAIN OBJECT EXTRACTION USING GLOBAL 
AND LOCAL MOTION INFORMATION 

3.1. Initial Object Segmentation 

In order to separate motion and local object motions, the global motion needs to be 

estimated first. In this work, we modify the compressed-domain GME method proposed 

in [19] to estimate the GM parameters between two consecutive video frames using the 

coarsely sampled macroblock MVs carried in the compressed video. In our method, the 

incoming MVs are first filtered using a 2-D median filter with a 3×3 mask to remove the 

noise due to the inaccurate block-wise motion estimation performed in video encoding. 

The global motion is then obtained by minimizing the fitting error between the input 

MVs and the MVs generated from the estimated motion model using the Newton-

Raphson method with outlier rejections [19]. The six-parameter affine model shown in (1) 

is adopted to estimate the GM parameters. 

1 2 3

4 5 6

'

'

a a ax x

a a ay y

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
 (1) 

where (x’,y’) and (x,y) represent the pixel coordinates in the reference frame and the 

current frame, respectively; [a1, a2, a3, a4, a5, a6] denotes the set of GM parameters. 

Outlier rejection can improve the robustness of GME by removing the unreliable 

MVs which tend to have largest fitting errors from the data set for GME [19]. However, 

because the object mask size may change largely in time, the method in [19], which 

adopts a fixed threshold for outlier rejection, may not be accurate enough. In our method, 

the outlier regions are initially defined as those blocks with the largest MV fitting errors 

in the first iteration. In the second and later iterations, the outlier regions are instead 

defined as the local moving object macroblocks extracted. In each iteration, the GM 

parameters are estimated first. Macroblocks with MVs significantly different from the 

estimated global motion are subsequently classified as belonging to local moving objects 

using the following rule: 
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GM GM
GM              if -  - 

MB
     otherwise

m m m m
m

Object MVx MVx MVy MVy TH

Background

⎧ + >⎪= ⎨
⎪⎩

 (2) 

where MBm denotes the segmentation mask of the mth macroblock. (MVxm, MVym) 

represents the incoming MV of the mth macroblock. THGM is a threshold, which is set 

empirically and fixed in every iteration of GME in our implementation. It can also be 

made adaptive according to the statistics of fitting errors of extracted object macroblocks. 

( GM
mMVx , GM

mMVy ) represents the MV of the mth macroblock mapped from the GM 

parameters as calculated by (3). 

( )
( )

GM
1 2 3

GM
4 5 6

= -

= -      

m m m m

m m m m

MVx a x a y a x

MVy a x a y a y

⎧ + +⎪
⎨

+ +⎪⎩
 (3) 

where (xm, ym) stands for the spatial coordinate of the mth macroblock.  

 

3.2. Object Mask Refinement 

After the initial classification, we obtain a rough object mask with granularity of 

16×16 pixels (i.e., the macroblock size). Such granularity, however, may be too coarse to 

represent the object shape with enough accuracy for the subsequent fall-incident detection. 

To achieve finer granularity, we propose to refine the segmentation result by using the 

change detection masks (CDMs) of DC+2AC images [18]. As shown in Fig. 3, the CDM-

based refinement procedure is divided into two parts: one performing change detection by 

taking the previous frame as the reference frame, whereas the other performing 

background subtraction that takes the background frame as the reference. Using the 

previous frame as the reference frame for change detection usually performs well when 

there are significant object movements. However, should there be no significant object 

movement, the change detection scheme may fail; instead, the background subtraction 

scheme can be used to cope with such situation. According to our observations, if an 

object has significant movement, its corresponding object sizes in CDMs of the current 

frame ( CDM
nSIZE  ) and previous frame tend to be close. Otherwise, CDM

nSIZE would be 
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significantly smaller than 1
CDM
nSIZE − . Based on this, the following rule is used to determine 

whether or not a video object has moved. 

if  ( CDM
nSIZE  > KSIZE× 1

CDM
nSIZE − ) && ( CDM

nSIZE  > THSIZE) 

Use the CDM and background subtraction for object refinement 

else 

Perform background subtraction, and use the result for refinement 

where KSIZE and THSIZE are two parameters obtained empirically. The CDM obtained in 

the above procedure is used to refine the object masks. The extracted background 

information is subsequently used to update the background frame memory for use in 

processing the subsequent frames. 

