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Abstract. Simulation is an important tool to study and analyze sensor networks. Prior work in sensor network

simulation focuses on homogeneous devices. In this paper, we present a system that performs scalable and

accurate simulation of a network of heterogeneous sensor devices, including both Stargate intermediate level

devices and mote devices. We study accuracy, performance, and scalability of our system. The results show that

we can achieve accurate functional behavior for both standalone Stargate simulation and ensemble simulation of

a Stargate and motes. For motes, we have less than 4.06% cycle count error for all benchmarks and for Stargate,

we have less than 10% error for most benchmarks, and less than 12.5% error for all benchmarks. We also

achieve less than 3.6% error for all benchmarks when simulating an ensemble of Stargate and motes. Our system

is also more scalable than prior work. We can simulate 160 sensor nodes in real time speed and 2,048 sensor

nodes with ten times slowdown on a 16-node cluster.
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1. Introduction

Sensor networks have emerged as a technology for

transparently interconnecting our physical world

with more powerful computational environments,

and ultimately, global information systems. In a

typical sensor network, computationally simple, low-

power sensor elements take physical readings and

may perform some processing of these readings

before ultimately relaying them to more powerful

computational elements. The need for non-intrusiveness

motivates sensor design toward small, inexpensive,

low-power sensor implementations that can be deployed

in large numbers throughout the environment to be

sensed. Because the sensor elements themselves are

resource constrained, a sensor network may include a

smaller number of more complex and general purpose

computational elements that are capable of substantial

in-network processing, contain greater storage capacity,

and can act as intermediate Bgateway^ nodes between

the network of sensor elements and more power-

intensive network technologies. Such heterogeneous

designs have been proven to be able to make a sensor

network more computationally powerful and energy

efficient [1]. It has seen its application in many existent

deployments [2–4], and is an important research

direction for future sensor network architecture [5].

Designing and investigating these ensemble sys-

tems, to date, has relied primarily on physical

deployments and experimentation [6–10]. While the

quality of the results from such efforts is excellent,

the need to work with the physical systems directly

imposes a substantial research impediment. The

labor cost, equipment cost, space requirements,

debugging complexity, etc., that characterize such

an engineering-based approach, all limit the scope of



the research that can be performed, and the number

of researchers who can perform it.

One obvious possibility for widening the scope of

what can be investigated is to employ simulation as a

complement to experimentation with deployed sys-

tems. While several simulation efforts have focused

on the sensing elements themselves [11–16], an

approach that combines sensor simulation with

simulations of the other Bheavier^ devices as an

ensemble—and does so with an acceptable level of

accuracy—is necessary to make simulation a viable

option.

In this paper, we investigate a system that

simulates a complete sensor network that includes

both simple (base level) sensor devices and more

powerful intermediate sensor devices. Our system

has two major components, SimMote and SimGate,

for simulating the two classes of devices, respective-

ly. The former, SimGate, performs cycle-accurate

full-system simulation of mote sensors [17]. Sim-

Mote is similar to previous simulators [13, 14, 16]

that simulate simple sensor devices, yet it enables

better performance and more extensive hardware

support. The distinctive feature of our system is

SimGate, a full-system simulator for the Intel

Stargate device [18] (distributed by Crossbow Inc.).

The Stargate is intended to function as a general

purpose processing, storage, and network gateway

element in a sensor network deployment. Our goal

is to provide both functional correctness and

accurate cycle estimation. We refer to the latter as

cycle-close [19].

SimGate is unique in that it supports cycle-close,

functional simulation of the entire Stargate device as

opposed the processor [20] or power consumption

[21, 22] alone. SimGate captures the behavior of

most Stargate components including the processor,

memory hierarchy, communications (serial and ra-

dio), and peripherals. As the result, SimGate boots

and runs the Familiar Linux operating system and

any program binary that executes over it, without
modification.

Our system is also unique in that it is able to

simulate the ensemble of base level sensor devices

and intermediate sensor devices, i.e. a complete

deployment of typical sensor network. We imple-

ment a multi-simulation framework that coordi-

nates the simulation of both SimMote and Sim

Gate, and emulates the communications, including

serial and radio, among the simulated devices. To

make the ensemble simulation scalable, the

multi-simulation framework is also able to

distribute individual device simulations to dis-

tributed memory systems, such as a computing

cluster.

We evaluate both the accuracy and the perfor-

mance of our system. For the accuracy of each

simulator, we compare the simulated clock cycles

to measured clock cycles using a wide range of

stressmarks and community benchmarks. We also

present results for similar experiments in which the

Stargate and mote inter-operate via a serial inter-

face. Finally, we examine a multi-device ensemble

consisting of a Stargate node, a serially connected

mote, and a third mote that communicates only via

simulated radio. We compare our simulated results

to measurements that we gather from physical

Stargate and motes. Our results indicate that we

are able to accurately simulate the full system of a

Stargate node with a maximum error of 12.4%

across all benchmarks we test. We also find that, on

average, simulation at this level of accuracy im-

poses a slowdown of 58� over real-time device

execution and that a slowdown of 20� can be

achieved if only a functional simulation (i.e.

without accurate cycle counts) is required. For

motes, the simulation accuracy is within 5% error.

And the best simulation performance is approxi-

mately nine times that of real time speed.

We also study the scalability of simulating a

complete sensor network that contains multiple

Stargates and a large number of motes. Due to the

large performance gap between SimGate and

SimMote, SimGate is always the performance

bottleneck. To investigate the scalability of Sim-

Mote, we evaluate the ensemble simulation of a

multi-mote network. We show that our system can

simulate 2048 motes on a 16-node cluster at one

tenth the speed of real time. As a result, we believe

this work demonstrates the potential of multi-device

sensor network simulation as a research-enabling

technology.

In the next section, we overview the design and

implementation of our simulation system. In Section 3,

we describe our experimental setup and measure-

ment methodology. We then detail the accuracy and

performance of our system in Section 4. In Sections 5

and 6, we present related work and conclude with

some observations and our plans for future work,

respectively.
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2. Simulation System Design

and Implementation

Simulation is a potentially important tool for sensor

network system and application development. The

focus of most prior work in system simulation has

been on high-end, general-purpose, wall-powered

devices [23–25], processor/power simulation [21,

22, 26], or on the base level sensor devices

themselves [11–16]. However, to our knowledge,

no extant approach to sensor network simulation

enables full-system simulation of a key sensor

network component: the intermediate Bgateway^
node. Moreover, no simulation system facilitates

ensemble simulation of heterogeneous sensor devi-

ces. The goal of our work is to investigate, imple-

ment, and evaluate such mechanisms.

Intermediate nodes are resource-constrained, battery-

powered, devices that provide a bridge between base

level sensor nodes (which we refer to as motes after the

popular Berkeley Mote implementation [27]) and more

powerful, wall-powered, computational environments.

Intermediate nodes are commonly responsible for

sensor device control and in-network processing [1]

of sensor data: receiving, processing, assimilating,

forwarding, etc. These nodes reduce the power

consumption of the system by reducing the commu-

nication distance from the motes to a powered device,

and by coalescing and compressing the data that is

forwarded to higher levels of the hierarchy. Interme-

diate nodes commonly have longer battery life and

significantly more powerful computation and commu-

nication capabilities than the motes. A popular

example of an intermediate node implementation is

the Intel Stargate [18].

To simulate intermediate nodes, we developed a

software system, called SimGate, that virtualizes the

Stargate device. SimGate emulates the complete

functionality of the Stargate and provides cycle-close

simulation of the Stargate_s Intel XScale processor

pipeline [28]. SimGate is completely transparent to

the above software layers—i.e., the system boots and

executes the popular embedded OS, Familiar Linux

[29] and any program that executes over it, without

modification.

