
J Sign Process Syst (2009) 57:89–105
DOI 10.1007/s11265-008-0175-9

Instruction-Level Fault Tolerance Configurability

Demid Borodin · B. H. H. (Ben) Juurlink ·
Said Hamdioui · Stamatis Vassiliadis

Received: 12 October 2007 / Revised: 4 January 2008 / Accepted: 5 March 2008 / Published online: 12 April 2008
© The Author(s) 2008

Abstract Due to modern technology trends such as
decreasing feature sizes and lower voltage levels, fault
tolerance (FT) is becoming increasingly important in
computing systems. Several schemes have been pro-
posed to enable a user to configure the FT at the
application level, thereby enabling the user to trade
stronger FT for performance or vice versa. In this
paper, we propose supporting instruction-level rather
than application-level configurability of FT, since dif-
ferent parts of some applications (e.g., multimedia) can
have different reliability requirements. Weak or no FT
will be applied to less critical parts, resulting in time
and/or resource gains. These gains can be used to apply
stronger FT techniques to the more critical parts; hence
increasing the overall reliability. The paper shows how
some existing FT techniques can be adapted to support
instruction-level FT configurability, how a programmer
can specify the desired FT level of the instructions,
and how the compiler can manage it automatically.
A comparison between the existing FT scheme EDDI

D. Borodin (B) · B. H. H. (Ben) Juurlink ·
S. Hamdioui · S. Vassiliadis
Computer Engineering Laboratory, Faculty of Electrical
Engineering, Mathematics, and Computer Science,
Delft University of Technology,
Mekelweg 4, 2628 CD Delft, The Netherlands
e-mail: demid@ce.et.tudelft.nl

B. H. H. (Ben) Juurlink
e-mail: benj@ce.et.tudelft.nl

S. Hamdioui
e-mail: said@ce.et.tudelft.nl

S. Vassiliadis
e-mail: stamatis@ce.et.tudelft.nl

(which duplicates all instructions) and the proposed
approach is performed both at the kernel and at full
application levels. The simulation results show that
both the performance and the energy consumption are
significantly improved (up to 50% at the kernel and up
to 16% at full application level), while the fault cover-
age depends on the application. For the full application
(JPEG encoder), our approach is only applied to one
kernel in order to avoid increasing the programming
effort significantly.

Keywords Fault tolerance · Reliability ·
Performance · Energy consumption ·
Instruction-level configurability

1 Introduction

The importance of fault tolerance (FT) of computing
systems is increasing instantly nowadays [1]. This is
a consequence of the technology trends which try to
follow Moore’s law. Smaller feature size, greater chip
density, and minimal power consumption lead to in-
creasing device vulnerability to external disturbances
such as radiation, internal problems such as crosstalk,
and other reliability problems, which result in an
increasing number of faults, especially transients, in
computing systems.

After the switch from tubes to more reliable tran-
sistors and until recently, strong FT used to be a re-
quirement only of special-purpose high-end computing
systems. The technology reliability was considered suf-
ficient, and only a few FT techniques, such as error cor-
recting codes (ECC) [2] in memory, were usually used.
However, according to [1, 3], the technology trends

90 D. Borodin et al.

will pose more and more reliability issues in future.
This means, in turn, that FT features are required even
in PCs.

Many fault tolerant schemes exist. There is always a
trade-off between FT and cost, either in performance
or resources. System hardware resources are limited,
and the more of them are dedicated to FT, the more
performance suffers. Furthermore, the redundancy in-
troduced to provide FT dissipates additional energy.
It is therefore desirable to have a configurable system
which is able to use its resources to improve either
FT or performance. Some proposed FT schemes may
enable system configuration before an application is
run, which allows to choose between higher perfor-
mance or stronger FT depending on the application
requirements.

Saxena and McCluskey [4] notice that multithreaded
FT approaches can target both high-performance and
high-reliability goals, if they allow configuration to ei-
ther high-throughput or fault tolerant modes, as is the
case for slipstream processors [5, 6]. Breuer, Gupta, and
Mak [7] propose an approach called Error Tolerance,
which increases the fabrication yield. This is achieved
by accepting fabricated dies which are not completely
error-free, but deliver acceptable results. The tolerance
of multimedia applications to certain errors is discussed
in this context. Chung and Ortega [8] develop a design
and test scheme for the motion estimation process. This
reveals that the effective yield can be improved if some
faulty chips are accepted. Reis et al. [9] present the
software fault detection scheme software implemented
fault tolerance (SWIFT) which duplicates instructions,
compares their results at strategic places, and checks
the control flow. The authors mention that SWIFT can
allow a programmer to protect different code segments
to varying degrees, like our scheme does. Oh and
McCluskey [10] introduce the technique called selective
procedure call duplication (SPCD), which minimizes
the energy consumption and performance overhead
of protective redundancy. For every procedure, SPCD
either duplicates all its statements in the high-level
language source code, or duplicates the call to the
whole procedure, comparing the results. The decision
is made based on the error latency constraints imposed.
Procedure-level duplication is a coarse-grain version
of fine-grain statement-level duplication. It reduces
the energy and performance overhead by decreasing
the number of checks executed. Experimental results
show that SPCD provides the average energy savings
of 26.2% compared to EDDI [11] (a software FT
scheme which duplicates all the assembly instructions).
However, SPCD does not guarantee protection against

control-flow errors within a procedure whose call is
duplicated. Lu [12] presents the Structural Integrity
Checking technique using a watchdog processor [13]
to verify the correctness of an application control flow.
“Labels” are inserted into the application at the places
where a check should be performed. The higher the
density of the “labels”, the more checking is done.
Thus, a programmer can increase the density of the
“labels” at the critical parts of an application, increasing
the amount of checking applied to them.

We propose to leverage the natural error tolerance
of certain applications to improve their overall relia-
bility and/or improve their performance and resource
consumption. This goal can be achieved by a system
which may be configured to target either FT or perfor-
mance at the instruction, rather than application, level.
A developer should be able to configure the strength
of FT techniques applied to particular instructions or
blocks of instructions in the application. This is useful
for applications in which more and less critical parts
(instructions) can be distinguished. For example, as
noticed in [7, 8], for multimedia applications, most
of the computations do not strictly require absolute
correctness. Many errors in these computations would
not be noticeable for a human, while others can cause
a slight, tolerable inconvenience. The application parts
performing these computations can have lower or no
protection with a little risk. This minimizes protec-
tive redundancy which degrades performance and/or
increases the system cost. However, other parts of the
same applications can be very critical. For example, if
the control of a multimedia application is damaged, the
whole application is likely to crash. As another exam-
ple, a fault in the data assignment to the quantization
scale can affect the quality of the video significantly.
These parts require a strong FT. Moreover, the time
and/or resources saved by reducing redundancy for
non-critical parts can be used to enhance the FT of
the critical parts even further. In this case, the overall
reliability of the application increases, at the expense of
reduced reliability of non-critical parts. By reducing the
protection of non-critical and increasing it for critical
application parts, a developer can play with the trade-
off between resources and reliability, fine-tuning it for
the particular purposes.

We call the strength of FT features applied to an
instruction the degree of FT. The more efficient FT
techniques are applied, the higher the degree of FT is.
The minimum degree of FT corresponds to the absence
of any FT techniques. Duplication and comparison of
the results has a lower degree of FT than triple modular
redundancy (TMR) [14, 15]. Normally, a higher degree

Instruction-level fault tolerance configurability 91

of FT corresponds to a greater amount of redundancy,
and hence, is more expensive in terms of resources
and/or time.

The proposed technique is referred to as Instruction-
Level Configurability of Fault Tolerance (ILCOFT). If
a system supports several degrees of FT, an application
developer is able to specify the desired degree of FT for
each instruction or group of instructions. This can be
done either in high-level language or in assembly code.
Partially, it could also be performed automatically by
the compiler. The system adapts one of the existing FT
schemes to satisfy the needs of particular instructions,
for example, by duplicating or triplicating them in soft-
ware or hardware, and possibly comparing the results.

This paper is organized as follows. Section 2 presents
ILCOFT. Section 3 demonstrates and analyzes experi-
mental results at the kernel level, and Section 4—at the
application level. Finally, Section 5 draws conclusions
and discusses future work.