1
CDM SIZE CDM( )n nSIZE K SIZE −> ×

CDM SIZE( )nSIZE TH>

 

Fig. 3. Block diagram of object segmentation mask refinement. 

 

For a video clip containing global motion, global motion compensation should be 

performed prior to the CDM-based refinement. Otherwise, most part of non-still 

background may be misclassified as moving objects. Before extracting the DC+2AC 
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image, we have to compute all the DCT coefficients of the current frame using the DCT-

domain motion compensation (DCT-MC) scheme [20]. After extracting the DC+2AC 

image from the GM-compensated DCT coefficients, The CDM obtained by using the 

previous frame as the reference frame is then used to refine the object segmentation 

masks. 

The CDM-based refinement procedure is described below. First, the CDM is refined 

to the granularity of 4×4 pixels (SEGCD) using the extracted DC+2AC DCT coefficients, 

while the rough object mask obtained from the GME module is also enlarged to the same 

granularity (SEGGME). If the objects move significantly, we consider both the two masks,  

SEGCD and SEGGME, are reliable enough. Otherwise, only SEGCD is considered reliable. 

In the case of no significant object movements, the MVs of object and background 

macroblocks are almost the same, thus SEGGME may be unreliable. We use the average 

MV magnitude to determine which object masks should be used to obtain the refined 

object mask as described in (4). 

( )CD MV
objectobjfinal

GME CD

GM GM1
if  

& otherwise

iMB
i i i iSEG MVx MVy TH

NSEG

SEG SEG

MVx MVy
∈

+ <
=
⎧ − −⎪
⎨
⎪
⎩

∑
 (4) 

where Nobj represents the number of object macroblocks in a frame; THMV denotes the 

threshold of the average MV magnitude of object macroblocks. 

 

3.3. Object Clustering and Labeling 

Since a video frame may have multiple moving objects, after the above refinement 

procedure, an iterative object clustering algorithm is performed to automatically separate 

individual objects by clustering the foreground macroblocks with distinct local motions 

from the refined segmentation mask. In the clustering algorithm shown in Fig. 4, 

morphological filtering is first performed on the binary object mask to fill small holes and 

remove noise. Connected component labeling [21] is then used to obtain a labeled image 

in which the value of each pixel is the label of its connected components. Figs. 5(a) and 

(b) illustrate a binary object mask and its corresponding connected components labeled 



Manuscript submitted to Journal of VLSI Signal Processing- Systems for Signal, Image, and Video Technology 

13 of 32 

image, respectively. The local motion model of a cluster of macroblocks with the same 

label is used to verify whether or not the object group has more than one object. Object 

macroblocks with homogeneous local motions and spatially contiguous locations are 

grouped as an object iteratively until all the objects are extracted. 

 

Fig. 4. Flowchart of the proposed object clustering scheme. 
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(a)                                                                        (b) 

Fig. 5. An example of connected component labeling: (a) a binary object mask and (b) the 
corresponding labeled image. 

After labeling connected components, if object macroblocks in the object mask are 

labeled with different labels, they are considered as belonging to different objects and 

thus should be dealt with separately. The proposed object clustering algorithm comprises 

two iteration loops: the outer-loop iteratively handles individual object groups of the 

labeled macroblocks; whereas the inner-loop recursively clusters the object group labeled 

with a same label. The inner-loop first estimates the object motion using the six-

parameter affine model of a classified object group as follows: 

, 1 , 2 , 3 ,

, 4 , 5 , 6 ,

i i i
i n i n i n i n

i i i
i n i n i n i n

OMVx b x b y b x

OMVy b x b y b y

⎧ = + + −⎪
⎨

= + + −⎪⎩
 (5) 

where ( ,i nOMVx , ,i nOMVy ) represents the MV of the nth macroblock of the ith object 

group mapped from the object motion model; { 1
ib , 2

ib , 3
ib , 4

ib , 5
ib , 6

ib } denotes the set of 

affine motion parameters of the ith object group obtained by least squares estimation 

using MVs of macroblocks belonging to this group; (xi,n, yi,n) represents the spatial 

coordinate of the nth macroblock of the ith object group. 