We also developed SimMote to simulate the base

level sensor devices, i.e. motes. As other mote

simulators [13, 14, 16], SimMote performs cycle-

accurate full-system simulation, except that Sim-

Mote provides better simulation performance and

more extended hardware support. Unmodified

TinyOS [30] binaries can be executed directly in

SimMote. We use SimMote to couple with SimGate

for the ensemble simulation of a network of

heterogeneous sensor devices, which includes both

motes and Stargates. To do that, we designed a

multi-simulation framework that coordinates the

individual simulation of motes or Stargates and emu-

lates the radio or serial communication among them.

Scalability becomes a serious issue when the size

of sensor network to be simulated grows. Simulating

a few Stargates and hundreds of motes on one

machine is definitely unacceptable since the simula-

tion speed will crawl. To attack this problem, the

multi-simulation framework is designed to distribute

device simulations among networked computers so

that an unbounded computing resource can be used

to scale the ensemble simulation.

We next introduce the design and implementation

of SimGate. We then discuss the multi-simulation

framework that combines SimGate and SimMote to

enable scalable sensor network simulation.

2.1. SimGate Design and Implementation

SimGate provides full-system simulation of the

Stargate intermediate sensor node. The Stargate is a

single-board, embedded system (designed by Intel

Research) that comprises a 400 MHz Intel XScale

processor, an Intel SA1111 companion chip for I/O,

Intel StrataFlash, SDRAM, PCMCIA/CF slots, and

connector for a mote [18]. In situ, it communicates

with motes in a sensor network via a mote that is

physically connected to it via this connector.

The goal of our design and implementation of

SimGate is to effectively trade-off simulator

overhead for accuracy while enabling transparent,

full-system simulation. To this end, we combine a

number of different approaches to performance

estimation of device components within a single

system, including cycle-level simulation (which

can be disabled when only functional simulation is

needed) of some components and benchmark-

based timing. Using cycle-level simulation, as

we will show, we are able to achieve accurate

system-level cycle counts as compared to a real

device. By turning cycle-level simulation off, we

can reduce simulation time and yet enable correct

functional device behavior. In both cases, the
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same OS installation and application code runs

without change.

We simulate the following features of the Stargate

device:

– ARM v5TE instruction set without Thumb support

and with XScale DSP instructions

– XScale pipeline simulation, including the 32-entry

TLBs, 128-entry BTB, 32 KB caches and 8-entry

fill/write buffers

– PXA255 processor, including MMU (co-processor),

GPIO, interrupt controller, real time clock, OS timer,

and memory controller

– Serial device (UART) that communicates with the

attached mote

– SA1111 StrongARM companion chip

– 64 MB SDRAM chip

– 32 MB Intel StrataFlash chip

– Orinoco wireless LAN PC card including the

PCMCIA interface

We found that simulation of this set of devices was

sufficient to enable us to successfully boot the Linux

kernel 2.4.19 and to execute a wide range of

benchmarks.

2.1.1. Instruction Interpretation To implement the

instruction set, we use a simple interpreter to execute

the instruction flow using a large switch statement as is

done in SimpleScalar [26]. The most complex part of

the CPU core simulation is the memory management

unit (MMU). The MMU is used constantly during

program execution since each memory access requires

an address translation. When cycle-level simulation is

not required, we turn off simulation of the individual

MMU components including the TLB, BTB, I/D

caches, and fill/write buffers, to improve functional

simulation performance. The cycle-level simulation of

these components do not affect the correctness of

functional program execution but they do, however,

impose a large simulation cost. To further improve the

address translation speed, we implemented an address

lookup cache (soft TLB) for both instruction and data

addresses. This soft TLB increases functional simula-

tion time by 10% on average.

2.1.2. Pipeline Simulation To estimate cycle

counts accurately, we simulate the Intel XScale

pipeline. The Intel XScale core employs a seven or

eight stage (depending on the instruction flow),

single-issue pipeline. There are actually three pipe-

line branches that execute in parallel after the

execution stage. As a result multiplication and

memory access can happen concurrently and results

may be written back to memory out of order. Due to

the complexity and proprietary design of Intel

XScale pipeline, it is hard to achieve strict cycle

accuracy, which is also not necessary for most sensor

network simulations. We approximate the internal

functions of the pipeline and manage to achieve

cycle-closeness [19] that is accurate enough for

common simulation use. Since we were unable to

obtain publically available documentation from Intel

on the pipeline logic, we based our implementation

on that from the XScale pipeline simulation imple-

mented in XTREM power simulator [22]. We used

this implementation as a reference and extended and

evolved it using benchmark measurements from a

real Stargate device (since the Stargate uses a

slightly different version of XScale processor that

that implemented within XTREM). Most MMU

components (TLB, BTB, caches and buffers) are

also implemented as part of the pipeline simulation.

To account for cache and TLB miss penalties, the

simulator uses estimates that we obtained via

measurements from hand-coded benchmark execu-

tion on a real device.

As we mentioned above, we are able to toggle the

type of simulation between cycle-close and func-

tional. By doing so, we trade off the ability to collect

cycle-level behavior with simulation speed; both

simulations however, are functionally correct. We

implemented a mechanism with which we can turn

on/off pipeline simulation dynamically. As a result,

we can also combine functional simulation with

pipeline simulation to improve simulator startup

time. For example, we turn off pipeline simulation

during boot of the operating system and to fast-

forward the simulator to a point of interest (at which

we wish to investigate more accurate, cycle-level

behavior).

We toggle cycle-level (pipeline) simulation through

the use of a special virtual hardware interface that

we integrated into the XScale hardware perfor-

mance monitor (HPM) interface [28]. When any

software activates and terminates HPMs, the simu-

lator turns pipeline simulation on and off, respec-

tively. We selected this implementation since it

enables us to use the same interface to drive

experimentation and measurement of programs exe-
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cuted with either unsimulated (real device) or

simulated configurations easily.

2.1.3. Peripheral and I/O Simulation The most

important peripheral and I/O devices we simulated

are the Flash chip and the Orinoco PCMCIA wireless

card. The Flash chip is controlled by memory

mapped I/O registers. The simulator sends and

receives the commands and data through these

registers. In the Flash chip, a state machine controls

the sequence of operations. We simulate both the

interface and the internal state machine according to

a Verilog model of the Flash chip from Intel [31].

The simulation of the wireless card consists of two

parts: the PCMCIA interface and the wireless card

interface. We have implemented the publically

available PCMCIA interface in our simulator. How-

ever, we have been unable to obtain similar

documentation on the interface and internals of the

wireless card. To overcome this limitation, we

simulate the card by mimicking card interface

exposed in its Linux driver source code and using

the parameters dumped from the real card. As a

result, we can connect the card simulator to a Linux

TunTap interface so that our simulator successfully

builds a TCP/IP connection between a program

executing on a real device and one that we are

simulating. However, we have not yet simulated the

802.11 b radio model used by the Stargate since it is

seldom used in a typical sensor network deployment.

We do not maintain cycle accuracy of the I/O

devices (whether cycle-accurate simulation is turned

on or off) due to the device-specific complexities and

widely ranging functionality. Instead we employ a

similar benchmarking approach to the one discussed

previously to estimate the performance of I/O

devices. That is, we collect the timing behavior

using a range of hand-coded benchmark experi-

ments, and use this data to advance the clock within

the simulator. As an example, consider the buffer

programming of Flash chip. The data is first written

into an on-chip buffer. Then the program command

is issued to the chip. The chip starts to program the

memory after setting the status bit to busy. When the

job is done, the status bit is cleared. To model this

process, we collected access times for a range of

buffer sizes and embedded the values in the

simulator. During simulation, when the program-

ming command is issued, the simulator dispatches an

asynchronous event with the corresponding time

interval. When the event is reached, the status bit is

cleared just as it is for a real device.

2.2. SimMote Design and Implementation

We developed SimMote to couple it with SimGate

for the ensemble simulation of a network of both

Stargates and motes. SimMote simulates the Mica2/

MicaZ motes with cycle-accuracy. Mica2/MicaZ

features the 8 MHz Atmel ATmega128 microcon-

troller (simple 16-bit RISC ISA), on-board Flash

memory and a 900 MHz radio. Compared to

SimGate, the SimMote is much easier given the

significantly simpler hardware and software design.

