ESTIMEDIA 2007

Still Image Processing on Coarse-Grained
Reconfigurable Array Architectures

Matthias Hartmann! Vassilis Pantazis? Tom Vander Aa? Mladen Berekovic?

Christian Hochberger® Bjorn de Sutter?

Abstract—Due to the increasing demands on efficiency,
performance and flexibility reconfigurable computational
architectures are very promising candidates in embedded
systems design. Recently coarse-grained reconfigurable ar-
ray architectures (CGRAs), such as the ADRES CGRA and
its corresponding DRESC compiler are gaining more pop-
ularity due to several technological breakthroughs in this
area. We investigate the mapping of two image process-
ing algorithms, Wavelet encoding and decoding, and TIFF
compression on this novel type of array architectures in a
systematic way.

The results of our experiments show that CGRAs based
on ADRES and its DRESC compiler technology deliver im-
proved performance levels for these two benchmark applica-
tions when compared to results obtained on a state-of-the
art commercial DSP platform, the c64x DSP from Texas
Instruments. ADRES/DRESC can beat its performance by
at least 50% in cycle count and the power consumption even
drops to 10% of the published numbers of the c64x DSP.

I. INTRODUCTION

A new branch of programmable processor architec-
tures for demanding DSP applications has emerged in
the recent years, such as image processing or video cod-
ing: coarse-grained reconfigurable architectures (CGRAs).
Even though many CGRAs were proposed before ([4], [13],
[8], [1]) none of them have yet been broadly used, some
due to the difficult programming models and others due to
their extensive overuse of resources compared to other DSP
processors. The novel ADRES (Architecture for Dynami-
cally Reconfigurable Embedded Systems) CGRA addresses
a number of these insufficiencies and its corresponding
compiler DRESC (Dynamically Reconfigurable Embedded
System Compiler) compiles C code with a very high uti-
lization (50% to 80%). Furthermore it was shown that the
ADRES and its DRESC is highly suitable for video decod-
ing [2] and for wireless applications [12]. This paper will
show its additional suitability for still image processing.

The ADRES architecture closely connects a very-long
instruction word (VLIW) processor and a coarse-grained
array by providing two functional views of the same phys-
ical resources. The VLIW part enables the mapping of
complex, control-flow intensive applications, which is miss-
ing in other published CGRA implementations. The array
part offers unprecedented loop accelerations. An easy map-
ping of applications written in C onto the VLIW and the
array mode is ensured by the DRESC compiler framework.
A shared register file between these two modes, which also

1 Department of Electrical Engineering, University of Technology
Dresden, Helmholtzstrasse 18, 01062 Dresden, Germany

2 IMEC Leuven, Kapeldreef 75, B-3001 Leuven, Belgium

3 Department of Computer Science, University of Technology Dres-
den, Helmholtzstrasse 10, 01062 Dresden, Germany

functions as storage for live-in and live-out variables for
the loop mode, provides a minimum of communication and
mode-switching costs and makes it possible to generate
code for both modes, including the data transfer opera-
tions. Finally, ADRES is a template instead of a concrete
processor architecture and with the retargetable compila-
tion support from DRESC, architectural exploration be-
comes possible to discover better architecture instances or
design domain-specific architectures.

This paper presents how two image processing applica-
tions, a wavelet transform [14] and the Tiff2BW bench-
mark from the MiBench benchmark suite [6] were mapped
on multiple ADRES instances. For these applications, be-
ing applied in still cameras as part of ever more complex
image processing algorithms, high performance and low-
power consumption are also becoming increasingly impor-
tant. We investigate if the ADRES architecture and its
DRESC compiler are suitable for image processing appli-
cations. To optimize the performance and power consump-
tion, we explorated the available loop level parallelism, and
explored multiple ADRES architectures During this explo-
ration, both applications were first mapped to the VLIW
mode only and later the loops were mapped onto the array
mode. The applied optimizations, the results and power
numbers are discussed in this paper and compared to the
state-of-the-art VLIW-DSP processor c¢64x from TT [7].