The local object motion is then used to determine which macroblocks are outliers 

(i.e., those with MVs that are significantly different from the object motion model) as 

shown in (6). If the number of outlier macroblocks is greater than the threshold THobj, 

implying that the object group has more than one object, the object macroblocks with 

MVs which conforms to the object motion model is labeled with a new object label. The 

remaining macroblocks are then iteratively processed until all the video objects are 



Manuscript submitted to Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology 
 

14 of 32 

separated. When all the objects are separated form the ith object mask, the process jumps 

to the outer loop to deal with the next object mask. As a result, we can obtain the multiple 

object masks. 

, , , , OMnew 1 if 

0 otherwise

i n i n i n i n
i,n

OMVx MVx OMVy MVy TH
Obj

⎧ − + − >⎪= ⎨
⎪⎩

 (6) 

where (MVxi,n,MVyi,n) represents the MV of nth macroblock of the ith object group; THOM 

is the threshold for outlier classification. 

if  ( new
,i n

n

Obj∑  > THobj)  

Non-outlier macroblocks are labeled with a new object label. The remaining outlier 

macroblocks are processed iteratively in the inner loop. 

else 

Jump to the outer loop to process the next object mask. 

After all objects in a frame have been clustered and labeled, the motion model of a 

labeled object in the current frame is used to find the object’s counterpart in the previous 

frame. The shape and location of a current’s frame object in the previous frame are first 

estimated by using the object’s motion model obtained by (5). The object’s best match in 

the previous frame is determined by finding the object which has the maximum 

overlapping area with the estimated object mask provided that the overlapping area 

exceeds a predetermined threshold (e.g., 50% of the object size). The color histograms of 

DC+2AC images of the two corresponding objects can be further compared to ensure the 

correctness of correspondence, while the complexity will be increased. If the mapping 

between the two frames’ objects is one-to-one and onto, we assume all the 

correspondences are correct and there is no occlusion (e.g., without object merge/split 

and new/vanishing objects). Otherwise, we use the relationship defined in Table I to 

identify the occlusion states: an object leaving a frame, an object entering a frame, 

merging of multiple objects into a single object, and splitting of an object into multiple 

objects, as listed in Table II [22]. 
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Table I 
 Relationship between object i  in the current frame and object j in the previous 

frame. Rij = 1 if object i  and object j  overlap with each other; otherwise Rij = 0 
 Object in 

Object      the previous 
in the current    frame 
frame 

1  j  N SOR 

1 R11  R1j  R1N 1 11

N

jj
SOR R

=
=∑  

       

i Ri1  Rij  RiN 
1

N

i ijj
SOR R

=
=∑  

       

M RM1  RMj  RMN 1

N

M Mjj
SOR R

=
=∑  

SOC 
1

11

M

ii

SOC

R
=

=

∑
  

1

j

M

iji

SOC

R
=

=

∑
  

1

N

M

iNi

SOC

R
=

=

∑
 

Table II 
The corresponding values of SOC and SOR to object states. 

0iSOR =  A new object i enters the current frame 

0jSOC =  Object j leaves the current frame 

2iSOR ≥  Multiple objects merge into object i 

2jSOC ≥  Object j is split into multiple objects 

In Table I, Rij = 1 if object i  in the current frames corresponds to object j  in the 

previous frame; otherwise Rij = 0.. We can know the states and positions of objects 

according to Tables I and II. In Table I and Table II, two indices, SOC (Sum Of Column) 

and SOR (Sun Of Row) as defined in (7) and (8), are used to characterize the relationship 

of labeled objects between two consecutive frames. 