SimMote currently supports the following features:

– AVR instruction set

– Most on-chip functions: program memory, RAM,

EEPROM, timers, UARTs, SPI (Serial Peripheral

Interface), ADC (Analog/Digital Converter),

Watch Dog Timer and fuse bits (for boot loader

and self-programming)

– 512 KB on-board flash

– Serial ID chip

– CC1000 (for Mica2) and CC2420 (for MicaZ)

radio chip

– LEDs and sensor boards

We are able to achieve cycle accuracy of AVR

ISA for most instructions since the instruction set

specifies fixed cycle numbers. We use these timings

within SimMote to forward the CPU clock. In a way

analogous to SimGate, SimMote is able to boot the

TinyOS mote operating system and to execute

existing mote programs.

2.2.1. Radio Model The system includes a

Bsimple^ or Bideal^ radio model in which radio

packets are sent losslessly to all the neighbor nodes

within its radio range. While the ideal model is

typically highly inaccurate, it is often used for initial

code development and debugging as well as to

achieve an upper bound on potential performance.

Under this model, each sensor node buffers the

packets sent to it even if it is not in receiving mode.

Packets are time stamped and when a sensor node

receives, it checks the packet buffer and reads the

packets that match its current clock time. In addition,

packets from different nodes may conflict with each

other. When conflicting transmissions interfere, the
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ideal model performs a bit-wise OR of the bits

received during the conflict period. As a result, this

basic radio model is able to simulate transmission

conflicts and thus the Bhidden terminal^ effect [32].

Also, packet loss due to the partial reception of

packet preamble (because of the mis-synchronization

of packet receiving and packet transmitting) is

naturally modelled as part of the radio chip emula-

tion logic.

The ideal model can be made more realistic

through the addition of channel loss models. There

are different ways to model the channel loss.

Analytical techniques use a mathematical description

of a physical electromagnetic radiation propagation.

Thus, loss or signal perturbation is based on the

Bphysics^ of the intervening communication medi-

um. There is a large body of literature on such

physical models [33]. Despite their accuracy, how-

ever, their complexity and potential computational

expense make them difficult to use in sensor network

simulations.

A more popular approach is based on a statistical

description of channel loss, often derived from

measurement trace data [34–36]. In this approach, a

large set of radio transmission data is collected using

different parameters. The trace data is then Bmined^
using statistical methods to derive distributional

descriptions of characteristics such as reception rate.

Cerpa et al. [34] explored this approach and achieved

some noteworthy results. They have also proposed

methods of generating realistic network instances

based on the discovered feature distribution. In our

work, we have developed a plug in that uses a loss

rate distribution generated from our own measure-

ment trace data using a similar methodology as in

[34]. Thus, using the basic model and the trace-

derived loss model, our system can incorporate both

deterministic models based on mechanism and

statistical models based on off-line analysis of trace

data.

2.2.2. Power and Battery Models At present,

perhaps the most active area of sensor network

simulation research focuses on modeling power

dissipation. Sensor network simulators are required

to provide accurate energy consumption estimation

for any reasonable study based on simulation. A

number of power models for sensor network devices

have been proposed and investigated in the literature

[37–39]. These models are typically based on the

measurements obtained by using benchmarks to

exercise the sensor device in various modes yielding

different levels of fidelity. In this work, we incorpo-

rate one such model [37] in our simulator.

We also provide a simple linear battery model.

Several battery models have been proposed in the

literature [40–42]. Linear model is the simplest,

again representing the ideal case in debugging and

Bback-of-the-envelope^ settings. Moreover, in fast,

lower-fidelity simulations of Bsteady-state^, a linear

model is often preferred since the middle of the

discharge curve is often close to linear [43].

Note that, we use a similar approach to provide

power and battery models for SimGate.

2.3. Scalable Ensemble Simulation

A typical sensor network contains a few Stargate

devices as Bgateway^ nodes for relaying aggregated

information or Bsuper^ nodes for efficient in-network

processing [1], and massive motes as base level

sensing devices. The Stargate device is normally not

able to communicate directly with mote devices.

Instead, a mote is connected to the Stargate via serial

port to be used as the proxy or the network interface

to other motes.

As an analogy of the physical sensor network, an

ensemble simulation is composed by a set of

individual device simulations, including both Sim-

Gate and SimMote, each running in a separate

operating system thread to exploit the parallelism

of the underlying hardware. Due to the resource

limitation of a single computer, it is not feasible to

execute all the simulation threads on one machine.

As we will see in the experiment result, simulating

one Stargate device exclusively on one machine

already has a slowdown of 20 to 58�, not to mention

simulating a few Stargates and massive number of

motes. The scalability of the ensemble simulation

thus determines its usability. To attack this problem,

we design our multi-simulation framework to dis-

tribute the device simulations among multiple net-

work connected computers, such as a computing

cluster. In this way, a potentially unbounded com-

puting resource can be used to scale the ensemble

simulation.

Individual device simulations are not independent

of each other. The communication, either by radio or

by serial, builds time causality among the devices.

As an example, a radio packet sent at cycle 1,000 on
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the sender has to be received at cycle 1,000 on the

receiver. Thus the simulation threads have to be

synchronized. Prior works [13, 16] use lock-step

synchronization, in which all threads are stopped

periodically to correctly transmit a radio byte. In a

distributed computing environment, relatively large

and variable network latencies make it infeasible. In

a typical Ethernet, the network latency is measured

in milliseconds while a desktop PC can emulate one

instruction in much less than one microsecond. If

lock-step synchronization is used, the ensemble

simulation speed is determined by the all-to-all

network communication latency.

2.3.1. Communication Model Derived from our

work in [44], our approach is based on an abstraction

of communication and a simple yet efficient syn-

chronization protocol. There are two types of

communication: the serial communication between

a Stargate and its mote interface and the radio

communication among motes. The serial communi-

cation is abstracted as a duplex FIFO channel shared

by two devices and corresponding read/write oper-

ations. The write operation enqueues a time-stamped

data byte in the channel. The channel buffers the sent

byte. Whenever a read operation is performed by the

other end, the channel is checked and the earliest

data byte is dequeued. The radio communication is

abstracted as follows. For each mote, a radio media

is shared among itself and its radio neighbors (i.e.

nodes within its maximal radio range). There are also

a read operation and a write operation for the media.

The read operation represents the radio receiving and

channel sampling (RSSI [45]). The write operation

represents the radio sending. A mote sends by

Bwriting^ a time-stamped data byte to each neigh-

bor_s radio media. Whenever a mote performs a read

operation, its own media is checked and a data byte

is assembled (according to the radio model) from the

data bytes coincident with current time.

2.3.2. Synchronization Protocol Based on this

abstraction, we designed a synchronization protocol

that regulates communications among devices. Each

device simulation thread maintains a local clock to

keep the simulation progress. Obviously, for any two

threads, if there is no communication, their execu-

tions are independent and there is no need to

synchronize the clocks. Whenever a communication

occurs, the causal relationship that exists between the

two threads has to be rectified so that the data bytes

are received in order. Since a sent data byte is time-

stamped and buffered, the sender takes no responsi-

bility to maintain causality and can advance freely. It

is the receiver to keep track of all potential sendings,

adjust its own progress accordingly and extract

ordered data correctly. The protocol then can be

described as follows:

1. A node that reads must wait for all its neighbors

(or the other side of the channel) to catch up with

its current clock time (to make sure it will receive

all the data it potentially should receive);

2. All nodes must periodically broadcast their clock

updates to neighbors (or the other side of the

channel; to notify others of their progresses);

3. Before any wait, a node must first send its clock

update (to avoid loop waiting);

4. Data byte is always sent with a clock update at

the end of its last bit transmission (to avoid

broken bytes).