The rest of this paper is organized as follows. Section
2 introduces the ADRES architecture template and its
corresponding DRESC compiler. Section 3 presents the
Tiff2BW benchmark and its optimization for ADRES and
DRESC. Section 4 does the same for the wavelet trans-
formation. In Section 5 we show the obtained results on a
multitude of different ADRES instances and compare them
with the DSP processor c64x from TI.

II. ADRES CGRA ARCHITECTURE AND DRESC
COMPILER

The ADRES architecture template [10], as shown in Fig-
ure 1, consists of an array of basic components, including
functional units (FUs), register files (RFs) and and inter-
connect network. The top row can act as a tightly cou-
pled VLIW processor in the same physical entity. The
array contains three types of basic components: FUs, stor-
ages resources such as RFs and read-only data memoriess,
and interconnects that include wires, muxes and busses.
The ADRES architecture is a flexible template that can be
freely specified by an XML-based architecture specification
language as an arbitrary combination of those elements.
The two parts of ADRES share the shared register file and

load/store units. The computation-intensive kernels, typ-
ically dataflow loops, are mapped onto the reconfigurable
array by the compiler using a modulo scheduling technique
to implement software pipelining and to exploit the highest
possible parallelism, whereas the remaining code is mapped
onto the VLIW processor. The data communication be-
tween the VLIW processor and the reconfigurable array
is performed through the shared RF and shared memory.

Tnstruction fetch
Thstruction dispatcn

DATA Cache

Instruction decode

|
ot
iy
s
H
=
iy
|
i [t
i
Gy
il
H(5
e
[t
G
e

z

I
— z
Bk ek
-
i

3

fa

e e ot o R e o
[l {E|Ffa| el E g ={E =g

[

;
JES
<=

T
i3

EgEERNES

1

i T
3
=
5
T

i

:

;

1

T

i VLIW view

I
I
Ls

I

[

STl
Bl [ElzHE A E

[

=l i
L i

[

[
W
eE = E

[

]
TN =
By By EEnEE G el

i

EEy By Sy BE: BEEE

1

T
i
T
T
1

T
1
1

;
FU
- RF|—{RE|—{RE —RE

Reconfigurable array view

oF

Ri

Fig. 1. Architecture of the ADRES reconfigurable array

In contrast to FPGAs, the FU in ADRES performs coarse-
grained operations on 32 bits of data, e.g. ADD, MUL, and
Shift. To remove the control flow inside loops, the FUs sup-
port predicated operations for conditional execution. High
operation frequencies can be obtained by inserting pipelin-
ing latches at the outputs of FUs. The values produced
by an FU can be written to a local RF, which is usually
small and has fewer ports than the shared RF, or routed
directly to the inputs of other FUs. The multiplexers are
used for routing data from different sources. The config-
uration RAM acts as a (VLIW-) instruction memory to
control these components. It stores a number of configura-
tion contexts locally, which are loaded on a cycle-by-cycle
basis. As such, the ADRES CGRA is a dynamically re-
configurable architecture.

The DRESC compiler tool chain consists of the IM-
PACT C compiler frontend [5] and of the DRESC com-
piler backend. IMPACT, a VLIW compiler framework,
profiles and parses the C source code to an intermediate
representation (Lcode), and applies several optimizations.
These include extensive inlining and hyperblock formation
by means of predication to eliminate control flow from in-
ner loops. Those loops are then mapped onto the ADRES
array mode with a modulo-scheduling algorithm [11] ex-
ploiting the high parallelism of the loop kernels. This ar-
ray mapping is fully retargetable, as the target ADRES
instance is desribed in an XML file that is fed to the com-
piler together with the C code of the application. Tra-
ditional ILP scheduling techniques are applied to achieve
high performance in the non-kernel parts of the application
by executing them on the VLIW mode. The DRESC com-
piler backend generates scheduled code for both the CGRA
and the VLIW, which can be simulated by a co-simulator.