1

, 1,...,
M

j ij
i

SOC R j N
=

= =∑  (7)  

1

; 1,...,
N

i ij
j

SOR R i M
=

= =∑  (8)  

where M and N represent the numbers of objects in the current and previous frames, 

respectively. The SOC and SOR values correspond to different object states as listed in 

Table II. 
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4. FEATURE-BASED FALL INCIDENT DETECTION FROM THE 

OBJECT MASKS 

To identify and locate a fall incident of a person, we found that three features can be 

used to effectively capture fall-down events according to our experiments.  First, as 

illustrated in Fig. 6(a), a fall incident usually occurs in a short time period with a typical 

range of 0.4s~0.8s. Second, Fig. 6(b) depicts that a falling person’s centroid changes 

significantly and rapidly during the falling period. Third, the vertical projection 

histogram is also a useful feature for detecting a fall-down event because the vertical 

projection histogram of a falling person also changes significantly during the falling 

period as shown in Fig. 6(c). 

In order to obtain the three feature values: the centroid of a human object, the 

vertical projection histogram, and the duration of an event detected, the human objects 

need to be extracted using the proposed compressed-domain segmentation method. After 

extracting a foreground object, the vertical projection histogram of the object is 

computed as follows. 

1 if ( , ) is an object pixel
( , )

0 otherwise

x y
H x y

⎧
= ⎨
⎩

 (9)  

( ) ( , )
y

V x H x y=∑  (10)  

Since V(x) in (10) is an one-dimensional distribution, we can use some distance 

metrics, such as the Bhattacharyya distance [23] in (11), to measure the similarity of two 

vertical projection histograms (e.g., V1(x) and V2(x)) of video frames within a sliding time 

window so as to identify significant changes of vertical projection histogram in 

contiguous frames due to fall incidents. 

1 2
1 2

1 2

( ) ( )
( , )

( ) ( )x
u v

V x V x
d V V

V u V v
=∑ ∑ ∑

 (11)  

However, the computational complexity of computing (11) is high. To reduce the 

computation, we propose to use the maximum of a vertical projection histogram defined 

in (12), which maps the vertical project histogram into a single value. 

max max ( )
x

V V x=  (12)  
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0.4 s ~ 0.8s 

(a) 

           

(b) 

 
(c) 

Fig. 6. Three features used for detecting a fall incident: (a) the duration of an event; (b) 
The location and change rate of the centroid of the human object; (c) the vertical 
projection histogram of the human object. 
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(b) 
Fig. 7. Comparison of two feature values for a normal-walking person and a falling down 
person and a squatting person: (a) the centroid locations of objects versus time; (b) the 
vertical projection histogram values of objects versus time. 

Fig. 7 compares the centroid locations and the Vmax values of three different cases: 

walking, squatting, and falling. We can see that both feature values change significantly 

and repidly during the falling period. In this example, the centroid locations before and 

after falling down are 128 and 186, respectively. The Vmax values before and after falling 
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down are 151 and 70, respectively. The duration of the event is about 0.59 s which is 

within the typical time range of a fall-down event. 

 

(a) 

 
(b) 

   
(c) 

Fig. 8. Three different motion types: (a) a person going toward the camera; (b) a person 
going away from the camera; (c) a person walking horizontally in front of the camera. 

Because the above two feature values may vary with different object locations and 

object sizes, adopting fixed threshold values are not appropriate. We propose to use the 

following feature vector consisting of two normalized feature values for fall incident 

detection. The two feature values also take into account the effect of event duration. 

cent cen max max

cent max

( ) ( ) ( ) ( )
( )

( ) ( )

T
f n SW f n V n SW V n

n
f n SW V n SW

⎡ − − − − ⎤
= ⎢ ⎥− −⎣ ⎦

x  (13) 

where fcent(n) represents the location of  the object centroid in the nth frame; Vmax(n) 

denotes the maximum of vertical projection histogram of the object in the nth frame; SW 
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stands for the length of sliding window, which is in the typical range of a fall incident’s 

duration. 