This protocol only involves periodical message

passing for clock updates and data bytes. It is easy to

implement in a distributed memory environment

with much lower cost than lock-step synchroniza-

tion. For threads that share memory (e.g. running on

the same PC), this can be implemented as a shared

variable protected by thread locks. For threads that

have separate memory (e.g. remotely connected

through network), standard message passing mecha-

nism, such as TCP, can be employed.

2.3.3. Node Partition Even with this relatively low

cost synchronization protocol, message passing

through network still incurs a considerable overhead

compared to the simulation speed. To achieve

maximal simulation performance, the remote net-

work synchronization has to be minimized. Further-

more, the computation load of simulations have to be

balanced to eliminate performance bottleneck. How

to partition the ensemble simulation according to the

available computing resources becomes the deter-

mining factor of performance optimization.

The simulation partitioning problem can be mod-

eled as a Bclassic^ graph partition problem that is

well studied in parallel computing area [46–48].

Formally, the partition problem is as follows. Given

a weighted, undirected graph G = (V, E), the k-way

graph partition problem is to split the vertices of V
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into k disjoint subsets such that each subset has

roughly equal amount of vertex weight while

minimizing the sum of the weights of the edges

whose incident vertices belong to different subsets

(an edge cut) [46]. In our problem, the simulation

threads are the graph vertices and the serial or radio

communication relationships are the edges. The

computation cost of simulation is the vertex weight

and the communication cost is the edge weight.

A general graph partition problem is hard to solve.

At this stage, we simplify the problem by consider-

ing several factors. First, the typical distributed

parallel computing resource is a cluster, which is

composed by identical machines with 1–2 processors

on each. Second, the huge simulation performance

difference between SimGate and SimMote implies

that in most situations, we have to allocate a single

machine to simulate a Stargate exclusively. Finally,

because serial communication is much faster than

radio communication and the serial hardware con-

stantly reads shared channel, a Stargate and its mote

interface are more tightly coupled than motes do.

Thus it is preferable to simulate them with shared

memory, i.e. on the same machine. The partition

problem is then reduced to evenly distribute a set of

motes to a set of identical machines with the same

communication cost. We employ a famous graph

partitioning package, Chaco [49], to solve the

problem. We will explore the general partition

problem in our future work.

3. Experimental Method

To evaluate and analyze the performance and

accuracy of our system, we performed a number of

experiments using the SimGate and SimMote alone

as well as with SimGate-SimMote ensembles. To

evaluate the latter, we implemented two scenarios:

(1) A Mote attached to a Stargate through the serial

expansion bus (2) A secondary Mote communicating

with the first via simulated radio. In scenario (2), we

located the motes such that their antennas are in

physical contact to minimize errors caused by

interference over the radio channel. At present, we

do not model interference as part of the simple radio

model that we implement, however are currently

working on robust and accurate radio models as part

of future work.

Scenario (1) represents the use of the Stargate as a

gateway. Currently, the Stargate design does not

include a radio interface that is compatible with

Motes. Instead, the Stargate implements an expan-

sion bus that allows a Mote to be physically attached

to it. The communication between the attached Mote

and Stargate uses one of the four UART channels; in

other words, even though a Stargate gateway func-

tions as 2a single machine, it is in fact two completely

independent processors that are connected through a

serial link. Thus scenario (2) represents a sensor

network that has one Mote and one gateway (a

Stargate with a Mote attached).

We also evaluate the scalability of our system

under simplified situation as mentioned in the pre-

vious section where coupled Stargate and mote pair

is simulated exclusively on a single machine and

other motes are distributed among remaining

machines in a cluster. In such situation, we actually

only care about how performance scales with differ-

ent number of motes and machines. As a result, we do

not run Stargate simulation in scalability experiments.

3.1. Benchmarks

For stand-alone SimGate evaluation, we employed

our hand-coded stressmarks and benchmarks from

both the MiBench [50] and the Mediabench [51]. In

Table 1 we present our stressmarks to measure the

simulation performance.

The stressmarks is hand-coded to test the specific

feature of the processor. The DCacheReadHitDep
has a data working set that fits in the cache and

the LD instructions have data dependency. The

DCacheReadHit is similar but without data depen-

Table 1. Stressmarks that we used in the evaluation of SimGate.

Benchmark Executables Description

DCacheReadHitDep dcachehit_r Data cache read 100%

hit w/ data

dependency

DCacheReadHit dcachehit_nd_r Data cache read 100%

hit w/o data

dependency

DCacheReadMiss dcachemiss_r Data cache read 100%

miss

DCacheWrite dcache_w Data cache write

BTB btb BTB test program

LUDecomp ludcmp_heap LU Decomposition

algorithm
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dency. The DCacheReadMiss has a larger data set

than cache size and produces 100% cache misses.

For cache write, since the Linux running on the

Stargate set the MMU to apply Bwrite-through^
policy, there is no difference between cache write

hit and cache write miss. So we use a single

DCacheWrite to test data cache write. We also have

a BTB stressmark to exercise the BTB simulation.

The LUDecomp is a stressmark to test the overall

processor simulation.

In Table 2, we give the description of the bench-

marks we choose from MiBench. These benchmarks

cover the operations from simple bit manipulation to

complex 3D rendering and to heavy floating point

computation. For even more complex and realistic

benchmarks, we use the Mediabench.

Mediabench includes a rich set of programs that

are heavily used in multimedia and office type of

applications. In Table 3, we describe the benchmarks

that we use. We eliminate three benchmarks due to

the constraints of the underlying platform: Epic does

not run on the real Stargate platform (due to memory

constraints), MPEG2 requires too many hours to

execute due to the execution of floating point

operations, and Ghostscript does not fit in the

available Stargate Flash memory (25 MBytes). We

execute all remaining benchmarks from the RAM

drive.

To evaluate the accuracy of SimMote simulator

components, we choose a set of five benchmarks.

Each benchmark contains data that is measured only

during the execution of one particular unit. We

describe the benchmarks and the components in

Table 4. These benchmarks are stand-alone applica-

tions (i.e. the measurements were independent of

Simmote simulator). Note that the floating points test

evaluates the software implementation of floating

point arithmetic.

To evaluate ensemble simulation, we employ

open-source applications as well as hand-coded

programs. We describe the applications in Table 5.

Column 3 shows the functional units of the Motes

that are heavily utilized during the execution of

various benchmarks. In choosing benchmarks, we

attempt to exercise the full device, and cover the

major functions of a Mote: communication, sensing

and logging. The difference between this and the

previous set of benchmarks (the ones given in Table 4)

is that these benchmarks show the behavior of the

application as perceived by the SimGate (we will

detail measurement methodology shortly) and the

previous benchmarks show the behavior of that

particular unit only (compared using external test

equipment).

Each ensemble benchmark has a Long and Short
form. The Short benchmarks exercise only the

Stargate and serially-attached Mote communicating

via the UART interface. The Long benchmarks ex-

ercise Stargate and the attached Mote, operating as a

gateway or controller, and a remote Mote com-

municating via radio. Moreover, each of these

applications takes the form of a remote procedure

call (RPC). When the program on the Stargate sends

a query to the Mote, it blocks until the receiver

completes the appropriate execution and returns. The

Table 2. MiBench benchmarks that we used in the evaluation of

SimGate.

Benchmark Executables Description

BitCount bitcnts Bit manipulation of the processor

Dijkstra dijkstra An Oðn2Þ algorithm to find

shortest path in a graph

FFT fft Fast Fourier Transformation

SHA sha Secure hash program

StringSearch search A text search program

Mesa mipmap 3D rendering program

Table 3. MediaBench benchmarks that we used in the evaluation of SimGate.

Benchmark Executables Description

adpcm adpcmdecode/adpcmencode Adaptive differential pulse code modulation for audio coding

g721 g721decode/g721encode CCITT voice compression

gsm gsmencode/gsmdecode European standard for speed coding

jpeg jpegencode/jpegdecode Lossy compression for still images
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multi benchmark also tests concurrent computation

by running parallel computations of ad-hoc position-

ing system (APS) [52] on both Mote and Stargate.