ESTIMEDIA 2007

A. Ezperimental Setup

As mentioned in the previous section the DRESC com-
piler supports not just one specific architecure, but a wide
range of ADRES architecture instances, which can be de-
fined by an XML-based description. The experiments de-
scribed in this paper were carried out on different instances
with different numbers of FUs, different word width, dif-
ferent setup for the local RFs, and different interconnects
between the FUs. More specific details about those archi-
tectures are shown in Table I.

ITII. TirF2BW BENCHMARK

The original source code of the Tiff2BW benchmark was
taken from the MiBench Benchmark Suite [6]. It is part of
a set of benchmarks that tries to evaluate embedded de-
vices for consumer applications. The benchmark converts
a coloured TIFF image into a black and white TIFF image
while decreasing the size of its file by the factor of 3. In
order to make the results comparable the benchmark also
includes two standard images of which one is transformed.
The large TIFF image has a dimension of 3069 by 3100
pixels with 24 bits per pixel. Therefore the size of this
image is 27.2 MB. The second in the benchmark included
TIFF image has a size of 6.5 MB and a dimension of 1520
by 1496 pixels. Since the size itself is linearly influencing
the number of cycles spent processing the TIFF image, the
smaller TIFF image was used for the ADRES simulations
in order to reduce the simulation time.

A. Transformation

In the Tiff2BW benchmark the transformation to a black
and white image consists of one loop, whose source code is
shown in Figure 2. This loop reads three values from an
input buffer, representing the values for the red, green and
blue component of the pixel, and weights them with three
different but constant values. Those weighted values will
be summed up and stored in an output buffer. Figure 2
also shows the resulting dataflow graph.

[Coad | [Load | [Load |

while (n-- > 0)
{ [l] [Wur] []
v = red*(*rgb++);

v += greenx (xrgb++) ;
v += blue*(*rgb++);
*xout++ = v>>8;

}

Fig. 2. Source code & dataflow graph of the transformation in the
Tiff2BW benchmark

B. Optimization

In order to achieve optimal performance on a given
ADRES architecture, a number of source-level transfor-
mations usually need to be applied that expose more par-
allelism to the compiler. All of those transformations are
done on the C source code level. For the applications pre-
sented in this paper, all applied source level transforma-
tions were evaluated on the 4x4 multimedia ADRES in-
stance in order to ensure that they effectively result in
faster execution. Table II shows the simulation results of

IMAGE PROCESSING ON ADRES

Template Word Width Number of FUs Number of FUs with Number of RFs Connections
Load/Store capability

4x4 multimedia 32 16 4 12 nearest neighbor
4x4 wireless 64 16 4 13 mesh-plus routing
2x2 alternative [3] 32 4 2 1 for 4 words morphosys routing
4x4_all alternative [3] 32 16 4 12, connected to each FU mesh-plus routing
4x4_4L alternative [3] 32 16 4 4, each for 4 words morphosys routing
4x4_16L alternative [3] 32 16 4 4, each for 64 words morphosys routing
8x8 alternative [3] 32 64 8 16, each for 4 words morphosys routing

TABLE I
DIFFERENT ADRES ARCHITECTURES AND THEIR CHARACTERISTICS

the original source as well as of some of the transformed
versions, which are discussed in the following paragraphs.

As a first optimization step, induction variable strength
reduction was applied to the loop to eliminate the live-in
variable n. While the simulation results in Table IT show
that the cycle count is not influenced significantly by this
optimization, the number of executed instructions drops
significantly. This prepares the loop for more important
optimizations such as loop unrolling.