2 ILCOFT

This section presents instruction-level configurability of
fault tolerance (ILCOFT). ILCOFT allows to apply
different degrees of FT to different application parts,
depending on how critical they are. ILCOFT is a gen-
eral technique that can be applied to many existing FT
schemes, as will be shown in Section 2.3. A particular
ILCOFT implementation depends on the system ar-
chitecture (the FT scheme used), and the application
constraints. ILCOFT can be applied both to hardware
and software FT schemes. A certain hardware support
is required in the case of hardware FT schemes. More-
over, ILCOFT always requires a certain software-level
activity to assign degrees of FT to application parts, as
will be discussed in Section 2.2. The actions taken by the
system in the case of a fault detection depend on the FT
scheme adapted. For example, FT schemes providing
only error detection will terminate the faulty execution
unit, possibly perform a graceful degradation, etc. FT
schemes supporting recovery may recover and continue
execution. The FT characteristics of ILCOFT-enabled
FT schemes depend on the FT techniques which are
adapted and on the developer’s instructions ranking in
terms of their criticality.

Section 2.1 gives the reasoning behind ILCOFT.
Section 2.2 discusses the possible ways for an appli-
cation developer to specify the required degree of FT
for particular instructions or code blocks. Section 2.3
shows how several existing FT schemes can be adapted
to support ILCOFT.

2.1 Motivation

Many multimedia applications, such as image, video
and audio coders/decoders, use lossy algorithms. After
decoding, a stream produced is not perfect. It incor-
porates errors which the human eye cannot notice or
can easily tolerate. For example, if one of more than
307 thousand (640 × 480) pixels in an image or a video
frame has a wrong color, it is likely to be ignored by
a human. If an error occurs in calculations associated
with motion compensation in video decoding, it can
result in a wrong (rather small) block for one or a
few frames. The number of frames that can be affected
depends on the place where the error appeared and
on how far the following key frame is. Because usually
there are 20 to 30 frames per second, the chance that a
human will notice this error is quite low. Moreover, if it
is noticed, it will probably result in less inconvenience
than the compression-related imperfections. Errors can
be allowed in this kind of computations. However, if
an error occurs in the control part of a multimedia
application, it is very likely that the whole application
will crash. Errors in some other parts can lead to a
significant output corruption. Therefore, errors are not
allowed to occur in the latter cases.

For yet more insight into the classification of crit-
ical and non-critical instructions, consider the image
addition kernel presented in Fig. 1. If an error occurs
in any of the expressions that evaluate the pixel value
sum, it will result in a wrong pixel in the output image;
this is tolerable. However, if a problem appears in the
statements controlling the loops, there is a very small
chance that it will not crash the application or seriously
damage the results. A normal termination with correct
results can happen in this case if one or both loops
performed too many iterations, but the memory which
they damaged was not used (read) later. This scenario,
however, has a very low probability. It is likely that
the application will crash (due to a jump to an invalid
address, damage of memory, etc.), or, if the loop is
exited too early, the part of the image which has not
been processed yet will be wrong. The if statement

for(i=0; i<N; i++)
for(j=0; j<M; j++)
{

sum = ImageX[i][j] + ImageY[i][j] ;
if(sum > 255) /* saturation */

sum = 255;
ImageX[i][j] = sum;

}

Figure 1 Image addition.

92 D. Borodin et al.

which controls saturation is less critical than the loops,
because if the condition is evaluated incorrectly, only
one pixel suffers. If the branch target address is cor-
rupted, however, the application will most probably
crash. Thus, this if statement can also be considered for
a higher degree of FT.

In ILCOFT, the programmer specifies the required
FT degree of every instruction or group of instructions.
In other words, the programmer indicates which parts
of an application are critical and which are not. In
Section 2.2 we describe how this can be done by the
programmer, and under which circumstances it can be
performed automatically by the compiler. For example,
for the image addition kernel presented in Fig. 1, the
programmer should specify the maximum FT degree
for the instructions controlling the loops and the branch
target address of the if statement. For the other instruc-
tions, which calculate the pixel values, a lower FT de-
gree is acceptable, and even desirable, when aiming at
performance and resource consumption minimization.

By reducing the degree of FT of non-critical instruc-
tions, ILCOFT reduces the need in time or resource re-
dundancy implementing FT. Space redundancy, which
increases the amount of required hardware and en-
ergy resources, can achieve FT without a performance
loss, at the expense of increased resources cost. The
amount of hardware is often limited, however, and to
achieve FT under this constraint, time redundancy is
used, which degrades performance, and keeps energy
consumption high. When both resources and time are
limited, which is very common, ILCOFT increases per-
formance and reduces energy consumption at the ex-
pense of decreased reliability of non-critical application
parts. However, the critical parts are still as reliable as
with a full FT scheme, so the overall application relia-
bility is not affected. Optionally, the saved time can be
used to further improve the FT of the critical applica-
tion parts by applying more time-redundant techniques
to them. In this case the overall application reliability
increases, because its critical parts are protected better.

2.2 Specification of the Required FT Degree

Two possible ways how a programmer can specify the
desired degree of FT applied to an instruction are to set
it in assembly code or in high-level language. Alterna-
tively the compiler can perform this automatically.

We do not consider it feasible for large applications
that a programmer marks the required degree of FT
for every assembly instruction or high-level language
statement manually. It makes sense first to choose
the appropriate policy which determines the default
degree of FT. The default degree of FT is applied

automatically to all unmarked instructions. It can be set
to, for example, the minimum, maximum, or average
possible degree of FT, as will be explained below.

The approach which sets the default degree of FT to
the minimum requires a programmer to mark instruc-
tions/statements that should receive a higher degree of
FT. This method does not look very practical, because
there is a high chance that many instructions are critical
for an application, e.g. an illegal branch in any place can
crash the whole application.

The opposite approach, when the default degree of
FT is the maximum, looks more useful for many appli-
cations. In this case, a programmer marks the instruc-
tions or statements that should have the lower degree
of FT, and all the others get a higher degree. This is
especially suitable for multimedia applications, many
of which spend most of the runtime in small kernels.
Decreasing the degree of FT of a few computational
instructions in a heavily used kernel can provide a sig-
nificant application-level performance gain (we demon-
strate this in Section 4).

Finally, the default degree of FT can be assigned
some intermediate value. Then, a programmer has
to specify instructions/statements requiring higher and
lower degree of FT.

Next we discuss how an application developer can
specify the degree of FT in the source code, and how it
can be done automatically by the compiler.

2.2.1 In Assembly Code

If a developer specifies the required degree of FT in
assembly code, the way how it can be done depends
on the FT scheme which is used, if it is a hardware or
software technique.

If FT is implemented in hardware, the way the pro-
grammer marks instructions might depend on how the
degree of FT is passed to the hardware (see Section
2.3). With the degree of FT information embedded in
instruction encoding, the programmer marks instruc-
tions using some flags, and the assembler encodes the
necessary information into every instruction. With spe-
cial FT mode configuration instructions, a programmer
places these instructions in appropriate places. With
separate versions of every instruction, the programmer
uses an appropriate version. Alternatively, the assem-
bler can be designed to support hardware-independent
marking, which is translated automatically into the
supported FT degree communication scheme. Then a
programmer always marks instructions in the same way.

In pure software, the EDDI technique [11] dis-
cussed in Section 2.3 can be used. Adapting EDDI, a

Instruction-level fault tolerance configurability 93

programmer can duplicate the critical instructions man-
ually, taking care about the register allocation, register
spilling, possibly memory duplication, etc. However,
an automatic assisting tool would be very useful. This
tool can be based on the compiler postprocessor used
in [11], which automatically includes EDDI into an
application. A compiler reserves registers for duplicate
instructions, and the tool duplicates everything. In the
resulting assembly file, the programmer removes the
undesired redundancy manually.