This test is useful to evaluate the performance of

simulating coordinated computation on Mote and

Stargate.

For our scalability experiment, we use sensor

network application CntToRfm, which is used as the

touchstone in previous scalability studies [11, 16].

CntToRfm periodically sends out radio packets and

keeps the radio channel busy. Although it does not

receive packets, the radio chip still switches to

receiving mode when it is not transmitting. So it

does in effect exercise all radio activities.

3.2. Experimental Apparatus

We execute TinyOS v1.1 on the Motes (and

SimMote) and a variation of Familiar Linux v0.5.1

on the Stargate (and SimGate). For the stand-alone

Stargate applications (i.e. Mediabench), we mea-

sured the CPU clock cycles and instruction count

using the XScale hardware performance monitors

(HPM). The HPM system can monitor 3 events

(CPU clock cycles and two events) concurrently. We

read the performance monitors using a kernel

module that we developed.

For performance and accuracy experiments, we ran

our simulators on a dedicated Linux (kernel ver 2.6.8)

machine. The machine has a 64 bit AMD Opteron

CPU running at 2.4 GHz and 4 GB of memory. To

measure wall clock execution time of each bench-

mark, we modified the simulator. Each time the

performance monitoring registers of the simulated

machine (i.e. Stargate) are accessed, the simulator

reads the real (wall-clock) time from the host system

(which is synchronized using NTP), and computes

and logs the delta (time since previous access).

We wrapped each simulated application using a

small program: The wrapper reads the HPMs imme-

diately before and after the execution of simulated

program. This enables us to collect both wall clock

time and simulator statistics (number of instructions

executed, number of clock cycles, and many other

system events supported by XScale architecture).

We found measuring real Mote hardware chal-

lenging since the Atmel CPU on the Mote does not

provide any mechanisms for performance monitoring

features. To enable our measurements (and hence

validation of the correctness, accuracy, and perfor-

mance of SimMote), we measured the CPU clock

cycles of the Mote and its executing software using

high-precision external instrument. To collect data

accurately, we used the CPU output register PORTC

Table 4. Benchmarks that we used to evaluate the components of SimMote.

Benchmark Description Functional Unit

ALU unit Computation and Logic operations Arithmetic/Logic Unit

Radio Network Packet Transfer time Radio Model

Floating PTS Floating point operations Arithmetic/Logic unit

Flash Read Reads log from Flash Secondary Flash

Flash Write Write data to Flash Secondary Flash

The third column shows the functional units that were evaluated during the test.

Table 5. Benchmarks that we used to evaluate the ensemble simulation of SimGate and SimMote.

Benchmark Description Functional Unit

Ping Echoes network packet back to sender Network interface

Sense Processes a sensor read query Analog/Digital converter

APS [52] Ad hoc positioning system Arithmetic/Logic unit

Log Reads log from Flash Secondary Flash & UART

Multi Parallel computations on both devices Arithmetic/Logic unit

The third column shows the functional units that are exercised most heavily during benchmark execution.
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on the Mote. PORTC is directly connected to pin 51

on the expansion bus. When we wanted to initiate a

measurement, we raised the voltage on the pin by

writing a 1 to this register. When we wanted to stop

measurement we disabled pin by writing a 0. The

overhead of accessing this register is one clock cycle.

To time Mote execution, we connected an Agilent

54621A Oscilloscope (accurate up to 10 ns) to the

output pin. We configured the oscilloscope to

monitor the pulse width (i.e. the time between

raising and lowering a signal), and recorded the

measurements. We then converted timing measure-

ments to clock cycles by multiplying it by the Mote

clock speed (7.3728 MHz). We were not able to

collect the instruction count, as there is no way of

accessing this information through the expansion bus.

To evaluate and compare the SimMote simulator

with our timing and instruction cycle measurements

(which we described in previous paragraph), we

instrumented the implementation of Mote_s PORTC

register in the simulator. Writing a 1 to this register

enables an internal instruction cycle counter at the

simulator. By comparing the two sets of numbers

that we collected from the simulator and the

oscilloscope, we were able to determine the accuracy

of the simulator with a very high confidence.

As for the scalability experiment, we perform

distributed ensemble simulation on a 16-node dual-

processor 3.2 GHz Intel Xeon cluster with gigabit

Ethernet.

4. Results

We detail the accuracy of SimGate by comparing it

to the Stargate in terms of the number of cycles

required to execute the benchmarks described in the

previous section. In the first set of comparisons, we

make 20 identical runs of each benchmark on both

SimGate and Stargate and compare the average

number of cycles required per benchmark.

Tables 6, 7 and 8 give the cycle accuracy result of

the stressmarks, MiBench and Mediabench, respec-

tively, for SimGate. All tables use the following

format. The first column shows the name of the

benchmark, the second column (�meas ) shows the

average number of cycles measured on the Stargate

hardware, the third column (�simulated ) presents the

cycles reported by SimGate and the fourth column

shows the difference. In the fifth column, we report

the error percentage ( �meas � �simulatedÞ=�measð )

which is difference between the average of the

measured cycle counts and the average of those

generated by the simulator. We also compute the

95% confidence interval for the error percentage

using a Student t distribution [53] with 19 degrees of

freedom to model the difference of the averages

(marked as T confidence bound in the table).

Note that the error percentage and confidence

interval also indicate whether we should reject the

null hypothesis of equivalence in a two-sided

hypothesis test at 95% confidence. If the Bmargin

for error^ (confidence interval) spans 0% (i.e. the

margin is greater than the error percentage itself), we

fail to reject the null hypothesis of equivalence and

hence cannot determine whether the observed differ-

ence in averages is due to random variation or not. In

this experiment, however, the confidence intervals

are all quite narrow indicating the error percentage

we observe for each benchmark is statistically

significant at the 95% confidence level. There are

Table 6. Average cycle counts for measurements and simulations of MediaBench benchmarks, 95% confidence interval on the difference

of the means, fraction of average measurement that interval constitutes.

Benchmark �meas �simulated �meas - �simulated % error T 95% conf. bound

adpcmdecode 3.367E + 07 3.069E + 07 2.980E + 06 8.9 T 0.28

adpcmencode 3.068E + 07 2.766E + 07 3.014E + 06 9.8 T 0.36

g721decode 6.272E + 08 5.735E + 08 5.368E + 07 8.6 T 0.17

g721encode 6.527E + 08 6.006E + 08 5.213E + 07 7.9 T 0.44

gsmdecode 1.526E + 08 1.420E + 08 1.061E + 07 7.0 T 0.57

gsmencode 4.335E + 08 3.995E + 08 3.401E + 07 7.8 T 0.09

jpegdecode 2.554E + 07 2.235E + 07 3.191E + 06 12.5 T 1.16

jpegencode 5.412E + 07 4.731E + 07 6.813E + 06 12.5 T 0.41
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three benchmarks whose confidence interval spans

0%. However, the difference is so close that with

95% confidence you can_t determine if it is a true

difference or random noise.

We observe that the accuracy of SimGate for this

set of benchmarks is acceptable as a full-system

simulation. While error percentages below 5% have

been achieved for individual system components [22,

54], because we simulate the full device (including

all parts of the memory hierarchy and the interrupt

structure) and run both an operating system and

application on it, we expect to introduce additional

error. That the maximum error is no more than

13.5% (with 95% confidence) and most of the errors

are below 10%, is surprising and is an indication that

the simulation is of high quality.

Table 9 gives the cycle accuracy result of timing

benchmarks for SimMote. The format of the table is

same as Table 6. The data indicates that the accuracy

of our Mote simulator is similar to that of SimGate.

For floating point programs as well as the radio and

flash write benchmarks, the error rate is insignificant

since the error margin is greater than error percent-

age itself. For the ALU and flash read benchmarks,

the confidence intervals are quite narrow and the

error rate is very small.