After removing the induction variable n, the loop was
unrolled several times. Since there is no data dependency
between different iterations of the loop, the unrolled loop
has no additional restrictions that follow from data depen-
dencies. Finding effective schedules, with higher numbers
of instructions per cycle (IPC) executed is therefore made
easier for the DRESC compiler, as it now has more op-
erations to schedule. Four versions of differently unrolled
loops are shown in Table II.

Experiments with the unrolled loops have shown that the
improvements in performance decrease if a loop is unrolled
too much. For the 4x4 multimedia ADRES instance, the
results in Table II indicate that unrolling should be limited
to seven times. The upper bound on loop unrolling follows
from the fact that the unrolled loops become too big for the
compiler too explore a lot of the scheduling space. This is
also apparant from the increasing compilation times of the
loops, that follow from the fact that the modulo schedule
algorithm used in DRESC relies on simulated-annealing
to explore the scheduling space without being trapped in
suboptimal schedules. Research on possible improvements
of the compiler for large dataflow graphs is future work.

The performance result of all versions are also shown in
Table II. It can be seen that the number of cycles needed
to perform the conversion was halved compared to the orig-
inal source code, and the total number of instructions exe-
cuted was decreased by 33%. The final results for a wider
range of ADRES architecture are shown in the Section V.

IV. WAVELET TRANSFORMATION

Wavelet-based coding is a powerful enabling technology
for scalable applications. It is based on the principles of the
Wavelet Transform, which is a special case of a sub band
transform producing a type of localized time-frequency
analysis. The wavelet transform implementation used in
these experiments is very similar to the one used in the
JPEG2000 still image compression standard [14].

A. Transformation

The wavelet transform application we used applies trans-
formations in two phases. First, in a forward transforma-
tion, a two-dimensional array of size 512 * 512 is reduced
in multiple steps in order to be stored in another two-
dimensional array of size 32 * 32. The input data we used
in our experiments are taken from the well-known “lena”
picture. In the second phase of the benchmark, the reduc-
tion is reversed and afterwards the output is compared to
the original data. During the forward transformation the
size of the array is reduced by a factor of four in consecutive
steps. Each step consists of two loops.

B. Optimization

Even though the input and output buffer and the num-
ber of iterations changes between the different steps, the
loops between different steps are of the same structure.
Therefore all possible optimizations found for the two loops
in the first step can be applied for the loops in all the
other steps. For the reverse transformation the same ap-
plies since it is also based only on two different loop struc-
tures. Furthermore, the two loops of each step have a
similar structure. One of them is slightly more complex,
however. Therefore all optimizations were evaluated for
the more complex loop and the results of the optimization
were applied to the other loops. The original source code
inside the loop is shown in Figure 3. Simulation results
of the original and the optimized versions are depicted in
Table III.

The first optimization applied on the source code was
the reuse of values that were loaded from memory mul-
tiple times in the original code. Thus, one load can be
saved in each operation. Furthermore, the loads are un-
conditionalized by executing them before the if-then-else
construct. The changed source code is displayed in Fig-
ure 4 and the results of a simulation are shown in Table III
as version “optimized loads”. Before this transformation
values were not loaded and stored in a temporary variable,
but were loaded every time from the memory. Therefore
the DRESC compiler could not schedule those values to be
stored in a local RF, but had to schedule a separate load
operation for each use. This optimization did not improve
the performance regarding the number of cycles, but re-
duced the number of executed instructions, especially of
the load and store operations, and therefore had a direct
influence on the energy consumed during the processing
of the loop. Since load and store operations can only be
scheduled on special functional units on the CGRA with

ESTIMEDIA 2007

Version Cycles Instructions IPC Scheduling Time
original source code 4°547°885 38656870 8.5 2.96 s
induction variable strength reduction 4°547°879 36’382’913 8.0 2.65 s
1 time unrolled loop 3’410°927 32’972°096 9.7 11.99 s
2 times unrolled loop 2°273’994 29’561°293 13.0 28.02 s
7 times unrolled loop 2273967 25’866°134 11.4 84.19 s
11 times unrolled loop 3’514’319 27°080°725 7.7 226.98 s