2.2.2 In High-Level Language

Figure 2 demonstrates a possible way for a program-
mer to specify the desired degree of FT for particu-
lar statements or blocks of statements in a high-level
language. This is done in the form of a #pragma state-
ment which determines the degree of FT that should
be applied to the following statements, until the next
#pragma statement changes it. The larger the number
corresponding to FT_DEGREE is, the higher degree of
FT should be. Each statement is compiled into instruc-
tion(s) whose degree of FT is equal to that of the corre-
sponding statement. In the case of control statements,
a compiler must be able to find their dependencies and
to apply the appropriate degree of FT to them. To
be on the safe side, by appropriate degree of FT here
we mean the highest between the previously assigned
degree and the one required for the considered control
statements.

In Fig. 2, the instructions which are generated for the
for statement, should have the degree of FT equal to
3. The instructions inside the loop (and after the loop
until the next #pragma) should have the degree of FT
1. Obviously, the loop control depends on the values of
the variables i and n, which have been assigned before.
Hence, the compiler should walk backwards to find all
the instructions on which the values of these variables
depend, and assign the degree of FT 3 to them.

#pragma FT_DEGREE 3

for(; i < n; i++)
{
#pragma FT_DEGREE 1

c[i] = a[i] + b[i];
}

Figure 2 Possible FT degree specification in a high-level
language.

2.2.3 Automatically by the Compiler

If a system supports only two degrees of FT, for exam-
ple, no FT (no FT techniques are applied) and fault tol-
erant (some techniques are applied), in some cases the
compiler can determine the instructions that need to be
fault tolerant automatically. This saves a programmer
from manual work. The automatic compiler scheme can
be based, for example, on the observation that in most
cases, the instructions on which an application’s control
flow depends, require a higher degree of FT. All control
flow instructions, such as branches, jumps, and function
calls, are assigned a higher degree of FT. Furthermore,
all instructions on which these control flow instructions
depend should also receive the higher FT degree. The
efficacy of this scheme depends on the compiler’s ability
to perform exact dependence analysis. In the worst
case, all instructions on which a control flow instruction
could depend need to be given the higher FT degree.

2.3 FT Schemes Adaptable to ILCOFT

Fault tolerant systems adapted to support ILCOFT
need to provide several FT techniques of varying
strengths, corresponding to different degrees of FT. For
example, a non-redundant instruction execution has FT
degree 0 (no FT), duplication with comparison of the
results can be assigned FT degree 1, and a triple mod-
ular redundancy (TMR) is associated with FT degree
2. Duplication and triplication assumes either hard-
ware or time redundancy. Hardware redundancy can
be represented by multiple execution units where the
copies are executed simultaneously. Time redundancy
is provided by a sequential (or partially sequential)
execution of multiple copies.

Because the main goal of ILCOFT is performance
and energy consumption optimization, we focus on FT
techniques that aim similar objectives. ILCOFT does
not target systems for which only a high level of FT
is important, and a large amount of redundancy is
not an issue. There exist several techniques for high-
performance processors that try to minimize the per-
formance overhead created by protective redundancy.
Below we discuss how some of them can be adapted to
support ILCOFT.

Error detection by duplicated instructions (EDDI)
[11] is a pure software technique. It duplicates all in-
structions in the program assembly code and inserts
checks to determine if the original instruction and its
duplicate produce the same result. More precisely, the
registers are partitioned into two groups, one for the
original instructions and one, called the shadow regis-
ters, for the duplicate instructions. After the execution

94 D. Borodin et al.

of a duplicate instruction, the contents of the shadow
register(s) it affects should be identical to the contents
of the destination register(s) of the original instruction.
A mismatch signals an error. Instead of comparing
the registers after the execution of every duplicate
instruction, EDDI allows faults to propagate until the
point where the value is saved to memory, and detects
them just before saving. In other words, EDDI com-
pares the registers only before their values are stored
in memory. This minimizes the number of checking
instructions needed, and thus, reduces the performance
overhead, while data integrity is still guaranteed. EDDI
also duplicates the data memory. This means that the
data memory has a shadow copy which is referenced
by the duplicate load/store instructions. Thus, after any
duplicate store instruction, the contents of the shadow
data memory must be the same as the original data
memory.

From the point of view of performance overhead
minimization, the main idea behind EDDI is that
most applications cannot profit from wide-issue super-
scalar processors because they do not exhibit sufficient
instruction-level parallelism (ILP) [16]. Because the
original instructions and the duplicate instructions are
independent, applying EDDI will increase ILP and,
therefore, detect errors with a minimal or reasonable
performance overhead in superscalar processors.

The original EDDI scheme supports only one degree
of FT: duplication and comparison. It is straightfor-
ward, however, to extend EDDI to allow more re-
dundancy, implementing, for example, triplication with
voting. A lower degree of FT (no redundancy) can
be easily achieved by avoiding duplication of certain
instructions. From now on we assume that the user can
specify the degree of replication.

In ILCOFT-enabled EDDI, only critical instructions
are replicated. As discussed in Section 2.2, the program-
mer specifies the required FT degree of all program
statements or assembly instructions. Alternatively, it is
done automatically by the compiler. During compila-
tion, each instruction is replicated according to its FT
degree and then the results are compared or voted.
Memory replication is not used in ILCOFT-enabled
EDDI because all instructions have to be replicated
to maintain a consistent memory copy. Instead, mem-
ory protection can be implemented by using ECC or
other popular methods, preferably in hardware (this is
outside the scope of this paper). In Sections 3 and 4,
the performance and energy dissipation of ILCOFT-
enabled EDDI is compared to those of EDDI. It will be
shown that minimizing the degree of FT for non-critical
instructions provides a substantial gain. Besides that,
the fault coverage of these schemes will be evaluated.

Franklin [17] proposed to duplicate instructions in
superscalar processors at run time and compare the
results to detect errors. The two places, where instruc-
tions can be duplicated, were presented and analyzed:
(1) in the dynamic scheduler after an instruction is
decoded, and (2) in the functional unit where the in-
struction is executed. To adapt this scheme to support
ILCOFT, the required FT degree of executed instruc-
tions has to be passed to the hardware. Based on this
information, the hardware performs the appropriate FT
action, i.e., duplicates the instructions if necessary. This
can be also applied to the scheme proposed in [18].

The DIVA approach [19–21] uses a simple and ro-
bust processor, called DIVA checker, to verify the
operation of the high-performance speculative core.
This approach can also be adapted to support ILCOFT
by selecting the instructions whose results have to be
verified by the DIVA checker.

ILCOFT is also applicable to FT techniques based
on simultaneous multithreading [22], such as those
presented in [4, 23–26], slipstream processors [5], and
others.

It should be noted that for FT techniques imple-
mented in hardware, there must be a way to set the
required FT mode for every instruction. For example,
several bits in the instruction encoding can specify the
required FT degree. The number of bits allocated for
this purpose depends on the number of available FT
modes supported by hardware. Alternatively, special
instructions can be introduced which configure hard-
ware to work in the desired FT degree mode. Finally,
separate versions of each instruction can be created
for every supported FT degree. The last solution does
not look promising, however, because it implies a large
overhead.

3 Kernel-Level Validation

This section presents experimental results with several
kernels. The advantages and disadvantages provided by
applying ILCOFT to an existing FT scheme are eval-
uated. Due to the experimental setup limitations, we
work with only one FT scheme, i.e. the software error
detection technique EDDI [11]. We adapt EDDI to
support ILCOFT. EDDI and ILCOFT-enabled EDDI
are presented in Section 2.3.

The FT features of EDDI and ILCOFT-enabled
EDDI are discussed first. ILCOFT-enabled EDDI
limits the sphere of replication of EDDI, protecting
only the critical instructions, and avoiding memory
duplication. Both EDDI and ILCOFT-enabled EDDI
reliably protect only against transient hardware faults

Instruction-level fault tolerance configurability 95

that do not last longer than one instruction execution.
To protect against faults taking more time, including
permanent faults, there should be a way to ensure that
an instruction and its duplicate execute on different
hardware units. For example, they can execute on dif-
ferent CPUs in a multiprocessor system, or on different
functional units of a superscalar processor. In the latter
case, long-lasting faults are covered only within the
functional units. Alternatively, to avoid hardware repli-
cation, techniques changing the form of the operands
of a duplicate instruction, such as alternating logic [27]
and recomputing with shifted operands [28], can be
used. However, these enhancements are expected to
have a significant impact on performance, and are out-
side the scope of this paper.