The relation between the direction of a moving object and the camera would affect 

the distribution of feature values extracted for fall incident detection. Fig. 8 illustrates 

three types of object motions: the first type is a human object going toward the camera; 

the second is the human object going away from the camera; whereas the third is the 

object walking horizontally in front of the camera. Other types of motions can be 

represented as the combinations of Type 1 and Type 3 or the combinations of Type 2 and 

Type 3. Because the distributions of feature vectors with different motion types are 

different as will be shown later, we use different threshold values for the three motion 

types, respectively. 

Squatting has similar behavior with falling in terms of the centroid location. 

However, the change rates of the centroid of squatting is much slower than those of fall 

incidents as illustrated in Fig. 7. The characteristics can be used to differentiate normal 

squatting events (slow change rate) from fall-down events (fast change rate) by choosing 

appropriate thresholds. Typically, falling and squatting have significantly different 

centroid changes (128 186 for falling and 147 176 s for squatting, respectively). 

Using appropriate threshold can detect these two events as well as achieve good 

differentiation accuracy. 

 

5. EXPERIMENTAL RESULTS 

Three CIF (352×288) test sequences: Pamphlet (one object without global motion), 

Hall (two objects without global motion), and Coastguard (two objects with global 

motion), were encoded using an MPEG-4 encoder as the inputs to evaluate the proposed 

compressed-domain object segmentation scheme. Fig. 9 depicts three snapshots and the 

corresponding segmentation masks of the three test sequences, respectively. We compare 

the extracted object masks with the ground-truth masks to calculate three performance 

indices for each frame: the number of missing blocks, the number of false positive blocks, 

and the average correctness ratio. The following objective metric presented in [24] is 

used to evaluate the average correctness ratio of object segmentation:  
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where ref
tM  represents the ground-truth mask of the tth frame; seg

tM  represents the 

extracted object masks of the tth frame; (x,y) denotes the index of block location. 

Note that the ground-truth masks are of 4×4 block-wise granularity, rather than pixel-

wise accuracy. This is because the objects are extracted in the compressed domain 

without being decoded into pixel values. Therefore we cannot obtain object shapes with 

pixel-wise accuracy. Generally, block-wise accuracy is good enough for object-based 

event detection for video surveillance applications. 

Fig. 10 and Table III show the performance of the proposed compressed-domain 

segmentation method. Fig. 10 depicts the numbers of object blocks, missing blocks, and 

false positive blocks counted for each frame of three test sequences, respectively. Since 

there is only one single object for the Pamphlet sequence and no camera motion in the 

sequence, we obtain relatively better segmentation accuracy (less missing blocks and 

false positive blocks and higher correctness ratio) compared to the results for the other 

two sequences. As for the Hall sequence, because a new object appears since the 78th 

frame, the number of the missing blocks increases a little bit since then as shown in Fig. 

10(b). Because the Coastguard sequence contains global motion and two objects, the 

segmentation accuracy is relatively lower, but is still good enough. The average 

correctness ratios for the three sequences are 92.8%, 71.1%, and 75%, respectively as 

listed Table III. The experiments were performed on an AMD Athlon 1GHz PC. The 

processing speed is about 13-18 CIF fps, depending on the motion characteristics of 

sequences. 
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(a) (b) 

  
(c) (d) 

�  
(e) (f) 

Fig. 9. Snapshots and the resulting segmentation masks of the three test sequences: (a)-(b) 

Pamphlet; (c)-(d) Hall; and (e)-(f) Coastguard. 
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(a) 

 

(b) 
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(c) 

Fig. 10. Frame-by-frame segmentation performance indices for three test sequences: (a) 
Pamphlet, (b) Hall, and (c) Coastguard. 