TABLE II
SIMULATION RESULTS OF DIFFERENT OPTIMIZATIONS FOR THE TIFF2BW BENCHMARK ON THE 4X4 MULTIMEDIA ADRES INSTANCE

if (row==0)
tmpl = L1[0] [(2*row)+1] [(2*col)+hor];
else

tmpl = L1[0] [(2*row)-1] [(2*col)+hor];
L2[2*hor] [row] [col] = L1[0] [(2*row)] [(2*col)+hor]-
(L1[0] [(2*row)+1] [(2*col)+hor]+tmpl)/2;

Fig. 3. Original source code of the wavelet transformation

L1 _O_r_1 =L1_0_r1;
L1_0 = L1[0] [(2*row)] [(2*col)+hor];
L1_0_r1 = L1[0] [(2*row)+1] [(2*col)+hor];

if (row==0)
tmpl = L1_0_r1;
else

tmpl = L1_0_r_1;
L2[2*hor] [row] [col] = L1_0 - (tmpl + L1_0_r1)/2;

Fig. 4. Source code with optimized loads

Version Cycles Instructions IPC Scheduling Time

original source code 175’498 2°610’838 14.9 114.21 s

optimized loads 176’520 1'936°019 11.0 221.12 s

copy propagation 143496 1'747°857 12.2 221.65 s

loop coalesced 82’620 1'156°423 14.0 297.53 s
TABLE III

SIMULATION RESULTS OF DIFFERENT OPTIMIZATIONS FOR THE WAVELET TRANSFORMATION ON THE 4X4 MULTIMEDIA ADRES INSTANCE

a memory access capability, the reduction of those opera-
tions also gave the compiler more freedom to schedule the
loop.

Following this source level transformation the loading of
the values was rewritten in order to exploit the copy prop-
agation handling of the DRESC. Values needed in the next
iteration of a loop are then stored in a local RF and did
not need to be loaded again from the memory. The source
code change can be seen in the first line of Figure 4 and
its improvement for the simulation in Table III as version
“copy propagation”.

In the final step of the optimization process the outer
and inner loops were coalesced in order to increase the
processing time spent in the kernel state and to reduce
the influence of the loop prologues and the loop epilogues
on the total performance of the applications. In software-
pipelined loops, the stages of the pipeline have to warm
up when the loop is entered (as only stages from already
initiated iterations are to be executed), while the pipeline
is flushed at the end of the loop when no more new itera-
tions are initiated. These warmup and flushing phases are
called prologues and epilogues. The fewer the number of
iterations in a loop, the higher the effect of their length
on the total processing time of a loop. Thus, it is impor-
tant to create loops with a high number of iterations to
obtain high performance. Loop coalescing, being the com-
bination of nested loops (say with iteration counts i; and
i2) into a single loop (then with iteration count i1 X i3),
is ideally suited for this. The results for the simulation of
this final source code can be seen in Table III as version
“loop coalesced”. After this optimization had been ap-
plied, no further improvement was found, so it were these
optimizations that were applied to all other loops in the
whole wavelet benchmark.

As for the TiffT2BW benchmark the final simulation re-

sults for the wavelet transformation for different ADRES
architectures are shown in Table III. In the wavelet trans-
formation the number of cycles needed could be reduced
to only 50% of the original used cycles and the number of
instructions executed was reduced by more than 55%.

V. ARCHITECTURE EXPLORATION

The final source code versions of the benchmarks were
simulated on different architectures of ADRES, as men-
tioned in Section A. The next section will explain how
numbers for the TI DSP c64x were obtained and what op-
timizations were applied before the benchmarks were com-
piled for that architecture. In Section B, the obtained
numbers will be discussed.