The following kernels are investigated: image addi-
tion (IA), discussed in Section 2.1 (Fig. 1), matrix mul-
tiplication (MM), sum of absolute differences (SAD),
and a Fibonacci numbers generator (Fib). Section 3.1
presents and analyzes the performance evaluation re-
sults, Section 3.2—the energy results, and Section 3.3—
the fault coverage evaluation.

3.1 Performance Evaluation

To evaluate the performance gain delivered by apply-
ing ILCOFT to EDDI, performance results of four
kernels in non-redundant (i.e. original), EDDI and
ILCOFT-enabled EDDI forms are compared. The Sim-
pleScalar simulator tool set [29, 30] is utilized for per-
formance simulation. The default SimpleScalar PISA
architecture is used.

For each kernel, the C source code is compiled to
SimpleScalar assembly code. The compiler-optimized
version of the application (i.e. compiled by GCC with
-O2 flag) plays the role of the “original”, non-
redundant application, with no FT.

The EDDI version of the kernel is derived from the
original version by hand, according to the specifica-
tion presented in [11]. All the instructions and mem-
ory are duplicated, and the checking instructions are
integrated. Checking instructions only appear before
a value is stored or used to determine a conditional
branch outcome. Faults are free to propagate within in-
termediate results. This is proposed in [11] to minimize
the performance overhead.

The ILCOFT-enabled EDDI version is obtained
from the original application by duplicating only the
critical instructions in the kernel and comparing their
results, without memory duplication. The original to
ILCOFT-enabled EDDI transformation is also per-
formed by hand. The control instructions are con-
sidered to be critical. For the IA kernel, these are the

instructions to which the loop control statements in
Fig. 2 are compiled, and the instructions on which the
control variables depend.

Figure 3 depicts the slowdown of EDDI and
ILCOFT-enabled EDDI over the non-redundant
scheme for four different processor issue widths.
Figure 4 demonstrates the ratio of the number of
committed instructions of both schemes to that of the
non-redundant scheme. Without ILP, speculation etc.,
Fig. 3 is expected to be similar to Fig. 4. The perfor-
mance results of Fig. 3a (issue width 1) are quite
consistent with Fig. 4, but for larger issue widths,
the processor exploits the available parallelism better
(the original instruction and its duplicate are inde-
pendent). Because of this, the slowdown of EDDI
and ILCOFT-enabled EDDI decreases when the issue
width increases, unless there are other limiting factors.
MM, for example, has a structural hazard: there is
only one multiplier, so the duplicate of a multiplication
instruction cannot be executed in parallel with the base
instruction.

Figure 3 shows that despite duplication of all instruc-
tions and memory in EDDI, especially for larger issue
widths, its slowdown over the original application is in
most cases smaller than the intuitively anticipated two
times (actually, more than two because of the checking
instructions, duplicated memory, and register spilling).
This happens due to the increased ILP introduced by
the duplicates which are independent on the original
instructions. This leads to a more efficient resource us-
age and fewer pipeline stalls. ILCOFT-enabled EDDI
also profits from this feature. Figure 3 also shows that
ILCOFT-enabled EDDI is considerably (up to 50%)
faster than EDDI. Several factors contribute to this:

• The number of instructions in ILCOFT-enabled
EDDI is smaller than in EDDI (by about 40% on
average, see Fig. 4).

• EDDI duplicates memory, while ILCOFT-enabled
EDDI does not.

• EDDI needs more registers than ILCOFT-enabled
EDDI, since ILCOFT-enabled EDDI duplicates
fewer instructions and, hence, reduces register pres-
sure. Higher register usage leads to more register
spilling.

As these factors have different weights for different
kernels, the speedup of ILCOFT-enabled EDDI over
EDDI is not constant. For example, for the IA kernel,
the simulation results show that memory duplication
contributes 1.3% to the speedup of ILCOFT-enabled
EDDI over EDDI. The contribution of additional reg-
ister spilling (two more registers are saved in stack for

96 D. Borodin et al.

a Issue width 1 b Issue width 2

c Issue width 4 d Issue width 8
Figure 3 Slowdown of EDDI and ILCOFT-enabled EDDI versions over the non-redundant version, for varying issue widths.

EDDI) is negligible (less than 1%). The remaining con-
tribution should be attributed to the increased number
of instructions.

3.2 Energy and Power Consumption

To evaluate the energy saving of ILCOFT-enabled
EDDI, we use the power analysis framework Wattch
[31]. Wattch is an architectural-level micro processor
power dissipation analyzer. It is a high-performance al-
ternative to lower-level tools which are more accurate,
but can only provide power estimates when the lay-
out of a design is available. According to [31], Wattch
provides a 1,000 times speedup with the accuracy

Figure 4 Committed instructions.

within 10% of the layout-level tools. We use the default
Wattch configuration. The results for the clock gating
style which assumes 10% of the maximum power dissi-
pation for unused units [31] are considered.

Energy consumption increase of EDDI and
ILCOFT-enabled EDDI over the non-redundant (orig-
inal) scheme is presented in Fig. 5. Four kernels, the
same as in Section 3.1, are used. As expected, the
energy graphs follow closely the performance graphs
at Fig. 3. This is because the same factors (number of
instructions and used resources) affect energy and
performance. Figure 5 demonstrates that ILCOFT is
able to significantly (up to 50%) reduce the energy
consumption overhead.

The average power consumption per cycle of the
different schemes has also been evaluated. The power
consumption does not vary significantly for the three
considered schemes, because the resource utilization is
similar for them. The maximum fluctuation observed is
10%. As can be expected, the fluctuation is minimal
with lower issue widths (no more than 3% for issue
width 1), and increases with higher issue widths. This
can be explained by approximately equal resource us-
age with lower issue widths. With higher issue widths,
the resource usage varies for different schemes, due
to the difference in the available ILP, and the power
consumption varies accordingly. In most cases EDDI
consumes more power per cycle than the other two

Instruction-level fault tolerance configurability 97

a Issue width 1 b Issue width 2

c Issue width 4 d Issue width 8
Figure 5 Energy consumption increase of EDDI and ILCOFT-enabled EDDI over non-redundant kernels, for varying issue widths.

schemes, because it generates more ILP, and, therefore,
keeps more resources busy.

3.3 Fault Coverage Evaluation

In this section we provide an evaluation of the fault
coverage of ILCOFT-enabled EDDI. The purpose is to
determine how ILCOFT affects the fault coverage of
EDDI.

We simulate hardware faults by extending the
SimpleScalar sim-outorder simulator with a fault in-
jection capability. At a specified frequency (every N
instructions) a fault is injected by corrupting an input
or output register of an instruction (overwriting its
content with a random value). Only integer arithmetic
instructions are affected by the fault injector. This is
because the tested kernels have only integer arithmetic,
memory and branch instructions, but the faults inside
memory access and branch instructions are not cov-
ered by EDDI (only their inputs are protected). Thus
ILCOFT-enabled EDDI is also not expected to cover
them. Fault injection into an instruction input register
simulates a memory, bus or register file fault. Fault
injection into an output register simulates a functional
unit fault also. Faults are injected only within the kernel
code, because the main function is not protected in our
experiments.

We remark that the fault appearance does not rep-
resent a realistic model. The aim here is to evaluate
the fault coverage of the investigated schemes under
different fault pressures (frequencies), and to ensure
that as many as possible of the fault propagation paths
within the kernels are examined. By making the fault
injection periodic rather than random, and by varying
the frequency for each of a large number of simulations,
we attempt to gain a better control over the process,
and to achieve the mentioned goals. Moreover, we sim-
ulate burst (multi-bit) faults rather than more probable
single-bit faults with the purpose to represent the worst
possible case.