4.1. Coupled SimGate and SimMote Simulations

To gauge how well SimGate will work in a simu-

lation of a heterogeneous sensor network, we ex-

amine its cycle-count accuracy when it is used in

conjunction with one or two SimMotes (as described

in Section 3). Table 10 shows the cycle count results

for the benchmarks that exercise the Stargate device

and the Mote that is connected to it via a serial

interface (scenario 1). As noted previously, the

Stargate device does not support a radio device

capable of communicating directly with Motes in a

sensor network. Instead, it uses Mote directly

connected to it via a serial interface as a network

interface peripheral. These benchmarks are intended

to exercise this interaction in a representative way.

The format of Table 10 is the same as that described

for Table 6 in the previous subsection. Again, the sam-

ple size used to calculate each average is 20 and we

compute a 95% confidence interval on the error percen-

tage using a t distribution with 19 degrees of freedom.

Again, the accuracy of the coupled simulation is

reasonable for two communicating independent full-

device simulations. Note that while the error percent-

ages appear significantly lower than for the SimGate

simulation alone, the confidence intervals are also

Table 8. Average cycle counts for measurements and simulations of MiBench benchmarks, 95% confidence interval on the difference of

the means, fraction of average measurement that interval constitutes.

Benchmark �meas �simulated �meas - �simulated % error T 95% conf. bound

BitCount 3.648E + 07 3.589E + 07 5.959E + 05 1.63 T 0.09

Dijkstra 1.867E + 08 1.731E + 08 1.360E + 07 7.29 T 0.07

FFT 9.955E + 07 9.332E + 07 6.225E + 06 6.25 T 2.39

Mesa 2.105E + 08 1.932E + 08 1.730E + 07 8.22 T 4.79

SHA 6.391E + 07 6.208E + 07 1.834E + 06 2.87 T 4.90

StringSearch 3.249E + 08 3.315E + 08 j6.574E + 06 2.02 T 0.13

Table 7. Average cycle counts for measurements and simulations of stressmarks, 95% confidence interval on the difference of the means,

fraction of average measurement that interval constitutes.

Benchmark �meas �simulated �meas - �simulated % error T 95% conf. bound

DCacheReadHitDep 1.606E + 07 1.604E + 07 2.263E + 04 0.14 T 0.10

DCacheReadHit 5.852E + 06 5.863E + 06 j1.118E + 04 0.19 T 0.22

DCacheReadMiss 1.680E + 09 1.694E + 09 j1.419E + 07 0.84 T 0.01

DCacheWrite 1.606E + 07 1.605E + 07 1.312E + 04 0.08 T 0.10

BTB 6.142E + 07 6.547E + 07 j4.044E + 06 6.58 T 0.07

LUDecomp 1.207E + 08 1.196E + 08 1.044E + 06 0.87 T 0.09
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significantly wider. Thus, based on error percentage

alone it may appear that the coupled simulations are

more accurate. However, there is more relative

variation (as we might expect) in the coupled case.

As a result, it is the error range, and not the specific

error value, that is significant in this case.

For example, consider the results for the PingShort
benchmark shown in row 1 of Table 10. From the

data, it is not possible to determine that the dif-

ference between the measured average and simulated

average is statistically significant at the 95% confi-

dence level (since the error range spans 0%).

However, there is enough variation in both measure-

ments and simulation to make the difference indistin-

guishable from random variation across an interval

that is T6.6% centered on the observed average.

The PingShort benchmark exhibits the widest

variation, as indicated by the error range. For the

SenseShort benchmark the difference in observed

average is, once again, statistically undetectable with

95% confidence, but the error range is smaller. In the

remaining three cases, there is a statistically signif-

icant difference, but both the error percentages and

the confidence bounds on those percentages are

remarkably small. From this data, we conclude that

cycle-counts taken from SimGate when coupled to

SimMote via a serial interface, while introducing

additional variation, are still reasonably accurate.

The final set of accuracy results we present is for

benchmarks that couple SimGate with a SimMote

via its serial interface that is then used to commu-

nicate with a second SimMote via the radio interface

(scenario 2). As described previously, we do not yet

know of a Mote radio communication simulation that

is accurate enough not to overshadow the accuracy

(or lack thereof) of SimGate. Thus, these experi-

ments reflect a configuration in which the antenna of

the two Motes are in physical contact. It is our

experience that this configuration eliminates much of

the variation resulting from radio communication.

Table 11 depicts these results using the same

format as the in the previous two tables. Similar to

the results for PingShort and SenseShort in Table 10,

the additional variation introduced by the second

Mote and the radio communication makes the

difference between observed and simulated averages

indistinguishable from random variation at a 95%

confidence level. However, the 95% confidence

intervals on the error percentage are, once again,

similar in magnitude to the error percentages in

Tables 6 and 10 for the cases where the averages are

significantly different.

Table 9. Average cycle counts for measurements and simulations of Mote benchmarks, 95% confidence interval on the difference of the

means, fraction of average measurement that interval constitutes.

Benchmark �meas �simulated �meas - �simulated % error T 95% conf. bound

ALU unit 2.884E + 06 2.954E + 06 j7.031E + 04 2.44 T 0.12

Radio 4.672E + 05 4.862E + 05 j1.898E + 04 4.06 T 26.50

Floating Pts 3.498E + 06 3.499E + 06 j6.357E + 02 0.02 T 0.10

Flash Read 2.884E + 06 2.954E + 06 j7.031E + 04 2.44 T 0.12

Flash Write 2.521E + 03 2.434E + 03 8.688E + 01 3.44 T 27.90

Table 10. Average cycle counts for measurements and simulations of benchmarks coupling SimGate with simulated Mote via serial link,

error percentage, 95% confidence range for error.

Benchmark �meas �simulated �meas - �simulated % error T 95% conf. bound

PingShort 9.414299E + 07 9.592680E + 07 j1.783813E + 06 1.9 T 6.6

SenseShort 2.040608E + 08 2.051871E + 08 j1.126267E + 06 0.6 T 1.1

APSShort 1.997744E + 08 1.966910E + 08 3.083427E + 06 1.5 T 0.07

MultiShort 2.128019E + 08 2.080650E + 08 4.736897E + 06 2.2 T 1.5

LogShort 1.637669E + 08 1.695956E + 08 j5.828771E + 06 3.6 T 1.25
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From all three tables, then, we conclude that

SimGate achieves a similar level of accuracy both

when it is used as a single device simulation, and

when it is part of a multi-device simulation in which

the devices are communicating. Because the software,

including the operating system, run by the physical

hardware in each of these three experiments is

precisely the same as that executed by the simulated

devices, we believe that SimGate can be used as an

effective tool for estimating Stargate cycle counts in

heterogeneous sensor network configurations.

4.2. SimGate Execution Performance

Since our ultimate goal is to provide a complete

sensor network simulation capability that can be

used to complement current deployment-based re-

search strategies, the real-time slowdown of SimGate

versus the physical hardware is an important consid-

eration. Table 12 and Table 13 compare wall-clock

timings of the Stargate device to SimGate (tcycle) and

to SimaGate with the cycle-accuracy features dis-

abled (tnocycle ). For cases where cycle accuracy is

desired, we can enable the parts of SimGate that are

necessary to make cycle count estimates internally.

Comparing the performance of the resulting func-

tional simulator to the full SimGate simulation gives

the cost of achieving the accuracy levels described

previously.

The simulator is 10 to 27 times slower than the

real hardware when cycle accuracy is not required.

This factor is smallest for DCacheReadMiss. There is

no slowdown and instead the simulation is faster

than actual hardware. The reason is that on real

hardware, the cost of cache miss is so large that our

simulation on a fast, high-end machine can catch up

with its speed. Cycle accurate simulation (rcycle )

increases the cost by 2.93� (37 to 80 times slower

than real hardware). There is a higher variance in

these numbers, e.g., gsmvsjpeg , than for functional

simulation (rnocycle). One reason for this is cycle-

accurate cache simulation. The time required to
simulate a cache miss and a cache hit is the
same—although the simulator adjusts the simulated

clock and cycle counts appropriately for each. On a

Table 11. Average cycle counts for measurements and simulations of benchmarks coupling SimGate with simulated Mote via serial link

communicating with a Mote via the radio, error percentage, 95% confidence range for error.