A. Comparison with the TI c64x

In order to evaluate the gathered results the two bench-
marks were run on a simulator for a DSP from TT (c64x).
For the simulation the Code Composer Studio v3.2 from TT
was used and the source code was compiled with the high-
est optimization parameter for TI’s proprietary compiler.
All applied optimisations for the ADRES architecture were
checked on the DSP and if necessary undone. Furthermore
the by the TT compiler generated assembler code was in-
spected for additional optimisations.

A.1 Tiff2BW Benchmark

Unfortunately the used source code proved to be incom-
patible with the simulator due to the not supported use of
an external library in the Tiff2BW benchmark. In order
to enable the simulation on the DSP, the source had to be
rewritten. Instead of opening a TIFF image the algorithm
will now allocate memory of the same size as the image
and fill it with pseudo random numbers. This does not

IMAGE PROCESSING ON ADRES

Benchmark & Architecture Cycles Instructions IPC Utilisation of the CGRA Speedup to TT c64x
Tiff2BW

DSP TI c64x 4°547°947 26’529°081 6 1.00

4x4 multimedia 2’273°967 24°729°217 10.9 68% 2.00

4x4 wireless 3’410°949 26°718’897 7.8 49% 1.33

2x2 alternative 8’811°517 24°444°802 2.8 70% 0.52

4x4_all alternative 2’894°189 327662290 11.3 71% 1.57

4x4_41, alternative 2°687°434 32’662’331 12.2 76% 1.69

4x4_16L alternative 2°687°427 21’421°906 11.7 73% 1.69

8x8 alternative 1'421°264 35814939 25.2 39% 3.20
Wavelet

DSP TI c64x 8’765'163 26973231 3.08 1.00

4x4 multimedia 2’095’528 28’346°939 13.5 84% 4.18

4x4 wireless 2’623’134 30°137°922 11.5 72% 3.34

2x2 alternative 6°767°899 26°117°944 3.9 98% 1.30

4x4_all alternative 3’091°148 35’451°612 11.5 2% 2.84

4x4_4L alternative 2’885’585 35022239 12.1 76% 3.04

4x4_16L alternative 2°792°529 34°202°225 12.2 76% 3.14

8x8 alternative 1°627°106 46°342°177 28.5 45% 5.39

TABLE IV

COMPARISON OF THE IMAGE PROCESSING BENCHMARKS FOR DIFFERENT ADRES ARCHITECTURES AND THE TI c64x

change the produced simulation results since the bench-
mark will still process the same amount of elements and
will still perform the same amount of operations, all in the
same order.

A.2 Wavelet Transformation

For the wavelet transformation the initial run of the
source code optimized for ADRES on the simulator from
TT showed that the DSP stayed far below the expected
performance. All applied optimizations were checked for
performance on the DSP. First, all the variables and data
had to be restricted to 16-bit values. Also, because the
loop coalescing introduces division operations, which are
not supported by a single instruction in the TT instruction
set, the coalescing of the loops had to be undone because
it otherwise resulted in slow instruction sequences imple-
menting division.

B. Simulation Results

After the changes on the source code described in the
previous sections both applications were simulated on dif-
ferent ADRES architectures as well as on the DSP c64x
with an optimized source code version for each architec-
ture including the TI c64x. The results of those simula-
tions are shown in Table IV. Due to the higher data de-
pendency in the wavelet transformation the DSP performs
worse for this benchmark than in the Tiff2BW benchmark.
The ADRES architecture can profit in this specific case
more from its copy propagation.

In all cases except for one the ADRES architecture and
its corresponding compiler DRESC performs better than
the TT c¢64x. Only the 2x2 architecture is worse than the
DSP for the Tiff2BW benchmark. This specific ADRES
architecture has only half of the functional units of the TI
c64x and the parallelism of the benchmark is fairly easy to
exploit on the DSP c64x. For the wavelet transformation
even the trade off of less FUs is compensated in a 2x2
architecture and the 2x2 ADRES architecture outperforms
the TT c64x. Especially in the wavelet transformation a
significant gain can be reached. For the “4x4 multimedia”
architecture the number of cycles was reduced to less than

25% compared to the TI c64x.