Tables 1, 2, and 3 present the faults injection re-
sults for the three different schemes. The first col-
umn specifies the used kernels. The second column of
each table shows the number of simulations executed.
The chosen number of simulations differs for each
kernel, and depends on the number of committed in-
structions. The frequency of injected faults starts from
one fault per every 1,000 (in some cases 100) instruc-
tions, and every new simulation decreases the fault
frequency until it becomes roughly one fault per exe-
cution. In this way we make sure that all the situations
with frequent down to rare faults are evaluated, and
that random instructions within kernels are affected.
The third column shows how often faults have been

98 D. Borodin et al.

Table 1 Fault injection results for the non-redundant scheme for the following kernels: image addition (IA), matrix
multiplication (MM), Fibonacci numbers generation (Fib) and sum of absolute differences (SAD).

Kernel # sim. Detected Detected Undetected Application Escapes Max. # Max. # Max. output Av. output
(FT scheme) (simulator) % crashed % % (max. # injected undetected corruption corruption
% % faults) faults faults % %

IA 2768 n/a 0 100 0 0 6438 6438 99.66 1.074
MM 621 n/a 0 100 0 43 (9) 50 50 94.75 2.992
Fib 532 n/a 32.33 67.67 0 10.71 (4) 5 5 97.78 53.991
SAD 326 n/a 0 100 0 8.28 (10) 130 130 100 100

detected by the FT scheme. For example, for the IA,
86.66% simulations were aborted with an error message
by ILCOFT-enabled EDDI, and 100%—by EDDI. The
fourth column demonstrates how often errors were
detected by the simulator, for example, the application
was terminated with an illegal memory access reported.
The column “Undetected” contains the percentage of
simulations with undetected fault(s), which shows how
often the execution finished without reporting errors.
The column “Application crashed” demonstrates how
often an application crashed, i.e., did not produce any
output. The column “Escapes” shows how often es-
capes occurred, i.e. an application delivered a correct
result despite the presence of (undetected) fault(s). The
faults have not propagated to the output. In parenthe-
ses the maximum number of undetected faults in this
situation is given. The column “Max. # injected faults”
gives the maximum number of faults injected per exe-
cution, before the execution finished either normally or
abnormally (was interrupted reporting errors). There
are usually fewer injected faults in EDDI than in other
schemes, because EDDI detects and reports faults,
aborting the execution, earlier. The column “Max. #
undetected faults” shows the maximum number of un-
detected faults, which were injected but not detected;
the execution is then finished without reporting errors.
Most of the times these undetected faults result in
corrupted application output, except the cases counted
in the column “Escapes”. The columns “Max. output
corruption” and “Av. output corruption” present the

maximum and the average output corruption caused
by undetected faults. Only simulations with undetected
faults, which finished without reporting errors, are con-
sidered here. This demonstrates how many undetected
faults propagate to the output, and how much they
affect the output. An output corruption percentage
is defined as a ratio of the number of wrong output
elements generated by an execution to the total number
of output elements. The average output corruption is
calculated as a sum of all the corruption percentages
divided by the number of simulations, i.e. it is the arith-
metic average. The average output corruption is used to
emphasize that a very high maximum output corruption
does not necessarily mean that the output is usually
corrupted so much. It can be an exceptional case.

Obviously, ILCOFT affects kernels in very differ-
ent ways. The difference in the fault coverage can be
explained by the density of the duplicated instructions
in a kernel. The more instructions are duplicated, the
better fault coverage is, and the lower performance and
energy consumption gain is. Among the presented ker-
nels, the worst fault coverage (the greatest percentage
of executions finished with undetected faults) appears
in MM and SAD. This is because in these kernels rel-
atively many unprotected computational instructions
reside between the protected control instructions. De-
pending on the application, the significant performance
increase at the expense of the weak fault coverage
can be considered acceptable. For example, for SAD
used in motion estimation, a wrong motion vector leads

Table 2 Fault injection results for the ILCOFT-enabled EDDI scheme.

Kernel # sim. Detected Detected Undetected Application Escapes Max. # Max. # Max. output Av. output
(FT scheme) (simulator) % crashed % % (max. # injected undetected corruption corruption
% % faults) faults faults % %

IA 13526 86.66 0 13.34 0 0.07 (2) 22 11 0.13 0.012
MM 621 53.62 0 46.38 0 23.19 (5) 15 11 99 3.103
Fib 581 66.44 25.99 7.57 0 0 8 3 96.67 38.232
SAD 340 55.88 0 44.12 0 0.29 (1) 25 18 100 100

Instruction-level fault tolerance configurability 99

Table 3 Fault injection results for the EDDI scheme.

Kernel # sim. Detected Detected Undetected Application Escapes Max. # Max. # Max. output Av. output
(FT scheme) (simulator) % crashed % % (max. # injected undetected corruption corruption
% % faults) faults faults % %

IA 6025 100 0 0 0 0 2 0 0 0
MM 621 100 0 0 0 0 11 0 0 0
Fib 581 67.81 32.01 0.17 0 0 3 2 96.67 96.667
SAD 340 98.53 0 0.29 1.18 0.29 (1) 23 1 100 100

to a wrong block, which can usually be tolerated by
the user.

The exceptionally high percentage of escapes in
MM (with the original and ILCOFT-enabled EDDI
schemes) can be explained by the fact that most of the
results (output matrix elements) are truncated when
overflow occurs. Truncation masks faults by assigning
the maximum possible value to any (correct or wrong)
greater value. This can also be one of the reasons why
MM has a relatively small percentage of detected faults
with the ILCOFT-enabled EDDI scheme: the faults are
masked before they propagate to a checking instruc-
tion which can detect them. With a higher calculations
precision (more bits per value), the number of escapes
would drop. EDDI does not have any escapes, because
it detects all the faults in MM.

The most important fault coverage characteristic
from a user point of view is the final output corrup-
tion. The fact that a certain amount of corruption
can be allowed in some applications drives the idea
behind ILCOFT. Obviously, this is application-specific
and depends solely on the algorithm employed. The
IA kernel, computing every pixel value independently,
without a long chain of computations, shows a very
good result for ILCOFT-enabled EDDI: only a few
pixels (maximum 0.13% of the whole output image)
are corrupted. This can often be unnoticed by a user.
The maximum output corruption happened when a
fault was injected into the register which held the base
address of an array representing one input image line
(matrix row), and was later used to fetch all the image
data on this line. As a result, garbage was fetched from
a random memory location for every pixel of the rest
of the line, and the resulting image line was entirely
corrupted from the point where fault appeared. This
was quite visible on the output image. It could be solved
by performing checks of computed addresses before
every load and store, as will be discussed later. Then,
only single pixels would have been affected. In all other
kernels, the resulting values depend on a long chain
of computations, and even on each other, so the final
output corruption increases dramatically. For example,

in Fib, every subsequent value depends on the previous
one, and thus, all the values behind the first erroneous
one become wrong, independently on the FT scheme
used. This leads to the extremely high final output cor-
ruption even in EDDI (see Table 3). However, only one
of 581 simulations (0.17%) finished with undetected
errors (2 undetected faults) with EDDI, and 7.57%
of simulations—with ILCOFT-enabled EDDI, while
67.67% of unprotected executions finished with unde-
tected errors. The single error undetected by EDDI
obviously manifested among the first Fibonacci num-
bers, so all the following numbers were computed on
the base of this error, and thus, about 97% of the final
output was corrupted. The average output corruption
of about 97% is equal to the maximum, because this
is the only undetected error. SAD delivers only one
value as a result, which can be either correct or wrong,
and any unmasked fault in the computations leads to an
error. Consequently, all the undetected and unmasked
errors in protected and unprotected executions affect
100% of the output. However, the unprotected execu-
tion delivered wrong result in 100% of the simulations,
while EDDI-protected—only in 0.29% of the simula-
tions. The execution protected with ILCOFT-enabled
EDDI, as expected, fits in between, delivering wrong
output in 44.12% cases.

To investigate the behavior under a more realistic
fault appearance model, the same experiments have
been conducted with a random, rather than periodic,
fault injection. Faults into input or output registers
were injected at random instructions, with varying fault
pressure. The general impression from the results of
these experiments is the same as with the periodic fault
injection presented above. However, a few significant
differences have been observed, which are discussed
below.