Benchmark �meas �simulated �meas - �simulated % error T 95% conf. bound

PingLong 3.228130E + 08 3.116003E + 08 1.121275E + 07 3.5 T 2.9

SenseLong 2.267467E + 08 2.254300E + 08 1.316726E + 06 0.58 T 2.1

APSLong 2.273877E + 08 2.212660E + 08 6.121661E + 06 2.7 T 6.3

MultiLong 2.362925E + 08 2.285356E + 08 7.756869E + 06 3.3 T 3.3

LogLong 1.891255E + 08 1.915953E + 08 j2.469811E + 06 1.3 T 2.4

Table 12. Average execution time (in seconds) of measurements and simulations (cycle accuracy disabled and enabled versions) of

MediaBench benchmarks, slowdown rate for simulation when cycle accuracy disabled and slowdown rate for simulation when cycle

accuracy enabled.

Benchmark tmeas tnocycle tcycle rnocycle rcycle

adpcmdecode 7.60Ej2 1.05E + 00 3.23E + 00 13.84 42.50

adpcmencode 8.40Ej2 1.21Ej02 3.61E + 00 14.34 42.97

g721decode 1.57E + 00 3.70E + 01 1.13E + 02 23.51 71.73

g721encode 1.64E + 00 4.19E + 01 1.19E + 02 25.45 72.39

gsmdecode 3.82Ej01 1.06E + 01 2.86E + 01 27.65 74.79

gsmencode 1.09E + 00 3.01E + 01 8.54E + 01 27.67 78.64

jpegdecode 6.31Ej02 7.28Ej01 2.37E + 00 11.54 37.61

jpegencode 1.35Ej01 2.02E + 00 6.18E + 00 14.95 45.85
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real device a cache hit is much faster than a cache

miss. Thus, application memory access patterns can

have a large effect on the relative slow down of

simulation. We are encouraged by these results since

other full system, cycle-accurate, simulations of

advanced computer systems executing an OS and

application, e.g., SimOS, report slowdowns of

4,000–6,000� [23] although the results are not

completely comparable since we use different host

machines and simulate different targets.

5. Scalability of Multi-Simulation Framework

For our scalability experiment, we do not run

Stargate simulation with mote simulation since in

our simplified situation, Stargate simulation is

always the bottleneck. To eliminate this interference,

we thus experiment with motes only.

For each scalability experiment, we vary two

experimental parameters independently: the number

of sensor nodes simulated on each host of the cluster;

and the number of hosts used for each experiment. For

each node-count-host-count pair, we run CntToRfm for

60 s and record the average simulated clock speed.

In the first experiment, we simulate a one dimen-

sional topology of sensor network. All the nodes are

laid on a straight line, 50 m apart. We assumes the

maximal radio range is 60 m.

Table 14 presents the results. Each cell of the table

shows the ratio of the simulated average clock speed

to the real time clock speed, of 7,372,800 cycles per

second. To compute the average simulated clock

speed, the simulator records the number of clock

cycles each mote executed during the 60-s execution

run. The sum of the cycles is divided by the number

of motes, and that number is divided by 60. Thus

each cell depicts the average slowdown or speedup

factor relative to native execution speed. From the

table, the best performance is a speedup of 9.28

times real time speed when simulating one node on

one host (the upper lefthand corner in the table).

Table 13. Average execution time (in seconds) of measurements and simulations (cycle accuracy disabled and enabled versions) of

stressmarks and MiBench benchmarks, slowdown rate for simulation when cycle accuracy disabled and slowdown rate for simulation when

cycle accuracy enabled.

Benchmark tmeas tnocycle tcycle rnocycle rcycle

DCacheReadHitDep 6.20Ej02 6.25Ej01 2.07E + 00 10.08 33.37

DCacheReadHit 3.60Ej02 5.80Ej01 1.63E + 00 16.11 45.14

DCacheReadMiss 4.24E + 00 1.61E + 00 7.56E + 01 0.38 17.83

DCacheWrite 6.20Ej02 6.60Ej01 2.14E + 00 10.65 34.47

BTB 1.76Ej01 4.38E + 00 1.27E + 01 24.91 71.93

LUDecomp 3.28Ej01 6.73E + 00 2.05E + 01 20.53 62.48

BitCount 1.15Ej01 2.18E + 00 6.73E + 00 18.95 58.53

Dijkstra 5.63Ej01 1.00E + 01 3.18E + 01 17.80 56.55

Mesa 6.54Ej01 1.18E + 01 4.09E + 01 17.98 62.55

StringSearch 8.42Ej01 2.30E + 01 6.77E + 01 27.34 80.44

SHA 2.37Ej01 4.89E + 00 1.41E + 01 20.65 59.49

FFT 2.87Ej01 5.14E + 00 1.57E + 01 17.89 54.68

Table 14. Simulated clock speed for 1-D topology.

Nodes per host

Hosts number

1 2 4 8 16

1 9.28 2.26 1.96 1.72 1.67

2 6.68 2.12 1.82 1.68 1.68

4 2.18 1.83 1.70 1.68 1.67

8 1.20 1.21 1.18 1.16 1.15

16 0.78 0.61 0.60 0.60 0.60

32 0.35 0.36 0.31 0.31 0.31

64 0.18 0.15 0.17 0.15 0.14

128 0.09 0.09 0.09 0.08 0.08

Each row has fixed number of nodes per host and each column has

fixed number of hosts. All value is normalized to real time clock

speed.
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What is perhaps the most remarkable, however, is

the similarity between the values for 2 through 16

hosts. While we expected a substantial fall off in

speedup in moving from one host to two hosts, we

expected that fall off to continue as the number of

hosts increases. Indeed, starting with eight nodes per

host (the fourth row in the table) the speedup factors

are remarkably similar regardless of host count.

Further, the tipping point with respect to speedup and

slowdown (the point where the ratio falls below 1.0) is

between 8 and 16 nodes per host for all host counts.

Figure 1 shows this relationship graphically using a

log-log scale. The speedup drops for small node counts

from one host to two, but for the other data points, the

number of nodes per host (and not the number of

hosts) is the determining factor up to 16 hosts.

By way of comparison to previous work, in this best

case scenario 2,048 nodes can be simulated at nearly a

tenth of the real time speed (in a speed comparable to

Stargate simulation) using 16 hosts (lower righthand

corner of Table 14), which is almost 8 times better

than results reported for TOSSIM [11]. Also, nearly

160 nodes can be simulated in real time speed using

16 hosts, and improvement of almost a factor of 5

over previous TOSSIM results.

In Fig. 2 we plot the best performance of simulating

1, a total of 2, 4, ..., and 2048 nodes, respectively. The

units of the y-axis on the lefthand side of the graph are

for the ratio shown in Table 14. For each point, we

also plot the corresponding Bhost number^ at which

the best performance is achieved (the host count is

shown on the y-axis at the righthand side of the

graph). We call the two curves Bgold curves^ since

they show the number of hosts necessary to obtain the

fastest simulation of a specific number of nodes. Note

that the fall off in the best performance curve occurs

when the number of hosts reaches 16 (the maximum

number in the cluster) and the total node count is

increased beyond 64. Thus, in this best case example,

scalability is limited by host availability through

2,048 simulated nodes.

We also perform similar experiment with more

realistic two dimensional network topology, in which

nodes are still 50 m apart and fill a grid whose shape

is as close to a square as possible.

We show the data in Table 15. We also compare

the Bgold curves^ of both topologies in Fig. 3.

Although in 2-D case, the simulation performance is

slightly worse, the shape of its curve is strikingly

similar as that of 1-D topology.

To further illustrate the relationship between

performance and node density, we simulate an Ball-

to-all^ complete graph configuration in which each

simulated node must consider all of the other nodes

to be in radio range making communication over-

head maximal. Table 16 and Fig. 4 shows the

speedup factors and scalability curves, respectively.