Between the different ADRES architectures the “4x4
multimedia” instance provides the best results. The “4x4
wireless” instance performs worse even with the larger data
width, because this data width is not needed in the mapped
benchmarks and SIMD for those benchmarks can not be
explored with this instance. Furthermore the shared read-
only data memories (that can only store a limited number
of immediate operands to instructions) limit the perfor-
mance for the two benchmarks. This is mainly caused by
the compiler and will be addressed in the future compiler
releases. The alternative 4x4 architectures[3] show that
for those specific benchmarks the tradeoffs for saving re-
sources (local RF's, connections between the resources) is
minimal. As already mentioned before the 8x8 architec-
ture stays below the expected performance. This may be
caused by a lack of scalability of the simulated-annealing
scheduling algorithm, or by the relatively lower relative
connectivity of such a large architecture, or by yet another
reason. Future research in improveming the DRESC com-
piler for better support of large ADRES architectures will
give more insights in this behavior.

C. Power Measurements

In order for the power dissipation estimation tool flow
to be executed, the VHDL code automatically generated
for the target architecture of the ADRES template, the
“4x4 multimedia” instance was to be synthesized, placed,
routed, and simulated. We obtaining switching activity of
the nets by a cycle true simulation. The switching activity
is afterwards annotated on the synthesized design, thus
leading to an accurate power estimation.

The experiments for the power measurements were done
for the Tiff2BW benchmark as well as for the Wavelet
transformation. To be simulated the total amount of mem-
ory accessed needed to be reduced. In order to reduce the
total amount of memory used in both benchmarks, the size
of the processed image was reduced. This reduction had
no influence on the power measurements, as the activity
inside the main loops is not altered. Only the length of
the loops was altered.

ESTIMEDIA 2007

ADRES component Tiff2BW in mW Wayvelet in mW
Icache 9.233 8.492
Data MEM 17.330 11.180
CORE 37.270 57.140

CGRA mode control 8.916 14.025

CGRA FUs 9.513 15.175

VLIW mode control 0.205 0.198

VLIW FUs 0.659 0.780

Clock Tree 12.700 13.640

Total Consumption 71.690 84.590
(processor level)

DSP c64x (given by TI [9]) 1700.000 1700.000
@720MHz; 1.2V

TABLE V

POWER NUMBERS FOR THE “4X4 WIRELESS” ADRES INSTANCE FOR BOTH BENCHMARKS

Table V shows the gathered power numbers for the 4x4
multimedia ADRES instance. The Icache is only used in
VLIW mode of the ADRES to fetch the VLIW instructions
and due to the fact, that the transformations will be done
in CGRA mode, this power number only accounts for the
start of the application and small parts of the application
to prepare for the transformation. The power number for
the Data MEM represents the power consumed for the load
and store operations in the application. The core power
numbers correspond to the power consumed by the ADRES
processing unit. Since there is only a small amount of
processing time spent in VLIW mode the power number
for those units in the ADRES processing unit are relatively
small. The main power consumption for both benchmarks
is caused by the CGRA control unit and by the CGRA
functional units. In general 50% of the power consumption
is caused by the memories such as Icache, Data MEM and
CGRA control unit, which is the instruction memory for
the CGRA mode of the ADRES.

Compared to the power numbers of the TI DSP c64x,
taken from [9] and also shown in Table V, the given
ADRES architecture performs below 5% of the DSP’s
power level. The 4x4 multimedia instance will operate on
45.6 MOPS per mW for the Tiff2BW benchmark and on
47.9 MOPS per mW for the wavelet transformation.