For IA protected by ILCOFT-enabled EDDI, the
maximum output corruption increased to 21.3%. We
explain this by a larger number of faults affecting
registers holding array base addresses. For MM, the
maximum output corruption decreased to 30% for
the non-redundant scheme, and to 50% for ILCOFT-

100 D. Borodin et al.

enabled EDDI. With the EDDI scheme, the percentage
of detected faults decreased to 73.1%, and the percent-
age of escapes increased to 26.9%. We attribute these
differences to a larger number of faults injected before
truncation is performed (the effect of truncation is dis-
cussed above). For Fib, the average output corruption
decreased to 41.7% for EDDI. This is because fault(s)
propagated to the output in more than one simulation
(1.4% simulations finished with undetected faults), af-
fecting the output in different ways. For SAD protected
by EDDI, the detected percentage dropped to 86.7%.
However, most of these faults did not propagate to the
output (the percentage of escapes increased to 13%).

The experimental results demonstrate that the
fault coverage of ILCOFT-enabled EDDI can be
significantly improved at a relatively low cost. This can
be achieved by protecting the computed memory access
addresses. For example, as mentioned, it could solve
the corrupted output line problem in IA. The protec-
tion can be applied before every load and store instruc-
tion, by checking the value of the register which holds
the memory address. Of course, the redundant value
must be computed by a chain of duplicated instructions
(which can be done automatically by a compiler). This
brings back the trade-off between performance and
fault coverage.

The memory access address problem is not relevant
for EDDI, because the memory is duplicated there.
Thus, all the loads and stores reference different mem-
ory locations. However, this can be a point where the
fault coverage of ILCOFT-enabled EDDI is stronger
than that of EDDI itself: EDDI does not have any
memory address protection, so a fault in a store in-
struction can damage any memory location. ILCOFT-
enabled EDDI with memory access protection saves
from this.

To minimize the performance loss, only the store
addresses can be protected, assuming that a memory
corruption is worse than fetching a wrong value. But
in this case, the IA corrupted line problem discussed
above is not solved.

4 Application-Level Validation

In this section we discuss how ILCOFT can be applied
to an entire application while keeping the programm-
ing effort minimal. We estimate the advantages that it
brings and evaluate the price to be paid for that.

As discussed in Section 2.2, it is infeasible that the
application developer manually annotates all (block)
statements with the required FT degree. Instead, every-
thing can be automatically protected, and the program-

mer can focus only on some most promising application
parts to minimize resource consumption at the mini-
mum effort and reliability cost.

The running time of some applications (e.g., multi-
media) is dominated by a few kernels or loops. The
most time-consuming kernels often feature the natural
error tolerance on which the ILCOFT idea is based.
Moreover, the most time-consuming kernels are often
relatively small, hence it is feasible to manage their
protection manually. Thus these kernels favor ILCOFT
the most, from the points of view of effectiveness,
error tolerance, and minimal programming effort. A
significant benefit is expected if the programmer man-
ages manually protection of only (some of) these ker-
nels, the rest of the application could be protected
automatically.

We apply this strategy to the cjpeg application [32],
which compresses an image file to a JPEG file. We have
profiled this application and the results show that one
of the most time-consuming functions on the simulated
architecture is jpeg_fdct_islow, which implements the
inverse discrete cosine transform (IDCT). This function
takes from 20.7% to 23.1% of the total execution time,
depending on the issue width. However, this function
has a relatively small (comparing to the whole applica-
tion) number of static instructions, which makes it easy
to manage by hand. We apply ILCOFT-enabled EDDI
only to the IDCT kernel (manually), and assume that
the rest of the application is protected (automatically)
by full EDDI. Further we show how this relatively small
programming effort affects the whole application.

Section 4.1 analyzes the performance results,
Section 4.2—energy consumption results, and Section
4.3—fault coverage results of this experiment.

4.1 Performance Evaluation

We compare the performance of the three schemes
using the SimpleScalar simulator tool set [29], in the
manner similar to Section 3.1. Since currently we do not
have an automatic tool implementing EDDI protec-
tion, we only apply the FT schemes to the IDCT kernel
in the simulation. We measure the application execu-
tion time with the IDCT kernel free of redundancy,
with EDDI and ILCOFT-enabled EDDI protection.
Then we use these results to derive expected results
for the completely protected application. Specifically,
let the total running time of cjpeg be given by

Ttotal = Tidct + Trest,

where Tidct is the time taken by the IDCT kernel and
Trest is the time of the rest of the application. Further-
more, assume that applying full EDDI (using a tool) to

Instruction-level fault tolerance configurability 101

the rest of the application slows it down by a factor of
f , then the total running time of cjpeg protected with
EDDI is given by

Ttotal-eddi = Tidct-eddi + f · Trest,

where Tidct-eddi is the measured running time of the
IDCT kernel when protected with EDDI. Similarly, the
total running time of cjpeg protected with ILCOFT-
enabled EDDI is

Ttotal-ilcoft = Tidct-ilcoft + f · Trest,

where Tidct-ilcoft is the measured running time of the
IDCT kernel when protected with ILCOFT-enabled
EDDI. In other words, for the IDCT kernel we take
the measured running time and for the rest which is
protected by full EDDI we assume an overhead by
the factor of f (which is the same for both Ttotal-eddi

and Ttotal-ilcoft). We assume that EDDI introduces 100%
overhead, which is quite pessimistic for higher issue
widths, because EDDI increases the amount of avail-
able instruction-level parallelism [11]. Note that the less
overhead EDDI introduces in the rest of the applica-
tion, the more pronounced benefits ILCOFT-enabled
EDDI brings. 100% EDDI overhead means the factor
f equals 2 in our estimations.

Figure 6a presents the slowdown of the IDCT ker-
nel protected with EDDI and ILCOFT-enabled EDDI
over its non-redundant version. The runtime of all
the IDCT function invocations during JPEG encod-
ing process is accumulated. This figure reflects the
simulation results. Unlike in Section 3.1, this experi-
ment uses a slightly modified version of EDDI, which
does not duplicate memory. Duplicating (allocating and
copying) memory for each invocation of the IDCT

function would bring a significant unjustified over-
head in the application, which in our opinion would
not reflect the actual EDDI influence. Usually one
would expect EDDI to introduce lower overhead than
Fig. 6a reports, because the duplicated instructions it
adds are independent of the original ones, so the avail-
able instruction-level parallelism is increased. How-
ever, for the IDCT kernel EDDI introduces overhead
higher than 2 times, for example, 2.59 times for issue
width 1 and 2.11 times for issue width 4 (see Fig. 6a).
We attribute this to the high register utilization in
IDCT. EDDI halves the number of available regis-
ters, allocating 13 of them, leading to a need in a
large amount of register spilling. Besides the additional
memory overhead from register spilling, the stored
value of every store instruction should be checked
in EDDI, which significantly increases the number of
inserted branch instructions. A bad scaling with the
increased issue width we attribute to the fact that the
original IDCT code has enough independent instruc-
tions that can be executed in parallel, so the addi-
tional instruction-level parallelism brought by EDDI
cannot be fully utilized due to the lack of computing
resources.

Unlike with EDDI, IDCT is very friendly to
ILCOFT (when considering only the control instruc-
tions to be critical). There are only two loops in the
jpeg_fdct_islow function, which are not nested. There-
fore ILCOFT-enabled EDDI allocates only one regis-
ter (for shadow copies of the counters), duplicates only
a few instructions and adds only two checks. This is very
little redundancy for a function with about 350 static
instructions, which leads to a negligible performance
overhead over the original.

Figure 6b presents the analytically estimated perfor-
mance overhead for the whole JPEG encoder. Here

a Simulated: IDCT kernel slowdown, accumulated for all b Estimated: JPEG encoder slowdown with protection applied

its invocations in JPEG encoding. to the whole application. Based on the assumption that for

the rest of the application (except the IDCT kernel), EDDI

introduces 100% overhead.

Figure 6 Slowdown of EDDI and ILCOFT-enabled EDDI versions over the non-redundant version, for varying issue widths.