In this worst case, communication overhead

increases as the square of the node density. For

small node-per-host and host counts, the speedup

factors are similar to the 1-D and 2-D grid cases, but

as both are increased the speedup factor is continu-

ally reduced.
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Figure 1. Scalability of 1-D topology. X-axis is number of hosts

and Y-axis is clock speed. Each curve represents the performance

with a fixed number of nodes per host. Dashed line shows real

time speed.
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fastest speed curve. The increasing curve gives the corresponding

host number at each point.
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6. Related Work

There is a large body of research on simulation

systems. In this section, we identify techniques that

are most similar to our work. In particular, we

describe and contrast frameworks for ensemble

simulation for devices relevant to a sensor network

and for tools for full system emulation.

6.1. Frameworks for Ensemble Sensor Network
Simulation

There have been a number of significant efforts to

simulate and emulate sensor network devices. Most

of this prior work has focused on the sensing devices

and in particular mote devices. These projects

include Simulavr [14], ATEMU [13], Mule [55]

Avrora [16], TOSSIM [11], SensorSim [12] and

SENS [15]. Although, we implemented mote simu-

lation as part of this project, we did so only to

investigate ensemble simulation system for SimGate.

We could have alternatively coupled current ap-

proaches with SimGate but decided instead to

implement our own mote simulator to expedite the

coupling process.

The ATEMU and Avrora mote simulation plat-

forms are most similar to our system. Both provide

full-system multi-simulation of mote devices. How-

ever, the multi-simulation enabled by these systems

is homogeneous—only simulation of mote devices

are coupled and no other sensor network devices,

e.g., intermediate nodes, are supported. Both systems

use a lock-step method. ATEMU synchronizes at

each cycle and Avrora loosens the synchronization

period to thousands mote cycles. Both ATEMU and

Avrora can simulate motes in real time. Since Avrora

is written in Java, its performance is highly depen-

dent on JVM implementation. In our work, we use a

complete different synchronization technique that is

able to scale to the distributed environment, such that

an unbounded computing resource can be used to

improve the ensemble simulation performance. Our

multi-simulation framework is also able to easily

integrate heterogeneous sensor devices under a

unified scheme.

There are also systems that employ heterogeneous,

ensemble simulation. In particular, our design vision

is similar to the work of [56]. The work in [56] is a
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Figure 3. Best performance comparison of 1-D and 2-D

topology. X-axis is total number of nodes simulated. The Y-axis

is normalized performance.

Nodes per host

Hosts number

1 2 4 8 16

1 9.14 2.52 1.83 1.66 1.64

2 6.65 2.12 1.58 1.38 1.18

4 2.09 1.49 1.27 1.12 1.10

8 1.25 1.07 1.01 0.96 0.92

16 0.82 0.63 0.62 0.59 0.57

32 0.32 0.38 0.31 0.30 0.30

64 0.16 0.17 0.16 0.15 0.15

128 0.10 0.08 0.07 0.07 0.07

Each row has fixed number of nodes per host and each column has fixed number of hosts. All value is normalized to real time clock speed.

Table 15. Simulated clock speed for 2-D topology.
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comprehensive framework that supports the simula-

tion, emulation, and deployment of heterogeneous

sensor network systems and applications. This

framework uses TOSSIM [11] to emulate motes

and EmStar [57] to emulate Bmicroservers^ (a

general term for platforms like Stargate). The authors

employ a wrapper library to glue the two simulation

systems together. All applications must be re-

compiled and linked to the EmStar library if they

are to be emulated by the system.

Our goal is to enable the study, verification,

debugging, and analysis of sensor network applica-

tions using a simulation platform that does not

require any modification to the binaries of the

applications or operating system on which they run.

This enables increased flexibility for researchers and

ensures that the simulation execution environment is

the same as that on the real devices. Full-system

simulation also enables us to easily obtain important

application characteristics (e.g. accurate cycle esti-

mation and interrupt properties) that is more difficult

to collect in a purely emulative environment. Pure

emulation systems do have a speed advantage

however. For example, TOSSIM [11] can emulate a

mote 50 times faster that actual mote execution using

a 1.8 GHz Pentium IV machine. EmStar can execute

re-compiled, microserver code at native speed. In

SimGate, we enable users to toggle functional and

cycle-accurate simulation to reduce the overhead of

the latter. Moreover, we are currently investigating

other optimization techniques to improve simulation

speed while maintaining cycle accuracy, like dy-

namic binary translation [58, 59].

6.2. Full System Simulation

From the perspective of full system simulation and

emulation, there are number of software systems that

support a wide range of devices [20, 23–25, 59–65].

One such, very popular, system is SimOS [23].

SimOS is a full system simulator containing simula-

tion models for most common hardware components,

e.g., processor, memory, disk, network interfaces,

etc. SimOS features a range of advanced processor

models that trade-off accuracy for simulation speed.

The fastest model applies dynamic binary translation

[58, 59] for maximal simulation speed. The finest-

grain model simulates the advanced pipeline struc-

Nodes per host

Hosts number

1 2 4 8 16

1 9.28 2.36 1.66 1.60 1.36

2 6.68 1.41 1.07 0.81 0.66

4 2.04 0.94 0.75 0.62 0.42

8 1.22 0.65 0.54 0.43 0.29

16 0.62 0.44 0.32 0.23 0.14

32 0.29 0.20 0.14 0.08 0.04

64 0.12 0.08 0.04 0.02 0.01

128 0.05 0.02 0.01 0.002 0.0008

Each row has fixed number of nodes per host and each column has fixed number of hosts. All value is normalized to real time clock speed.

Table 16. Simulated clock speed for Ball-to-all^ complete graph.
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ture to provide accurate cycle-level behavior. SimOS

is able to simulate the MIPS R4000 processor on a

machine with the same architecture, with a slow-

down of about 10� for binary translation and

5,000� for detailed pipeline simulation on a SGI 4-

processor (150 MHz) machine.

Skyeye [62] is a similar project that simulates a

number of ARM-based processors and development

boards. Skyeye also emulates a number of periph-

erals, including LCD and the Ethernet interface.

Skyeye is based on the GDB ARM emulator which

naturally enables the use of gdb as a debugging

interface—in much the same way that we do.

Although some of the techniques employed in these

projects are complementary and useful to our

endeavor, these systems are not intended or used

for sensor network research. The focus of our work is

on a toolset for full-system emulation combined with

cycle-accurate simulation of heterogeneous sensor

network devices.

7. Conclusion

In an effort to make sensor network research more

widely accessible to ease sensor software develop-

ment and evolution, we have developed a system for

scalable and accurate full-system simulation of a

sensor network that contains both intermediate

sensor nodes and base level sensor nodes. A

significant part of our system, called SimGate,

implements the complete Intel Stargate device and

executes the Linux operating system XScale appli-

cations transparently, without modification. Our

system is also capable of simulating ensemble of

Stargates and motes using distributed computing

resources, such that system performance scales to

the growth of network size.

We investigate the accuracy and efficiency of

SimGate in isolation as well as in concert with mote

simulation. Our results indicate that SimGate is

functionally correct and enables cycle accuracy (if

desired) within 9% on average for the benchmarks

that we evaluated. When we co-simulate SimGate

with SimMotes (our Mote simulator) our system

introduces accuracy error of less than 4% in all

cases. On average, our system is 20� slower than a

real device when using functional emulation and

58� slower when using cycle-accurate pipeline

simulation. We believe that these results indicate

that SimGate can be used as an effective tool for

accurately simulating Stargate intermediate nodes in

heterogeneous sensor network configurations.

We also study the scalability of our system in a

simplified situation. The result shows that our multi-

simulation framework is able to simulate as many as

2,048 motes at a 10� slowdown on a 16-node cluster,

which is much better than prior results [11, 16].

As part of future work, we plan to investigate

techniques for accurate radio and battery modeling,

optimization of simulation speed, general simulation

partition problem and simulation of other devices

and components.
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