VI. CONCLUSION

Our results show that the ADRES architecture and the
DRESC compiler are highly suitable for image processing.
Due to its data independency in the Tiff2BW benchmark
and the limited data dependency between iterations in the
wavelet transformation the DRESC compiler can nearly
fully exploit the capacity of the CGRA. Limitations made
to the benchmarks do not affect the initial performance of
the benchmarked transformation itself. Most of the limi-
tations are due to external causes such as problems with
the IMPACT tool or problems caused by the TI compiler.
A few problems in the wavelet transformation were caused
by the DRESC compiler itself, but they have only a minor
influence in the performance and will be solved in the near
future.

It has been shown that an improvement of factor two
can be reached on a 4x4 ADRES architecture compared
to the DSP c64x from TT for the Tiff2BW benchmark and
an improvement of factor 4 for the wavelet transforma-

tion regarding the performance. As for the power num-
bers experiments have proven, that the 4x4 multimedia
ADRES instance will work below 5% of the power level
of the TT c64x. An 8x8 ADRES template will increase
the performance even more, but it does not reach the ex-
pected performance and the capacity of the CGRA is not
fully exploited. Further research will be done on a better
scheduling process for large CGRA structures.

REFERENCES

[1] Sami Khawam Mark Milward Ying Yi Adam Major, Ioan-
nis Nousias and Tughrul Arslan. H.264/avc in-loop de-blocking
filter targeting a dynamically reconfigurable instruction cell
based architecture. 17th International Conference on Field Pro-
grammable Logic and Applications.

[2] B. Bingfeng Mei; Veredas, F.-J.; Masschelein. Mapping an
h.264/avc decoder onto the adres reconfigurable architecture.
pages 622 — 625, Aug 2005. Field Programmable Logic and
Applications, 2005. International Conference.

[3] Frank Bouwens. Power and performance optimization for adres.
Master’s thesis, Delft University of Technology, The Nether-
lands, August 2006.

[4] R. Hartenstein. A decade of reconfigurable computing: a vision-
ary retrospective. 2001.

] The IMPACT Group. http://www.crhc.uiuc.edu/Impact/.

| MiBench Benchmark Suite http://www.eecs.umich.edu/mibench/.

[7] Texas Instruments Inc. http://www.ti.com/.

| Sundeep Singh Frank May Mahendra Kumar, Anga-

muthu Ganesan and Jrgen Becker. H.264 decoder at hd

resolution on a coarse grain dynamically reconfigurable archi-
tecture. 17th International Conference on Field Programmable

Logic and Applications.

[9] Gustavo Martinez. Tms320c6455/c6454
power consumption summary. Dec 2006.
http://focus.ti.com/lit/an/spraae8a/spraae8a.pdf.

[10] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man,
and Rudy Lauwereins. ADRES: An architecture with tightly
coupled VLIW processor and coarse-grained reconfigurable ma-
trix. In Proc. of Field-Programmable Logic and Applications,
pages 61-70, 2003.

[11] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De
Man, and Rudy Lauwereins. Exploiting loop-level parallelism
for coarse-grained reconfigurable architecture using modulo
scheduling. IEE Proceedings: Computer and Digital Techniques,
150(5), september 2003.

[12] W.; Derudder V.; Bougard B. Novo, D.; Moffat. Mapping a
multiple antenna sdm-ofdm receiver on the adres coarse-grained
reconfigurable processor. pages 473 — 478, Nov 2005. Signal Pro-
cessing Systems Design and Implementation, 2005. IEEE Work-
shop.

[13] Hartej Singh, Ming-Hau Lee, Guangming Lu, Fadi J. Kurdahi,
and Nader Bagherzadeh. Morphosys: an integrated reconfig-
urable system for data-parallel and computation-intensive ap-
plications. pages 465 — 481, May 2000. IEEE Transactions on
Computers.

[14] A. Skodras, C. Christopoulos, and T. Ebrahimi. The JPEG2000
still image compression standard. IEEE Signal Processing Mag-
azine, 9(7):36-58, September 2001.