102 D. Borodin et al.

Table 4 Fault injection results for the JPEG encoding.

sim. Detected Detected Detected Undetected Application Escapes Max. # Max.
(FT scheme) (application) (simulator) % crashed % % (max. # injected undetected
% % % faults) faults faults

ILCOFT 100 0 59 4 35 0 9(4) 9 8
EDDI 100 98 0 27 0 0 0 147 0

the IDCT kernel is protected with either EDDI or
ILCOFT-enabled EDDI, and the rest of the appli-
cation—with EDDI. It shows that applying ILCOFT
to only the IDCT kernel of EDDI-protected JPEG
encoder is able to deliver a performance gain of 14%
on average.

4.2 Energy Consumption

Similar to Section 3.2, we obtained the energy con-
sumption results with Wattch [31]. The results show a
behavior similar to that of the performance in Fig. 6.
On average, the JPEG encoder with the IDCT kernel
protected by ILCOFT-enabled EDDI consumes about
14% less energy than with EDDI.

4.3 Fault Coverage Evaluation

We perform experiments similar to those in Section 3.3,
injecting faults regularly (from once per 500 thousand
to once per 50 million instructions) into the input and
output registers of the instructions within the IDCT
kernel. The fault frequency decreases with each simu-
lation. Table 4 presents the fault injection results for
100 simulations. The presentation is similar to that of
Table 1.

Table 4 shows that EDDI detected almost all the
faults (98%). The effects of the other 2% faults have
been masked, did not propagate to the output, or
were detected by the simulator before the FT scheme.
ILCOFT-enabled EDDI did not detect any faults in our
simulation. We explain this by the fact that the number
of checks performed within the kernel is very low as
compared to EDDI.

The column “Detected (application)” shows that
59% of the faults in ILCOFT-enabled EDDI have been
detected by the application, reporting an out-of-range
DCT coefficient. Nothing has been detected by the ap-
plication in EDDI, because the faults have been caught
earlier by EDDI or the operating system. The col-
umn “Detected (simulator)” demonstrates that for both
schemes some faults have been detected by the sim-
ulator (operating system), reporting, for example, an
illegal memory access. From the column “Application

crashed” it can be seen that the application never
crashed due to the faults, neither for EDDI nor for
ILCOFT-enabled EDDI.

It may appear surprising that in the column “Max.
injected faults”, the maximum number of faults in-
jected per simulation is much larger for EDDI than
for ILCOFT-enabled EDDI. This is due to the way
our error handler works: when EDDI detects a fault,
it reports an error and returns from the running IDCT
function, but does not stop the whole application. In
this way we are able to see if EDDI detects faults in
future IDCT invocations. However, unlike in EDDI,
undetected faults in ILCOFT-enabled EDDI easily
propagate to the points where the wrong values are
used in loads and stores, which triggers a simulator (op-
erating system) exception, and the application stops.
Thus, the simulation is shorter, and the fault injector
is not able to inject more faults.

Thirty-five percent of the ILCOFT scheme simu-
lations ended with undetected faults, which were ei-
ther masked or propagated to the output. Figure 7
depicts one of the most corrupted output JPEG images
produced by our simulations. It was produced with
fault frequency of once per 10 million instructions,
and this particular simulation produced the maximum

Figure 7 Output corruption due to the undetected faults in
IDCT.

Instruction-level fault tolerance configurability 103

number of undetected faults (equal to 8). The three ar-
eas where we were able to visually recognize corruption
are marked with squares. On the right, the magnified
versions of these areas are shown, in the original image
(left column) and the corrupted image (right column).

We believe that the possibility to end up with this
kind of output corruption is quite an acceptable price
for a significant speedup and energy saving which
ILCOFT applied to the protection of the IDCT kernel
provides. This is under the assumption of relatively low
requirements to the output image quality, which can
be quite appropriate in embedded systems, PCs and
other systems not designed for critical missions. For
applications with very high requirements to the out-
put image quality JPEG is not a good choice anyway,
because it is originally lossy. The other expectation is
a relatively low fault rate which is anticipated in the
foreseeable future in normal environments (ILCOFT
does not target extreme cases such as environments
with a high radiation). The low fault rate means that
most of the time redundancy is not useful, but only
brings overhead. In this situation, reducing time and
energy overhead, still being guaranteed against severe
crashes, but increasing the chance of tolerable errors,
makes sense.

5 Conclusions

In this work we have proposed an instruction-level,
rather than application-level, configurability of FT
techniques. This idea is based on the observation that
some applications might pose different FT require-
ments for their different parts. For example, in mul-
timedia applications, an error in parts calculating the
value of a pixel, a motion vector, or a sample frequency
(sound) can be easily unnoticed or ignored by a human
observer. However, an error in the control (critical)
part will most probably lead to a crash of the whole
application. This suggests that it is most important to
apply the strongest FT features to the critical parts,
and non-critical parts can be protected with a weaker
FT (or left unprotected) to improve the application
performance and save resources. In applications with
execution time constraints, the time saved by reducing
the FT of non-critical parts can be used to further
increase the FT of the critical parts, thus improving the
overall application reliability.

We have shown how several existing FT schemes
could be adapted to support ILCOFT. We also pro-
posed a way how a programmer could specify the de-
sired degree of FT in a high-level language or assembly

code, and indicated how a compiler could apply FT
techniques to control code automatically.

The experimental results have demonstrated that
ILCOFT is able to significantly improve an application
performance and reduce the energy consumption when
applying a higher FT degree to its critical parts (in-
structions) only. At the kernel level, the performance
and energy dissipation improved up to 50%, and at the
application level—up to 16%. In the application-level
experiments, this improvement is achieved by applying
ILCOFT to only one of the most time-consuming ker-
nels, minimizing the programmer effort. This indicates
that adaptation of only one kernel provides a significant
application-level improvement.

The price to be paid for the performance and energy
gains provided by ILCOFT is the decreased fault cov-
erage. The experimental results have shown that fault
coverage of ILCOFT is very application-specific and
works best with applications that compute independent
elements. The fault coverage certainly depends on the
amount of redundancy applied. In some cases the out-
put corruption introduced by ILCOFT is tolerable, in
others it is not acceptable. Finally, we have demon-
strated that adding memory access address protection
in ILCOFT-enabled EDDI could significantly improve
the fault coverage.

Future work consists of applying ILCOFT to other
FT schemes, also in hardware. Furthermore, develop-
ment of compiler support for specification of FT degree
is necessary to evaluate ILCOFT for large applications,
such as audio/video codecs.

Acknowledgements This work was partially supported by the
European Commission in the context of the SARC integrated
project #27648 (FP6).

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.

References

1. Shivakumar, P., Kistler, M., Keckler, S. W., Burger, D., &
Alvisi, L. (2002). Modeling the effect of technology trends
on the soft error rate of combinational logic. In DSN-02:
Proc. 2002 int. conf. on dependable systems and networks
(pp. 389–398). Washington, DC, USA.

2. Rao, T. R. N., & Fujiwara, E. (1989). Error-control coding for
computer systems. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc.

3. Hareland, S., Maiz, J., Alavi, M., Mistry, K., Walsta, S., &
Dai, C. (2001). Impact of CMOS process scaling and SOI

104 D. Borodin et al.

on the soft error rates of logic processes. VLSI technology.
Digest of technical papers (pp. 73–74).

4. Saxena, N. R., & McCluskey, E. J. (1998). Dependable adap-
tive computing systems—the ROAR project. In Proc. IEEE
systems, man, and cybernetics conf (vol. 3, pp. 2172–2177)
(October).

5. Sundaramoorthy, K., Purser, Z., & Rotenberg, E. (2000).
Slipstream processors: Improving both performance and fault
tolerance. ACM SIGPLAN Notices, 35(11), 257–268.

6. Purser, Z., Sundaramoorthy, K., & Rotenberg, E. (2000).
A study of slipstream processors. In MICRO-33: Proc.
33rd annual ACM/IEEE int. symp. on microarchitecture
(pp. 269–280). New York, NY, USA.

7. Breuer, M. A., Gupta, S. K., & Mak, T. M. (2004). Defect and
error tolerance in the presence of massive numbers of defects.
IEEE Design and Test of Computers, 21(3), 216–227.

8. Chung, H., & Ortega, A. (2005). Analysis and testing for
error tolerant motion estimation. In DFT-05: Proc. 20th
IEEE Int. symp. on defect and fault tolerance in VLSI systems
(pp. 514–522). Washington, DC, USA (October).