 
Table III 

Performance evaluation of the proposed compressed-domain object segmentation method 
for three test sequences 

Sequence 
Average # of 
object blocks 

per frame 

Average 
missing ratio 

Average false-
positive ratio 

Average ratio of 
correctness 

Pamphlet 559 3.8% 3.4% 92.8% 

Hall 87 14.9% 8.0% 77.1% 

Coastguard 220 16.4% 8.6% 75.0% 

For fall incident detection, totally 78 sequences including 48 training sequences and 

30 test sequences were used in our experiments. The 48 training sequences containing 

three different motion types (16 sequences for each motion type) were used to determine 

the thresholds for the three motion types, respectively. Among every 16 sequences for 

each motion type, eight sequences consist of fall incident events, whereas the other eight 

sequences contain no fall incidents. Fig. 11 depicts the statistical distributions of the 
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centroid location and Vmax change ratios collected from the training sequences for the 

three motion types, respectively. The change ratios are calculated according to (13) with 

a sliding interval of 0.6 second between two frames. As shown in Fig. 11, the two 

normalized feature values (i.e., the horizontal axes) are both divided into 10 bins, each 

containing 10% of the whole range. For each object motion type, we choose a threshold 

for each feature value. Each threshold is chosen to minimize the error rate of event 

detection according to the associated distribution in Fig. 11. The thresholds for the three 

motion types are listed in Table IV. Since the motion behavior of a human may be a 

combination of two of the three motion types, we use a linear combination of the two 

corresponding thresholds to calculate the threshold according to the motion types 

determined by using the trajectory of centroid and the change rate of object height. 

We used 30 test sequences with different motion types of fall incidents to evaluate 

the performance of the proposed fall-incident detection algorithm. These sequences 

consist of 15 sequences with fall incidents and 15 normal walking sequences. Our system 

can correctly detect 28 events including 13 fall incidents and 15 normal ones from the 30 

sequences; whereas two fall incidents were missed. The correctness ratio is about 93%. 

The miss ratio is 13% and the ratio of false positives is 0%. The reason of unsuccessfully 

detecting the two fall incidents was that the human objects in the two sequences has small 

Vmax values, which was due to some false-segmentation caused in part by show noise. 

Because a small Vmax value of an object leads to a small change amount of the object's 

centroid location and Vmax, it would become relatively difficult to detect a fall in such 

sequences correctly.  

Table IV 
Thresholds for each motion type 

Motion type Change ratio of centroid location Change ratio of Vmax 

Type 1 24% 25% 

Type 2 25% 30% 

Type 3 12% 20%  
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(f) 

Fig.11. Histograms of the centroid location and Vmax change ratios between fall incidents 
and normal walking for the three motion types: (a)-(b) Motion Type 1; (c)-(d) Motion 
Type 2; (e)-(f) Motion Type 3. 
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5. CONCLUSION 

We have presented a feature-based compressed-domain fall-down detection scheme for 

intelligent surveillance applications. The proposed scheme involves two steps: 

compressed-domain object extraction and fall incident detection. In the object extraction 

step, the MVs and the DC+2AC image of each frame are firstly extracted. GME is then 

performed to distinguish moving object MBs from background MBs to obtain a rough 

object segmentation mask. The CDM is then used to refine the object mask. Should the 

video shot contain GMs, the GM compensation is performed prior to the change detection 

operation. Finally, object clustering is performed to separate the object mask into multiple 

individual objects. In the second step, three feature values: the change ratio of the 

centroid of a human object, the change ratio of the maximum of vertical projection 

histogram, and the duration of an event detected are used to identify and locate fall-down 

events. The proposed object segmentation method can extract moving objects with or 

without cameral motions, thereby being useful for video surveillance applications 

equipped with still or pan-tilt-room cameras. Our experimental results show that the 

proposed method can detect fall incidents with high accuracy in real-time. 
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