9. Reis, G. A., Chang, J., Vachharajani, N., Rangan, R., &
August, D. I. (2005). SWIFT: Software implemented fault
tolerance. In CGO ’05: Proc. of the int. symp. on code gen-
eration and optimization (pp. 243–254). Washington, DC,
USA.

10. Oh, N., & McCluskey, E. J. (2002). Error detection by
selective procedure call duplication for low energy con-
sumption. IEEE Transactions on Reliability, 51(4), 392–402
(December).

11. Oh, N., Shirvani, P. P., & McCluskey, E. J. (2002). Error de-
tection by duplicated instructions in super-scalar processors.
IEEE Transactions on Reliability, 51(1), 63–75 (March).

12. Lu, D. J. (1982). Watchdog processors and structural in-
tegrity checking. IEEE Transactions on Computers, C-31(7),
681–685 (July).

13. Mahmood, A., & McCluskey, E. J. (1988). Concurrent error
detection using watchdog processors–a survey. IEEE Trans-
actions on Computers, 37(2), 160–174 (February).

14. von Neumann, J. (1956). Probabilistic logics and the synthesis
of reliable organisms from unreliable components. In Au-
tomata studies, volume 34 of annals of mathematics studies,
(pp. 43–98). Princeton, NJ: Princeton University Press.

15. Johnson, B. W. (1989). Design and analysis of fault-tolerant
digital systems. Addison-Wesley (January).

16. Hennessy, J. L., & Patterson, D. A. (2003). Computer archi-
tecture, a quantitative approach (3rd ed). Morgan Kaufmann
(May).

17. Franklin, M. (1995). A study of time redundant fault toler-
ance techniques for superscalar processors. IEEE Int. work-
shop on defect and fault tolerance in VLSI systems (pp.
207–215) (November).

18. Ray, J., Hoe, J. C., & Falsafi, B. (2001). Dual use of su-
perscalar datapath for transient-fault detection and recovery.
MICRO-34 (pp. 214–224) (December).

19. Austin, T. M. (1999). DIVA: A reliable substrate for deep
submicron microarchitecture design. In MICRO-32: Proc.
32nd annual ACM/IEEE Int. symp. on microarchitecture
(pp. 196–207). Washington, DC, USA (June).

20. Chatterjee, S., Weaver, C., & Austin, T. (2000). Efficient
checker processor design. In MICRO-33: Proc. 33rd annual
ACM/IEEE int. symp. on microarchitecture (pp. 87–97). New
York, NY, USA.

21. Weaver, C., & Austin, T. (2001). A fault tolerant approach
to microprocessor design. Dependable systems and networks
(pp. 411–420) (July).

22. Tullsen, D. M., Eggers, S. J., & Levy, H. M. (1995). Simul-
taneous multithreading: Maximizing on-chip parallelism. In
ISCA-95: Proc. 22nd annual int. symp. on computer architec-
ture (pp. 392–403). New York, NY, USA.

23. Rotenberg, E. (1999). AR-SMT: A microarchitectural
approach to fault tolerance in microprocessors. In FTCS-29
(pp. 84–91). Madison, Wisconsin, USA (June).

24. Reinhardt, S. K., & Mukherjee, S. S. (2000). Transient fault
detection via simultaneous multithreading. In ISCA-00: Proc.
27th annual int. symp. on computer architecture (pp. 25–36).
New York, NY, USA.

25. Vijaykumar, T. N., Pomeranz, I., & Cheng, K. (2002).
Transient-fault recovery using simultaneous multithreading.
In ISCA-02: Proc. 29th annual int. symp. on computer archi-
tecture (pp. 87–98). Washington, DC, USA.

26. Olukotun, K., Nayfeh, B. A., Hammond, L., Wilson, K., &
Chang, K. (1996). The case for a single-chip multiprocessor.
In ASPLOS-VII: Proc. seventh int. conf. on architectural
support for programming languages and operating systems
(pp. 2–11). New York, NY, USA.

27. Reynolds & Metze, G. (1978). Fault detection capabilities
of alternating logic. IEEE Transactions on Computers, C-27
(12), 1093–1098 (December).

28. Patel, J. H., & Fung, L. Y. (1982). Concurrent error detec-
tion in ALU’s by recomputing with shifted operands. IEEE
Transactions on Computers, C-31(7), 589–595 (July).

29. Burger, D., & Austin, T. M. (1997). The simplescalar tool set,
version 2.0. SIGARCH Computer Architecture News, 25(3),
13–25.

30. Austin, T., Larson, E., & Ernst, D. (2002). SimpleScalar:
An infrastructure for computer system modeling. Computer,
35(2), 59–67.

31. Brooks, D., Tiwari, V., & Martonosi, M. (2000). Wattch: A
framework for architectural-level power analysis and opti-
mizations. In ISCA-00: Proc. of the 27th annual int. symp. on
computer architecture (pp. 83–94). New York, NY, USA.

32. Independent JPEG Group webpage. http://www.ijg.org/.

http://www.ijg.org/

Instruction-level fault tolerance configurability 105

Demid Borodin was born in Samarkand, USSR, in 1982. He
received the M.Sc. degree in Computer Engineering from Delft
University of Technology, Delft, The Netherlands, in 2005.
Currently he is a Ph.D. student in Computer Engineering Lab-
oratory of the Faculty of Electrical Engineering, Mathematics,
and Computer Science at Delft University of Technology, The
Netherlands. His current research focuses on fault tolerance of
computing systems. The interests also include application-specific
instruction set architectures, parallel architectures, and computer
architecture in general.

B. H. H. (Ben) Juurlink is an associate professor in the Computer
Engineering Laboratory of the Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science at Delft University of
Technology, The Netherlands. He received the M.Sc. degree in
Computer Science, from Utrecht University, Utrecht, The
Netherlands, in 1992, and the Ph.D. degree also in Computer
Science from Leiden University, Leiden, The Netherlands, in
1997. His research interests include instruction-level parallel
processors, application-specific ISA extensions, low power tech-
niques, and hierarchical memory systems. He has (co-)authored
more than 50 papers in international conferences and journals
and is a senior member of the IEEE, a member of the ACM, and
a member of the HiPEAC Network of Excellence.

Said Hamdioui received the M.S.E.E. and Ph.D. degrees (both
with honors) from the Delft University of Technology, Delft,
The Netherlands. He is currently with the Delft University
of Technology. He has more than seven years with industry
before attending Delft University. He worked for Intel CA,
Philips Semiconductors France and for Philips Nijmgen in The
Netherlands. Dr. Hamdioui published one book and over 50
technical papers. His research interests include VLSI test and
reliability, deep-submicron CMOS IC design and test, fault /de-
fect tolerance, nano devices design and test. Dr. Hamdioui is a
member of the IEEE and the IEE, and was the recipient of the
European Design Automation Association (EDAA) Outstand-
ing Dissertation Award for 2001.

Stamatis Vassiliadis was born in Manolates, Samos, Greece, in
1951. He was a Chair Professor in the Faculty of EEMCS at
Delft University of Technology, The Netherlands. He previously
served in the Electrical Engineering faculties of Cornell Univer-
sity, Ithaca, NY, and the State University of New York (SUNY),
Binghamton. For a decade, he worked with IBM, where he was
involved in a number of advanced research and development
projects. Dr. Vassiliadis has received numerous awards for his
work, including 24 publication awards, 15 invention awards, and
an outstanding innovation award for engineering/scientific hard-
ware design. His 72 U.S. patents rank him as the top all-time IBM
inventor. He passed away in April 2007.

	Instruction-Level Fault Tolerance Configurability
	Abstract
	Introduction
	ILCOFT
	Motivation
	Specification of the Required FT Degree
	In Assembly Code
	In High-Level Language
	Automatically by the Compiler

	FT Schemes Adaptable to ILCOFT

	Kernel-Level Validation
	Performance Evaluation
	Energy and Power Consumption
	Fault Coverage Evaluation

	Application-Level Validation
	Performance Evaluation
	Energy Consumption
	Fault Coverage Evaluation

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

